

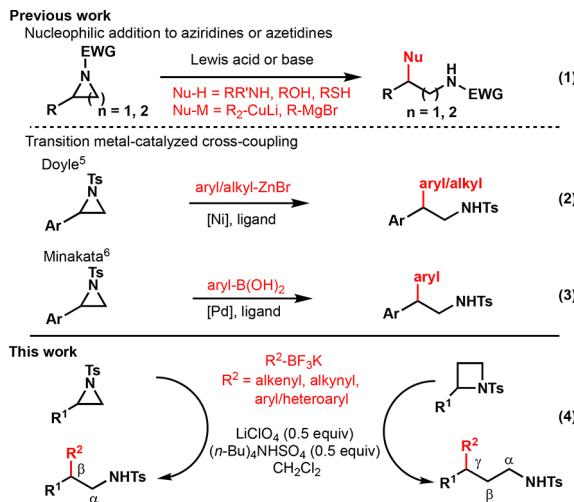
1 Branched Amine Synthesis via Aziridine or Azetidine Opening with 2 Organotrifluoroborates by Cooperative Brønsted/Lewis Acid 3 Catalysis: An Acid-Dependent Divergent Mechanism

4 Truong N. Nguyen and Jeremy A. May*^{✉, id}

5 Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Fleming Building Room 112, Houston, Texas 77204-5003,
6 United States

7 Supporting Information

8 **ABSTRACT:** A practical catalytic method to synthesize β,β - and γ,γ -
9 substituted amines by opening aziridines and azetidines, respectively,
10 using alkenyl, alkynyl, or aryl/heteroaryl trifluoroborate salts is described.
11 This reaction features simple open-flask reaction conditions, the use of
12 transition-metal-free catalysis, complete regioselectivity, and high
13 diastereoselectivity. Preliminary mechanistic studies suggest that
14 carbocation formation is disfavored. Stereoretentive addition is favored
15 with Brønsted acid present, while stereoinversion is favored in its absence, indicating divergent mechanisms.


16 **A**mines with β - or γ -branching constitute an important motif
17 for a large number of small molecules with biological
18 properties, some of which serve as candidates for the treatment of
19 nervous system disorders such as Parkinson's and Alzheimer's
20 diseases.¹ Several strategies have been conceived to construct
21 these molecules. A powerful strategy to synthesize β,β - or γ,γ -
22 substituted amines has been nucleophilic addition to the
23 substituted position of aziridines² or azetidines,³ respectively,
24 catalyzed by Lewis acids or Lewis bases (Scheme 1, eq 1).
25 Though several types of nucleophiles have been successfully
26 employed to make C–C bonds, carbanions such as organo-
27 lithium cuprates or Grignard reagents have been most
28 prominently used.⁴ Examples of neutral carbon π -nucleophiles
29 are rare, especially with azetidines.³ Furthermore, these

30 approaches usually exhibit poor regioselectivity due to
31 competitive nucleophilic attack at the two carbons of the
32 aziridine.

33 Another efficient approach to synthesize substituted amines is
34 transition-metal-catalyzed cross-coupling of aziridines (Scheme 35
1, eqs 2 and 3). Specific metals and ligands are needed for fine 36
control over the selectivity of these reactions. For instance, Doyle 37
developed nickel catalysts to promote the cross-coupling 38
between aryl or alkylzinc reagents to *N*-sulfonylaziridines with 39
complete regioselectivity at the substituted position.⁵ The use of 40
an electron-deficient alkene ligand was crucial to prevent β - 41
hydride abstraction. Aryl boronic acids were successfully used for 42
a palladium-catalyzed coupling, as later reported by Minakata,⁶ 43
where the bond formation occurs with excellent stereochemical 44
inversion. Although these reactions represent significant 45
advances, which even allow the generation of quaternary 46
stereocenters^{5c} or an enantioselective transformation,^{5d} they 47
require complex and sometimes expensive ligands. Moreover, 48
transition-metal catalysts often require inert atmospheres and 49
exclusion of water, and limited tolerance of halogenated 50
substrates is seen. Additionally, no examples of using alkynyl or 51
alkenyl nucleophiles as coupling partners with aziridines at the 52
substituted carbon have been reported, nor are there examples of 53
transition-metal-catalyzed cross-couplings to azetidines to afford 54
 γ,γ -substituted amine.^{5e}

