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Abstract
Inexact alternating direction multiplier methods (ADMMs) are developed for solving
general separable convex optimization problems with a linear constraint and with an
objective that is the sum of smooth and nonsmooth terms. The approach involves
linearized subproblems, a back substitution step, and either gradient or accelerated
gradient techniques. Global convergence is established. The methods are particularly
useful when the ADMM subproblems do not have closed form solution or when the
solution of the subproblems is expensive. Numerical experiments based on image
reconstruction problems show the effectiveness of the proposed methods.
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1 Introduction

We consider a convex separable linearly constrained optimization problem

min �(x) subject to Ax = b (1.1)

where � : Rn → R∪{∞} andA is N by n. By a separable convex problem, we mean
that the objective function is a sum of m independent components, and the matrix is
partitioned compatibly as in

�(x) =
m∑

i=1

fi (xi ) + hi (xi ) and Ax =
m∑

i=1

Aixi . (1.2)

Here fi is convex and continuously differentiablewith aLipschitz continuous gradient,
hi is a proper closed convex function (possibly nonsmooth), Ai is N by ni with∑m

i=1 ni = n, and the columns of Ai are linearly independent for i ≥ 2. Constraints
of the form xi ∈ X i , where Xi is a closed convex set, can be incorporated in the
optimization problem by setting hi (xi ) = ∞ when xi /∈ Xi . The problem (1.1),
(1.2) has attracted extensive research due to its importance in areas such as image
processing, statistical learning and compressed sensing. See the recent survey [3] and
its references.

Let L be the Lagrangian given by

L(x,λ) = �(x) + 〈λ,Ax − b〉,

where λ is the Lagrange multiplier for the linear constraint and 〈·, ·〉 denotes the
Euclidean inner product. It is assumed that there exists a solution x∗ to (1.1), (1.2) and
an associated Lagrange multiplier λ∗ ∈ R

N such that L(·,λ∗) attains a minimum at
x∗, or equivalently, the following first-order optimality conditions hold: Ax∗ = b and
for i = 1, 2, . . . ,m and for all u ∈ R

ni , we have

〈∇ fi (x∗
i ) + AT

i λ
∗,u − x∗

i 〉 + hi (u) ≥ hi (x∗
i ), (1.3)

where ∇ denotes the gradient.
A popular strategy for solving (1.1), (1.2) is the alternating direction multiplier

method (ADMM) [16,17] given by

⎧
⎪⎨

⎪⎩

xk+1
i = arg min

xi∈Rni
L(xk+1

1 , . . . , xk+1
i−1 , xi , xki+1, . . . , x

k
m,λk),

i = 1, . . . ,m,

λk+1 = λk + ρ(Axk+1 − b),

(1.4)

where L , the augmented Lagrangian, is defined by

L(x,λ) = L(x,λ) + ρ

2
‖Ax − b‖2. (1.5)
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Here ρ > 0 is the penalty parameter. Early ADMMs only consider problem (1.1), (1.2)
with m = 2 corresponding to a 2-block structure. In this case, the global convergence
and complexity can be found in [12,26]. When m ≥ 3, the ADMM strategy (1.4),
which is a natural extension of the 2-block ADMM, is not necessarily convergent
[5], although its practical efficiency has been observed in many recent applications
[34,35].

Recently, much research has focused on modifications to ADMM to ensure conver-
gence when m ≥ 3. References include [4,6,7,11,18,22,24,25,30,31]. One approach
[4,7,11,22] assumesm−2 of the functions in the objective are strongly convex and the
penalty parameter is sufficiently small. Linear convergence results under additional
conditions are obtained in [31]. Analysis of a randomly permuted ADMM which
allows for nonseparated variables is given in [6]. Another approach, first developed
in [24,25], involves a back substitution step to complement the ADMM forward sub-
stitution step. The algorithms developed in our paper utilize this back substitution
step.

The dominant computation in an iteration of ADMM is the solution of the sub-
problems in (1.4). Whenever an efficient closed form solution for the subproblems
does not exist, the efficiency of ADMM depends on our ability to solve these sub-
problems inexactly while maintaining global convergence. One line of research is to
solve the subproblems to an accuracy based on an absolute summable error criterion
[9,12,19]. In [29], the authors combine an adaptive error criterion with the absolute
summable error criterion for 2-block ADMM with logarithmic-quadratic proximal
regularization and further correction steps to modify the solutions generated from the
ADMMsubproblems. In [14,15], the authors develop a 2-blockADMMwith a relative
error stopping condition for the subproblems, motivated by [13], based on the total
subgradient error. Another line of research is to add proximal terms to make the sub-
problems strongly convex [8,23] and relatively easy to solve. However, this approach
often requires accurate solution of the proximal subproblems. When m = 1, ADMM
reduces to the standard augmented Lagrangianmethod (ALM), for which practical rel-
ative error criteria for solving the subproblems have been developed and encouraging
numerical results have been obtained [13,33]. In this paper, motivated by our recent
work on variable stepsize Bregman operator splitting methods (BOSVS), by recent
complexity results for gradient and accelerated methods for convex optimization, and
by the adaptive relative error strategy used in ALM, we develop new inexact approach
for solving the ADMM subproblems. To the best of our knowledge, these are the first
ADMMs for solving the general separable convex optimization problem (1.1), (1.2)
based on an adaptive accuracy condition that does not employ an absolute summable
error criterion and that guarantees global convergence, even whenm ≥ 3. As an alter-
native to inexact solutions of the ADMM subproblem, one could try to further split the
variables and create additional subproblems which may be exactly solvable. However,
further splitting the variables often decreases the convergence speed; moreover, in the
general nonlinear setting, further splittings may not be possible.

To guarantee global convergence, a block Gaussian backward substitution strategy
is used to make corrections to the approximate subproblem solutions. In the special
case m = 2, the method will reduce to a 2-block ADMM without back substitution.
This idea of using block Gaussian back substitution was first proposed in [24,25]. The
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method in this earlier work requires the exact solution of the subproblems to obtain
global convergence, while our new approach allows an inexact solution.More recently,
a linearly convergent ADMM was developed in [27]. This algorithm linearizes the
subproblems to achieve an inexact solution, and requires that the functions fi and hi
in the objective function satisfy certain “local error bound” conditions. In addition, to
ensure linear convergence, the stepsize αk in (1.4) must be sufficiently small, which
could significantly deteriorate the practical performance.

In this paper, we focus on problems where the minimization of the augmented
Lagrangian over one or more of the primal variables xi is nontrivial, and the accuracy
of an inexact minimizer needs to be taken into account. On the other hand, when these
minimizations are simple enough, it is practical tominimize the augmentedLagrangian
over x to obtain the dual function, which may be nonsmooth. The optimization of the
dual function can be approached through smoothing techniques as in [28], or through
active set techniques as in [21].

Our paper is organized as follows. In the Sect. 3, we first generalize the BOSVS
algorithm [10,20] to handle multiple blocks. The original BOSVS algorithm was tai-
lored to the two block case, but used an adaptive stepsizewhen solving the subproblem,
and consequently, it achieved much better overall efficiency when compared to the
Bregman operator splitting (BOS) type algorithms based on a fixed smaller stepsize.
In Sects. 4 and 5 , more adaptive stopping criteria for the subproblems are proposed.
The adaptive criteria for bounding the accuracy in the ADMM subproblems are based
on both the current and accumulated iteration change in the subproblem. These novel
stopping criteria are motivated by the complexity analysis of gradient methods for
convex optimization, and by the relative accuracy strategy often used in an inexact
augmented Lagrangian method for nonlinear programming. The basic idea in the
methods of Sects. 4 and 5 is to introduce an inner loop in order to solve the ADMM
subproblems with an adaptive accuracy which increases as iterates approach a solu-
tion. The method in Sect. 4 basically applies the gradient method to solve the ADMM
subproblems, while the method in Sect. 5 applies an optimal (accelerated) gradient
descent method. The goal is to ensure that the accumulated steps in the subproblems
are asymptotically nondecreasing, which leads to a global convergence result. In our
numerical experiments, the method based on accelerated gradient descent had the best
performance. Although our analysis is carried out with vector variables, these results
could be extended to matrix variables which could have more potential applications.

1.1 Notation

The set of solution/multiplier pairs for (1.1) is denoted W∗, while (x∗,λ∗) ∈ W∗
is a generic solution/multiplier pair. For x and y ∈ R

n , 〈x, y〉 = xTy is the standard
inner product, where the superscript T denotes transpose. The Euclidean norm, denoted
‖ · ‖, is defined by ‖x‖ = √〈x, x〉 and ‖x‖G = √

xTGx for a positive definite matrix
G. R+ denotes the set of nonnegative real numbers, while R

++ denotes the set of
positive real numbers. We let ∂ f (x) denote the subdifferential at x, when it exists. For
a differentiable function, ∇ f (x) is the gradient of f at x, a column vector. If x is a
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vector, then x+ denotes the subvector obtained by dropping the first block of variables
from x. Thus if x ∈ R

n with xi ∈ R
ni for i ∈ [1,m], then x+ = (x2, x3, . . . , xm)T.

2 Algorithm structure

Three related inexact ADMMs are developed called generalized, multistep, and accel-
erated BOSVS. They differ in the details of the formula for the new iterate xk+1, but
the overall structure of the algorithms is the same. Both multistep and accelerated
BOSVS typically represent a more exact ADMM iteration when compared to gen-
eralized BOSVS, while the accelerated BOSVS subiterations often converge more
rapidly than those of multistep BOSVS. The common elements of these three algo-
rithms appear in Algorithm 2.1.

Parameters: ρ, σ, δmin, θ1, θ2, θ3 ∈ R
++, δmin < δmax, α ∈ (0, 1), σ < 1 < τ ≤ η.

Starting guess: x1 and λ1.
Initialize: y1 = x1, k = 1, δmin,i = δmin and �0

i = 0, 1 ≤ i ≤ m, e0 = ∞
Step 1: For i = 1, . . . ,m

Generate xk+1
i and zki , estimate rki ≈ ‖xk+1

i − xki ‖2.
End

Step 2: If ek = θ1‖zk+ − yk+‖ + θ2‖Azk − b‖ + θ3

√∑m
i=1 r

k
i

is sufficiently small, terminate.

Step 3: Set yk+1
1 = zk1, yk+1+ = yk+ + αM−TH(zk+ − yk+),

λk+1 = λk + αρ(Azk − b), k := k + 1, and go to Step 1.

Algorithm 2.1 Our ADMM structure.

