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Abstract: Organocatalysis has emerged as a powerful synthetic tool in organic chemistry in the last
few decades. Among various classes of organocatalysis, chiral diol-based scaffolds, such as BINOLs,
VANOLSs, and tartaric acid derivatives, have been widely used to induce enantioselectivity due to
the ability of the hydroxyls to coordinate with the Lewis acidic sites of reagents or substrates and
create a chiral environment for the transformation. In this review, we will discuss the applications of
these diol-based catalysts in different types of reactions, including the scopes of reactions and the
modes of catalyst activation. In general, the axially chiral aryl diol BINOL and VANOL derivatives
serve as the most competent catalyst for most examples, but examples of exclusive success using
other scaffolds, herein, suggests that they should not be overlooked. Lastly, the examples, to date,
are mainly from tartrate and biaryl diol catalysts, suggesting that innovation may be available from
new diol scaffolds.

Keywords: asymmetric catalysis; organocatalysts; organoboronates; allylation; conjugate addition;
BINOL; TADDOL; diol catalyst

1. Introduction

Although the use of small organic molecules to catalyze organic transformations, especially in
an enantioselective manner, has been sporadically reported in the literature since the 1970s [1], it was
not until 2000 that the term “organocatalysis” was popularized, and the field grew exponentially.
Organocatalysis provides several advantages relative to transition-metal catalysis and enzyme-based
catalysis that include low toxicity, ready availability of chiral pool catalyst building blocks, insensitivity
to moisture and air, and selectivity with well-defined organization in transition states. Over the years,
several classes of organocatalysts have been developed to enable enantioselective reactions through
either covalent catalysis (iminium, enamine, Lewis base, and SOMO catalysis) or non-covalent catalysis
(ion-pairing, hydrogen-bonding, and Brensted acid/base catalysis) [2-6]. Among the catalysts that
activate the substrate through transient interactions, diol-based catalysts, such as derivatives of BINOL
and TADDOL (Scheme 1) have widely served as versatile chiral tools to catalyze many different types
of reactions. Although they have been significantly used as chiral ligands in transition-metal catalysis
and Lewis acid complexes, the unfettered hydroxyls of these catalysts can, themselves, facilitate certain
reactions. This review exclusively covers applications of the catalysts where reactivity is induced and
the stereoselectivity is controlled through substrate or reagent activation by the hydroxyls of the diols.
The principle discussion focuses on asymmetric transformations that involve the interaction of the
hydroxyls with organoboron reagents, as well as reactions driven by activation through non-covalent
interactions. The presentation is organized based on the diol scaffold: BINOL, tartaric acid derivatives
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hydrogen-bonding interaction between the alkoxy ligand and the “free” hydroxyl group of the catalyst,

leading to si facial attack via a chair-like transition state (Scheme 2). These preliminary mechanistic

understandings of the activation modes of diol catalysts opened the door for the asymmetric reaction

development using organoboronates later on.
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2.3. Addition of Organoboronates to Acyl Imines

