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ABSTRACT

Graphics Processing Units (GPUs) are extensively used in training of
convolutional neural networks (CNNs) due to their promising compute
capability. However, GPU memory capacity, bandwidth, and energy
are becoming critical system bottlenecks with increasingly larger and
deeper training models. This paper proposes an energy-efficient GPU
memory management scheme by employing MLC STT-RAM as GPU
memory to accommodate the image classification training workloads.
We propose a data remapping scheme that exploits the asymmetry access
latency and energy across soft and hard bits in MLC STT-RAM cells
and the memory access characteristics in image classification training
workloads. Furthermore, our design enables (i) energy-efficient memory
access by leveraging bit-level similarity in training data and (ii) optimal
feature map encoding to compress the contiguous 0s in feature maps.!
Our design reduces VGG-19 and AlexNet training time, GPU memory
access energy and capacity utilization by 76% and 70%, 45% and 40%,
26.9% and 26%, respectively.

1 INTRODUCTION

Recent development of convolutional neural networks (CNNis) is radi-
cally altering the way we process various applications, such as image
classification, speech recognition, object detection, and computer vision.
Among these, image classification is one of the most widely targeted
application domains in modern CNNs [19, 24, 25]. Software developers
strive to improve CNN training performance and accuracy by adopting
larger and deeper neural networks with more parameters. As a result,
the training of large-scale CNN models is typically performed by graphic
processing units (GPUs) with promising compute capability [19].

However, the continuous scaling of training networks makes train-
ing workloads increasingly data intensive, exposing GPU memory ca-
pacity, bandwidth, and energy as critical system bottlenecks [18, 23].
Figure 1(a) shows the memory capacity demand of recent winners of
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [14],
including AlexNet [19], GoogLeNet [25], VGG-16 and VGG-19 [24] (ex-
perimental setup is described in Section 5). When the batch size of
VGG-19 reaches 128, even a single NVIDIA's GTX 1080 Ti (11 GB device
memory) cannot meet the memory demand. The memory demand can
further increase with the design of recent ILSVRC winners, which adopt
more than a hundred convolutional layers [13]. Moreover, the increase
of memory capacity demand also increases the bandwidth demand and
dynamic energy consumption in GPU memory access. GPUs typically
have limited on-chip storage resources (such as caches, register files,
and shared memories), which cannot hold the large working set of CNN
training workloads. As a result, CNN training can impose high mem-
ory bandwidth demand (Figure 1(b)) and memory power consumption
(Figure 1(c)).

The goal of this paper is to improve the performance, energy effi-
ciency, and capacity utilization of CNN training for image classification,
without sacrificing any of these metrics. Also, this paper will not change
the model accuracy, because we do not change the values of training data.
To this end, we design a multi-level cell (MLC) STT-RAM-based GPU
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Figure 1: GPU memory demand and system energy breakdown.
(a) GPU memory utilization. (b) GPU memory bandwidth de-
mand and accesses. (c) NVIDIA GTX 1080 Ti dynamic power
breakdown when executing VGG-19.
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memory architecture with lightweight modifications to the memory

controllers and memory banks. We propose a data remapping scheme,

which reduces memory traffic and access latency by categorizing and
mapping different types of data in different manners in MLC STT-RAM.

Our scheme further enables two GPU memory optimization mecha-

nisms: (i) an energy-efficient memory access mechanism, which reduces

memory access energy consumption by avoiding the unnecessary writes
at the bit level; ii) a sparsity-aware data encoding mechanism, which in-
creases effective memory capacity with data encoding by exploiting the
sparsity in feature maps. This paper makes the following contributions:

e We propose a data remapping scheme that stores various types of
data of training workloads in MLC STT-RAM, based on their different
access characteristics. Our remapping scheme enables energy and
capacity efficient MLC STT-RAM data access.

e We present two memory access optimization mechanisms based on
our data remapping scheme: i) BitLevel-leverage the asymmetric write
current and access latency; ii) SparseCode-exploits the sparsity in
feature maps to compress the data without quality loss.

e We develop a set of lightweight hardware implementations and soft-
ware support to facilitate our mechanisms.