The algorithms generate three sequences xk , yk , and zk . In Step 1 of Algorithm 2.1
there may be more than one ADMM subiteration, as determined by an adaptive stop-
ping criterion. The iterate xk+1 is the final iterate generated in the ADMM (forward
substitution) subproblems, yk is generated by the back substitution process in Step 3,
and zk is an average of the iterates in theADMMsubproblems of Step 1. In generalized
BOSVS, zk = xk+1 since there is only one ADMM subiteration, while multistep and
accelerated BOSVS typically perform more than one subiteration and zk is obtained
by a nontrivial averaging process. The matrixM in Step 3 is them−1 bym−1 block
lower triangular matrix defined by

Mi j =
{
AT
i+1A j+1 if 1 ≤ j ≤ i < m,

0 if 1 ≤ i < j < m.
(2.1)

The matrix H is the m − 1 by m − 1 block diagonal matrix whose diagonal blocks
match those of M. The matrices M and H are invertible since the columns of Ai are
linearly independent for i ≥ 2, which implies that AT

i Ai is invertible for i ≥ 2.
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3 Generalized BOSVS

Our first algorithm is a generalization of the BOSVS algorithm developed in [10,20]
for a two-block optimization problem. Let �k

i : Rni × R
ni × R → R be defined by

�k
i (u, v, δ) = fi (v) + 〈∇ fi (v),u − v〉

+ δ

2
‖u − v‖2 + hi (u) + ρ

2
‖Aiu − bki + λk/ρ‖2,

where

bki = b −
∑

j<i

A jzkj −
∑

j>i

A jykj . (3.1)

The function �k
i corresponds to the part of the augmented Lagrangian associated

with the i-th component of x, but with the smooth term fi linearized around v and
with a proximal term added to the objective. Algorithm 3.1 which follows is the
Step 1 inner loop of Algorithm 2.1 for generalized BOSVS. Throughout the paper,
the generalized BOSVS algorithm refers to Algorithm 2.1 with the Step 1 inner loop
given by Algorithm 3.1.

Although yk does not appear explicitly in Algorithm 3.1, it is hidden inside the bki
term of �k

i . The iterate x
k+1
i is obtained by minimizing the �k

i function and checking
the line search condition of Step 1b. In Step 1a, mid denotes median and the initial
stepsize δki,0 of Step 1a is a safeguarded version of the Barzilai–Borwein formula [2].

Inner loop of Step 1 for generalized BOSVS:

1a. For k > 1, δki,0 = mid
{
δmin,i , sBB , δmax

}
where mid denotes median

and sBB = 〈∇ fi (x
k
i ) − ∇ fi (x

k−1
i ), xki − xk−1

i 〉/‖xki − xk−1
i ‖2.

For k = 1, δki,0 can be any scalar in [δmin, δmax].
1b. Set δki = η j δki,0, where j ≥ 0 is the smallest integer such that

fi (x
k+1
i ) ≤ fi (x

k
i )+ 〈∇ fi (x

k
i ), x

k+1
i − xki 〉 + (1−σ)δki

2 ‖xk+1
i − xki ‖2,

where xk+1
i = zki = argmin{�k

i (u, xki , δ
k
i ) : u ∈ R

ni }.
1c. Set rki = (1/δki )‖xk+1

i − xki ‖2.
1d. If k > 1 and δki > max{δk−1

i , δmin,i }, then δmin,i := τδmin,i.

Algorithm 3.1 Inner loop in Step 1 of Algorithm 2.1 for the generalized BOSVS scheme.

Let ζi denote the Lipschitz constant for∇ fi . By a Taylor expansion of fi around xki ,
we see that the line search condition of Step 1b is satisfied whenever (1− σ)δki ≥ ζi ,
or equivalently, when

δki ≥ ζi/(1 − σ). (3.2)
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Sinceη > 1, δki increases as j increases, and consequently, (3.2) holds for j sufficiently
large. Hence, if j > 0 at the termination of the line search, we have δki ≤ ηζi/(1−σ).
If the line search terminates for j = 0, then δki ≤ δmax. In summary, we have

δmin ≤ δki ≤ max{ηζi/(1 − σ), δmax} for all k. (3.3)

Since sBB ≤ ζi in Step 1a, it follows that δki,0 = δmin,i whenever δmin,i ≥ ζi . In

Step 1d, δmin,i is increased by the factor τ whenever δki > δk−1
i . Hence, after a finite

number of iterations where δki > δk−1
i , we have δmin,i ≥ ζi/(1 − σ), which implies

that the line search terminates at j = 0 with δki = δki,0 = δmin,i . We conclude that

δki ≤ δk−1
i for k sufficiently large, (3.4)

where δki denotes the final accepted value in Step 1b. Note that the inequality in (3.4)
cannot be replaced by equality since the number of iterations where δki > δk−1

i may
not be enough to yield δmin,i ≥ ζi/(1 − σ).

In the BOS algorithm, the line search is essentially eliminated by taking δki larger
than the Lipschitz constant ζi . Taking δki large, however, causes ‖xk+1

i −xki ‖ to be small
due to the proximal term in the objective �k

i ( · , xki , δ
k
i ) associated with xk+1

i . These
small steps lead to slower convergence than what is achieved with BOSVSwhere δki is
adjusted by the line search criterion in order to achieve a small, but acceptable, choice
for δki .

In our analysis of generalized BOSVS, we first observe that when ek = 0, we have
reached a solution of (1.1), (1.2).

Lemma 3.1 If ek = 0 in the generalized BOSVS algorithm, then xk+1 = xk = yk

solves (1.1), (1.2) and (xk,λk) ∈ W∗.

Proof Let x∗ denote xk . If ek = 0, then ri = 0 for each i , and by Step 1c of generalized
BOSVS, xk+1 = xk = x∗. For generalized BOSVS, we set zk = xk+1 in Step 1b.
Since xk+1 = xk , it follows that zk = x∗. The identity zk = xk+1 also implies that
zk−1 = xk = x∗. In Step 3 of Algorithm 2.1, yk1 = zk−1

1 = x∗
1. Since e

k = 0, Step 2
of Algorithm 2.1 implies that yk+ = zk+ = x∗+. Hence, yk = x∗ = zk . Since ek = 0, it
also follows from Step 2 that Ax∗ = b. Consequently, we have

bki = b −
∑

j<i

A jzkj −
∑

j>i

A jykj = b −
∑

j<i

A jx∗
j −

∑

j>i

A jx∗
j = Aix∗

i . (3.5)

By Step 1b, xk+1
i is the minimizer of �k

i ( · , xki , δ
k
i ). Since xk+1

i = xki = x∗
i , it

follows that x∗
i is the minimizer of �k

i ( · , x∗
i , δ

k
i ). After taking into account (3.5), the

first-order optimality condition associated with the minimizer x∗
i of �k

i ( · , x∗
i , δ

k
i ) is

exactly the same as (1.3), but with λ∗ replaced λk . Hence, (x∗,λk) ∈ W∗. ��
Two lemmas are needed for the convergence of the generalized BOSVS algorithm.
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Lemma 3.2 Given v ∈ R
ni and δ > 0, suppose that u minimizes �k

i ( · , v, δ) and

fi (v) + 〈∇ fi (v),u − v〉 + (1 − σ)δ

2
‖u − v‖2 ≥ fi (u) (3.6)

for some σ ∈ [0, 1). Then, for any w ∈ R
ni we have

Lk
i (w) − Lk

i (u) ≥ δ

2
(‖w − u‖2 − ‖w − v‖2)

+ρ

2
‖Ai (w − u)‖2 + σδ

2
‖u − v‖2, (3.7)

where Lk
i is given by

Lk
i (w) = fi (w) + hi (w) + ρ

2
‖Aiw − bki + λk/ρ‖2. (3.8)

Proof Adding hi (u) + ρ
2 ‖Aiu− bki + λk/ρ‖2 to each side of the inequality (3.6) and

rearranging, we obtain

�k
i (u, v, δ) − σδ

2
‖u − v‖2 ≥ Lk

i (u).

Adding Lk
i (w) to each side of this inequality gives

Lk
i (w) − Lk

i (u) ≥ Lk
i (w) − �k

i (u, v, δ) + σδ

2
‖u − v‖2. (3.9)

Utilizing the convexity inequality fi (w) − fi (v) ≥ 〈∇ fi (v),w − v〉, we have

Lk
i (w) − �k

i (u, v, δ) ≥ ρ

2

(
‖Aiw − bki − λk/ρ‖2 − ‖Aiu − bki − λk/ρ‖2

)

+〈∇ fi (v),w − u〉 − δ

2
‖u − v‖2 + hi (w) − hi (u).

Expand the smooth terms involving w on the right side in a Taylor series around u to
obtain

Lk
i (w) − �k

i (u, v, δ) ≥ 〈
gki , w − u

〉+ hi (w) − hi (u) + ρ

2
‖Ai (w − u)‖2 − δ

2
‖u − v‖2,

where gki = ∇ fi (v) + ρAT
i (Aiu − bki + λk/ρ). Since �k

i is the sum of smooth and
a nonsmooth term, the first-order optimality condition for the minimizer u of �k

i can
be expressed

〈
gki + δ(u − v), w − u

〉+ hi (w) ≥ hi (u)

123



Inexact alternating direction methods of multipliers for... 209

for all w ∈ R
ni , which implies that

〈
gki , w − u

〉+ hi (w) − hi (u) ≥ −δ〈u − v,w − u〉

for all w ∈ R
ni . Utilizing this inequality, we have

Lk
i (w) − �k

i (u, v, δ) ≥ −δ 〈u − v,w − u〉 + ρ

2
‖Ai (w − u)‖2 − δ

2
‖u − v‖2.

Insert this in (3.9). Since

2〈u − v,w − u〉 + ‖u − v‖2 = ‖w − v‖2 − ‖w − u‖2,

the proof is complete. ��
We use Lemma 3.2 to establish a decay property that is key to the convergence

analysis. Recall that the ADMM parameter α lies in (0, 1).

Lemma 3.3 Let (x∗,λ∗) ∈ W∗ be any solution/multiplier pair for (1.1), (1.2), let xk ,
yk , zk , and λk be the iterates of the generalized BOSVS algorithm, and define

Ek = ρ‖yk+ − x∗+‖2P + 1

ρ
‖λk − λ∗‖2 + α

m∑

i=1

δki ‖xki − x∗
i ‖2,

where P = MH−1MT. Then for k large enough that the monotonicity condition (3.4)
holds for all i ∈ [1,m], we have

Ek ≥ Ek+1 + c1‖xk+1 − xk‖2 + c2ρ(‖yk+ − zk+‖2H + ‖Azk − b‖2),

where c1 = σαδmin and c2 = α(1 − α).

