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Abstract

Inexact alternating direction multiplier methods (ADMMs) are developed for solving
general separable convex optimization problems with a linear constraint and with an
objective that is the sum of smooth and nonsmooth terms. The approach involves
linearized subproblems, a back substitution step, and either gradient or accelerated
gradient techniques. Global convergence is established. The methods are particularly
useful when the ADMM subproblems do not have closed form solution or when the
solution of the subproblems is expensive. Numerical experiments based on image
reconstruction problems show the effectiveness of the proposed methods.
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1 Introduction
We consider a convex separable linearly constrained optimization problem
min ®(x) subjectto Ax =Db (1.1)

where ® : R" — RU{oo} and A is N by n. By a separable convex problem, we mean
that the objective function is a sum of m independent components, and the matrix is
partitioned compatibly as in

O(x) =Y fi(xi) +hi(x;) and Ax= ) A;x;. 1.2)

i=1 i=1

Here f; is convex and continuously differentiable with a Lipschitz continuous gradient,
h; is a proper closed convex function (possibly nonsmooth), A; is N by n; with
Y " n; = n, and the columns of A; are linearly independent for i > 2. Constraints
of the form x; € AX';, where &; is a closed convex set, can be incorporated in the
optimization problem by setting /;(x;) = oo when x; ¢ A;. The problem (1.1),
(1.2) has attracted extensive research due to its importance in areas such as image
processing, statistical learning and compressed sensing. See the recent survey [3] and
its references.
Let £ be the Lagrangian given by

L(X, L) = &(x) + (A, Ax — b),

where A is the Lagrange multiplier for the linear constraint and (-, -) denotes the
Euclidean inner product. It is assumed that there exists a solution x* to (1.1), (1.2) and
an associated Lagrange multiplier A* € R such that £(-, A*) attains a minimum at
x*, or equivalently, the following first-order optimality conditions hold: Ax* = b and
fori =1,2,...,m and for all u € R", we have

(V) + AT w = xF) + hi(w) = hi (x), (13)
where V denotes the gradient.

A popular strategy for solving (1.1), (1.2) is the alternating direction multiplier
method (ADMM) [16,17] given by

xf.‘“ = arg mIiRn L(xll‘H, o xfj'll, X;, Xf.‘“, ...,xﬁw 29,
X; € i
i=1,...,m, (1.4)
)»k+] — A.k +,0(AXk+ —b),
where L, the augmented Lagrangian, is defined by
L(x,A) = £(x,X) + §||Ax—b||2. (1.5)
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Here p > 0is the penalty parameter. Early ADMMs only consider problem (1.1), (1.2)
with m = 2 corresponding to a 2-block structure. In this case, the global convergence
and complexity can be found in [12,26]. When m > 3, the ADMM strategy (1.4),
which is a natural extension of the 2-block ADMM, is not necessarily convergent
[5], although its practical efficiency has been observed in many recent applications
[34,35].

Recently, much research has focused on modifications to ADMM to ensure conver-
gence when m > 3. References include [4,6,7,11,18,22,24,25,30,31]. One approach
[4,7,11,22] assumes m — 2 of the functions in the objective are strongly convex and the
penalty parameter is sufficiently small. Linear convergence results under additional
conditions are obtained in [31]. Analysis of a randomly permuted ADMM which
allows for nonseparated variables is given in [6]. Another approach, first developed
in [24,25], involves a back substitution step to complement the ADMM forward sub-
stitution step. The algorithms developed in our paper utilize this back substitution
step.

The dominant computation in an iteration of ADMM is the solution of the sub-
problems in (1.4). Whenever an efficient closed form solution for the subproblems
does not exist, the efficiency of ADMM depends on our ability to solve these sub-
problems inexactly while maintaining global convergence. One line of research is to
solve the subproblems to an accuracy based on an absolute summable error criterion
[9,12,19]. In [29], the authors combine an adaptive error criterion with the absolute
summable error criterion for 2-block ADMM with logarithmic-quadratic proximal
regularization and further correction steps to modify the solutions generated from the
ADMM subproblems. In [14,15], the authors develop a 2-block ADMM with a relative
error stopping condition for the subproblems, motivated by [13], based on the total
subgradient error. Another line of research is to add proximal terms to make the sub-
problems strongly convex [8,23] and relatively easy to solve. However, this approach
often requires accurate solution of the proximal subproblems. When m = 1, ADMM
reduces to the standard augmented Lagrangian method (ALM), for which practical rel-
ative error criteria for solving the subproblems have been developed and encouraging
numerical results have been obtained [13,33]. In this paper, motivated by our recent
work on variable stepsize Bregman operator splitting methods (BOSVS), by recent
complexity results for gradient and accelerated methods for convex optimization, and
by the adaptive relative error strategy used in ALM, we develop new inexact approach
for solving the ADMM subproblems. To the best of our knowledge, these are the first
ADMMs for solving the general separable convex optimization problem (1.1), (1.2)
based on an adaptive accuracy condition that does not employ an absolute summable
error criterion and that guarantees global convergence, even when m > 3. As an alter-
native to inexact solutions of the ADMM subproblem, one could try to further split the
variables and create additional subproblems which may be exactly solvable. However,
further splitting the variables often decreases the convergence speed; moreover, in the
general nonlinear setting, further splittings may not be possible.

To guarantee global convergence, a block Gaussian backward substitution strategy
is used to make corrections to the approximate subproblem solutions. In the special
case m = 2, the method will reduce to a 2-block ADMM without back substitution.
This idea of using block Gaussian back substitution was first proposed in [24,25]. The
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method in this earlier work requires the exact solution of the subproblems to obtain
global convergence, while our new approach allows an inexact solution. More recently,
a linearly convergent ADMM was developed in [27]. This algorithm linearizes the
subproblems to achieve an inexact solution, and requires that the functions f; and k;
in the objective function satisfy certain “local error bound” conditions. In addition, to
ensure linear convergence, the stepsize o in (1.4) must be sufficiently small, which
could significantly deteriorate the practical performance.

In this paper, we focus on problems where the minimization of the augmented
Lagrangian over one or more of the primal variables x; is nontrivial, and the accuracy
of an inexact minimizer needs to be taken into account. On the other hand, when these
minimizations are simple enough, it is practical to minimize the augmented Lagrangian
over x to obtain the dual function, which may be nonsmooth. The optimization of the
dual function can be approached through smoothing techniques as in [28], or through
active set techniques as in [21].

Our paper is organized as follows. In the Sect. 3, we first generalize the BOSVS
algorithm [10,20] to handle multiple blocks. The original BOSVS algorithm was tai-
lored to the two block case, but used an adaptive stepsize when solving the subproblem,
and consequently, it achieved much better overall efficiency when compared to the
Bregman operator splitting (BOS) type algorithms based on a fixed smaller stepsize.
In Sects. 4 and 5 , more adaptive stopping criteria for the subproblems are proposed.
The adaptive criteria for bounding the accuracy in the ADMM subproblems are based
on both the current and accumulated iteration change in the subproblem. These novel
stopping criteria are motivated by the complexity analysis of gradient methods for
convex optimization, and by the relative accuracy strategy often used in an inexact
augmented Lagrangian method for nonlinear programming. The basic idea in the
methods of Sects. 4 and 5 is to introduce an inner loop in order to solve the ADMM
subproblems with an adaptive accuracy which increases as iterates approach a solu-
tion. The method in Sect. 4 basically applies the gradient method to solve the ADMM
subproblems, while the method in Sect. 5 applies an optimal (accelerated) gradient
descent method. The goal is to ensure that the accumulated steps in the subproblems
are asymptotically nondecreasing, which leads to a global convergence result. In our
numerical experiments, the method based on accelerated gradient descent had the best
performance. Although our analysis is carried out with vector variables, these results
could be extended to matrix variables which could have more potential applications.

1.1 Notation

The set of solution/multiplier pairs for (1.1) is denoted W*, while (x*, A*) € W*
is a generic solution/multiplier pair. For x and y € R”, (x,y) = x'y is the standard
inner product, where the superscript " denotes transpose. The Euclidean norm, denoted
| - |l is defined by ||x|| = +/{X, X) and ||x||¢ = VX' Gx for a positive definite matrix
G. R denotes the set of nonnegative real numbers, while R** denotes the set of
positive real numbers. We let d f (x) denote the subdifferential at x, when it exists. For
a differentiable function, V f(x) is the gradient of f at x, a column vector. If x is a
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vector, then x denotes the subvector obtained by dropping the first block of variables
from x. Thus if x € R” with x; € R% fori € [1, m], then x4 = (X2, X3, ..., X)".

2 Algorithm structure

Three related inexact ADMMs are developed called generalized, multistep, and accel-
erated BOSVS. They differ in the details of the formula for the new iterate x**1, but
the overall structure of the algorithms is the same. Both multistep and accelerated
BOSVS typically represent a more exact ADMM iteration when compared to gen-
eralized BOSVS, while the accelerated BOSVS subiterations often converge more
rapidly than those of multistep BOSVS. The common elements of these three algo-
rithms appear in Algorithm 2.1.