2 BACKGROUND AND MOTIVATION

2.1 Convolutional Neural Networks

Deep neural networks(DNNs) have various types, such as recurrent neu-
ral networks(RNNs), convolutional neural networks(CNNs), etc. This
paper focuses on feedforward-style CNNs commonly used in image
classification [19, 24, 25]. CNNs consist several layers, including convo-
lutional layers that perform image convolution, activation layers to make
neural networks nonlinear with activation functions, pooling layers to
reduce the feature map size by down sampling, and fully connected
layers to analyze features and classify input images into groups. CNNs
have two phases: training and inference. Training allows CNNs to learn
and update weights with multiple layers of neural networks, through
forward and backward propagations with opposite traverse directions
(Figure 2). Forward propagation generates feature maps using weights
and backward propagation updates the weights. Inference employs the
trained models to perform new recognitions or classifications. This pa-
per focuses on studying the training phase, which is typically much
more compute and data intensive than inference phase.

Forward and backward propagation. In forward propagation, the
output feature map y can be obtained by multiplying an input feature
map x and multiple convolutional filters. Then, y is fed into the next layer
as input feature map. When forward propagation of a layer completes, a



loss function will generate an output that is calculated by feature maps
of that layer and validation dataset. Then, a gradient map is obtained by
chain rule:

OError _ OError Y (n)
Nn-y vy IV(n-1)
Where Error is the sum of the network’s prediction error over all
training examples, Y(n_1) is the output feature map of layer (N — 1),

and Y is the output feature map of layer N.
BError

Because the output J is the product of the input 2£ r(’ ")r and
Y
VN (N , this derivation step can require reading feature maps from

memory and writing updated weights into the memory. With the chain
rule, layer (N — 1) can then get its own gradient map 0Y(n_1) with its
feature map Y(n_1), and pass the dY(y_y) to layer (N — 2) as its input.
When backward propagation reaches to the first layer, weights of all
layers need to be updated with new values for this whole iteration.
Input images and feature maps. Input images of image classifica-
tion training workloads can be color digital images, which consists of
a matrix of pixels represented by three color channels: red (R), green
(G), and blue (B). Each channel can be represented by an 8-bit binary.
When training a CNN model, the input images are typically divided into
several sets (“batches”) that are processed independently. Increasing
the compute batch size and the number of network layers can typically
improve training accuracy [23]. Feature maps are the results after con-
volution computations on input images; they consist of data blobs that
contain multi-dimensional feature information, but stored in memory
as 2D arrays. Each input image will generate multiple feature maps after
convolution computation in each layer. The number of feature maps
equals the number of convolution kernels in each layer.

2.2 MLC STT-RAM

MLC STT-RAM cells store multiple logic bits (typically two bits) in
each cell, increasing the density of STT-RAM (Figure 3). Also, MLC
STT-RAM has great endurance. MLC MT]J can adopt either series [15] or
parallel [10] designs. Series MLC STT-RAM has been demonstrated to
be more feasible than the parallel implementation, because series design
is compatible with advanced MT] technologies, such as perpendicular
MT]J and has overwhelming advantages in read and write reliability.

Read and write operation of MLC STT-RAM cell. In Figure 3(a), the
two MT]Js of series MLC MTJ structure have different areas to distinguish
the two logic bits. The bit stored in the smaller MT]J is a soft bit; the
bit in the bigger MT]J is a hard bit. Given a constant resistance-area
product and a critical switching current density (I¢), the soft bit has a
higher resistance than the hard bit. Therefore, the soft bit is typically
the more significant bit (MSB) and requires a smaller switching current
Uc,soft <Ic,hard)- Both read and write operations of series MLC STT-
RAM contain two steps. For example, in the first step of a write operation
(Figure 3(b)), a large current Iy g (IwH > I, parq) is applied to switch
the hard bit; at the same time, the soft bit gets the same value as the hard
bit. In the second step, a smaller current Iys (I, sofr < Iws < Ic hard)
is used to flip only the soft-bit. This step will not disturb the value stored
in hard bit. Figure 3(c) illustrates a two-step read operation based on
voltage sensing, which requires three reference voltages (Ref-0, Ref-1,
and Ref-2) and two comparisons. In the first step, the soft bit is detected
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Figure 2: CNN architecture.
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Figure 3: Multi-level cell STT-RAM. (a) Series MLC MT]J struc-