Proof By the inequality (3.7) of Lemma 3.2 with v = xki , w = x∗
i , and u = zki , we

have

Lk
i (x

∗
i ) − Lk

i (z
k
i ) − ρ

2
‖Aizke,i‖2 ≥ δki

2
(‖zke,i‖2 − ‖xke,i‖2) + σδki

2
‖zki − xki ‖2

= δki

2
(‖xk+1

e,i ‖2 − ‖xke,i‖2) + σδki

2
‖xk+1

i − xki ‖2
(3.10)

where xke = xk − x∗, zke = zk − x∗, and zk = xk+1 by Step 1b of generalized BOSVS.
Since x∗ minimizes L( · ,λ∗) and the augmented Lagrangian is the sum of smooth and
a nonsmooth term, the first-order optimality condition implies that for each i ∈ [1,m],

〈
g∗
i , w − x∗

i

〉+ hi (w) − hi (x∗
i ) ≥ 0 (3.11)
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for all w ∈ R
ni , where g∗

i is the gradient of the smooth part of the objective evaluated
at x∗

i :

g∗
i = ∇ fi (x∗

i ) + ρAT
i

⎛

⎝
m∑

j=1

A jx∗
j − b + λ∗/ρ

⎞

⎠ .

We add Lk
i (x

∗
i ) − Lk

i (z
k
i ) − ρ‖Aizke,i‖2/2 to both sides of (3.11) and take w = zki .

After much cancellation, we obtain the relation

Lk
i (x

∗
i ) − Lk

i (z
k
i ) − ρ

2
‖Aizke,i‖2

≤ fi (x∗
i ) − fi (zki ) + ∇ fi (x∗

i )
Tzke,i −ρ

〈
∑

j≤i

A jzke, j +
∑

j>i

A jyke, j + λk
e/ρ, Aizke,i

〉

≤ −ρ

〈
∑

j≤i

A jzke, j +
∑

j>i

A jyke, j + λk
e/ρ, Aizke,i

〉
, (3.12)

where yke = yk − x∗, λk
e = λk − λ∗, and the last inequality is due to the convexity of

fi . We combine this upper bound with the lower bound (3.10) to obtain

−ρ

〈
Aizke,i ,

∑

j≤i

A jzke, j +
∑

j>i

A jyke, j + λk
e/ρ

〉

≥ δki

2
(‖xk+1

e,i ‖2 − ‖xke,i‖2) + σδki

2
‖xk+1

i − xki ‖2. (3.13)

Focusing on the left side of (3.13), observe that

∑

j≤i

A jzke, j +
∑

j>i

A jyke, j =
m∑

j=1

A j (zkj − x∗
j ) +

∑

j>i

A j (ykj − zkj )

= Azk − b +
∑

j>i

A j (ykj − zkj ) (3.14)

since Ax∗ = b. Let τ ki denote the right side of (3.13):

τ ki = δki

2
(‖xk+1

e,i ‖2 − ‖xke,i‖2) + σδki

2
‖xk+1

i − xki ‖2.

Using this notation and the simplification (3.14), (3.13) becomes

− ρ

〈
Aizke,i ,Az

k − b + λk
e/ρ +

∑

j>i

A j (ykj − zkj )

〉
≥ τ ki . (3.15)
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We will sum the inequality (3.15) over i between 1 and m. Since

m∑

i=1

Aizke,i =
m∑

i=1

Ai (zki − x∗
i ) = Azk − b := rk,

it follows that in (3.15),

m∑

i=1

〈
Aizke,i , r

k + λk
e/ρ

〉
=
〈
rk, rk + λk

e/ρ
〉
. (3.16)

Also, observe that

∑

j>i

A j (ykj − zkj ) =
m∑

j=2

A j (ykj − zkj ) −
i∑

j=2

A j (ykj − zkj ),

with the convention that the sum from j = 2 to j = 1 is 0. Take the inner product of
this identity with Aizke,i and sum over i to obtain

m∑

i=1

〈
Aizke,i ,

∑

j>i

A j (ykj − zkj )

〉

=
〈
rk,

m∑

j=2

A j (ykj − zkj )

〉
− (zk+ − x∗+)TM(yk+ − zk+), (3.17)

whereM is defined in (2.1). We sum (3.15) over i between 1 and m and utilize (3.16)
and (3.17) to obtain

(yk+ − x∗+)TMw − 1

ρ

(
〈rk,λk

e〉 +
m∑

i=1

τ ki

)

≥ wTMw +
〈
rk, rk +

m∑

j=2

A jw j−1

〉
, (3.18)

where w = yk+ − zk+.
Observe that

wTMw = 1

2
wT(M + MT)w = 1

2
wT(M + MT − H)w + 1

2
wTHw

= 1

2

∥∥∥∥∥

m∑

i=2

Aiwi−1

∥∥∥∥∥

2

+ 1

2
wTHw
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since (M+MT−H)i j = AT
i+1A j+1 by thedefinitionofM andH.With this substitution,

the right side of (3.18) becomes a sum of squares:

wTMw +
〈
rk, rk +

m∑

j=2

A jw j−1

〉
= 1

2

⎛

⎝wTHw + ‖rk‖2 +
∥∥∥∥∥r

k +
m∑

i=2

Aiwi−1

∥∥∥∥∥

2
⎞

⎠ .

Hence, it follows from (3.18) that

(yk+ − x∗+)TMw − 1

ρ

(
〈rk,λk

e〉 +
m∑

i=1

τ ki

)
≥ 1

2

(
‖w‖2H + ‖rk‖2

)
. (3.19)

Let P = MH−1MT and recall that w = yk+ − zk+. By the definition of yk+1 and
λk+1 in Step 3 of Algorithm 2.1, we have

‖yk+ − x∗+‖2P − ‖yk+1+ − x∗+‖2P + 1

ρ2 (‖λk
e‖2 − ‖λk+1

e ‖2)

= ‖yk+ − x∗+‖2P − ‖(yk+ − x∗+) − αM−THw‖2P + 1

ρ2 (‖λk
e‖2 − ‖λk

e + αρrk‖2)

= 2α(yk+ − x∗+)TMw − α2‖w‖2H − 2α

ρ
〈rk,λk

e〉 − α2‖rk‖2.

On the right side of this inequality, we utilize (3.19) multiplied by 2α to conclude that

‖yk+ − x∗+‖2P − ‖yk+1+ − x∗+‖2P + 1

ρ2 (‖λk
e‖2 − ‖λk+1

e ‖2) − 2α

ρ

m∑

i=1

τ ki

≥ c2(‖yk+ − zk+‖2H + ‖rk‖2) (3.20)

where c2 = α(1−α) > 0 since α ∈ (0, 1). By the definition of τ ki and the assumption
that k is large enough that (3.4) holds for all i , it follows that

−τ ki = δki

2
(‖xke,i‖2 − ‖xk+1

e,i ‖2) − σδki

2
‖xk+1

i − xki ‖2

≤ δki

2
‖xke,i‖2 − δk+1

i

2
‖xk+1

e,i ‖2 − σδki

2
‖xk+1

i − xki ‖2.

This bound for−τ ki along with the inequality (3.20) and the definition of Ek complete
the proof. ��

The following theorem establishes the global convergence of generalized BOSVS.

Theorem 3.4 If xk , yk , and λk are iterates of the generalized BOSVS algorithm, then
the xk and yk sequences converge to a common limit denoted x∗ and the λk converge
to a limit denoted λ∗ where (x∗,λ∗) ∈ W∗.
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Proof Let k̄ be chosen large enough that (3.4) holds for all k ≥ k̄. Since xk+1 = zk in
generalized BOSVS, it follows from Lemma 3.3 that for j ≥ k̄ and p > 0, we have

E j ≥ E j+p + c
j+p−1∑

k= j

(‖xk+1 − xk‖2 + ‖yk+ − xk+1+ ‖2H + ‖Axk+1 − b‖2), (3.21)

where c = min{c1, ρc2} > 0. Let p tend to +∞ in (3.21). Since the columns of Ai

are linearly independent for i ≥ 2, H is positive definite and

lim
k→∞ ‖xk+1 − xk‖ = lim

k→∞ ‖yk+ − xk+1+ ‖ = lim
k→∞ ‖Axk+1 − b‖ = 0. (3.22)

By the definition of bki , we have

Aix
k+1
i − bki =

∑

j≤i

A jx
k+1
j +

∑

j>i

A jykj − b. (3.23)

By (3.22), yk+ approach xk+1+ , and by (3.23) and (3.22),

lim
k→∞(Aix

k+1
i − bki ) = lim

k→∞Axk+1 − b = 0 (3.24)

for all i ∈ [1,m].
By the definition of Ek inLemma3.3,we see that the iteratesλk andxk are uniformly

bounded. Hence, there exist limits λ∗ and x∗, and an infinite sequenceK ⊂ {1, 2, . . .}
such that λk and xk for k ∈ K converge to λ∗ and x∗ respectively. By the first relation
in (3.22), xk+1 also converges to x∗ for k ∈ K. In Step 1b of generalized BOSVS, we
have

xk+1
i = argmin{�k

i (u, xki , δ
k
i ) : u ∈ R

ni }.

The first-order optimality conditions for xk+1
i are

〈
gki , u − xk+1

i

〉
+ hi (u) ≥ hi (x

k+1
i ) (3.25)

for all u ∈ R
ni , where gki is the gradient of the smooth part of the objective evaluated

at xk+1
i :

gki = ∇ fi (xki ) + ρAT
i (Aix

k+1
i − bki + λk/ρ) + δki (x

k+1
i − xki ).

As k ∈ K tends to infinity, ∇ fi (xki ) approaches ∇ fi (x∗) since ∇ fi is Lipschitz
continuous, Aix

k+1
i − bki approaches 0 by (3.24), and δki (x

k+1
i − xki ) approaches 0 by

(3.22) and the uniform bounded (3.4) for δki . Consequently, we have

lim
k∈K

gki = ∇ fi (x∗) + AT
i λ

∗. (3.26)

123



214 W. W. Hager, H. Zhang

Let k ∈ K tend to +∞ in (3.25). By (3.26) and the lower semicontinuity of hi , we
deduce that

〈∇ fi (x∗
i ) + AT

i λ
∗,u − x∗

i 〉 + hi (u) ≥ hi (x∗
i )

for all u ∈ R
ni . Therefore, x∗ and λ∗ satisfy the first-order optimality condition (1.3).