Parameters: p, o, Smin. 01, 62, 03 € RTT, 8pin <Omax, 2 €(0,1), o <l<1<7.

Starting guess: x' and A'.

Initialize: y! =x!, k=1, Smin; =min and IV =0, 1<i<m, =00
Stepl: For i=1,....m

Generate X?H'l

End

Step2:  If ek =02k —yh || +620AZ — bl +65,/3 0, K
is sufficiently small, terminate.
k+1 k+1 —
Step3:  set yiT!' =2k, Y = ¥k taMTTHEE —yh),
Xk+l=lk+otp(Azk—b), k:=k+1, and go to Step 1.

k+1 k
—x; 1%

and zg‘, estimate r{‘ ~ ||x;

Algorithm 2.1 Our ADMM structure.

The algorithms generate three sequences x*, y*, and z. In Step 1 of Algorithm 2.1
there may be more than one ADMM subiteration, as determined by an adaptive stop-
ping criterion. The iterate x**! is the final iterate generated in the ADMM (forward
substitution) subproblems, y* is generated by the back substitution process in Step 3,
and z* is an average of the iterates in the ADMM subproblems of Step 1. In generalized
BOSVS, z¢ = x**1 since there is only one ADMM subiteration, while multistep and
accelerated BOSVS typically perform more than one subiteration and z¥ is obtained
by a nontrivial averaging process. The matrix M in Step 3 is the m — 1 by m — 1 block
lower triangular matrix defined by

AT A if 1
- i+18j+1
M) {0 if 1

j<i<m,
i< j<m.

2.1)

The matrix H is the m — 1 by m — 1 block diagonal matrix whose diagonal blocks
match those of M. The matrices M and H are invertible since the columns of A; are
linearly independent for i > 2, which implies that AI.TA,- is invertible for i > 2.
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3 Generalized BOSVS

Our first algorithm is a generalization of the BOSVS algorithm developed in [10,20]
for a two-block optimization problem. Let CD{? :R% x R" x R — R be defined by

P, v,8) = i) +(VA(¥),u—V)

)
+5lu - v[I? + hi(u) + §||Al-u —bf+1%/p1%,

where

bi =b— ) Az — > Ay 3.1

j<i Jj>i

The function CIDf.‘ corresponds to the part of the augmented Lagrangian associated
with the i-th component of x, but with the smooth term f; linearized around v and
with a proximal term added to the objective. Algorithm 3.1 which follows is the
Step 1 inner loop of Algorithm 2.1 for generalized BOSVS. Throughout the paper,
the generalized BOSVS algorithm refers to Algorithm 2.1 with the Step 1 inner loop
given by Algorithm 3.1.

Although y* does not appear explicitly in Algorithm 3.1, it is hidden inside the bi.‘

term of CDZ.‘ . The iterate xf‘“ is obtained by minimizing the CD;‘ function and checking

the line search condition of Step 1b. In Step 1a, mid denotes median and the initial
stepsize Sﬁ o of Step la is a safeguarded version of the Barzilai-Borwein formula [2].

Inner loop of Step 1 for generalized BOSVS:

la. For k>1, 5;‘0=mid {(Smin,is sBB, 5max} where mid denotes median
k—1 k—1 k—1
and s88 = (v f;F) = V0D K —x T /IxE - xR
For k=1, 8{‘0 can be any scalar in [dmin, Omax]-

1b. Set sznjsl].‘o, where j >0 is the smallest integer such that

(1—0)8k
LT < o)+ (v k), T by ST kT k2,
where Xf-{+1 = zf,‘ = arg min{d)j.‘(u, XZ-(, 811{) cue R},

le.  set rk= (175! —xk)2.
1d. If k>1 and 5{‘ > max{&l]f_l,(Smm,i}, then Jdmin,i ‘= TOmin,i -

Algorithm 3.1 Inner loop in Step 1 of Algorithm 2.1 for the generalized BOSVS scheme.

Let ¢; denote the Lipschitz constant for V f;. By a Taylor expansion of f; around xf.‘ ,

we see that the line search condition of Step 1b is satisfied whenever (1 — 0)65‘ > ¢,
or equivalently, when

5 = ¢i/(1 = o). (3:2)
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Sincen > 1, (Sf increases as j increases, and consequently, (3.2) holds for j sufficiently
large. Hence, if j > O at the termination of the line search, we have s <ngi/(1—0).
If the line search terminates for j = 0, then Sf < Smax- In summary, we have

Smin < 85 < max{ng; /(1 — 0), Smax} for all k. (3.3)

Since s588 < ¢ in Step la, it follows that 8{"0 = Omin,; Whenever dmin; > &;. In
Step 1d, Smin,; is increased by the factor T whenever 8;‘ > 8{‘71. Hence, after a finite
number of iterations where 8" > 8"71 we have dmin,; > ¢;i/(1 — o), which implies
that the line search terminates at j = 0 with 8" = 8"0 = Smin.;- We conclude that

811.‘ < 8;‘_1 for k sufficiently large, 3.4)

where 55‘ denotes the final accepted value in Step 1b. Note that the inequality in (3.4)
cannot be replaced by equality since the number of iterations where 8;‘ > skl may
not be enough to yield Spin,; > ¢i/(1 —0).

In the BOS algorithm, the line search is essentially eliminated by taking 85‘ larger

k+1

than the Lipschitz constant ¢;. Taking (Sk large, however, causes | x; —Xf.‘ || to be small

due to the proximal term in the objective CDf.‘( - xl , 8" ) associated with xf.‘+1. These
small steps lead to slower convergence than what is achleved with BOSVS where § lk is
adjusted by the line search criterion in order to achieve a small, but acceptable, choice
for 85‘ .

In our analysis of generalized BOSVS, we first observe that when ¢ = 0, we have
reached a solution of (1.1), (1.2).

Lemma 3.1 If ¢ = 0 in the generalized BOSVS algorithm, then x**1 = x
solves (1.1), (1.2) and (x*, \F) e W=

Proof Letx* denote x*. If e = 0, then r; = 0 for each i, and by Step 1c of generalized
BOSVS, xft! = xk = x* For generalized BOSVS, we set Z¢ = x**1 in Step 1b.

Since x**t1 = x*, it follows that z¥ = x*. The identlty zF = x**1 also implies that
21 =xk =x* In Step 3 of Algorlthm 2.1, y1 = zll‘ = = xj. Since ek =0, Step 2

of Algorithm 2.1 implies that yJr = zﬁ = x| . Hence, y* = x* =z Since ek = 0, it

also follows from Step 2 that Ax* = b. Consequently, we have

k—p-— ZAZ ZA/y/_b ZAX ZAX—AX (3.5)

j<i Jj>i j<i Jj>i

By Step 1b, x¥™! is the minimizer of ®¥( - ,x¥, §5). Since x¥*! = xk = x*, it

07 1 1°

follows that X is the minimizer of CDf( L XF, 811‘) After taking into account (3.5), the
first-order optimality condition associated with the minimizer x* of (IDf (-,x7, (Slk ) is

exactly the same as (1.3), but with A* replaced AK. Hence, (x*, %) e W*. O

Two lemmas are needed for the convergence of the generalized BOSVS algorithm.

@ Springer
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Lemma 3.2 Givenv € R" and § > 0, suppose that u minimizes de?( -,Vv,8) and

(1—0)8

ol - vI? > fi(w) (3.6)

fi) +(Vfiv),u—v) +
for some o € [0, 1). Then, for any w € R" we have
LEw) — Lfw) > §<||w —ul? = w—v[?
+§||A,~(w—u>||2+”75||u—v||2, 3.7)
where L{F is given by
LE(w) = fi(w) + hi(w) + guAiw—b,’-‘ + 25 /pl1%. (3.8)

Proof Adding h;(u) + §||Aiu — bﬁ.‘ + Ak /p||?* to each side of the inequality (3.6) and
rearranging, we obtain

P (u, v, 8) — ?nu —v|* = Lf(w).
Adding Li.‘ (w) to each side of this inequality gives
LEw) — L) > LK(w) — ¥ (u, v, 8) + %(Sllu —v>. (3.9)
Utilizing the convexity inequality f;(w) — fi(v) > (V fi(v), w — v), we have
LEw) — 0Fw,v.8) = £ (14w = bf =25 /pl2 — A — b} =24/
+H(Vfi(v),w —u) — %nu = VII* + hi(w) — hi ().