55 In addition to the above-mentioned limitations to synthesizing
56 substituted amines, it is crucial to remove contaminating metals
57 in many chemical processes, especially in the pharmaceutical
58 industry.⁷ Transition-metal-free conditions are consequently of
59 interest to reduce cost and environmental impact.⁸ Coinciden-
60 tally, organotrifluoroborates have recently gained increasing
61 attention due to their wide functional group tolerance, bench-

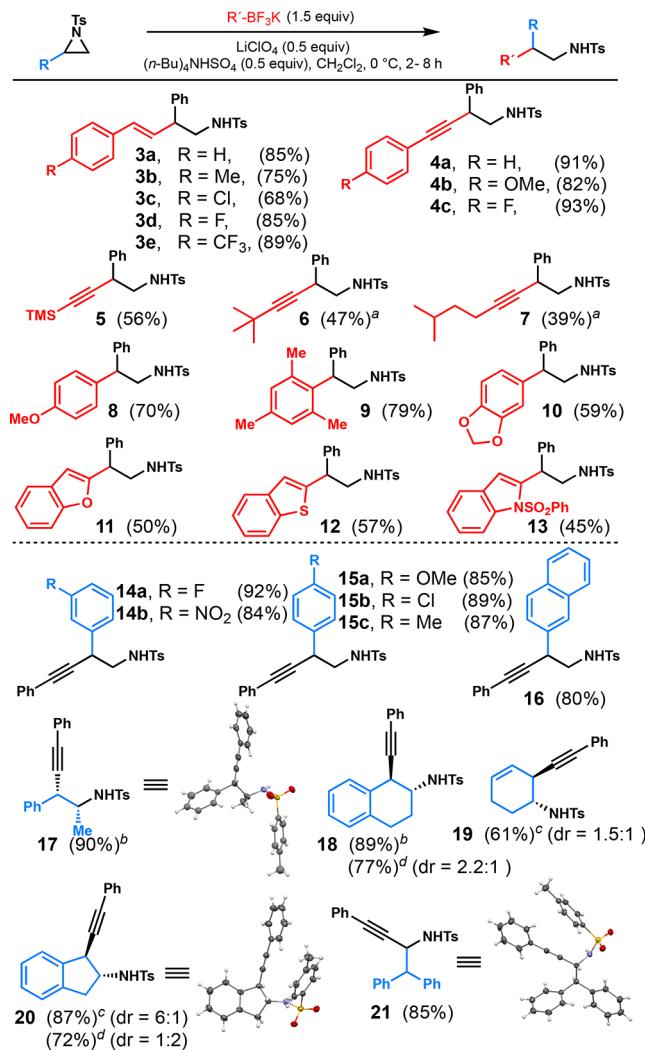
Scheme 1. Synthesis of β,β - and γ,γ -Substituted Amines

Received: May 2, 2018

62 stability, low toxicity, and easy access from commercial sources.
 63 Therefore, a reaction to afford substituted amines under
 64 transition-metal-free conditions from organotrifluoroborates,
 65 an unprecedented reaction, would be highly attractive for
 66 organic synthesis. Herein, we describe a general method to
 67 synthesize both β,β - and γ,γ -substituted amines by nucleophilic
 68 ring opening of aziridines and azetidines, respectively, using
 69 organotrifluoroborate salts as nucleophiles under cooperative
 70 Lewis/Brønsted acid catalysis (Scheme 1, eq 4). This approach
 71 provides straightforward, high-yielding, and scalable access to
 72 substituted amines with a wide range of readily available
 73 organotrifluoroborates under very simple conditions.

74 With the successful employment of organotrifluoroborate salts
 75 as nucleophiles in our previous works,⁹ we hypothesized that a
 76 similar nucleophilic addition to aziridines or azetidines would
 77 occur in the presence of a suitable Lewis acid or Brønsted acid.
 78 The investigation began by testing the reaction between readily
 79 available styrenyl trifluoroborate **2** and styrene-derived *N*-
 80 tosylaziridine **1** with various catalysts. After extensive screening,
 81 we found that some Lewis acids such as $\text{Bi}(\text{OTf})_3$, $\text{Yb}(\text{OTf})_3$,
 82 $\text{Cu}(\text{OTf})_2$, or InCl_3 could promote the reaction to afford β,β -
 83 substituted amine **3a** with complete regioselectivity, but in low
 84 yield (Table 1, entry 1). Promisingly, amine **3a** could be obtained