By the last relation in (3.22), it follows thatAx∗ = b and x∗ is feasible in (1.1). By the
convexity of fi and hi , x∗ is a solution of (1.1), (1.2) and λ∗ is an associated multiplier
for the linear constraint.

Since xk+1 converges to x∗ for k ∈ K, the second relation in (3.22) implies that
yk+ converges to x∗+ for k ∈ K. In Lemma 3.3, we use the specific limits x∗ and λ∗
associated with k ∈ K. Hence, Ek tends to 0 for k ∈ K. It follows from (3.21) that
the entire Ek sequence tends to 0. By the definition of Ek , we deduce that the entire
(xk, yk+,λk) sequence converges (x∗, x∗+,λ∗). Since yk1 = xk1 for each k, where xk1
converges to x∗

1, we conclude that y
k converges to x∗. This completes the proof. ��

4 Multistep BOSVS

For the template given by Algorithm 2.1, we only need to assume that the columns of
Ai are linearly independent for i ≥ 2 since only these columns enter into the matrixM
which is inverted in Step 3. For generalized BOSVS, this assumption was sufficient for
convergence. On the other hand, for both multistep and accelerated BOSVS, strong
convexity of the augmented Lagrangian with respect to each of the variables xi is
needed in the analysis. Since it has already been assumed that the columns of Ai

are linearly independent for i ≥ 2, we will simply strengthen this assumption to
require, henceforth, that the columns of Ai are linearly independent for every i . This
ensures strong convexity of the augmented Lagrangian L with respect to each of the
variables xi .

The inner loop for the multistep BOSVS algorithm appears in Algorithm 4.1.

Inner loop of Step 1 for multistep BOSVS:
Initialize: u0i = xki
For l = 1, 2, . . .
1a. Choose δl0 ∈ [δmin, δmax].
1b. Set δl = η j δl0, where j ≥ 0 is the smallest integer such that

fi (u
l−1
i )+ 〈∇ fi (u

l−1
i ), uli − ul−1

i 〉 + (1−σ)δl

2 ‖uli − ul−1
i ‖2 ≥ fi (u

l
i ),

where uli = argmin{�k
i (u, ul−1

i , δki ) : u ∈ R
ni }.

1c. If γ l := ∑l
j=1 1/δ

j ≥ �k−1
i and ‖uli − ul−1

i ‖/
√

γ l ≤ ψ(ek−1), break,

where ψ denotes any real-valued function, continuous at zero,
such that ψ(0) = 0 and ψ(s) > 0 for s > 0 (e.g. ψ(t) = t).

Next

1d. Set zki =
(∑l

j=1 u
j
i /δ j

)
/γ l, rki = (1/γ l )

∑l
j=1 ‖u j

i − u j−1
i ‖2,

xk+1
i = uli, and �k

i = γ l.

Algorithm 4.1 Inner loop in Step 1 of Algorithm 2.1 for the multistep BOSVS scheme.
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In generalized BOSVS, the iteration is given by xk+1
i = argmin{�k

i (u, xki , δ
k
i ) :

u ∈ R
ni } where δki is determined by a line search process. In the multistep BOSVS

algorithm, this single minimization is replaced by the recurrence

uli = argmin{�k
i (u,ul−1

i , δki ) : u ∈ R
ni },

where u0i = xki . By converting the single minimization into a recurrence, we hope
to achieve a better minimizer of the augmented Lagrangian. In generalized BOSVS,
the convergence relies on a careful choice of δki based on safeguarding techniques.
In multistep BOSVS, these restrictions on δki are replaced in Step 1c by a condition
related to the accuracy of the iterates.

Since η > 1, the line search in Step 1b of multistep BOSVS terminates in a finite
number of iterations and the final δl has exactly the same bounds (3.3) as that of
generalized BOSVS. Since δl is uniformly bounded, it follows that the condition
�k
i ≥ �k−1

i of Step 1c is fulfilled for l sufficiently large. In the numerical experiments
formultistepBOSVS inSect. 6, δl0 is givenby the safeguardedBBchoice of generalized
BOSVS. Similar to Lemma 3.1, when ek = 0, we have reached a solution of (1.1),
(1.2).

The following inequality is based on Lemma 3.2.

Lemma 4.1 In multistep BOSVS, we have

νiρ‖zki − x̄ki ‖2 + σ

�k
i

lki∑

l=1

‖uli − ul−1
i ‖2 ≤ ‖xki − x̄ki ‖2

�k
i

, (4.1)

for each i ∈ [1,m], where lki is the terminating value of l at iteration k, νi > 0 is the
smallest eigenvalue of AT

iAi , and

x̄ki = argmin{Lk
i (u) : u ∈ R

ni } (4.2)

with Lk
i defined in (3.8).

Proof By Lemma 3.2, we have

Lk
i (w) − Lk

i (u
l
i ) ≥ δl

2
(‖w − uli‖2 − ‖w − ul−1

i ‖2) + ρ

2
‖Ai (w − uli )‖2

+σδl

2
‖uli − ul−1

i ‖2 (4.3)

for any w ∈ R
ni . We take w = x̄ki . Since Lk

i (u
l
i ) − Lk

i (x̄
k
i ) ≥ 0, we have

ρ

δl
‖Ai (x̄ki − uli )‖2 + σ‖uli − ul−1

i ‖2 ≤ ‖x̄ki − ul−1
i ‖2 − ‖x̄ki − uli‖2. (4.4)
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Summing this inequality for l between 1 and lki gives

ρ

lki∑

l=1

1

δl
‖Ai (x̄ki − uli )‖2 + σ

lki∑

l=1

‖uli − ul−1
i ‖2 ≤ ‖x̄ki − xki ‖2. (4.5)

Since the quadratic ‖Ai (x̄ki − u)‖2 is a convex function of u, it follows from Jensen’s
inequality that

lki∑

l=1

1

δl
‖Ai (x̄ki − uli )‖2 ≥ �k

i ‖Ai (x̄ki − zki )‖2 ≥ �k
i νi‖zki − x̄ki ‖2,

where νi > 0 is the smallest eigenvalue of AT
i Ai . Combine this with (4.5) to obtain

(4.1). ��

Remark 4.1 Lk
i is strongly convex since it is the sum of convex functions and a strongly

convex quadratic 〈Aiu,Aiu〉; consequently, the minimizer x̄ki exists. Due to the upper
bound (3.3) for δl in multistep BOSVS, γ l grows linearly in l. Hence, for the inner

loop of multistep BOSVS, (4.1) implies that ‖zki − x̄ki ‖ = O(1/
√
lki ). By (4.3), the

objective values satisfy Lk
i (z

k
i )−Lk

i (x̄
k
i ) = O(1/lki ); to see this, divide (4.3) by δl , sum

over l between 1 and lki , and apply Jensen’s inequality twice, to the terms involving
L(ul) and to the terms involving Ai . As a consequence of Lemma 4.1, the stopping
conditions in Step 1c of multistep BOSVS are satisfied for a finite l.

Similar to generalized BOSVS, the key to the convergence of multistep BOSVS is
a decay property for the iterates. The analogue of Lemma 3.3 for multistep BOSVS
is the following result.

Lemma 4.2 Let (x∗,λ∗) ∈ W∗ be any solution/multiplier pair for (1.1), (1.2), let xk ,
yk , zk , ulk , and λk be the iterates of the multistep BOSVS algorithm, let lki be the
terminating value of l at iteration k, and define

Ek = ρ‖yk+ − x∗+‖2P + 1

ρ
‖λk − λ∗‖2 + α

m∑

i=1

‖xki − x∗
i ‖2

�k
i

,

where P = MH−1MT. Then for all k, we have

Ek ≥ Ek+1 + c1

m∑

i=1

lki∑

l=1

‖uli,k − ul−1
i,k ‖2

�k
i

+ c2ρ(‖yk+ − zk+‖2H + ‖Azk − b‖2),

where c1 = σα and c2 = α(1 − α).
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Proof We put w = x∗
i in (4.3) to obtain

Lk
i (x

∗
i ) − Fk

i (uli,k)

δl
≥ 1

2
(‖x∗

i − uli,k‖2 − ‖x∗
i − ul−1

i,k ‖2) + σ

2
‖uli,k − ul−1

i,k ‖2,

where Fk
i (uli,k) = Lk

i (u
l
i,k) + (ρ/2)‖Ai (uli,k − x∗

i )‖2. Summing this inequality over
l yields

lki∑

l=1

(
Lk
i (x

∗
i ) − Fk

i (uli,k)

δl

)

≥ 1

2
(‖x∗

i − u
lki
i,k‖2 − ‖x∗

i − u0i,k‖2) + σ

2

lki∑

l=1

‖uli,k − ul−1
i,k ‖2. (4.6)

Since Fk
i is convex, it follows from Jensen’s inequality and the definition of �k

i and
zki in Step 1c of multistep BOSVS that

1

�k
i

lki∑

l=1

1

δl
Fk
i (uli,k) ≥ Fk

i

⎛

⎝ 1

�k
i

lki∑

l=1

1

δl
uli,k

⎞

⎠ = Fk
i (zki ). (4.7)

Substitute xk+1
i = u

lki
i,k and xki = u0i,k in (4.6) and use (4.7) to obtain

Lk
i (x

∗
i ) − Fk

i (zki ) ≥ 1

2�k
i

(‖xk+1
e,i ‖2 − ‖xke,i‖2) + σ

2�k
i

lki∑

l=1

‖uli,k − ul−1
i,k ‖2, (4.8)

where xke,i = xki − x∗
i . By (3.12), we have the upper bound

Lk
i (x

∗
i ) − Fk

i (zki ) ≤ −ρ

〈
∑

j≤i

A jzke, j +
∑

j>i

A jyke, j + λk
e/ρ, Aizke,i

〉
.

Combining lower and upper bounds gives

−ρ

〈
∑

j≤i

A jzke, j +
∑

j>i

A jyke, j + λke/ρ, Aizke,i

〉

≥ 1

2�k
i

(‖xk+1
e,i ‖2 − ‖xke,i‖2) + σ

2�k
i

lki∑

l=1

‖uli,k − ul−1
i,k ‖2, (4.9)
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which is the same as (3.13) but with the following exchanges:

δki ←→ 1/�k
i and ‖xk+1

i − xki ‖2 ←→
lki∑

l=1

‖uli,k − ul−1
i,k ‖2.