Beyond the asymmetric allylboration of acyl imines, Schaus and co-workers also sought suitable
conditions to vinyl, alkynyl, and aryl boronate nucleophiles. After the optimization process, n-butyl
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QMs under acidic conditions. Indeed, the reaction between hydroxylbenzyl alcohols 4 and
alkenylboronates 49 in the presence of the catalyst 1b afforded products 50, presumably because the
boronates 49 are acidic enough to promote the formation of 0-QMs from 48 (Scheme 19). Notably, the
ortho hydroxyl group of the phenol was found to be crucial, as no product was observed in its
Absencesddmdenthe optimized conditions, the products 50 were obtained in excellent yields, angd yrith
high enantioselectivities from either electron-rich or electron-deficient substrates.
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Scheme 19. Enantioselective addition of boronates to hydroxybenzyl ethyl ethers.
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The levels of diastereo- and enantiopurity of the products could be improved after recrystallization.
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acid to generate propargylic diazenes that decomposed by a retro-ene reaction to form the allene
products. Based on the success of this reaction, Schaus and Thomson envisioned that an asymmetric
version of the traceless Petasis reaction could be developed by devising a strategy to access chiral
propargylic hydrazides, since the chirality of the propargylic center would be transferred in the retro-
ene reaction [39]. They developed two different approaches towards optically active propargylic
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acid to generate propargylic diazenes that decomposed by a retro-ene reaction to form the allene
products. Based on the success of this reaction, Schaus and Thomson envisioned that an asymmetric
version of the traceless Petasis reaction could be developed by devising a strategy to access
chiral propargylic hydrazides, since the chirality of the propargylic center would be transferred
in the retro-ene reaction [39]. They developed two different approaches towards optically active
propargylic hydrazides: asymmetric alkynylboration of transient x-hydroxyl hydrazones (Scheme 23)
and asymmetric allylboration of transient propargylic hydrazones (Scheme 24). In the former
case, the hydroxyl group was found to be crucial for an effective reaction for its coordination
to alkynylboronates, while it was unnecessary in the latter strategy. During the optimization
for the reaction of alkynylboronates and glycolaldehyde, 2,5-dibromophenylsulfonylhydrazide 60
and 3,3,6,6'-(CF3)4-BINOL were found to be optimal for the reaction (Scheme 23). The use of
a toluene/mesitylene mixture solvent also improved the reaction selectivity. A wide range of
arylalkynylboronates was effective under the optimized conditions, affording a-allenols 63 in good
yields and high enantioselectivities, even with a trialkylsilylalkynyl boronate. Glycolaldehyde could
be replaced by «-hydroxylacetone to provide trisubstituted allene 63f in 91% yield and 90:10 er.
Shaus and Thomson also developed conditions for the allylboration of propargylic hydrazides.
The optimal conditions were similar to those for the traceless Petasis allylboration of imines [25,40],
which used the sulfonyl hydrazide 25 and the 3,3’-Ph,-BINOL catalyst 1e (Scheme 24). The conditions
were effective for both electron-rich and electron-deficient aldehyde substrates. Heteroaromatic
propiolaldehydes were also good substrates, though the pyridine-containing aldehyde provided a low

¥isd (2 %6aY, Presronakiyrbacpiisg the Lewis basic nitrogen inhibited the reaction. 13 of 36
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Scheme 23. Allene synthesis via alkynyl boronates.
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Scheme 23. Allene synthesis via alkynyl boronates.
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Scheme 24. Allene synthesis from alkynyl aldehydes.

3.7. Esnjligate Addition

‘Bne very well-known reactign to establish €=€ Bonds in organic synthesis is the addition of
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the catalytic complexes requires involved techniques and air-free procedures. Moreover, transition
metal catalysts are incompatible with many important functional groups. Therefore, the use of chiral
organocatalysis is an important alternative method to promote asymmetric conjugate additions [41].

2.7.1. Conjugate Addition of Alkynyl Boronates

The Chong group reported a catalytic conjugate addition using alkynyl boronates (Scheme 25) [42].
They disclosed that the presence of an electron withdrawing group (EWG) substituent at the 3 and
3’ positions of the BINOL positively affected the reaction. Using BINOL with EWGs, the reactions
efficiently proceeded and were completed in a shorter time than with no substituents, neutral groups,
or EDGs. The most productive results were observed with BINOL catalyst 1¢, which had iodo
substituents. Several examples of the enones were shown to react in high yields and enantioselectivities
with both alkylalkynyl and arylakynyl boronates as nucleophiles.
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Scheme 25. Conjugate addition of alkynyl boronic esters.
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Later on, Chong’s work inspired our group to develop the conjugate addition with 3-indolo-
enone substrates. Enantioselective Conjugat{;@dition to 3-indolo-enones had been quite rare, since
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indolo-enone is unré&éeee CH6ng’s reactiotf ¢ai@ittGii8 synthesized fhe gg%]gégate adduct 70f in poor