ture; (b) Two-step write operation; (c) Two-step read operation.
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Figure 4: VGG-19 memory utilization in each layer. AlexNet pro-
filing shows similar trends in data access across layers.

by comparing the sensing voltage with Ref-0. In the second step, the
hard bit is read by comparing the sensing voltage with either Ref-1 or
Ref-2 based on the result of the first step.

MLC STT-RAM as main memory. STT-RAM has been considered
as a promising replacement of DRAM in main memory system design.
Compared with DRAM, STT-RAM has lower leakage power and no
radiation-induced soft errors. With the MLC technology, the density can
be doubled compared with SLC STT-RAM. MLC PCRAM also offers high
density and low leakage benefits. However, the technology impose much
longer access latency and higher dynamic energy than DRAM and MLC
STT-RAM. Furthermore, the writing mechanisms of MLC PCRAM cells
do not have the asymmetric properties as MLC STT-RAM. Therefore,
we adopt MLC STT-RAM as our GPU main memory technology.

2.3 Motivation

We motivate our design based on following observations:

o Feature maps cost most of memory capacity (Figure 4). There-
fore, improving the capacity utilization and energy efficiency of fea-
ture map access and storage can significantly improve GPU memory
system performance and energy efficiency.

e Impact of CNN functions on neighbor data similarity. ReLU
function will generate continuous 0s. Also, a maxpooling function
takes the maximum value in each window of certain sizes and generate
a new feature map with a smaller size than the original one. As a
result, data with large values can be clustered together. It is likely
that the higher order bits share the same bit values.

e CNNs are read-intensive applications (Figure 1(b)). Therefore, it
is critical to optimize read performance and energy consumption.

e Issues and opportunities with MLC STT-RAM cell. We observe
that, reading the soft bit only takes one step, while writing the soft bit
only requires a small switching current that will not flip the hard-bit.
Thus, MLC STT-RAM can perform in a similar way as SLC by only
accessing the soft-bits, which improves both access speed and the
energy efficiency. Furthermore, MLC STT-RAM has a write disturbance
issue: writing the hard bit with a large write current can also change
the soft bit in the memory cell to be the same value.

3 OUR DESIGN

The goal of our design is to reduce the GPU memory capacity utilization
and energy consumption, while improving the performance of CNN



Table 1: Overview of categories of data in MLC STT-RAM, remapping schemes, and access mechanisms.

Data Type Memory Reuse Remapping Scheme Access Modes
Utilization
Dense feature map (CONV layers) High Write once, multiple reads || Remap across soft and hard bits BitLevel
Sparse feature map (CONV layers) High Write once, multiple reads || Remap across soft and hard bits | SparseCode + BitLevel
Feature map (FC layers) Low Write once, multiple reads Remap to soft bits Fast soft bit access
Weights (CONV layers) Low Multiple reads and writes Remap to soft bits Fast soft bit access
Weights (FC layers) High Multiple reads and writes || Remap across soft and hard bits BitLevel
Input images and gradient maps Low Write once, read once Remap to soft bits Fast soft bit access
Other Low Multiple reads and writes No remapping Normal access
" GPU Processor 2| [ SPU Processor (Section 3.2), and then remap the feature map data the same manner
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Figure 6: (a) BitLevel and (b) SparseCode mechanisms.

training. To this end, we propose an data remapping scheme that effi-
ciently maps various types of training data across GPU main memory
regions and the bits in each memory cell, based on characterization of
various types of training data stored in the memory. Furthermore, our
design also enables two optimization mechanisms, BitLevel and Spar-
seCode, to improve the performance and energy efficiency of training
data access. Hardware implementation and software interface of our
design will be discussed in Section 4.