Table 1. Effects of Varying Reaction Conditions¹⁰

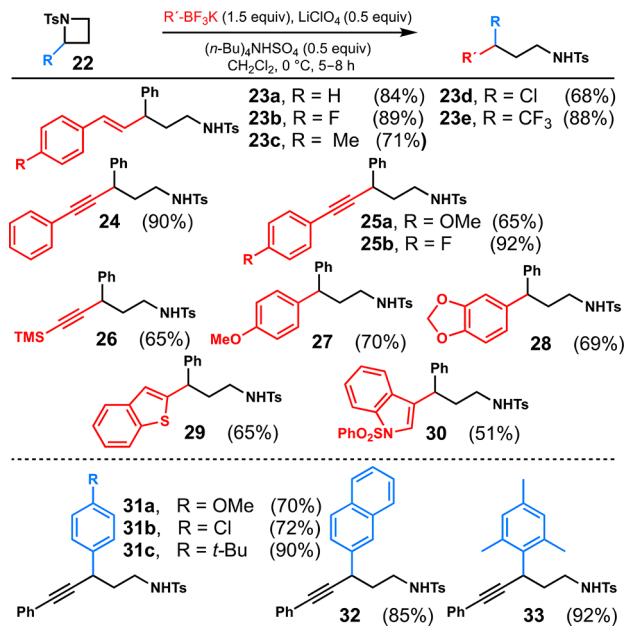

entry	catalyst	time (h)	solvent	co-catalyst	yield (%) ^a
1	LA ^b	12	CH_2Cl_2		17–22
2	LiClO_4	12	CH_2Cl_2		61
3	LiCl	12	CH_2Cl_2		45
4	LiPF_6	12	CH_2Cl_2		28
5	LiOTf	12	CH_2Cl_2		18
6	LiClO_4	12	MeCN		51
7	LiClO_4	12	THF		trace
8	LiClO_4	12	PhMe		60
9	LiClO_4	6	CH_2Cl_2	$(n\text{-Bu})_4\text{NHSO}_4$	77
10		24	CH_2Cl_2	$(n\text{-Bu})_4\text{NHSO}_4$ ^c	66
11	LiClO_4	6	CH_2Cl_2	$(n\text{-Bu})_4\text{NHSO}_4$	85 ^d

^aVia ^1H NMR integration relative to an internal standard. ^bLA = $\text{Bi}(\text{OTf})_3$, $\text{Yb}(\text{OTf})_3$, $\text{Cu}(\text{OTf})_2$, and InCl_3 . ^c0.5 equiv. ^dIsolated yield, 0.5 equiv of LiClO_4 at 0 °C.

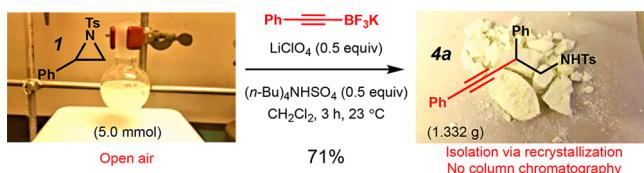
85 in >60% yield in the presence of LiClO_4 under open air
 86 conditions at room temperature (Table 1, entry 2). When
 87 switching to other lithium salts, the reaction yields did not
 88 improve (Table 1, entries 3–5). Only toluene gave results similar
 89 to dichloromethane but not for all substrates (Table 1, entries 6–
 90 8). The addition of $(n\text{-Bu})_4\text{NHSO}_4$ increased the reaction yield
 91 to 77% (Table 1, entry 9).^{9b} Interestingly, we later found that $(n\text{-Bu})_4\text{NHSO}_4$ provided the product in 66% yield without lithium
 92 salts (Table 1, entry 10). Further optimization showed that the
 93 adduct **3a** was obtained in 85% yield at 0 °C catalyzed by LiClO_4
 94 and $(n\text{-Bu})_4\text{NHSO}_4$ (Table 1, entry 11).