yield. We sought out a stronger Lewis acidic ggtalyst to improve the catalsttic reactivity of the BINOL
catalyst and, thus, mgreﬁ?;\héo;;activity of thg enopes. Our group fou apinstead of using iodo
substituents on BINOL, g,3; I substltuted N was found to be a marereactive catalyst for the
conjugate addition of alkegyl boronic acids to [ég;ndolo enones (Scheme 2689 [44] Acyclic and cyclic
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Later on, our group was interested in the use of heteroaryl and aryl nucleophiles in the conjugate
addition (Scheme 29). We initially tested heteroarylboronic acids. However, low yields were
obtained, and protodeboronation [46] was observed in noticeable amounts. To avoid this side
reaction, organotrifluoroborate salts were used instead of boronic acids for their greater stability [47-
511 However the in<olubilitv of the oreanotrifliioroborates in nonvolar solvents was anticinated to
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Scheme 28. Conjugate addition of aryl boronic esters.
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Scheme 29. Conjugate addition of heteroaryl borate salts.

Like the alllylation, @apilation aadopsppasgrdabandeaetan B BINOH derirntbvasdkre e sesded
axeteHens eliakEstiod exanpry sRiEgas addiianvanan indedudingdhe aie¢ olquonenadnathislas

as especially electrophilic enones. We note, here, that tartrate derivatives also catalyze conjugate
additions (see Section 3.3), but in comparing examples reported, to date, the use of BINOL derivatives is
generally superior in both catalytic reactivity, to provide greater product yields, and in stereoselectivity,
to provide products with greater enantiomeric excesses. However, the tartrate derivatives offer
advantages in cost and facile synthetic access to highly variant derivatives that, when coupled with
their significant reactivity and stereoselectivity, renders them a viable alternative to the axial chiral
biaryl diols.

3. Tartaric Acid Derivatives

3.1. Asymmetric Addition of Alkenylborates to N-acyl Quinoliniums

In 2011, Schaus and co-workers reported the nucleophilic addition of alkenylboronates to
1-ethoxycarbonyl-1,2-dihydroquinolines (EEDQs) catalyzed by tartaric acid to afford enantioenriched
dihydroquinoline derivatives (Scheme 30) [54]. The authors found that a mildly acidic additive,
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Seheme 30. Enantioselective alkenylboronate addition to N-aeyl quineliniums.

Mechanistie stivdiiss werecaldoundeidniedienotitlefeiiyitherolealé taftiritaaitda@ehepab ST The
Fsules siiveniech v titipdbrie tartarieracid abetlde 767 (s possibly idemedd THeddorom “ate” eomplex
76 was independently synthesized and added to the 1eaction o semve s thve edrdlyst. Under the
optimized eonditions, a similar outcome was dbsorved. The borate 76 likely wnderwent ligand
exchange to form boronate 77. Next, the chiral alkenylberonate 77 reacted with the EEDQ to form the
propesed intermediate 78. The alkenyl group then migrated to the quinelinium enantieselectively to

furnish the dihydroquineline product.

Seheme 31. Propesed eatalytie eyele for EEDQ addition:

3.3. Enantioselective Oxidative €=H Alkenylation and Avyiation

Liu and es-werkers reporied a similar transformation catalyzed By tartarie acid derivatives 55]:
They deseribed enantisselective €=H alkenylberation and arylberation reaetions ef tetrahydre-p-
earbelines (earbolines) eata f@é By tartarie acid derivatives (Scheme 32): Inspired by the werk ef
Sehaus [39), they p%apegeé at the eyelie imintum intermediates that eauld be seleetively generated

through benzyhc C-H oxidation of the carboline precursors by DDQ could be intercepted in an
enantioselective addition. The resulting N-acyliminium underwent a similar transformation to that
reported by Schaus to afford diverse x-substituted tetrahydro-f3-carbolines in good yields and high
enantioselectivities. Notably, these additions to acyl quinoliniums performed significantly better
with catalysts derived from tartaric acid. This may be due to the bimolecular nature of the C—C bond
formation, as the allylations, crotylations, conjugate additions, and Petasis reactions that are most
effectively catalyzed by BINOL and VANOL proceed intramolecularly, from an intermediate Lewis
acid/Lewis base complex.
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Scheme 32. Enantioselective oxidative C-H alkenylation and arylation.