Expand the smooth terms involving w on the right side in a Taylor series around u to
obtain

P $
LE(w) — oFu, v, 8) > (gF, w—u)+hi(w) —h;(w) + S A = wl* - Sl - vl

where gf.‘ =Vfi(v)+ ,oA;.r(Aiu - bi.‘ + Xk/,o). Since <I>f? is the sum of smooth and

a nonsmooth term, the first-order optimality condition for the minimizer u of CDf can
be expressed

(85 +8(u—v), w—u)+ (W) = h;(u)
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for all w € R", which implies that
(g5, w—u)+h; (W) —hi() > —s(u—v,w—u)
for all w € R" . Utilizing this inequality, we have
LﬁWpdﬁmmJ)z—Mu—mw—uy+%mxw—um?—;m—wﬁ
Insert this in (3.9). Since
2u—v,w—u)+ u—v|[*=[w—v|*—|w—ul?

the proof is complete. O

We use Lemma 3.2 to establish a decay property that is key to the convergence
analysis. Recall that the ADMM parameter « lies in (0, 1).

Lemma 3.3 Ler (x*, A*) € W* be any solution/multiplier pair for (1.1), (1.2), let x¥,
v, 25, and A* be the iterates of the generalized BOSVS algorithm, and define

1 m
Ex = pliyl —xlp + ;nxk — AP e Y sFIxE - X%,

i=1

where P = MH™'M'. Then for k large enough that the monotonicity condition (3.4)
holds for alli € [1, m], we have

Ep > Exy1 + X —xF 12+ eapllyt — 25 1% + 1AZ" —b)?),

where ¢1 = o0dmin and ¢ = a (1 — a).
Proof By the inequality (3.7) of Lemma 3.2 with v = xf.‘, w = x;‘, and u = zf.‘, we
have

k k

P 84 04
LEO) = Li@) = SIAzg 17 = -z I = %17 + — iz — x{12
sk o8k

_ 00 k12 k2
= S Ui 17 = %19 + —=

> IIx

k+1 k2
il

(3.10)

where x’e‘ =xF —x*, Zlg =7zF —x*, and zF = x**! by Step 1b of generalized BOSVS.

Since x* minimizes L( - , A*) and the augmented Lagrangian is the sum of smooth and
anonsmooth term, the first-order optimality condition implies that foreachi € [1, m],

(g w—x)+hi(w) —hi(x}) = 0 (3.11)
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forall w € R", where g} is the gradient of the smooth part of the objective evaluated
at x;:
]

m
gl = Vfi(x) +pA}- X:ijjf —b+A*/p
j=1

We add Lf.‘(xl’.‘) — Lf.‘(zf.‘) — ,OIIAiZl;i 2/2 to both sides of (3.11) and take w = zf.‘.
After much cancellation, we obtain the relation

0
Li) = LE) — S lAizg |

< i) — fi@) + Vi) —p <Z Ajzg i+Y Ajye;+ /b, Aizlcf,i>

J<i Jj>i
k k k k
5—p<ZAjze’j+ZAjye,j+xe/p, Aizevi>, (3.12)
j<i Jj>i

where y’; = yF —x*, k’j = AK — 1*, and the last inequality is due to the convexity of
fi. We combine this upper bound with the lower bound (3.10) to obtain

i <A S A YA ¢ xf;/p>
Jj<i j>i
sk . o sk .
> AEEH > = =15 + = SElIx] R (3.13)
Focusing on the left side of (3.13), observe that

m
DA+ ) AN =) A =X+ ) A~ 7))

j<i j>i j=I j>i

= Az —b+ ) A -7 (3.14)

j>i
since Ax* = b. Let rik denote the right side of (3.13):

5k oo e
k% okt 2 +1_ k2
i =5 (xe; 1 =150 + == oI =Xl

Using this notation and the simplification (3.14), (3.13) becomes

<A Zez’AZk_b+)‘]g/p+ZAj(ylj{‘_Zl;)>2Tik- (3.15)

Jj>i
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We will sum the inequality (3.15) over i between 1 and m. Since
m m
YAz, =Y A —xp) = A2 —b =1,
i=1 i=1

it follows that in (3.15),
m
Z<Aizle"i,rk+k’;/p>:<rk,rk+)»if/,o>. (3.16)
i=1
Also, observe that
m i
DA —E) =) A0 -2 - D A ),
j=2 j=2

Jj>i

with the convention that the sum from j = 2 to j = 1 is 0. Take the inner product of
this identity with A; zlcf ; and sum over i to obtain

m
(k. T st -h)
i=1 Jj>i

1

= <rk, DA - z’;)> — @ —x)™MGE - 7L, (3.17)
j=2

where M is defined in (2.1). We sum (3.15) over i between 1 and m and utilize (3.16)
and (3.17) to obtain

1 m
(yi - xi)TMw ~ <(rk, kf) + Z tik)

i=1

m
szMw+<r’<,r"+ZA,~w,~_1>, (3.18)
j=2

where w = y]j_ — z]j_.

Observe that

1 1 1
w Mw = EwT(M +MDHw = 5wT(M +M' —H)w + 5wTHw

m
> Aiwi
i=2

2
1 ¢
—w' Hw
+2

1
T2
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212 W. W. Hager, H. Zhang

since (M+M"—H);; = AT, ,A ;| by the definition of M and H. With this substitution,
J i4+14%) y

the right side of (3.18) becomes a sum of squares:

2
m
1
w Mw + <rk, rf + ZA,wj_l> =— | wHw + |Ir*)*> +
j=2 2

m
rf + ZAiwi—l
i=2

Hence, it follows from (3.18) that

m

1 1
O XMW — <<rk, A+ Zrﬁ) = = (Il + 1F12) . 3.19)

i=1

Let P = MH'M" and recall that w = y’j_ - z'j_. By the definition of y¥*! and
A+ in Step 3 of Algorithm 2.1, we have

1
vk —x2 13 — Iy — X3 + ;(Hx’;nz — 1A%
. 1
= Iy% —x% 3 — I —x%) —aM THW|§ + ?(uwnz — I 4 aprf?)
k w2 T 2 2 20 4o 20 k2
=2a(y", —x*)"Mw — & ||w||H—7<r ARy — k2

On the right side of this inequality, we utilize (3.19) multiplied by 2« to conclude that

1 2a &
A — X303 — VAT =Xt + ;(Hxﬁ 12— IS - = >t
i=l1
> eyt — 25 1 + Ie* 1) (3.20)

where c; = a(1 —«) > Osince o € (0, 1). By the definition of tl.k and the assumption
that & is large enough that (3.4) holds for all i, it follows that

k

St o8k
k k 12 k+1,2 k2
-7, = El(llxg,,-ll — % 117 — I

5
sk sk o sk

< w7 = Sl IR = R xR

This bound for —r,.k along with the inequality (3.20) and the definition of EX complete

the proof. O
The following theorem establishes the global convergence of generalized BOSVS.

Theorem 3.4 If x¥, y*, and ¥ are iterates of the generalized BOSVS algorithm, then

the xX* and y* sequences converge to a common limit denoted x* and the A* converge
to a limit denoted L* where (x*, L*) € W*.
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Proof Let k be chosen large enough that (3.4) holds for all k > k. Since x**! = z¥ in
generalized BOSVS, it follows from Lemma 3.3 that for j > k and p > 0, we have

Jj+p—1
Ej>Ejpp+e Y (X —x 12+ 1yl — x5 + 1A —b)%), 321
k=j

where ¢ = min{c1, pcz} > 0. Let p tend to +o00 in (3.21). Since the columns of A;
are linearly independent for i > 2, H is positive definite and

lim X! —x*| = lim |y* — x5 = hm IAX*T! — b = 0. (3.22)
k— 00 k— o0

By the definition of bi.‘, we have

X —bf =) AT LY A —b (3.23)

Jj<i Jj>i
By (3.22), ylj_ approach x]f], and by (3.23) and (3.22),
Jim Axit! —bf) = Jim AX*TT b =0 (3.24)
—00

foralli € [1, m].

By the definition of Ej in Lemma 3.3, we see that the iterates A* and x* are uniformly
bounded. Hence, there exist limits A* and x*, and an infinite sequence K C {1, 2, ...}
such that A* and x* for k € K converge to A* and x* respectively. By the first relation
in (3.22), x**1 also converges to x* for k € K. In Step 1b of generalized BOSVS, we
have

x{f+1

= argmm{cbk(u XK, 8%) 1w e RMY.

0%

The first-order optimality conditions for xf“ are

(g, w—x) i) > Byl (3.25)

for allu € R", where gff is the gradient of the smooth part of the objective evaluated

at Xk+1

g = Vi) + pATAx = bf +215/0) + 857 (T = xD).

As k € K tends to infinity, V f,-(xf.‘) approaches V f;(x*) since V f; is Lipschitz
continuous, A; ka bf approaches 0 by (3.24), and 55‘ (xf.chl - xf.‘ ) approaches 0 by
(3.22) and the uniform bounded (3.4) for (Sl’.‘ . Consequently, we have

lim gf = Vv fi(x*) + ATA*, (3.26)
kelkC
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Let k£ € K tend to 400 in (3.25). By (3.26) and the lower semicontinuity of /;, we
deduce that

(VAHED + A u—x5) + ki) > ki (x)

for all u € R" . Therefore, x* and A* satisfy the first-order optimality condition (1.3).
By the last relation in (3.22), it follows that Ax* = b and x* is feasible in (1.1). By the
convexity of f; and h;, x* is a solution of (1.1), (1.2) and A* is an associated multiplier
for the linear constraint.