95 To investigate the scope of this reaction, we first varied the
 96 alkenyl trifluoroborate (Scheme 2). Yields were generally high
 97 and not significantly affected by aryl ring *para* substituents (3b–
 98 9e). When alkynyl trifluoroborates instead of alkenyl trifluor-
 99 borates were used, the products were obtained in even higher
 100 yields (4a–c), even though alkynyl boronates are often sensitive
 101 to acidic conditions. It should be noted that there are no previous
 102 to acidic conditions. It should be noted that there are no previous

Scheme 2. Scope of the Reaction with Aziridines

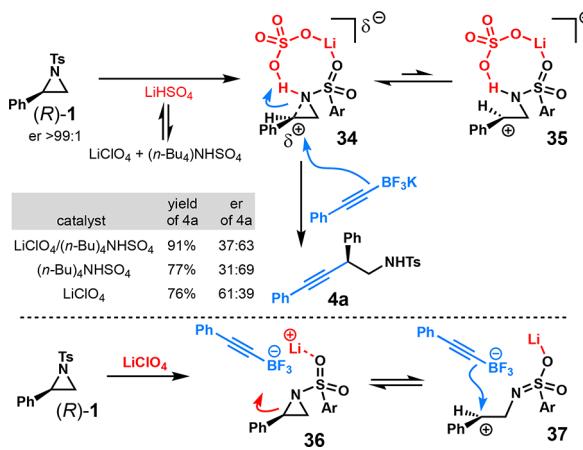

^a24 h at 60 °C. ^bObtained as a single diastereomer. ^cYield reported for the mixture of diastereomers. ^dReaction conducted with $(n\text{-Bu})_4\text{NHSO}_4$ omitted.

examples using alkynyl/alkenylzinc reagents or alkynyl/alkenyl boronates for this transformation. Ethynyltrimethylsilane borate reacted as well to give **5** in 56% yield. Less reactive aliphatic alkynyl borates required a higher temperature and longer time to afford adducts **6** and **7**. Aryl and heteroaryl borates to afford synthetically useful β,β -biaryl amines were next tested. The $\text{LiClO}_4/(n\text{-Bu})_4\text{NHSO}_4$ catalytic system also promoted the nucleophilic addition of electron-rich aromatic borates (**8–13**) in moderate to good yields. The steric hindrance of *o,o*-disubstitution on a mesityl nucleophile was not an issue (**9**). Heteroaryl borates afforded products **11–13** in acceptable yields.


Next, the aziridine scope was investigated with phenylethyynyl trifluoroborate and a variety of aziridines. The reactions proceeded smoothly to give products in good to excellent yields with complete regioselectivity and high diastereoselectivity in all but one substrate. Aziridines with aromatic rings bearing either an electron-donating or an electron-withdrawing group reacted similarly (compare **14** and **15** to **4**). 2-Naphthylaziridine reacted as well to give **16** in 80% yield. The reaction is not limited to monosubstituted aziridines; 1,2-disubstituted aziridines performed similarly. The aziridine derived from *trans*- β -methylstyryl

ene provided exclusively *syn*-17 in 90% yield. Aziridines derived from dialin and indene gave *trans*-products **18** and **20** as the major diastereomers, respectively, in excellent yields. It should be noted that the major diastereomers of **17** to **20** were formed by stereoinversion in the nucleophilic addition. Surprisingly, the absence of $(n\text{-Bu})_4\text{NHSO}_4$ produced significantly more *cis* product, which was the major product for **20**. Interestingly, the aziridine derived from *trans*-stilbene underwent a 1,2-phenyl shift prior to the nucleophilic addition to afford adduct **21** in 85% yield, which was confirmed by single-crystal X-ray crystallography. An allylic substrate gave homoallylic amine **19** in 61% yield with a *trans/cis* ratio of 1.5:1. Unfortunately, aziridines with saturated aliphatic substituents did not afford β -amine products. Because the intrinsic ring strain of aziridines is believed to facilitate the formation of the new C–C bond, we looked next to *N*-tosylazetidine electrophiles since they exhibit similar ring strain to aziridines.¹¹ The azetidine **22** ($\text{R} = \text{Ph}$), which could easily be accessed by reported procedures,¹² reacted with various trifluoroborates to afford a variety of γ,γ -substituted amines (Scheme 3). Styrenyl trifluoroborate gave γ,γ -substituted amine