Except for these adjustments, the remainder of the proof is the same as the proof of
Lemma 3.3, starting with equation (3.14). ��

Using Lemma 4.2, we can now prove the convergence of multistep BOSVS. The
analysis parallels that of Theorem 3.4. To facilitate the analysis, we recall the definition
and some properties of the proximal mapping. For any closed convex extended real-
valued function h,

proxh(v) = argmin

{
h(u) + 1

2
‖v − u‖2 : u ∈ dom(h)

}
.

As shown in [32, p. 340], the proximal mapping is nonexpansive:

‖proxh(v1) − proxh(v2)‖ ≤ ‖v1 − v2‖.

Moreover, if g is a differentiable convex function and

u∗ = argmin
u

g(u) + h(u), (4.10)

then it follows from the first-order optimality conditions for u∗ that

u∗ = proxh(u
∗ − ∇g(u∗)). (4.11)

Conversely, if (4.11) holds, then so does (4.10). Hence, these relations are equivalent.
These properties will be used in the convergence analysis of multistep BOSVS.

Theorem 4.3 If multistep BOSVS performs an infinite number of iterations generating
iterates yk , zk , and λk , then the sequences yk and zk both approach a common limit
x∗ and λk approaches a limit λ∗ where (x∗,λ∗) ∈ W∗.

Proof For any p > 0, we sum the decay property of Lemma 4.2 to obtain

E j ≥ E j+p + c
j+p−1∑

k= j

⎛

⎝‖yk+ − zk+‖2H + ‖Azk − b‖2 +
m∑

i=1

lki∑

l=1

‖uli,k − ul−1
i,k ‖2

�k
i

⎞

⎠ ,

(4.12)

where c = min{c1, ρc2} > 0. Let p tend to +∞. Since H is positive definite, and the
�k
i are monotone nondecreasing as a function of k, it follows from (4.12) that

lim
k→∞ ‖yk+ − zk+‖ = 0 = lim

k→∞ ‖Azk − b‖. (4.13)
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Moreover, by the definition of Ek in Lemma 4.2, yk+ and λk are bounded sequences,
and by the first equation in (4.13), zk+ is also a bounded sequence. The second equation
in (4.13) is equivalent to

lim
k→∞

∥∥∥∥∥A1zk1 −
(
b −

m∑

i=2

Aizki

)∥∥∥∥∥ = 0.

Since zk+ is bounded and the columns of A1 are linearly independent, z1 is bounded.
Hence, both zk and λk are bounded sequences, and there exist an infinite sequence
K ⊂ {1, 2, . . .} and limits x∗ and λ∗ such that

lim
k∈K

zk = x∗ and lim
k∈K

λk = λ∗. (4.14)

By the first equation in (4.13), we have

lim
k∈K

yk+ = x∗+. (4.15)

By the second equation in (4.13), Ax∗ = b. Consequently, by (4.14) and (4.15),

lim
k∈K

(
Aizki − bki

)
= lim

k∈K

⎛

⎝
∑

j≤i

A jzkj +
∑

j>i

A jykj − b

⎞

⎠ = Ax∗ − b = 0 (4.16)

for all i ∈ [1,m].
The decay property (4.12) also implies that for each i ,

lim
k→∞ rki = lim

k→∞
1

�k
i

lki∑

l=1

‖uli,k − ul−1
i,k ‖2 = 0. (4.17)

Combine this with (4.13) to conclude that

lim
k→∞ ek = lim

k→∞ ψ(ek) = 0. (4.18)

Next, we will show that

x∗
i = argmin

{
fi (u) + hi (u) + 〈λ∗,Aiu〉 : u ∈ R

ni
}
. (4.19)

If this were to hold for all i = 1, . . . ,m, then it would follow that

x∗ = argmin{L(x,λ∗) : x ∈ R
n}. (4.20)

Since Ax∗ = b, we conclude that x∗ is an optimal solution of (1.1), (1.2) and λ∗
is an associated multiplier. The remainder of the proof is partitioned into two cases
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depending on whether the monotone nondecreasing sequence �k
i either approaches a

finite limit, or tends to infinity.
Case 1 For some i , �k

i approaches a finite limit. Due to the upper bound (3.3) for
δl in Step 1b of multistep BOSVS, we conclude that lki is uniformly bounded. By
(4.17), ‖uli,k − ul−1

i,k ‖ approaches zero, where the convergence is uniform in k and

l ∈ [1, lki ]. Since u0i,k = xki , the triangle inequality and the uniform upper bound for

lki imply that ‖xki − uli,k‖ approaches zero, where the convergence is uniform in k and

l ∈ [1, lki ]. Since zki is a convex combination of uli,k for 0 ≤ l ≤ lki with lki uniformly

bounded and ‖xki −uli,k‖ approaching zero, it follows that ‖zki −xki ‖ approaches zero.
We summarize these observations in the relation

lim
k→∞ ‖zki − xki ‖ = lim

k→∞ ‖zki − u0i,k‖ = lim
k→∞ ‖zki − u1i,k‖ = 0. (4.21)

In multistep BOSVS, u1i,k minimizes �i (·,u0i , δki ). Identify g in (4.10) with the
smooth terms in �i . By (4.11), we have

u1i,k = proxhi

(
u1i,k − ∇ fi (u0i,k) − δki (u

1
i,k − u0i,k) − ρAT

i (Aiu1i,k − bki + λk/ρ)
)

.

Let us now take the limit as k tends to infinity with k ∈ K. By (4.14), zki approaches
x∗
i . By (4.21) both u0i,k and u1i,k approach zki , and by (4.16) Aiu1i,k − bki approaches
zero. Since the prox function and ∇ fi are both Lipschitz continuous, we deduce that
in the limit, as k tends to infinity with k ∈ K,

x∗
i = proxhi

(
x∗
i − ∇ fi (x∗

i ) − AT
i λ

∗) .

Again, by (4.10), (4.19) holds. And if this were to hold for all i ∈ [1,m], it follows
that x∗ is an optimal solution of (1.1), (1.2), and λ∗ is an associated multiplier. To
show that (4.19) holds for all i , we need to also consider the situation where �k

i tends
to infinity.

Case 2 Suppose that �k
i approaches infinity. Let x̄

k
i be the minimizer of Lk

i defined
in (3.8). Observe that minimizing Lk

i (u) over u ∈ R
ni is equivalent to minimizing a

sum of the form g(u)+h(u)+〈u, ck〉where h corresponds to hi , ck = AT
i (λ

k −ρbki ),
and g(u) = fi (u)+0.5ρ‖Aiu‖2. Note that g is smooth and satisfies a strong convexity
condition

(u − v)T(∇g(u) − ∇g(v)) ≥ ρνi‖u − v‖2, (4.22)

where νi > 0 is the smallest eigenvalue of AT
i Ai . By the strong convexity of Lk

i , it
has a unique minimizer, and from the first-order optimality conditions and the strong
convexity condition (4.22), we obtain the bound

‖x̄ j
i − x̄ki ‖ ≤ ‖c j − ck‖/(ρνi ). (4.23)
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Since zk , yk+, and λk are bounded sequences, it follows that x̄ki is a bounded sequence.
For k ∈ K, the sequences zk , yk+, and λk converge to x∗, x∗+, and λ∗ respectively,
which implies that

c∗ = lim
k∈K

ck = AT
i

⎡

⎣λ∗ − ρ

⎛

⎝b −
∑

j �=i

A jx∗
j

⎞

⎠

⎤

⎦ = AT
i

[
λ∗ − ρAix∗

i

]
, (4.24)

where the last equality is due to the identity Ax∗ = b. Consequently, by (4.23), x̄ki
for k ∈ K forms a Cauchy sequence which approaches a limit. We use the stopping
condition to determine the limit.

Let us insert l = lki andu
l
i = xk+1

i in the inequality (4.4). By the linear independence
of the columns of Ai and the upper bound (3.3) for δl , there exists β > 0 such that

β‖x̄ki − xk+1
i ‖2 ≤ ρ

δl
‖Ai (x̄ki − uli,k)‖2 ≤ ‖x̄ki − ul−1

i,k ‖2 − ‖x̄ki − uli,k‖2

= 2〈x̄ki − xk+1
i ,uli,k − ul−1

i,k 〉 + ‖uli,k − ul−1
i,k ‖2

≤ 2‖x̄ki − xk+1
i ‖‖uli,k − ul−1

i,k ‖ + ‖uli,k − ul−1
i,k ‖2.

We complete the square on the right side to obtain the relation

‖x̄ki − xk+1
i ‖ ≤ ‖uli,k − ul−1

i,k ‖
β

(
1 +√

β + 1
)

.

Square this inequality and divide by �k
i to get

‖x̄ki − xk+1
i ‖2

�k
i

≤ ‖uli,k − ul−1
i,k ‖2

β2�k
i

(
1 +√

β + 1
)2

.

Since l = lki , it follows from the stopping condition of Step 1c and from (4.18) that the
right of this inequality approaches zero as k tends to infinity. Earlier we showed that x̄ki
is a bounded sequence. Since �k

i tends to infinity in Case 2, and x̄ki /
√

�k
i approaches

zero, we conclude that xk+1
i /

√
�k
i approaches zero. Due to the inequality �k+1

i ≥ �k
i ,

xk+1
i /

√
�k+1
i also approaches zero as k tends to infinity. Since‖xki −x̄ki ‖ ≤‖xki ‖+‖x̄ki ‖,

the right side of (4.1) approaches zero. Hence, (4.1) implies that zki approaches x̄
k
i as

k tends to infinity. And since zki also approaches x∗
i for k ∈ K, we conclude that x̄ki

approaches x∗
i as k ∈ K tends to infinity. Let x̄∗

i be defined by

x̄∗
i = argmin

u
{g(u) + h(u) + 〈u, c∗〉}.
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By (4.23) and the fact that x̄ki approaches x∗
i as k ∈ K tends to infinity, we conclude

that x̄∗
i = x∗

i . In summary, we have

lim
k∈K

x̄ki = x∗
i = x̄∗

i = argmin
u

{g(u) + h(u) + 〈u, c∗〉}.
= argmin

u
{ fi (u) + 0.5ρ‖Aiu‖2 + hi (u) + 〈λ∗ − ρAix∗

i ,u〉}. (4.25)

The first-order optimality conditions for (4.25) are exactly the same as the first-order
optimality conditions for (4.19). This shows that (4.19) holds in either Case 1 or
Case 2. Hence, (4.20) holds and x∗ is an optimal solution of (1.1), (1.2) with associated
multiplier λ∗.