Since x**! converges to x* for k € KC, the second relation in (3.22) implies that
y’i converges to x* for k € K. In Lemma 3.3, we use the specific limits x* and 1*
associated with k € IC. Hence, E}. tends to O for k € K. It follows from (3.21) that
the entire E; sequence tends to 0. By the definition of Ej, we deduce that the entire
(xk, yﬁ, A5 sequence converges (X*, X7, 1"). Since y]]“ = xll‘ for each k, where x’l‘
converges to X}, we conclude that y* converges to x*. This completes the proof. 0O

4 Multistep BOSVS

For the template given by Algorithm 2.1, we only need to assume that the columns of
A; are linearly independent for i > 2 since only these columns enter into the matrix M
which is inverted in Step 3. For generalized BOSVS, this assumption was sufficient for
convergence. On the other hand, for both multistep and accelerated BOSVS, strong
convexity of the augmented Lagrangian with respect to each of the variables x; is
needed in the analysis. Since it has already been assumed that the columns of A;
are linearly independent for i > 2, we will simply strengthen this assumption to
require, henceforth, that the columns of A; are linearly independent for every i. This
ensures strong convexity of the augmented Lagrangian L with respect to each of the
variables X;.
The inner loop for the multistep BOSVS algorithm appears in Algorithm 4.1.

Inner loop of Step 1 for multistep BOSVS:
Initialize: u? = xf.‘
For [=1,2,...

la. Choose 8(1) € [8min, Omax] -

1b. set & :77-’86, where j >0 is the smallest integer such that
_ _ _ 1—0)s8! _
S (vl ‘>,u1§—u§ D+ 8% el —ul =12 > ),
where ué = argmin{@f(u, ufl, 5{‘) cue R},
le. 1f yl=Y_ 180 > r*=1 ana ul —ul=Y/\/57 < w1, break,
where ¢ denotes any real-valued function, continuous at zero,
such that ¥(0)=0 and ¥(s) >0 for s >0 (e.g. Y(@)=1).
Next
1 i 1 i _ il
1d. set 2 = (S ulsel) iyl k=Sl -6l T2,

k+1 _ 1 k _ 1
X; =u, and I‘i_y.

Algorithm 4.1 Inner loop in Step 1 of Algorithm 2.1 for the multistep BOSVS scheme.
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In generalized BOSVS, the iteration is given by xf“ = arg min{cbf.‘(u, xf, 85‘) :
u € R"} where 81’? is determined by a line search process. In the multistep BOSVS
algorithm, this single minimization is replaced by the recurrence

I _ ok I=1 gky . n;
u; = argmin{®; (w,u;” ", §) :u e R},

where u? = xf.‘. By converting the single minimization into a recurrence, we hope
to achieve a better minimizer of the augmented Lagrangian. In generalized BOSVS,
the convergence relies on a careful choice of 8{‘ based on safeguarding techniques.
In multistep BOSVS, these restrictions on Sf are replaced in Step 1c by a condition
related to the accuracy of the iterates.

Since 1 > 1, the line search in Step 1b of multistep BOSVS terminates in a finite
number of iterations and the final 8’ has exactly the same bounds (3.3) as that of
generalized BOSVS. Since &' is uniformly bounded, it follows that the condition
Ff‘ > l"ffl of Step Ic is fulfilled for / sufficiently large. In the numerical experiments
for multistep BOSVS in Sect. 6, 56 is given by the safeguarded BB choice of generalized
BOSVS. Similar to Lemma 3.1, when ¥ = 0, we have reached a solution of (1.1),
(1.2).

The following inequality is based on Lemma 3.2.

Lemma 4.1 In multistep BOSVS, we have

k ck2
Ix; —x; |l

, 4.1
¥ @.1)

If
Kk <kp2, @ I 1—12
vipllz; —X;|| +F§ ||u,'_ui I~ <
i ]=1

foreachi € [1, m], where ll{‘ is the terminating value of | at iteration k, v; > 0 is the
smallest eigenvalue of AlTA,-, and

if-‘ = arg min{Lf (u) : u € R"}) 4.2)
with L¥ defined in (3.8).
Proof By Lemma 3.2, we have

k kol 8 12 =12y , P IN)2
Li(w) — L; () = E(IIW —wll” = llw—u 1Y) + EIIA:’(W —w)ll
od! _

o — i (4.3)

for any w € R . We take w = if.‘. Since Li.‘ (uf) — L;‘ (if.‘) > 0, we have
1 1

p —k I\)2 ! 1—12 —k 1—12 iy 12
y”Ai(X,’ —uwl"+ollu; —w, 7 <X —w T =X —wllt. (44)
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Summing this inequality for [ between 1 and ll{‘ gives

i 1 _ i B _
P s IAG —u)lP +o )l — TP < % — i (4.5)
=1 =1

Since the quadratic ||A; (if.‘ — u)||? is a convex function of u, it follows from Jensen’s
inequality that

I

1
1
ok IN12 k <k ky 112 k k Ski2
> A —upIP = TEIA — 2D = Tfvillzf — %117,
=1

where v; > 0 is the smallest eigenvalue of AiTAi. Combine this with (4.5) to obtain
4.1). O

Remark 4.1 Lf.‘ is strongly convex since it is the sum of convex functions and a strongly
convex quadratic (A;u, A;u); consequently, the minimizer if‘ exists. Due to the upper

bound (3.3) for §' in multistep BOSVS, y! grows linearly in /. Hence, for the inner
loop of multistep BOSVS, (4.1) implies that ||zf‘ — )'(f|| = 0(1/ﬁ). By (4.3), the
objective values satisfy Li.‘ (zf) — Lf()"(f) = 0(1/1;‘); to see this, divide (4.3) by 8!, sum
over [ between 1 and lf‘ , and apply Jensen’s inequality twice, to the terms involving

L(u') and to the terms involving A;. As a consequence of Lemma 4.1, the stopping
conditions in Step 1c of multistep BOSVS are satisfied for a finite /.

Similar to generalized BOSVS, the key to the convergence of multistep BOSVS is
a decay property for the iterates. The analogue of Lemma 3.3 for multistep BOSVS
is the following result.

Lemma 4.2 Let (x*, A*) € W* be any solution/multiplier pair for (1.1), (1.2), let x¥,
yk, 7, ui, and ¥ be the iterates of the multistep BOSVS algorithm, let lf be the
terminating value of | at iteration k, and define

k * 12 1 k *12 - ||Xf§_x;k||2
Ej =p||y+—X+||p+;||>~ | E —Tr
i=1 i

9

where P = MH™'"MT. Then for all k, we have

I}, — w02
Ex = Ex1+c ZZ - +cap(lyh — 2 I + I1AZ* — b|1%),
i=1I=1

where ciy = oa and co = o (1 — @).

@ Springer



Inexact alternating direction methods of multipliers for... 217

Proof We put w = x} in (4.3) to obtain

L) — Fral ) 1 _
5 > SO = I = I — o) + nul L

where Fl.k (uf!k) = Lf? (uf,k) + (p/2)|A; (uf’k — x;*)||2. Summing this inequality over
[ yields

l
Z (Lk(x*) — FFul, k))
1 1k
z5(||x,’f—u;,k||2—||x7‘—u?,k||2>+ Znu,k—u 2 @6)

Since Fl.k is convex, it follows from Jensen’s inequality and the definition of Ff‘ and
zf.‘ in Step 1c of multistep BOSVS that

i* i*

kZ le(“tk) Fk kZ sl zk _Fk(zk) @.7)
i o el

+1

. I . .
Substitute Xf-{ =u/, and Xf.‘ = u? & in (4.6) and use (4.7) to obtain

lk
LY (xf) — F(z) = (||x"+‘ 1P = Ix 1P + — Z haf , — w7, (4.8)
= Sk k k
1 1 1 21—1[ e, i 2Fl l - L,
where x’e‘ ;= xf‘ — x}. By (3.12), we have the upper bound

LEx) — FR@Eb) < —p <Z Azl + > AGYE k0. A,'z’;,,-> .

j<i j>i
Combining lower and upper bounds gives

Jj=i j>i

k+1 k 2 2
> X X, )+ — ul —u 4.9)
2Fk(ll I = | e.ill 2Fl" 121 llu; x (
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which is the same as (3.13) but with the following exchanges:

k k k+1
88 «— 1/T¥ and x| XK <—>Z||ulk—ulk

Except for these adjustments, the remainder of the proof is the same as the proof of
Lemma 3.3, starting with equation (3.14). O

Using Lemma 4.2, we can now prove the convergence of multistep BOSVS. The
analysis parallels that of Theorem 3.4. To facilitate the analysis, we recall the definition
and some properties of the proximal mapping. For any closed convex extended real-
valued function £,

1
prox;,(v) = arg min {h(u) + EHV —uf’:ue dom(h)} .