Scheme 3. Scope of the Reaction with Azetidines

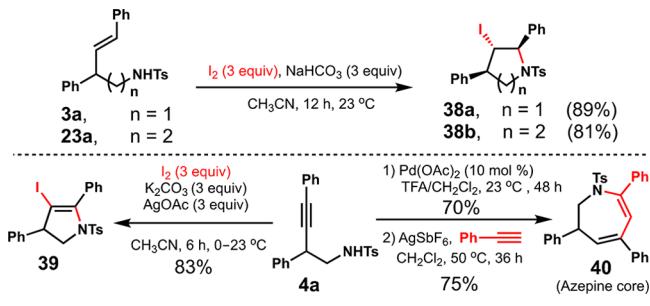


23a in 84% yield. Again, reaction yields were largely unaffected by the substituents at the *para*-position of the aromatic ring (**23b–e**). As was the case for aziridines, alkynyl trifluoroborates generally afforded product in good to excellent yields (**24–26**). Though ethynyltrimethylsilane trifluoroborate reacted less well, product **26** was still obtained in a useful 65% yield. A range of electron-rich aromatic and heteroaromatic nucleophiles afforded γ,γ -biaryl products **27–30** with satisfactory yields. The scope of the reaction with regard to the azetidine was also investigated. With the representative phenylethylnyl trifluoroborate, good to excellent yields of the products **31–33** were obtained for all azetidines, even with a sterically hindered mesitylene (**33**). To highlight the practicality of this method to synthesize substituted amines, the reaction was conducted with 5 mmol (>1 g) of aziridine **1** and phenylethylnyl trifluoroborate under open-air conditions at room temperature. It proceeded cleanly and was complete in 3 h to afford **4a** in 71%, which was obtained by simple recrystallization (Scheme 4).

Scheme 4. Large-Scale Production of Amine **4a**

To gain insight into the reaction mechanism, enantiomerically pure aziridine (*R*)-**1** was reacted with phenylethylnyl trifluoroborate under the optimized conditions. The product **4a** was obtained in 91% yield with an enantiomeric ratio of 37:63 (Scheme 5). The partial loss of enantioenrichment in the product

Scheme 5. Proposed Reaction Mechanisms



4a suggests that the reaction initially proceeds via an intermediate with significant carbocationic character. While $(n\text{-Bu})_4\text{NHSO}_4$ gave a similar outcome, when using only LiClO_4 as the catalyst, a surprising inverted enantiomeric ratio of 61:39 was seen. In the presence of HSO_4^- , primarily stereoinversion is seen (**17–20**), while LiClO_4 alone must then favor stereoretention. When the aziridine (*R*)-**1** was treated with the co-catalysts and without the organoborate nucleophile, a slow racemization of the aziridine was observed (see the Supporting Information (SI)). The rate of nucleophile addition to (*R*)-**1** ($>60\%$ within 5 min) is much faster than that of racemization (99% to 25% ee in 14 h).

On the basis of the results of these control experiments, a proposed mechanism is shown. Since the combination of LiClO_4 and $(n\text{-Bu})_4\text{NHSO}_4$ gives a significant reaction rate acceleration compared to LiClO_4 or $(n\text{-Bu})_4\text{NHSO}_4$ alone, it is possible that ion exchange between LiClO_4 and $(n\text{-Bu})_4\text{NHSO}_4$ occurs to generate bifunctional catalyst LiHSO_4 in situ.¹³ The coordination of LiHSO_4 to aziridine **1** could form species **34** where partial bond fragmentation has been initiated. An intermolecular nucleophilic attack of the organotrifluoroborate then generates amine **4a**. The proposed carbocation intermediate **35** is evident from the slow loss of enantioenrichment of (*R*)-**1** in control experiments. However, the observed diastereoselectivity in the formation of **17–20** suggests that an $\text{S}_{\text{N}}2$ -like mechanism predominates in the attack of **34**. To explain the stereoretention observed with only LiClO_4 , we hypothesize that the trifluoroborate is initially located on the same face as the lithium-coordinated tosamide through electrostatic attraction in the nonpolar solvent.¹⁴ When the aziridine opens, C–C bond formation would then take place from that face. More detailed control experiments to evaluate this case are ongoing.