Finally, we need to show that the entire sequence converges. If �k
i is uniformly

bounded as in Case 1, then by (4.21), xki approaches x
∗
i and ‖xki −x∗

i ‖2/�k
i approaches

zero as k tends to infinity with k ∈ K. On the other hand, when�k
i tends to infinity as in

Case 2,we showed that ‖xki −x̄ki ‖2/�k
i approaches zero. Since x̄

k
i for k ∈ K approaches

x∗
i by (4.25) and �k

i tends to infinity, it follows that ‖xki − x∗
i ‖2/�k

i approaches zero
for k ∈ K. Thus in either Case 1 or Case 2, ‖xki − x̄ki ‖2/�k

i approaches zero as k
tends to infinity with k ∈ K. Letting j tend to infinity in (4.12) with j ∈ K, it follows
that E j approaches zero. Moreover, (4.12) implies that along the entire sequence, yk+
approaches x∗+ and λk approaches λ∗. By (4.13), the entire sequence of iterates zk+
approaches x∗+. SinceAzk approaches b (see (4.13)),Ax∗ = b, andAT

1A1 is invertible,
the entire sequence zk1 approaches x∗

1. Finally, since yk+1
1 = zk1, we deduce that the

entire yk sequence approaches x∗. This completes the proof. ��

5 Accelerated BOSVS

The inner loop for the accelerated BOSVS algorithm appears in Algorithm 5.1. As we
will see, the inner loop (Step 1) of accelerated BOSVS converges to the minimizer of
Lk
i , exactly as in multistep BOSVS; however, the convergence speed of the multistep

BOSVS inner loop is O(1/
√
l) for the zki iterates and O(1/l) for the objective (see

Remark 4.1), while the convergence speed in accelerated BOSVS is O(1/l) for the zki
iterates and O(1/l2) for the objective, which is optimal for first-order methods applied
to general convex, possibly nonsmooth optimization problems.

Two parameter sequences appear in the accelerated BOSVS scheme, the δl and αl

sequences. They must be chosen so that the line search condition of Step 1a is satisfied
for each value of l, and the stopping condition of Step 1b is satisfied for l sufficiently
large. If the Lipschitz constant ζi of fi is known, then we could take

δl = 1

(1 − σ)

2ζi
l

and αl = 2

l + 1
∈ (0, 1], (5.1)
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Inner loop of Step 1 for accelerated BOSVS:
Initialize: a0i = u0i = xki and α1 = 1.
For l = 1, 2, . . .
1a. Choose δl ≥ δmin and when l > 1, choose αl ∈ (0, 1) such that

fi (ā
l
i )+ 〈∇ fi (ā

l
i ), a

l
i − āli 〉 + (1−σ)δl

2αl
‖ali − āli‖2 ≥ fi (a

l
i ),

where ali = (1 − αl )al−1
i + αluli, āli = (1 − αl )al−1

i + αlul−1
i , and

uli = argmin{Q(u) + hi (u) : u ∈ R
ni } with

Q(u) = 〈∇ fi (ā
l
i ), u〉 + δl

2 ‖u − ul−1
i ‖2 + ρ

2 ‖Aiu − bki + λk/ρ‖2.

1b. If γ l = (1/δ1)
l∏

j=2

(1 − α j )−1 ≥ �k−1
i , where γ 1 = 1/δ1,

and ‖ali − al−1
i ‖ ≤ ψ(ek−1), then break.

Next

1c. Set xk+1
i = uli, zki = ali, �k

i = γ l, and rki = (1/�k
i )
∑l

j=1 ‖u j
i − u j−1

i ‖2.
Algorithm 5.1 Inner loop in Step 1 of Algorithm 2.1 for the accelerated BOSVS scheme.

in which case, we have

(1 − σ)δl

αl
= (l + 1)ζi

l
> ζi .

This relation along with a Taylor series expansion of fi around ul−1
i implies that the

line search condition in Step 1a of acceleratedBOSVS is satisfied for each l.Moreover,
we show (after Lemma 5.1) that with these choices for δl andαl , the stopping condition
of Step 1b is also satisfied eventually.

A different, adaptive way to choose the parameters, that does not require knowledge
of the Lipschitz constant for fi , is the following: Choose δl0 ∈ [δmin, δmax], where
0 < δmin < δmax < ∞ are safeguard parameters, and set

δl = 2

θ l +√
(θ l)2 + 4θ l�l−1

and αl = 1

1 + δl�l−1 , where

�l =
l∑

i=1

1/δi , �0 = 0, and θ l = 1/(δl0η
j ) with η > 1. (5.2)

After some algebra, it can be shown that

δl

αl
= 1

θ l
= δl0η

j . (5.3)

Hence, the ratio δl/αl appearing in the line search condition of Step 1a tends to infinity
as j tends to infinity since η > 1. We take j ≥ 0 to be the smallest integer for which
the line search condition is satisfied. Based on the identity (5.3), the expression δl/αl

has exactly the same effect as δki in generalized BOSVS. Consequently, it satisfies
exactly the same inequality (3.3). Moreover, similar to Lemma 3.1, when ek = 0, we
have reached a solution of (1.1), (1.2).
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We now establish the following analogue of Lemma 4.1.

Lemma 5.1 If the inner loop sequence ξ l := δlαlγ l associated with accelerated
BOSVS is nonincreasing as a function of l, then for each i ∈ [1,m], we have

νiρ‖zki − x̄ki ‖2 + σ

�k
i

lki∑

l=1

ξ l‖uli − ul−1
i ‖2 ≤ ‖xki − x̄ki ‖2

�k
i

, (5.4)

where lki is the terminating value of l at iteration k, x̄
k
i is the minimizer of the function

Lk
i defined in (3.8), and νi > 0 is the smallest eigenvalue of AT

iAi .

Proof By the definition ali = (1 − αl)al−1
i + αluli , we have

〈∇ fi (āli ), a
l
i − āli 〉 = (1 − αl)〈∇ fi (āli ), a

l−1
i − āli 〉 + αl〈∇ fi (āli ),u

l
i − āli 〉.

Add to this the identity fi (āli ) = (1 − αl) fi (āli ) + αl fi (āli ) to obtain

fi (āli ) + 〈∇ fi (āli ), a
l
i − āli 〉

= (1 − αl)
[
fi (āli ) + 〈∇ fi (āli ), a

l−1
i − āli 〉

]
+ αl

[
fi (āli ) + 〈∇ fi (āli ),u

l
i − āli 〉

]
.

By the convexity of fi , it follows that fi (āli ) + 〈∇ fi (āli ), a
l−1
i − āli 〉 ≤ fi (a

l−1
i ).

Hence,

fi (āli ) + 〈∇ fi (āli ), a
l
i − āli 〉 ≤ (1 − αl) fi (a

l−1
i ) + αl

[
fi (āli ) + 〈∇ fi (āli ),u

l
i − āli 〉

]
.

Adding and subtracting any u ∈ R
ni in the last term, and then exploiting the convexity

of fi gives

fi (āli ) + 〈∇ fi (āli ),u
l
i − āli 〉 =

[
fi (āli ) + 〈∇ fi (āli ),u − āli 〉

]
+ 〈∇ fi (āli ),u

l
i − u〉

≤ fi (u) + 〈∇ fi (āli ),u
l
i − u〉.

Therefore,

fi (āli )+〈∇ fi (āli ), a
l
i − āli 〉 ≤ (1 − αl) fi (a

l−1
i )+αl [ fi (u) + 〈∇ fi (āli ),u

l
i − u〉].

(5.5)

Now by the line search condition in Step 1a of accelerated BOSVS and then by
(5.5), we have

Lk
i (a

l
i ) = fi (ali ) + ρ

2
‖Aiali − bki + λk/ρ‖2 + hi (ali )

≤ fi (āli ) + 〈∇ fi (āli ), a
l
i − āli 〉 + (1 − σ)δl

2αl
‖ali − āli‖2
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+ ρ

2
‖Aiali − bki + λk/ρ‖2 + hi (ali )

≤ (1 − αl) fi (a
l−1
i ) + αl fi (u) + αl〈∇ fi (āli ),u

l
i − u〉 + (1 − σ)δl

2αl
‖ali − āli‖2

+ ρ

2
‖Aiali − bki + λk/ρ‖2 + hi (ali ).

Next, we utilize the definitions of ali and ā
l
i and the convexity of both hi and the norm

term to obtain

Lk
i (a

l
i ) ≤ (1 − αl) fi (a

l−1
i ) + αl [ fi (u) + 〈∇ fi (āli ),u

l
i − u〉] + (1 − σ)δl

2αl
‖ali − āli‖2

+ (1 − αl)
(ρ

2
‖Aia

l−1
i − bki + λk/ρ‖2 + hi (a

l−1
i )

)

+αl
(ρ

2
‖Aiuli − bki + λk/ρ‖2 + hi (uli )

)

= (1 − αl)
(
fi (a

l−1
i ) + ρ

2
‖Aia

l−1
i − bki + λk/ρ‖2 + hi (a

l−1
i )

)

+αl [ fi (u) + 〈∇ fi (āli ),u
l
i − u〉] + (1 − σ)δlαl

2
‖uli − ul−1

i ‖2

+αl
(ρ

2
‖Aiuli − bki + λk/ρ‖2 + hi (uli )

)

= (1 − αl)Lk
i (a

l−1
i ) + αl [ fi (u) + 〈∇ fi (āli ),u

l
i − u〉]

+ (1 − σ)δlαl

2
‖uli − ul−1

i ‖2 + αl
(ρ

2
‖Aiuli − bki + λk/ρ‖2 + hi (uli )

)
.