3:3. Asymietric Eonflgate Additioh

Tararic adid derivatives were alss employed I8 catalyze enantioselsctive conjiigate additions:
Stgita developed 2 Monoester arHate catalyst 3¢ for the conjugate addition of alkenyl Borohic acids
{8 enones (Scheme 33) [56,57). Diting the cotrse of optimization; they found that the addition of
MeBH increased the Fate of the reaction; presumably Becatise 8f the formation of dimethyl Boronate
ssters in BINOL-Based calalysis: The sptimized eonditions allowed Both aryl- and alkyl-substituted
BRONEs i3 Be viable stibstraies (see 833 and 82d): Ovetatl, and &nantioselectivities of the reactish
were moderate compared 0 thoie aalyzed by Slalyss. Howevst a fiFah Borohic acid
Rticlesphile, ah tnprecedented examiple, Was A0 iepord (e $%0).
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Scheme 33. Asymmetric conjugate addition catalyzed by tartaric acid derivatives.

Mechanistie studies were also eondueted, which indieated that the reaetion meehanisin is similar
to that of the BINOL-catalyzed conjugate addition (Scheine 34) [58]. The beren “ate” eomplex 85 is
presumably formed in the present of the catalyst. The internal hydrogen bond between two carboxylic
acid groups appears to allow facial addition of the boronic acid nucleophile. The authors also suggested
that non-classical hydrogen bonds between the benzoate carbonyl and the vinyl and aryl protons of
the boronic acid, assist the transition state organization. After the addition of MeOH, the catalyst and
the enone product are released and complete the catalytic cycle.



presumably formed in the present of the catalyst. The internal hydrogen bond between two
carboxylic acid groups appears to allow facial addition of the boronic acid nucleophile. The authors
also suggested that non-classical hydrogen bonds between the benzoate carbonyl and the vinyl and
Myl protemsaf the boronic acid, assist the transition state organization. After the addition of Mg&ok},
the catalyst and the enone product are released and complete the catalytic cycle.

\\,OH
o ZB/\/Ph

H ; Z )
MeO r
20

Ph 84 R
Re face attack
ey (e}

0] O \ )k/\
H \\/O, o 4P Ph Ph
H

(0] O \

= H

H‘ t H
O\<O
Ar

Seheme 34. Proposed mechanism.

1 VANSHYATIL
BINSE 1 a ‘éa s;;mr%ettrffg Bizryl gg%g&&&&‘ 2 BESR Wissly SBBlS ailnéirffferreea‘tf fE3cth ﬂ&fcs&
Manx;%%rlm% feshael B n$ﬁ1ez§%ela ardstde nersazedizeeastiibyang eohansa e chipakRgciet
ar%%%rgmym%g&ouyfx ) aes e AL VES 1Y 1tbvsgsb%$1 ReniB R AN A POSIioRs are common,
Lariation inthe acatfoidiha Oﬂeﬁléstiqa% By drooiRiTss Q‘fs%seeeofﬁhethlws Vf%ﬁl%ar SRAMGEE
Tl VARV I n@%uwmc st RN L g b i e

W%&“SSD%S%%E Mdepiss t}ﬂ‘ahJP Jeacﬁlcgﬁ“%s%‘]‘ %ISﬂ‘rﬁ’%{“ defades.me é’eﬁ 1?naX§I}Ino%h?“8f
eralale%coltayfenva } Vseso é’lv etob e Cl‘thIa n, asgmmetmgl rFr?Ctl(izns t ‘E %le%al?auont}?

imings Jo068 e heiR-a72 =88 aangemsn! [g 5%§EU NS O&L@glape%c%ﬁfﬁﬁ?dl%s Inek
PincE Shis Fovievsiis foct&a%gdrgelgwlgf%anocaga xsts {bp3s feachions inye g ransition,metals with

Xélll\g(%]f)l‘? n%t;ﬁg)\lfvlltlﬁa\]}lgm o%eﬁsﬁelr an(fs will not be covered here.
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benzyl group on the catalyst 9a. Detailed possible transition states were discussed in their report. In
all, this is a novel chiral diol concept that merits additional exploration.
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Scheme 47. Asymmetric hetero-Diels—Alder reaction catalyzed by chiral ferrocemyl diiolks.
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