198 To illustrate the utility of the reaction products, iodocyclization and cycloaddition transformations have been performed
199 200 (Scheme 6). In the presence of I_2 and $NaHCO_3$, the products 3a

Scheme 6. Product Transformations

201 and 23a smoothly underwent iodocyclization to form iodocyclized products 38a and 38b in 89% and 81% yields, respectively.¹⁵ When using alkynyl amine 4a for 204 iodocyclization, $AgOAc$ was needed to improve the reaction 205 rate and yield;¹⁶ the iodopyrrolidine 39 was thus obtained in 83% 206 yield. Importantly, azepine derivatives can be constructed 207 efficiently and selectively. After a γ -amino ketone intermediate 208 was formed by a hydration reaction of the amine 4a, it underwent 209 a $AgSbF_6$ -catalyzed [5 + 2]-cycloaddition with phenylacetylene 210 to afford synthetically useful azepine 40 in 75% yield.¹⁷

211 In conclusion, we report a general procedure to synthesize β,β - 212 and γ,γ -substituted amines by nucleophilic ring opening of 213 aziridines and azetidines under transition-metal-free and open-air 214 conditions. A range of substituted amines could be straightforwardly 215 accessed from readily available alkynyl, alkenyl, aryl, and 216 heteroaryl trifluoroborates. A mechanistic proposal has been 217 made on the basis of control experiments. The reaction products 218 can be easily transformed to useful amine scaffolds.

219 ■ ASSOCIATED CONTENT

220 ■ Supporting Information

221 The Supporting Information is available free of charge on the 222 [ACS Publications website](http://pubs.acs.org/doi/10.1021/acs.orglett.8b01394) at DOI: [10.1021/acs.orglett.8b01394](https://doi.org/10.1021/acs.orglett.8b01394).

223 Complete experimental procedures and compound 224 characterization data ([PDF](#))

225 ■ Accession Codes

226 CCDC 1841874–1841876 contain the supplementary crystallographic 227 data for this paper. These data can be obtained free of 228 charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing 229 data_request@ccdc.cam.ac.uk, or by contacting The Cambridge 230 Crystallographic Data Centre, 12 Union Road, Cambridge CB2 231 1EZ, UK; fax: +44 1223 336033.

232 ■ AUTHOR INFORMATION

233 Corresponding Author

234 *E-mail: jmay@uh.edu.