(5.6)

Since hi is convex, we have

hi (ul) + 〈p,u − ul〉 ≤ hi (u) (5.7)

for any p ∈ ∂hi (ul). The expansion of the quadratic Q in Step 1a of accelerated
BOSVS around ul can be written

Q(ul) + ∇Q(ul)(u − ul) + 1

2
(u − ul)T(δlI + ρAT

i Ai )(u − ul) = Q(u). (5.8)

Since ul minimizes Q + hi in Step 1a, the first-order optimality conditions imply that
p+ ∇Q(ul) = 0 for some p ∈ ∂hi (ul). We choose p = −∇Q(ul), and then multiply
(5.7) and (5.8) by αl and add to (5.6) to obtain

Lk
i (a

l
i ) ≤ (1 − αl)Lk

i (a
l−1
i ) + αl Lk

i (u) + δlαl

2
(‖u − ul−1

i ‖2 − ‖u − uli‖2)

−σδlαl

2
‖uli − ul−1

i ‖2 − αlρ

2
‖Ai (u − uli )‖2.
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Hence, for any u ∈ R
ni we have

Lk
i (a

l
i ) − Lk

i (u) ≤ (1 − αl)(Lk
i (a

l−1
i ) − Lk

i (u)) + δlαl

2
(‖u − ul−1

i ‖2 − ‖u − uli‖2)

− σδlαl

2
‖uli − ul−1

i ‖2 − αlρ

2
‖Ai (u − uli )‖2. (5.9)

From the definition of γ l in accelerated BOSVS, it follows that (1−αl)γ l = γ l−1

with the convention that γ 0 = 0 (since α1 = 1). Hence, for any sequence dl , l ≥ 0,
we have

j∑

l=1

(
γ ldl − (1 − αl)γ ldl−1

)
=

j∑

l=1

(
γ ldl − γ l−1dl−1

)
= γ j d j . (5.10)

Suppose that dl ≥ 0 for each l. By assumption, ξ l = γ lδlαl is nonincreasing; since
α1 = 1 and γ 1 = 1/δ1, it follows that ξ1 = 1, and we have

j∑

l=1

ξ l
(
dl − dl−1

)
= d1 − d0 +

j∑

l=2

ξ l
(
dl − dl−1

)

≥ d1 − d0 +
j∑

l=2

(
ξ ldl − ξ l−1dl−1

)
= ξ j d j − d0. (5.11)

We now multiply (5.9) by γ l and sum over l between 1 and lki . Exploiting the identity
(5.10) with dl = Lk

i (a
l
i ) − Lk

i (u) and (5.11) with dl = ‖uli − u‖2, we obtain

Lk
i (u) − Lk

i (a
lki
i ) ≥ 1

2�k
i

(ξ l
k
i ‖u − u

lki
i ‖2 − ‖u − u0i ‖2) + σ

2�k
i

lki∑

l=1

ξ l‖uli − ul−1
i ‖2

+ ρ

2�k
i

lki∑

l=1

(γ lαl)‖Ai (u − uli )‖2, (5.12)

where �k
i denotes the final γ l in accelerated BOSVS.

Next, we multiply the definition a j
i = (1− α j )a j−1

i + αlu j
i by γ j and sum over j

between 1 and l. Again, exploiting the identity (1 − α j )γ j = γ j−1 yields

ali = 1

γ l

l∑

j=1

(γ jα j )u j
i . (5.13)
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Since α jγ j = γ j − γ j−1, it follows that

γ l =
l∑

j=1

α jγ j . (5.14)

Consequently, ali is a convex combination of u1i through uli . Since ‖Ai (u − w)‖2 is a
convex function of w, Jensen’s inequality yields

1

�k
i

lki∑

l=1

(γ lαl)‖Ai (u − uli )‖2 ≥ ‖Ai (u − a
lki
i )‖2 = ‖Ai (u − zki )‖2.

We apply this inequality to the last term in (5.12) and substitute zki = a
lki
i , x

k+1
i = u

lki
i ,

and xki = u0i to obtain

Lk
i (u) − Lk

i (z
k
i ) ≥ 1

2�k
i

(ξ l
k
i ‖u − xk+1

i ‖2 − ‖u − xki ‖2) + σ

2�k
i

lki∑

l=1

ξ l‖uli − ul−1
i ‖2

+ ρ

2
‖Ai (u − zki )‖2. (5.15)

Finally, take u = x̄ki . Since the left side of (5.15) is nonpositive for this choice of u,
the proof is complete. ��

Let us now examine the assumptions and consequences of Lemma 5.1 in the context
of the choices (5.1) and (5.2) for the parameters δl and αl . For the choice (5.1) and for
l ≥ 2, we have

γ l = 1

δ1

l∏

j=2

(1 − α j )−1 = 1

δ1

l∏

j=2

j + 1

j − 1
= 1

δ1

l(l + 1)

2
. (5.16)

Hence, γ l is O(l2). Since δl = δ1/l, it follows that for l ≥ 2,

ξ l := δlαlγ l =
(

δ1

l

)(
2

l + 1

)(
l(l + 1)

2δ1

)
= 1.

In the special case l = 1, ξ1 = δ1/δ1 = 1. Since the sequence ξ l is identically one, it is
nonincreasing and the assumption of Lemma 5.1 is satisfied. Since�k

i is the final value
for γ l in Step 1 of accelerated BOSVS, it follows from (5.4) that ‖zki −x̄ki ‖ = O(1/lki ).

For the choice (5.2) and for l ≥ 2,we have�l = (1/δl)+�l−1 andαl = (1/δl)/�l .
It follows that 1 − αl = �l−1/�l and for l ≥ 2, we have

γ l = 1

δ1

l∏

j=2

(1 − α j )−1 = 1

δ1

l∏

j=2

(� j/� j−1) = 1

δ1

�l

�1 = �l .
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Hence,

ξ l := δlαlγ l = δl
(
1/δl

�l

)
�l = 1.

In the special case l = 1, we also have ξ1 = 1. Again, the sequence ξ l is identically
one, which satisfies the requirement of Lemma 5.1; consequently, the speed with
which zki converges to x̄

k
i depends on the growth rate of γ l . By the definition of γ l in

accelerated BOSVS,

√
γ l −

√
γ l−1 =

√
γ l −

√
(1 − αl)γ l =

(
1 −

√
1 − αl

)√
γ l ≥ αl

√
γ l

2
. (5.17)

Since ξ l := δlαlγ l = 1, it follows from (5.3) that (αl/θ l)αlγ l = (αl)2γ l/θ l = 1,
which implies that

αl
√

γ l =
√

θ l . (5.18)

By (5.17), we have

√
γ l −

√
γ l−1 ≥

√
θ l

2
. (5.19)

As noted beneath (5.3), 1/θ l satisfies the inequality (3.3) for δki , which implies that

θ l ≥ � := 1 − σ

ηζi + (1 − σ)δmax
. (5.20)

Hence, (5.19) yields
√

γ l −√γ l−1 ≥ √
�/2. Since γ 1 = 1/δ1 = θ1, it follows that

√
γ l ≥ √

� +
(
l − 1

2

)√
� ≥

(
l

2

)√
� or γ l ≥

(
l2

4

)
�.

In summary, for either of the choices (5.1) or (5.2), we have ξ l = 1 for each l, and
‖zki − x̄ki ‖ = O(1/lki ). Moreover, by the inequality (5.15) with u = x̄ki , the objective
value satisfies Lk

i (z
k
i ) − Lk

i (x̄
k
i ) = O(1/(lki )

2).
Although Lemma 5.1 was stated in terms of the terminating iteration lki of the inner

iteration, it applies to any of the inner iterations; that is, for each i and l, we have

νiρ‖al − x̄ki ‖2 + σ

γ l

l∑

j=1

ξ j‖u j
i − u j−1

i ‖2 ≤ ‖xki − x̄ki ‖2
γ l

.

Whenever γ l approaches infinity, as it does with the choices (5.1) and (5.2), the right
side approach zero and al converges to x̄ki . Hence, the stopping conditions in Step 1b
of accelerated BOSVS are satisfied for l sufficiently large when ek−1 �= 0.
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The convergence of accelerated BOSVS, like the other algorithms, relies on a decay
property for the iterates, which we now give.

Lemma 5.2 If the accelerated BOSVS parameters γ l tend infinity as l grows and
ξ l := δlαlγ l = 1 for each l, then Lemma 4.2 holds for the accelerated scheme.

Proof We substitute u = x∗
i and ξ l = 1 in (5.15) to obtain

Lk
i (x

∗
i ) − Fk

i (zki ) ≥ 1

2�k
i

(
‖xk+1

i − x∗
i ‖2 − ‖xki − x∗

i ‖2
)

+ σ

2�k
i

lki∑

l=1

‖uli − ul−1
i ‖2,

where Fk
i (w) = Lk

i (w) + (ρ/2)‖Ai (w − x∗
i )‖2. This is exactly the same as (4.8)

in the proof of Lemma 4.2. The remainder of the proof is exactly as in the proof of
Lemma 4.2. ��

Using the decay property of Lemmas 4.2 and 5.2 , we now obtain the convergence
of accelerated BOSVS.

Theorem 5.3 Suppose that for the inner loop sequence ξ l := δlαlγ l associated with
accelerated BOSVS we have ξ l = 1 for each l, γ l tends to infinity as l grows, and
there exists a constant κ > 0 such that γ l(αl)2 ≥ κ for all l. If accelerated BOSVS
performs an infinite number of iterations generating iterates yk , zk , and λk , then the
sequences yk and zk both approach a common limit x∗ and λk approaches a limit λ∗
where (x∗,λ∗) ∈ W∗.

Proof The proof is identical to that of Theorem 4.3 through the end of Case 1. For
accelerated BOSVS, the fact that zki is a convex combination of uli,k is shown in
(5.13), (5.14). The treatment of accelerated BOSVS first differs from that of multistep
BOSVS in the second paragraph of Case 2 (�k

i tends to +∞) where the multistep

BOSVS stopping condition ‖uli − ul−1
i ‖/√γ l ≤ ψ(ek−1), is used to show that

‖xki − x̄ki ‖2/�k
i approaches zero. Since accelerated BOSVS uses the new stopping

condition ‖ali − al−1
i ‖ ≤ ψ(ek−1), a new analysis is needed in Case 2.

By the definition of al , we have

‖al − al−1‖ = αl‖ul − al−1‖ ≥ αl(‖ul − al‖ − ‖al − al−1‖).