As shown in [32, p. 340], the proximal mapping is nonexpansive:
lprox;, (vi) — prox, (v2)|| < [[vi — val|.
Moreover, if g is a differentiable convex function and

u* = arg n}lin g(u) + h(u), (4.10)

then it follows from the first-order optimality conditions for u* that
u* = prox, (u* — Vg(u®)). (4.11)
Conversely, if (4.11) holds, then so does (4.10). Hence, these relations are equivalent.

These properties will be used in the convergence analysis of multistep BOSVS.

Theorem 4.3 If multistep BOSVS performs an infinite number of iterations generating
iterates yk, zk, and Xk, then the sequences yk and zF both approach a common limit
x* and A* approaches a limit \* where (x*, A*) € W*,

Proof For any p > 0, we sum the decay property of Lemma 4.2 to obtain

Jj+p—1

2
k““ k”
Ej=Eppte 3 |Iv5 — 205+ IAZ —b) +ZZ |
gt i=1 =1
(4.12)

where ¢ = min{cy, pca} > 0. Let p tend to +-o00. Since H is positive definite, and the
Fll‘ are monotone nondecreasing as a function of k, it follows from (4.12) that

li K251 =0= lim |AZf —b|. 4.13
kgr;ollh z || kgr;oll z Il (4.13)
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Moreover, by the definition of Ej in Lemma 4.2, y’i and A¥ are bounded sequences,
and by the first equation in (4.13), zlj_ is also a bounded sequence. The second equation
in (4.13) is equivalent to

Alzll‘—(b ZAZ)H—O

lim
k— o0

Since z/_i is bounded and the columns of A; are linearly independent, z; is bounded.

Hence, both z* and A¥ are bounded sequences, and there exist an infinite sequence
K c{1,2,...} and limits x* and A* such that

limz" = x* and lim A% = A*. 4.14)
kekC kelkC

By the first equation in (4.13), we have
lim y% = x* . 4.15
kel Y+ * ( )

By the second equation in (4.13), Ax* = b. Consequently, by (4.14) and (4.15),

. k k . k k
lim (A,-zi - b,.) = lim Y A +Y Ay b =Ax" —b=0 (4.16)
j<i j>i
foralli € [1, m].

The decay property (4.12) also implies that for each i,

lim r hm — Z ||ul P u =0. 4.17)

k—o00
lll

Combine this with (4.13) to conclude that

Jim ek = Jim v = 0. (4.18)
Next, we will show that
X; = arg min {ﬁ(u) +hi(u) + (A", Aju) tue R""} . (4.19)
If this were to hold for all i = 1, ..., m, then it would follow that
x* = argmin{L(x, A*) : x € R"}. (4.20)

Since Ax* = b, we conclude that x* is an optimal solution of (1.1), (1.2) and A*
is an associated multiplier. The remainder of the proof is partitioned into two cases
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depending on whether the monotone nondecreasing sequence l"f either approaches a
finite limit, or tends to infinity.

Case 1 For some i, Ff‘ approaches a finite limit. Due to the upper bound (3.3) for
8! in Step 1b of multistep BOSVS, we conclude that lf‘ is uniformly bounded. By
4.17), ||uf’ P uffkl || approaches zero, where the convergence is uniform in k and
lell, lf ]. Since u? 0= xf‘ , the triangle inequality and the uniform upper bound for
lf‘ imply that ||xf.‘ — uf’ « |l approaches zero, where the convergence is uniform in k and
[l el, l{‘]. Since zf.‘ is a convex combination of uf’k forO0 <l < lf with lf uniformly
bounded and ||xf.‘ - ufﬁ |l approaching zero, it follows that ||zf.‘ — xf.‘ || approaches zero.
We summarize these observations in the relation

: k k : k 0 : k 1
lim iz = xfll = lim Jzf —uf, | = lim zf —ulpl =0. @21

In multistep BOSVS, u}, minimizes ®; (-, u, §¥). Identify g in (4.10) with the
smooth terms in ®;. By (4.11), we have

uil’k = Prox, (ui],k - Vf,-(u?’k) - Sf‘(u}’k - u?k) - ,oAiT(Aiuil,k — bl + Xk/p)> .

Let us now take the limit as & tends to infinity with k € K. By (4.14), zi.‘ approaches
x7. By (4.21) both u?’k and ul.l’k approach zf, and by (4.16) Ai“i],k — bé‘ approaches
zero. Since the prox function and V f; are both Lipschitz continuous, we deduce that
in the limit, as k tends to infinity with k € IC,

X; = prox,, (xl* - Vfi(x}) — AI)»*) .

Again, by (4.10), (4.19) holds. And if this were to hold for all i € [1, m], it follows
that x* is an optimal solution of (1.1), (1.2), and A* is an associated multiplier. To
show that (4.19) holds for all i, we need to also consider the situation where Ff‘ tends
to infinity.

Case 2 Suppose that Fff approaches infinity. Let if‘ be the minimizer of Lf? defined
in (3.8). Observe that minimizing Li.‘ (u) over u € R™ is equivalent to minimizing a
sum of the form g (u) + A (u) + (u, ¢X) where & corresponds to h;, ¢k = Al.T (k- pbf.‘ ),
and g(u) = f;(w)+0.5p||A;u||?. Note that g is smooth and satisfies a strong convexity
condition

@ —v(Vg) — Vg(v) = pvifu— v, (4.22)
where v; > 0 is the smallest eigenvalue of AiTAi. By the strong convexity of Lf , it
has a unique minimizer, and from the first-order optimality conditions and the strong
convexity condition (4.22), we obtain the bound

1K/ — =50 < fle/ = KlI/(ov). (4.23)
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Since z*, yi, and A* are bounded sequences, it follows that if? is a bounded sequence.
For k € K, the sequences z*, yﬁ, and AX converge to x*, X7, and A* respectively,
which implies that

¢ = ]lierlncck =Al [V —p b= Axi| | =AT[A - pAix]]. (4.24)
J#i

where the last equality is due to the identity Ax* = b. Consequently, by (4.23), if‘
for k € K forms a Cauchy sequence which approaches a limit. We use the stopping
condition to determine the limit.

Letusinsert/ = lf anduf = x+l

;" intheinequality (4.4). By the linear independence
of the columns of A; and the upper bound (3.3) for 8!, there exists B > 0 such that

—k k+12 _ P —k I N2 —k 11,2 —k I 2
BlIx; —x; 17 < 8—,||Ai(xl- —w I =X — w17 =X — gl
—k k+1 1 -1 i I-1,2
=20 —x; LW —w ) e —w |

]
<k kL -1 ! 1—12
< 20%F — X g — I g —

We complete the square on the right side to obtain the relation

i -1
<k k+1 g o — gl
Ix; —x; IIST 1+B+1).

Square this inequality and divide by Ff to get

sk k12 l =12
”X,' —X; [ ”ui,k — W [
k - k
I BT

(1+\/ﬁ)2.

Sincel = l{‘ , it follows from the stopping condition of Step 1c and from (4.18) that the
right of this inequality approaches zero as k tends to infinity. Earlier we showed that if‘
is a bounded sequence. Since l"lk tends to infinity in Case 2, and if.‘ / \/FT‘ approaches
zero, we conclude that xf“ / \/I‘»lk approaches zero. Due to the inequality I‘f‘H > Ff,
xf“/ F{‘H also approaches zero as k tends to infinity. Since ||xf.‘ —if.‘ | < ||xf.‘ I+ ||if.‘ Il

the right side of (4.1) approaches zero. Hence, (4.1) implies that zf? approaches if‘ as
k tends to infinity. And since zf also approaches x for k € K, we conclude that if‘
approaches x* as k € K tends to infinity. Let X be defined by

X = argmuin{g(u) + h(u) + (u, c*)}.
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By (4.23) and the fact that if? approaches x; as k € K tends to infinity, we conclude
that X} = x}". In summary, we have

lim if-‘ =x; =X = argmin{g(u) + i (u) + (u, c*)}.
kelC u

= argmin{f; () + 0.5pl Al + hi(u) + (A* — pAix;, )} (4.25)

The first-order optimality conditions for (4.25) are exactly the same as the first-order
optimality conditions for (4.19). This shows that (4.19) holds in either Case 1 or
Case 2. Hence, (4.20) holds and x* is an optimal solution of (1.1), (1.2) with associated
multiplier A*.