235 **ORCID**

236 Jeremy A. May: [0000-0003-3319-0077](http://orcid.org/0000-0003-3319-0077)

237 Notes

238 The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

239 We thank the Welch Foundation (grant E-1744) for generous 240 financial support. 241

■ REFERENCES

- (a) Shimazu, S.; Miklya, I. *Prog. Neuro-Psychopharmacol. Biol. Psychiatry* **2004**, *28*, 421. (b) Gallardo-Godoy, A.; Fierro, A.; McLean, T. H.; Castillo, M.; Cassels, B. K.; Reyes-Parada, M.; Nichols, D. E. *J. Med. Chem.* **2005**, *48*, 2407.
- For selected examples of nucleophilic ring opening of aziridines, see: (a) Llaveria, J.; Espinoza, A.; Negrón, G.; Isabel Matheu, M.; Castillón, S. *Tetrahedron Lett.* **2012**, *53*, 2525. (b) Rossi, E.; Abbiati, G.; Dell'Acqua, M.; Negrato, M.; Paganoni, A.; Pirovano, V. *Org. Biomol. Chem.* **2016**, *14*, 6095. (c) Kelley, B. T.; Joullié, M. M. *Org. Lett.* **2010**, *12*, 4244. (d) Rinner, U.; Hudlicky, T.; Gordon, H.; Pettit, G. R. *Angew. Chem., Int. Ed.* **2004**, *43*, 5342. (e) Rubin, H. N.; Van Hecke, K.; Mills, J. J.; Cockrell, J.; Morgan, J. B. *Org. Lett.* **2017**, *19*, 4976. (f) Nenajdenko, V. G.; Karpov, A. S.; Balenkova, E. S. *Tetrahedron: Asymmetry* **2001**, *12*, 255. (g) Bertolini, F.; Woodward, S.; Crotti, S.; Pineschi, M. *Tetrahedron Lett.* **2009**, *50*, 4515.
- For selected examples of nucleophilic ring opening of azetidines, see: (a) Bertolini, F.; Crotti, S.; Di Bussolo, V.; Macchia, F.; Pineschi, M. *J. Org. Chem.* **2008**, *73*, 8998. (b) Yadav, J. S.; Subba Reddy, B. V.; Narasimhulu, G.; Satheesh, G. *Synlett* **2009**, *2009*, 727. (c) Domostoj, M.; Ungureanu, I.; Schoenfelder, A.; Klotz, P.; Mann, A. *Tetrahedron Lett.* **2006**, *47*, 2205. (d) Dwivedi, S. K.; Gandhi, S.; Rastogi, N.; Singh, V. K. *Tetrahedron Lett.* **2007**, *48*, 5375. (e) Pawar, S. K.; Vasu, D.; Liu, R. S. *Adv. Synth. Catal.* **2014**, *356*, 2411. (f) Bera, M.; Pratihar, S.; Roy, S. J. *Org. Chem.* **2011**, *76*, 1475. (g) Ghorai, M. K.; Kumar, A.; Tiwari, D. P. J. *Org. Chem.* **2010**, *75*, 137. (h) Ghorai, M. K.; Shukla, D.; Bhattacharyya, A. J. *Org. Chem.* **2012**, *77*, 3740.
- For selected reviews, see: (a) Krake, S. H.; Bergmeier, S. C. *Tetrahedron* **2010**, *66*, 7337. (b) Hu, X. E. *Tetrahedron* **2004**, *60*, 2701. (c) Lu, P. *Tetrahedron* **2010**, *66*, 2549. (d) Tanner, D. *Angew. Chem., Int. Ed. Engl.* **1994**, *33*, 599.
- (a) Huang, C. Y.; Doyle, A. G. *J. Am. Chem. Soc.* **2012**, *134*, 9541. (b) Nielsen, D. K.; Huang, C. Y.; Doyle, A. G. *J. Am. Chem. Soc.* **2013**, *135*, 13605. (c) Huang, C. Y.; Doyle, A. G. *J. Am. Chem. Soc.* **2015**, *137*, 5638. (d) Woods, B. P.; Orlandi, M.; Huang, C. Y.; Sigman, M. S.; Doyle, A. G. *J. Am. Chem. Soc.* **2017**, *139*, 5688.
- Takeda, Y.; Ikeda, Y.; Kuroda, A.; Tanaka, S.; Minakata, S. *J. Am. Chem. Soc.* **2014**, *136*, 8544.
- (a) Welch, C. J.; Albaneze-Walker, J.; Leonard, W. R.; Biba, M.; DaSilva, J.; Henderson, D.; Laing, B.; Mathre, D. J.; Spencer, S.; Bu, X.; Wang, T. *Org. Process Res. Dev.* **2005**, *9*, 198. (b) Garrett, C. E.; Prasad, K. *Adv. Synth. Catal.* **2004**, *346*, 889.
- Li, C.-J.; Trost, B. M. *Proc. Natl. Acad. Sci. U. S. A.* **2008**, *105*, 13197.
- (a) Nguyen, T. N.; May, J. A. *Org. Lett.* **2018**, *20*, 112. (b) Nguyen, T. N.; Nguyen, T. S.; May, J. A. *Org. Lett.* **2016**, *18*, 3786. (c) Shih, J.-L.; Nguyen, T. S.; May, J. A. *Angew. Chem., Int. Ed.* **2015**, *54*, 9931.
- See the [Supporting Information](#) for a list of experiments.
- Dudev, T.; Lim, C. *J. Am. Chem. Soc.* **1998**, *120*, 4450.
- Ghorai, M. K.; Das, S.; Das, K.; Kumar, A. *Org. Biomol. Chem.* **2015**, *13*, 9042.
- Attempts to synthesize $LiHSO_4$ were made. However, it is extremely hygroscopic and difficult to purify.
- A control experiment with excess fluoride present (KHF_2) showed no impact on reactivity, indicating that the boron of the nucleophile remains coordinatively saturated. Consequently, Lewis acid/Lewis base coordination for facial direction is unlikely.
- Davis, F. A.; Song, M.; Augustine, A. *J. Org. Chem.* **2006**, *71*, 2779.
- Ding, C. H.; Dai, L. X.; Hou, X. L. *Tetrahedron* **2005**, *61*, 9586.
- Zhou, M. B.; Song, R. J.; Wang, C. Y.; Li, J. H. *Angew. Chem., Int. Ed.* **2013**, *52*, 10805.