3.1 Data Remapping and Access Modes

Table 1 lists major categories of data stored in GPU memory based on our

workload profiling. Feature maps and weights are two critical categories

of data stored in GPU memory (Figure 4). In particular, feature maps are
the primary memory consumer in convolutional layers, while weights
utilize the most of the GPU memory space in fully connected layers.

Note that high memory capacity utilization typically leads to high GPU

memory bandwidth utilization [23]. Table 1 also illustrates our proposed

data remapping scheme and optimized data access modes of each type
of data.

Feature map. Feature maps are the results after computations of the

same set of input images. We observe that neighbor data blobs (groups

of 32-bit floating point values) in feature maps can share similar or even
the same bit values. Based on this observation, we propose the following
options for remapping and accessing feature maps:

e Option 1: Dense feature maps (without many contiguous 0s) in con-
volutional layers (including ReLU and pooling layers) — Remap the
feature map data in a manner, where every two corresponding bits
in a pair of neighbor data blobs are stored in the soft and hard bits
in each memory cell. As a result, the soft and hard bits of the same
memory cell can have the same bit value, which enables our BitLevel
optimization mechanism (Section 3.2).

e Option 2: Sparse feature maps (with a large number of contiguous 0s)
in convolutional layers — Encode the feature maps with SparseCode

soft bits to reduce the access energy and latency, as feature maps have

insignificant memory utilization in fully connected layers.

In convolutional layers, we employ the Option 1 by default. In case
the memory controller identifies substantially low number of contiguous
0s in the first 65536 data blocks in feature map writing flow (details
discussed in Section 4), our design will switch to Option 2. The switching
of remapping options between convolutional and fully connected layers
does not require data migration — we simply write the output feature
maps of a convolutional computation to the soft bits.

Weights. Weights have low memory utilization in convolutional layers.
Therefore, we remap them in the soft bits to reduce access latency
and energy. In fully connected layers, where weights are the primary
memory space consumer, we observe that weights also have substantial
neighbor bit-level value similarity. Therefore, we remap the weights to
soft and hard bits of MLC STT-RAM cells in a similar way as feature
maps in convolutional layers. The difference is that neighbor weights are
simply a pair of 32-bit floating point values, instead of larger-granularity
data blobs.

Input images and gradient maps. Input images and gradient maps
have much lower memory utilization than feature maps. In particular,
input images and gradient maps of VGG-19 consume up to 6% and 7%
the memory space used to store feature maps, respectively. Furthermore,
input images are only accessed at the beginning of the workload; the
corresponding memory space is recycled once the images are read.
In backward propagation, the generated gradient map for layer N+1
is no longer useful once the backward propagation reaches layer N.
GPU systems can potentially recycle the corresponding memory space.
Therefore, we remap these data in soft bits of memory cells to ensure
low access latency and energy.

Other data. CNN workloads can also generate other types of data, such
as parameters and intermediate results of compute kernels. However,
these data consumes insignificant space and access energy in GPU
memory compared to the aforementioned types [23]. Therefore, we
store such data in normal manner without data remapping.

3.2 Energy-efficient Memory Access

Our data remapping scheme allows us to adopt the following mem-
ory access mechanisms to improve memory capacity utilization, access
performance, and energy consumption.

BitLevel: Energy-efficient access enabled by bit-level remapping,.
Figure 6(a) illustrates an example employing this mechanism. Assuming
contiguous data blocks A and B - e.g., data blobs in feature maps of
convolutional layers or 32-bit floating point values in weights of fully
connected layers — our remapping scheme will store the neighbor data
blocks A and B in the soft and hard bits of the same memory cells.
Due to write disturbance in MLC STT-RAM, a single write to the hard
bit (i.e., a bit in Block A) will also write the same value to the soft bit
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Figure 7: (a) MLC STT-RAM bank organization and (b) memory
controller design.