Finally, we need to show that the entire sequence converges. If Fl{‘ is uniformly
bounded as in Case 1, then by (4.21), Xf‘ approaches X;k and ||x{.‘ — X;k ||2 / Ff approaches
zero as k tends to infinity with k¢ € K. On the other hand, when I" lk tends to infinity as in
Case 2, we showed that ||xf.‘ —if.‘ 12/ Ff‘ approaches zero. Since if‘ fork € ICapproaches
xl?k by (4.25) and Ff tends to infinity, it follows that ||xf.‘ — x;‘ ||2 / I‘f‘ approaches zero
for k € K. Thus in either Case 1 or Case 2, ||x{.‘ — i{‘ ||2/ Ff approaches zero as k
tends to infinity with k € KC. Letting j tend to infinity in (4.12) with j € K, it follows
that E; approaches zero. Moreover, (4.12) implies that along the entire sequence, y’_i
approaches x7} and A¥ approaches A*. By (4.13), the entire sequence of iterates zlj_
approaches x* . Since Az* approaches b (see (4.13)), Ax* = b, and ATA 1 is invertible,
the entire sequence z][ approaches xj. Finally, since y]fH = z’{, we deduce that the
entire y* sequence approaches x*. This completes the proof. O

5 Accelerated BOSVS

The inner loop for the accelerated BOSVS algorithm appears in Algorithm 5.1. As we
will see, the inner loop (Step 1) of accelerated BOSVS converges to the minimizer of
Lﬁ.‘ , exactly as in multistep BOSVS; however, the convergence speed of the multistep
BOSVS inner loop is O(1/ \/Z) for the zf‘ iterates and O (1/1) for the objective (see
Remark 4.1), while the convergence speed in accelerated BOSVS is O (1/1) for the zf
iterates and O (1/1?) for the objective, which is optimal for first-order methods applied
to general convex, possibly nonsmooth optimization problems.

Two parameter sequences appear in the accelerated BOSVS scheme, the §' and o/
sequences. They must be chosen so that the line search condition of Step la is satisfied
for each value of /, and the stopping condition of Step 1b is satisfied for / sufficiently
large. If the Lipschitz constant ¢; of f; is known, then we could take

1 2¢; 2
8= 2 and of = —
(1—0) I+1

€ (0, 1], 5.1
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Inner loop of Step 1 for accelerated BOSVS:
Initialize: a? = u? = X;‘ and ol =1.
For 1=1,2,...
la. Choose &/ > 8min and when [ > 1, choose ol e (0,1) such that
fi@h+ (vfi@h, al —al) + %uaf —al)? > fi@),
where af =(1- ozl)aﬁ_1 +alu£, 5{ =(- ozl)aﬁ_1 -i-ozluﬁ_1 ,
ul = argmin{Q(u) + ;(w) :u € R"} with

_ ! _
o) = (Vi@ u) + & u —ul 72+ B A;u —bE 42k /02
1

and

1b. If yl= (1/81)1_[(17011-)_1 zf‘f_l, where yl =1/81,
Jj=2
I -l k1
and |la; —a;” [ < ¥(e"7"), then break.
Next
k+1 ! k

— _al
lc. set x; =uw, z; =a;,

. ._1
sz =y!, and rlk = (l/l"lk) le=l Hu{ —“,-j 1.

Algorithm 5.1 Inner loop in Step 1 of Algorithm 2.1 for the accelerated BOSVS scheme.

in which case, we have

(1-0)8 _(+Dg

o i = i > Ci .
This relation along with a Taylor series expansion of f; around uﬁfl implies that the
line search condition in Step 1a of accelerated BOSVS is satisfied for each /. Moreover,
we show (after Lemma 5.1) that with these choices for 8/ and o/, the stopping condition
of Step 1b is also satisfied eventually.

A different, adaptive way to choose the parameters, that does not require knowledge
of the Lipschitz constant for f;, is the following: Choose 86 € [6mins Omax], Where
0 < 8min < dmax < o0 are safeguard parameters, and set

! 2 l 1

= ol 1 @ aoa o = TART where
Al = Xl: 1/8', A°=0, and 6' =1/(8\n') withn > 1. (5.2)
i=1
After some algebra, it can be shown that
S L —at, 53)

Hence, the ratio 8/ /o! appearing in the line search condition of Step 1a tends to infinity
as j tends to infinity since n > 1. We take j > 0 to be the smallest integer for which
the line search condition is satisfied. Based on the identity (5.3), the expression & /o/
has exactly the same effect as 8;‘ in generalized BOSVS. Consequently, it satisfies
exactly the same inequality (3.3). Moreover, similar to Lemma 3.1, when ¢ = 0, we
have reached a solution of (1.1), (1.2).
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We now establish the following analogue of Lemma 4.1.

Lemma 5.1 If the inner loop sequence &' := 8'a'y! associated with accelerated
BOSVS is nonincreasing as a function of I, then for each i € [1, m], we have
k k k2
lIx; —x; |l

- < X T X
vipllzk — xf|| +Fst||u ul s

5.4
k
i [=1 1_‘i

where llk is the terminating value of | at iteration k, ig‘ is the minimizer of the function
Li.‘ defined in (3.8), and v; > 0 is the smallest eigenvalue of Al.TAi.

Proof By the definition a! = (1 — /)a! ™" + o'ul, we have
(Vfi@),a; —a) = (1 —a) Vi@, a] " —a) + o' (Vfi@), uj —a).
Add to this the identity f;(al) = (1 — &) f;(@)) + &/ f; (al) to obtain
fi@) +(Vfi@),aj —aj)
- —a)[ﬁ(ﬁ,.)+<Vﬁ(ﬁf.),af—1 —ﬁf>]+a’ [ﬁ(ﬁf)—i—(Vﬁ(ﬁf),uf —ﬁﬁ)].

By the convexity of f;, it follows that f;(@)) + (V f;(a),al™! —al) < fi@al™.
Hence,

fi@) +(Vfi@h.al —al) < (1 o) fial ™) +o! | @) + (v fi@h. uf - a)].

Adding and subtracting any u € R" in the last term, and then exploiting the convexity
of f; gives
fi(@) + (v fi@. o) — &) = [ fi@) + (v fi@).u—a) |+ (Vi@ uf —w)
< fi(w +(Vfi(@), uf —u).

Therefore,

fi@h+(vi@h,al —al) < (1 —d) i@+ [ fiw) + (Vfi@), ul —u)].
(5.5)

Now by the line search condition in Step la of accelerated BOSVS and then by
(5.5), we have

0
LF@) = fiah) + 5||A,-af- —bY +25/pl1? + hi(ah)

(1 —0)8!

I =12
2! lla; — a;||

< fi@) +(vfi@h,al —al) +
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P
+ 5 IAa; = bf + 35/ pll” + hiaj)

(1-0)8

< (=) fia) +al fiw) + o (V i@, w —u) + 7 laj — &

o)
+ 5 I1Azaf = b + 3% /pl* + i a)).

Next, we utilize the definitions of ag and 55 and the convexity of both %; and the norm
term to obtain

(1—0)8 _
Tuaﬁ — a2

Lr@h < - il +d [ fiw + (Vfi@), ul —u)] +
+ (1= o) (SlAm]~ = bf 435I+ hyal )
+af (g“Ai“ﬁ = b + 15/ pl? + hi(uf))

=(1-ah (f"(aﬁ_l) + %IlAfaﬁ‘l — b + /ol + hi(af—l))

(1—0)da! !

o Lfi W) + (V£ @), uf —w)] + ————luf — ;'
o
ol (S1Am] —bf 435 /01 + hiu) )

= (1 —o)Li@ ™)+ [fiw) + (V@) ul —u)]

(1—0)8a! B )
ol —u P ol (DA —bf 2401 + i)

(5.6)
Since h; is convex, we have
hi() + (p,u —u') < hi(w) (5.7)

for any p € 9h;(u'). The expansion of the quadratic Q in Step la of accelerated
BOSVS around v can be written

oW) +vow)m—u) + %(u —u) (' + pAJAH U — ) = Q). (5.8)

Since u’ minimizes Q + h; in Step 1a, the first-order optimality conditions imply that

P+ VO (') = 0 for some p € 0h; (u'). We choose pP= —VQ(u'), and then multiply
(5.7) and (5.8) by ! and add to (5.6) to obtain

_ Slat _
LFah < 1 -ahHLt@ ™) + o' Lrm) + — (- u? = ju -l

odla! I 1—1,2 a'p IN)2
> lo; —w; |l —TIIAi(u—ui)II.
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Hence, for any u € R we have

_ slat _
LF@h — Lfw) < 1 - ah@h@l™ - Lk<u>)+—(||u uP — -l )
o8lal

2

ul —ul=1)? — 7||A,~<u—u§)||2. (5.9)

From the definition of ! in accelerated BOSVS, it follows that (1 — a!)y! = y!~!

with the convention that yo = 0 (since al = 1). Hence, for any sequence d,1>0,
we have

i (V dl— al)yldl—l) _ i (yldl _ J/1—1dz-1> —yidl. (5.10)

=1 =1

Suppose that d’ > 0 for each /. By assumption, &/ = y!8/a! is nonincreasing; since
o' =1and y! = 1/8', it follows that £! = 1, and we have

i i
Ll =1 — g1 _ 40 Ll -1
Yk (d d ) d d+l§g (d d )

=1

J
sd -+ Y (gdz _5171d171> =&lal —d°.(5.11)

=2

We now multiply (5.9) by y and sum over / between 1 and l{‘. Exploiting the identity
(5.10) with @' = L¥(al) — L¥(u) and (5.11) with @’ = |Ju} — u||, we obtain

lk

1k 1 k
Lfu) — L¥@/) = — (" lu - ’I|2 lu—ul|?) + — E £ ul —
- k k
! 2l 2Fl =

ul 12
w |l
lk
+ 507 Z(y’ohnA (u —up]?, (5.12)
i 1=l
where Ff denotes the final y! in accelerated BOSVS.