Ifψk denotesψ(ek−1) and l = lki so thata
l satisfies the stopping criterion‖ali−al−1

i ‖ ≤
ψk , then

αl‖ul − al‖ ≤ (1 + αl)‖al − al−1‖ ≤ 2ψk or ‖xk+1
i − zki ‖ ≤ 2ψk

αl

since ul = xk+1
i and al = zki when l = lki . Squaring this, dividing by γ l = �k

i , and
utilizing the assumption that γ l(αl)2 ≥ κ for all l, we deduce that

‖xk+1
i − zki ‖2

�k
i

≤ 4ψ2
k

κ
. (5.21)
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Sinceψk approach zero by (4.18), it follows that ‖xk+1
i −zki ‖2/�k

i approaches zero as
k tends to infinity. Since�k

i is nondecreasing, ‖xk+1
i −zki ‖2/�k+1

i also approaches zero
as k tends to infinity. Since zki is a bounded sequence and�k

i tends to infinity in Case 2,
we can replace zki by any other bounded sequence and reach the same conclusion.
In particular, since the sequence x̄ki is bounded we conclude that ‖xki − x̄ki ‖2/�k

i
approaches zero as k tends to infinity, the same conclusion we reached in multistep
BOSVS scheme. The rest of the proof is exactly as in Theorem 4.3. This completes
the proof. ��
Remark 5.1 The parameter choices given in both (5.1) and (5.2) satisfy the assumption
of Theorem 5.3 that γ l(αl)2 ≥ κ > 0 for some constant κ . In particular, for (5.1), we
show in (5.16) that γ l = l(l + 1)/(2δ1). This is combined with the definition of αl in
(5.1) to obtain

γ l(αl)2 = 2l

δ1(l + 1)
≥ 1

δ1

for l ≥ 1. For the choice (5.2), it follows from (5.18) and (5.20) that

γ l(αl)2 ≥ � := 1 − σ

ηζi + (1 − σ)δmax
.

Remark 5.2 In this paper, we have focused on algorithms based on an inexact min-
imization of Lk

i in Step 1 of Algorithm 2.1. In cases where fi and hi are simple
enough that the exact minimizer x̄ki of L

k
i can be quickly evaluated, we could simply

set xk+1
i = zki = x̄ki and r

k
i = 0 in Step 1. The analysis of this exact algorithm is very

similar to the analysis in Theorems 4.3 and 5.3 .

6 Numerical experiments

In this section, we investigate the performance of the algorithms for an image recon-
struction problem that can be formulated as

min
u

1

2
‖Fu − f‖2 + α‖u‖T V + β‖�Tu‖1, (6.1)

where f is the given image data, F is a matrix describing the imaging device, ‖ · ‖T V is
the total variation norm, ‖ · ‖1 is the �1 norm, � is a wavelet transform, and α > 0 and
β > 0 are weights. The first term in the objective is the data fidelity term, while the
next two terms are for regularization; they are designed to enhance edges and increase
image sparsity. In our experiments, � is a normalized Haar wavelet with four levels
and ��T = I . The problem (6.1) is equivalent to

min
(u,w,z)

1

2
‖Fu − f‖2 + α‖w‖1,2 + β‖z‖1 subject to Bu = w, �Tu = z, (6.2)
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where Bu = ∇u and (∇u)i is the vector of finite differences in the image along the
coordinate directions at the i-th pixel in the image, ‖w‖1,2 = ∑N

i=1 ‖(∇u)i‖2, and N
is the total number of pixels in the image.

The problem (6.2) has the structure appearing in (1.1), (1.2) with h1 := 0, f1(u) =
1/2‖Fu − f‖2, h2(w) = ‖w‖1,2, f2 := 0, h3(z) = ‖z‖1, f3 := 0,

A1 =
(
B
�T

)
, A2 =

(−I
0

)
, A3 =

(
0

−I

)
, and b =

(
0
0

)
.

When solving the test problems using accelerated BOSVS, we use choose αl and δl

as in (5.2). Since f2 = f3 = 0, the line search condition holds automatically, and the
second and third subproblems are solved in closed form, due to the simple structure
of h2 and h3. Only the first subproblem is solved inexactly. At iteration k, the solution
of this subproblem approximates the solution of

min
u

Lk
1(u) := 1

2
‖Fu − f‖2 + ρ

2
‖Bu − wk + ρ−1λk‖2

+ ρ

2
‖�Tu − zk + ρ−1μk‖2, (6.3)

where λk and μk are the Lagrange multipliers at iteration k for the constraints Bu =
w and �Tu = z respectively.

The stopping condition for the inner loop of either multistep or accelerated BOSVS
required that �k

i ≥ �k−1
i . To improve efficiency, we replaced this condition by lki ≥

lk−1
i or �k

i ≥ �k−1
i , where lki is the number of iterations performed by the inner loop

for block i at iteration k. For all the algorithm, we chose the initial δl0 in the line
search using the BB approximation, which is given in Step 1a of generalized BOSVS.
Moreover, when �k

i < �k−1
i , we increase δmin,i by setting δmin,i := τδmin,i , where

τ = 1.1 in our numerical experiments. When δmin,i is sufficiently large, we have
δl0 = δmin,i and the line search condition in the algorithms is satisfied by δl0; that is,
δl = δl0 = δmin,i . Consequently, when δmin,i is sufficiently large, we have

�k
i =

lki∑

l=1

1

δl
= lki

δmin,i
,

and the relaxed stopping condition lki ≥ lk−1
i implies that �k

i ≥ �k−1
i , the original

stopping condition. Since τ > 1, it follows that �k
i < �k−1

i for only a finite number
of iterations, and hence, �k

i ≥ �k−1
i for k sufficiently large. This ensures the global

convergence of the algorithms.
Another improvement to efficiency was achieved by further relaxing the line search

criterion. In particular, for the line search in generalizedBOSVS (Step 1b),we replaced
the right side fi (x

k+1
i ) by fi (x

k+1
i ) − εk where εk ≥ 0 is a summable sequence. In

the line search of multistep BOSVS (Step 1b), fi (uli ) was replaced by fi (uli ) − π l ,
where π l = εkδlωl with ωl a summable sequence. In the line search of accelerated
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BOSVS (Step 1a), we replaced fi (ali ) by fi (ali ) − π l , where π l = εkωl/γ l . It can
be proved that when the line search is relaxed in this way using summable sequences,
there is no effect on the global convergence theory; these εk and π l terms need to be
inserted in each inequality in the analysis, but in the end, the steps and the conclusions
are unchanged. On the other hand, when the line search is relaxed, it can terminate
sooner, and the algorithms can be more efficient. For the numerical experiments, we
took εk = 10/k1.1. For multistep BOSVS, ωl = 1/(γ l)1.2, while for accelerated
BOSVS, ωl = 1/(γ l)0.6. Since γ l grows in proportion to l for multistep BOSVS and
in proportion to l2 for accelerated BOSVS, theωl sequences are summable. Hence, for
these choices of εk and ωl , global convergence is guaranteed. The specific exponents
1.1, 1.2, and 0.6 in the formulas for εk and ωl seemed to work reasonably well in our
experiments.

In all the algorithms, we use the following parameters:

δmin = 10−10, δmax = 1010, α = 0.999, σ = 10−5, η = 3, and τ = 1.1.

For the inner loop stopping condition, we took ψ(t) = min{0.1t, t1.1} in multistep
BOSVS, and ψ(t) = 0.5t in accelerated BOSVS, while in Step 2 of the ADMM
templateAlgorithm2.1,we took θ1 =10−6√ρ, θ2 = √

ρ, and θ3 = 10−6√σ/(1 − α).
For comparison, we provide numerical results based on the algorithm in [24] where we
use MATLAB’s conjugate gradient routine cgs with starting point uk−1, the solution
of the subproblem at the previous iteration, to solve the subproblem (6.3) almost
exactly, stopping when ‖∇Lk

1(u)‖ ≤ 10−6. The algorithm in [24] was guaranteed to
converge due to a back substitution step. We also implemented ADMM without the
back substitution step; in this case, there is no convergence guarantee. MATLAB’s
conjugate gradient routine was utilized for the subproblem (6.3) since the objective is
quadratic with a positive definite Hessian, and the conjugate gradient method works
reasonably well in this case. All the codes were implemented in MATLAB (version
R2014a). The following figures show the relative objective error (�(uk) − �∗)/�∗
versus CPU time, where�∗ is the optimal function value of (6.1) obtained by applying
accelerated BOSVS until the eighth digit of the relative objective value did not change
in four consecutive iterations.

The first experiment employs an image deblurring problem from [1]. The original
image is thewell-knownCameraman image of size 256×256 and the observed data f in
(6.1) is a blurred image obtained by imposing a uniformblur of size 9×9withGaussian
noise and SNR of 40dB. The weights in (6.1) are α = 0.005 and β = 0.001, and the
penalty parameter ρ = 5×10−4. Figure 1a shows the base-10 logarithm of the relative
objective error versus CPU time. In this problem where the subproblems are relatively
easy, generalized BOSVS is significantly slower than the other algorithms, while both
multistep and accelerated BOSVS were faster than the exact ADMM schemes.

The second set of test problems, which arise in partially parallel imaging (PPI), are
found in [10]. The observed data, corresponding to 3 different images, are denoted
data 1, data 2, and data 3. For these test problems, theweights in (6.1) areα = 10−5 and
β = 10−6, and the penalty parameter ρ = 10−3. The performance of the algorithms is
shown in Fig. 1b–d. These test problems are much more difficult than the first problem
since F is large, relatively dense, and ill conditioned. In this case, all the inexact
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Fig. 1 Base-10 logarithm of the relative objective error versus CPU time for the test problems

algorithms are faster than the exact ADMM algorithms initially. The exact algorithms
becomes faster than generalized BOSVS when the relative error is around 10−3 or
10−4. Accelerated BOSVS is always significantly faster than the exact algorithms.

7 Conclusion

Three inexact alternating direction multiplier methods were presented for solving
separable convex linearly constrained optimization problems, where the objective
function is the sum of smooth and relatively simple nonsmooth terms. The nons-
mooth terms could be infinite, so the algorithms and analysis included problems with
additional convex constraints. These algorithms all originate from the 2-block vari-
able stepsize BOSVS scheme of [10,20] which employs indefinite proximal terms
and linearized subproblems. The 2-block scheme was generalized to a multiblock
scheme using a back substitution process to generate an auxiliary sequence yk that
played the role of xk in the original, potentially divergent [5], multiblock ADMM
(1.4). The three new methods, called generalized, multistep, and accelerated BOSVS,
correspond to different accuracy levels when solving the ADMM subproblems. Gen-
eralized BOSVS employed only one iteration in the subproblems, while multistep and
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accelerated BOSVS performed multiple iterations until the iteration change was suf-
ficiently small. The multistep and accelerated schemes differed in the rate with which
they solved the the subproblems. If l was the number of iterations in the subproblem,
then multistep BOSVS had a convergence rate of O(1/l), while accelerated BOSVS
had a convergence rate of O(1/l2). Global convergence was established for all the
methods. Numerical experiments were performed using image reconstruction prob-
lems. The accelerated BOSVS algorithm had the best performance when compared
with either the other inexact algorithms, or the exact algorithm of [24]. This paper
established global convergence of the proposed inexact ADMMmethods. The overall
iteration complexities of these methods will be developed in a separate paper.
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