Next, we multiply the definition aij =(—-al )aij ! + alu by ¥/ and sum over j
between 1 and /. Again, exploiting the identity (1 — a/)y/ = 7~ yields

)
1 o
aj = i Z ylad . (5.13)
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Since a/y/ = yJ — 371 it follows that

1
=S oy, (5.14)
j=1

Consequently, af is a convex combination of u} through uf. Since ||A;(u — w)||?is a
convex function of w, Jensen’s inequality yields

lk
7 Z(y’aZ)IIA = u)l2 > A —al )| = A — 2.
=1
.. . . . k lf k+1 l;(
We apply this inequality to the last term in (5.12) and substitute z; = a;' ,x;" =u;,
and xf = u? to obtain
k
1 k _
L) — L&) = — E lu—xHP2 = ju—xf 1) + — Zs o — w2
or! ork &
yol
+§||Ai(u—zf-‘)||2. (5.15)

Finally, take u = )"(f?. Since the left side of (5.15) is nonpositive for this choice of u,
the proof is complete. O

Let us now examine the assumptions and consequences of Lemma 5.1 in the context
of the choices (5.1) and (5.2) for the parameters 8! and &' . For the choice (5.1) and for
[ > 2, we have

1 1 .
1 . 1 1 ll(l+1)
V=5 [la-e) 1—5—1_[ = > (5.16)
=2 =2

Hence, y! is O (1?). Since 8 = §'/1, it follows that for [ > 2,

¢t () (5 (%)
] I+1 281 o

In the special case/ = 1,£! = 8!/8' = 1. Since the sequence &’ is identically one, it is
nonincreasing and the assumption of Lemma 5.1 is satisfied. Since Ff‘ is the final value
for y! in Step 1 of accelerated BOSVS, it follows from (5.4) that ||zf.‘ —if.‘ =001 /lf‘).

For the choice (5.2) and for/ > 2, wehave A = (1/8")+A!"'anda! = (1/8")/A".
It follows that 1 — o/ = A”I/Al and for [ > 2, we have

=31 ]_[(1 —a) = 5T ]_[(AJ/AJ = —A— = AL
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Hence,

1/6
S’:=81a1y1=81<[/\1>A’—1

In the special case [ = 1, we also have £! = 1. Again, the sequence &’ is identically
one, which satisfies the requirement of Lemma 5.1; consequently, the speed with
which zf‘ converges to if‘ depends on the growth rate of !. By the definition of y/ in
accelerated BOSVS,

\/;—\/F:\/;—,/(l—al)yl:( l—a)\/>>—(517)

Since &' := 8laly! = 1, it follows from (5.3) that (a!/0)aly! = (!)?y! /0! = 1,

which implies that
al\/; =Vl (5.18)

By (5.17), we have

ol
/)/l _ yl—l > £ (5.19)
2
As noted beneath (5.3), 1/6" satisfies the inequality (3.3) for 8;‘, which implies that
/ 1—0o
0 >0:= . (5.20)

n¢i + (1 — 0)8max

Hence, (5.19) yields /y! — /y!=1 > /©/2. Since y! = 1/8' = 6!, it follows that

e o () o= (3 = ()

In summary, for either of the choices (5.1) or (5.2), we have & "= 1 for each [, and
k -k k . . . -k L.
lz; —x; || = O(1/L). Moreover, by the inequality (5.15) with u = X}, the objective

value satisfies L (z¥) — L¥ &5 = 0(1/10?).
Although Lemma 5.1 was stated in terms of the terminating iteration / lk of the inner
iteration, it applies to any of the inner iterations; that is, for each i and /, we have

k_ gkp2
—X; |l

l
I g2 4 o ) _ X j
vipla — x| —IZ R
P Y

Whenever y! approaches infinity, as it does with the choices (5.1) and (5.2), the right
side approach zero and a converges to )'(f‘ Hence, the stopping conditions in Step 1b
of accelerated BOSVS are satisfied for / sufficiently large when e—! # 0.
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The convergence of accelerated BOSVS, like the other algorithms, relies on a decay
property for the iterates, which we now give.

Lemma 5.2 If the accelerated BOSVS parameters y' tend infinity as | grows and
gl .= slaly! = 1 for each I, then Lemma 4.2 holds for the accelerated scheme.

Proof We substitute u = x and &/ = 1in (5.15) to obtain

lul — =%,
=1

1

1 k+1
Lh) = Fhah = o (I =P = I =X 7) +
1 l

where FF(w) = L¥(w) + (p/2)]|A;(w — x})||%. This is exactly the same as (4.8)
in the proof of Lemma 4.2. The remainder of the proof is exactly as in the proof of
Lemma 4.2. O

Using the decay property of Lemmas 4.2 and 5.2 , we now obtain the convergence
of accelerated BOSVS.

Theorem 5.3 Suppose that for the inner loop sequence &' = §'a'y" associated with
accelerated BOSVS we have &' = 1 for each 1, y' tends to infinity as | grows, and
there exists a constant k > 0 such that y'(«!')? > « for all l. If accelerated BOSVS
performs an infinite number of iterations generating iterates y*, z€, and A*, then the
sequences y* and 7 both approach a common limit x* and A* approaches a limit \*

where (x*, A*) € W*.

Proof The proof is identical to that of Theorem 4.3 through the end of Case 1. For
accelerated BOSVS, the fact that z is a convex combination of u  1s shown in
(5.13), (5.14). The treatment of accelerated BOSVS first differs from that of multistep
BOSVS in the second paragraph of Case 2 (Flk tends to 4+00) where the multistep
BOSVS stopping condition ||uf — uf_1||/\/7 < Y(eF 1), is used to show that
||Xf.C — )_(f.‘||2 / Ff{ approaches zero. Since accelerated BOSVS uses the new stopping
condition ||a§ — af_l | < ¥(ek~1), anew analysis is needed in Case 2.
By the definition of a', we have

I i1
—a

Ll _ al—1 Lol — ol I i1
la =cafuw —a ||za(u —a] —fa —a""|).

If yx denotes w(ek Dyand! = lk sothata’ satisfies the stopping criterion ||a al ! | <

Y, then

2
[ATIN) 1 1 1 -1 k+1 k
oo’ —a'f = (I +aDfla’ —a ™l = 2y or X -7l = —F

since u/ = X Vand a! = z when [ = lk Squaring this, dividing by ! = I'*, and

1 9
utilizing the assumption that v (a)? > « for all [, we deduce that

k+1 k2 2
”Xi - Zl- ” < 410](

Ff‘ Tk

(5.21)
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k+1 _ k2 1k
. —1z; ||/ I’} approaches zero as

k tends to infinity. Since Ff‘ is nondecreasing, ||Xf.‘+1 —zi.‘ 12/ sz *lalso approaches zero
as k tends to infinity. Since zf‘ is a bounded sequence and Ff‘ tends to infinity in Case 2,
we can replace zf‘ by any other bounded sequence and reach the same conclusion.
In particular, since the sequence )_(f.‘ is bounded we conclude that ||xf.C — )_(f.‘ 12/ Fl{‘
approaches zero as k tends to infinity, the same conclusion we reached in multistep
BOSVS scheme. The rest of the proof is exactly as in Theorem 4.3. This completes
the proof. O

Since v approach zero by (4.18), it follows that ||x

Remark 5.1 The parameter choices given in both (5.1) and (5.2) satisfy the assumption
of Theorem 5.3 that yl (@)% > k > 0 for some constant «. In particular, for (5.1), we
show in (5.16) that ! = I(I 4+ 1)/(28"). This is combined with the definition of o/ in
(5.1) to obtain

21 1

! 12=—>
V=S 2

for [ > 1. For the choice (5.2), it follows from (5.18) and (5.20) that

1—0o

Lo [N\2
y(a) >0:= .
n¢i + (1 — 0)dmax

Remark 5.2 In this paper, we have focused on algorithms based on an inexact min-
imization of Li.‘ in Step 1 of Algorithm 2.1. In cases where f; and h; are simple
enough that the exact minimizer )"(f of Lf.‘ can be quickly evaluated, we could simply
set xf.‘H = zf.‘ = if‘ and rl.k = 0 in Step 1. The analysis of this exact algorithm is very

similar to the analysis in Theorems 4.3 and 5.3 .

6 Numerical experiments

In this section, we investigate the performance of the algorithms for an image recon-
struction problem that can be formulated as

1
min [P —f|* + «ulrv + B¢ ull, ©.1)
where f is the given image data, F is a matrix describing the imaging device, || - ||7v is
the total variation norm, || - || is the £; norm, ¥ is a wavelet transform, and « > 0 and

B > 0 are weights. The first term in the objective is the data fidelity term, while the
next two terms are for regularization; they are designed to enhance edges and increase
image sparsity. In our experiments, ¥ is a normalized Haar wavelet with four levels
and WW' = I. The problem (6.1) is equivalent to

1
min —||Fu — f||> + «|w|1.2 + B|zl| subjecttoBu=w, Wu=2z, (62)
(u,w,z) 2
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where Bu = Vu and (Vu); is the vector of finite differences in the image along the
coordinate directions at the i-th pixel in the image, ||w|[12 = Z,N=1 [[(Vu);]|2, and N
is the total number of pixels in the image.

The problem (6.2) has the structure appearing in (1.1), (1.2) with 1 := 0, fi(u) =
1/2|Fu —£]12, ha(w) = [wll1.2, f2 := 0, h3(z) = |lzl1, f3 := 0,

e () w3 () (1)

When solving the test problems using accelerated BOSVS, we use choose o/ and &
asin (5.2). Since f» = f3 = 0, the line search condition holds automatically, and the
second and third subproblems are solved in closed form, due to the simple structure
of /5 and h3. Only the first subproblem is solved inexactly. At iteration &, the solution
of this subproblem approximates the solution of

1
min L} (w) := = [Fu— £ + §||Bu —wE 4 oIk

1% _
+5||\Iﬂu—z" S (6.3)

where A* and u* are the Lagrange multipliers at iteration k for the constraints Bu =
w and W'u = z respectively.

The stopping condition for the inner loop of either multistep or accelerated BOSVS
required that Ff > F;‘_l. To improve efficiency, we replaced this condition by lf >
lf‘fl or Ff > Ff‘fl, where lf‘ is the number of iterations performed by the inner loop
for block i at iteration k. For all the algorithm, we chose the initial 86 in the line
search using the BB approximation, which is given in Step 1a of generalized BOSVS.
Moreover, when Ff < Fl{‘_l, we increase Smin,; by setting dmin i := TOmin,i» Where
7 = 1.1 in our numerical experiments. When &pyin; is sufficiently large, we have
86 = Smin,; and the line search condition in the algorithms is satisfied by 86; that is,
8 = 86 = Omin,i- Consequently, when dpin ; is sufficiently large, we have

i

N
Ff=25—z=—’

=1 (Smin,i

and the relaxed stopping condition lf > lffl implies that Ff‘ > Fffl, the original
stopping condition. Since t > 1, it follows that Ff < F;‘*I for only a finite number
of iterations, and hence, Ff > Ff_l for k sufficiently large. This ensures the global
convergence of the algorithms.

Another improvement to efficiency was achieved by further relaxing the line search
criterion. In particular, for the line search in generalized BOSVS (Step 1b), we replaced
the right side fi(xfﬁ'l) by fi(xf"’l) — ek where €k > 0 is a summable sequence. In
the line search of multistep BOSVS (Step 1b), ﬁ(uf) was replaced by ﬁ(uﬁ) — 7l
where 7! = €*8'w! with @' a summable sequence. In the line search of accelerated
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BOSVS (Step 1a), we replaced f,-(af) by f,~(af) — 7!, where ! = €kw!/y!. It can
be proved that when the line search is relaxed in this way using summable sequences,
there is no effect on the global convergence theory; these €* and 7! terms need to be
inserted in each inequality in the analysis, but in the end, the steps and the conclusions
are unchanged. On the other hand, when the line search is relaxed, it can terminate
sooner, and the algorithms can be more efficient. For the numerical experiments, we
took €k = 1O/k1']. For multistep BOSVS, ol = 1/()/1)]'2, while for accelerated
BOSVS, o' = 1/(y")%. Since y! grows in proportion to / for multistep BOSVS and
in proportion to /2 for accelerated BOSVS, the o' sequences are summable. Hence, for
these choices of X and ', global convergence is guaranteed. The specific exponents
1.1, 1.2, and 0.6 in the formulas for € and w' seemed to work reasonably well in our
experiments.
In all the algorithms, we use the following parameters:

Smin = 10719, 80 = 10, @ =0.999, 6 =107, =3, and 7 = 1.1.

For the inner loop stopping condition, we took ¥ (1) = min{0.1z, !} in multistep
BOSVS, and ¥ (¢) = 0.5t in accelerated BOSVS, while in Step 2 of the ADMM
template Algorithm 2.1, we took #; =107°,/p,6, = \/p,and 63 = 1076/o /(1 — ).
For comparison, we provide numerical results based on the algorithm in [24] where we
use MATLAB’s conjugate gradient routine CGS with starting point #*~!, the solution
of the subproblem at the previous iteration, to solve the subproblem (6.3) almost
exactly, stopping when ||VL’1‘(u) | < 107°. The algorithm in [24] was guaranteed to
converge due to a back substitution step. We also implemented ADMM without the
back substitution step; in this case, there is no convergence guarantee. MATLAB’s
conjugate gradient routine was utilized for the subproblem (6.3) since the objective is
quadratic with a positive definite Hessian, and the conjugate gradient method works
reasonably well in this case. All the codes were implemented in MATLAB (version
R2014a). The following figures show the relative objective error (& (uf) — &*)/d*
versus CPU time, where ®* is the optimal function value of (6.1) obtained by applying
accelerated BOSVS until the eighth digit of the relative objective value did not change
in four consecutive iterations.

The first experiment employs an image deblurring problem from [1]. The original
image is the well-known Cameraman image of size 256 x 256 and the observed dataf in
(6.1)is ablurred image obtained by imposing a uniform blur of size 9 x 9 with Gaussian
noise and SNR of 40dB. The weights in (6.1) are « = 0.005 and 8 = 0.001, and the
penalty parameter p = 5 x 10~*. Figure 1a shows the base- 10 logarithm of the relative
objective error versus CPU time. In this problem where the subproblems are relatively
easy, generalized BOSVS is significantly slower than the other algorithms, while both
multistep and accelerated BOSVS were faster than the exact ADMM schemes.

The second set of test problems, which arise in partially parallel imaging (PPI), are
found in [10]. The observed data, corresponding to 3 different images, are denoted
data 1, data 2, and data 3. For these test problems, the weights in (6.1) are = 10~5 and
B = 107°, and the penalty parameter p = 1073. The performance of the algorithms is
shown in Fig. 1b—d. These test problems are much more difficult than the first problem
since F is large, relatively dense, and ill conditioned. In this case, all the inexact
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Fig. 1 Base-10 logarithm of the relative objective error versus CPU time for the test problems

algorithms are faster than the exact ADMM algorithms initially. The exact algorithms
becomes faster than generalized BOSVS when the relative error is around 1073 or
10~*. Accelerated BOSVS is always significantly faster than the exact algorithms.

7 Conclusion

Three inexact alternating direction multiplier methods were presented for solving
separable convex linearly constrained optimization problems, where the objective
function is the sum of smooth and relatively simple nonsmooth terms. The nons-
mooth terms could be infinite, so the algorithms and analysis included problems with
additional convex constraints. These algorithms all originate from the 2-block vari-
able stepsize BOSVS scheme of [10,20] which employs indefinite proximal terms
and linearized subproblems. The 2-block scheme was generalized to a multiblock
scheme using a back substitution process to generate an auxiliary sequence y* that
played the role of x* in the original, potentially divergent [5], multiblock ADMM
(1.4). The three new methods, called generalized, multistep, and accelerated BOSVS,
correspond to different accuracy levels when solving the ADMM subproblems. Gen-
eralized BOSVS employed only one iteration in the subproblems, while multistep and

@ Springer



234 W. W. Hager, H. Zhang

accelerated BOSVS performed multiple iterations until the iteration change was suf-
ficiently small. The multistep and accelerated schemes differed in the rate with which
they solved the the subproblems. If [ was the number of iterations in the subproblem,
then multistep BOSVS had a convergence rate of O(1/l), while accelerated BOSVS
had a convergence rate of O(1//?). Global convergence was established for all the
methods. Numerical experiments were performed using image reconstruction prob-
lems. The accelerated BOSVS algorithm had the best performance when compared
with either the other inexact algorithms, or the exact algorithm of [24]. This paper
established global convergence of the proposed inexact ADMM methods. The overall
iteration complexities of these methods will be developed in a separate paper.
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