(i.e., corresponding bit in Block B) in the same cell [3]. Therefore, a
single step write to the hard bits will write all the bits of Block A, along
with substantial amount of bits in Block B. We only need to perform a
second-step write to flip a small amount of soft bits with different values
from the corresponding hard bits in the same cell. While conventional
DRAM-based memory requires to write each bit value, our design allows
us to eliminate the writes to a substantial portion of bits, significantly
reducing the latency and energy consumption of GPU memory access.

SparseCode: Sparsity-aware feature map encoding. SparseCode ex-
ploits the sparsity in feature maps yielded by ReLU functions to encode
the large amount of 0s. We observe that the number of 0s in feature maps
is significantly increased after applying ReLU functions. Furthermore,
the 0s tend to gather in contiguous memory areas. Based on these ob-
servations, we compress feature maps by adopting two data structures,
index and data (similar to previous studies [8, 21]), to store feature maps
in the memory. Data stores each non-zero values (32-bit floating points),
while index records the number of contiguous 0s between two non-zero
values. Figure 6(b) shows an example of SparseCode encoding. Each data
(black) is followed by an index (red) in the encoded format. The encoding
mechanism does not require extra metadata to identify across index
and data when reading the feature maps, because the every 32-bit data
is uniformly followed by an index (4 bits in our evaluation). Note that
weights can be compressed with the same encoding policy. However,
we do not observe substantial energy and performance improvement
by compressing weights, due to their low memory utilization in convo-
lutional layers. Therefore, our design only employ the SparseCode on
feature maps.

To increase the bit-level similarity in soft and hard bits the same cells,
we store neighbor indexes in soft and hard bits of one set of cells, while
storing neighbor data blocks in another set. In fact, the encoded data
can have substantial neighbor block value similarity. For example, the
indexes are 4-bit integers. The neighbor indexes are highly possible to
share substantial amount of the same bit-level values.

4 IMPLEMENTATION

4.1 Memory Bank Organization

Figure 7 (a) illustrates an MLC STT-RAM bank incorporated with the
components that implement our design mechanisms. We implement
two modifications to the memory banks. First, we add a mode controller
implemented by a set of switches to distinguish the fast soft bit access
mode with other modes that access both soft and hard bits. Second,
we adopt an optimized MLC STT-RAM peripheral circuit design [4] to
implement the two-step writes in our BitLevel mechanism. By adjusting
the biases on the word line and bit line, the circuit design allows a
writing current with different amplitudes and directions to be applied to
an MT]J. It is also possible to avoid writing a memory cell, if the original
soft and hard bit values of the cell are the same as the new values.
However, doing so can introduce extra read operations to compare the
original with the new values. Therefore, our design does not consider
such optimizations. The rest of the memory bank organization stays the
same as conventional MLC STT-RAM designs.
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4.2 Memory Controller Design

Our design requires the memory controller support to 1) perform phys-
ical address remapping, 2) generate control signals of various access
modes, 3) choose between Option 1 and Option 2 of feature map ac-
cess, and 4) encode/decode the data flow of feature maps accessed by
the SparseCode mechanism. Figure 7 (b) illustrates our modification to
memory controllers.

Address remapping and control logic. We add an address remapping
logic in the memory controller to calculate the new physical address
of data accesses, based on our address remapping scheme and software
hints of data categories (Section 4.3). The address remapping logic also
generates access mode control signals, which distinguish between access
to the soft bits only and those to both bits in memory cells. In addition,
we implement encoding and decoding logic used by SparseCode. The en-
coding logic inserts the indexes generated by encoding counters among
non-zero data values; the decoding logic inserts Os into the request
queue according to the indexes. Figure 8 shows the control flow of the
address remapping and control logic.

Remapping buffer. We adopt a buffer to store the remapped memory
requests (output to or input from the MLC STT-RAM). The size of
each buffer entry is the same as the request queue entry. The buffer
also stores encoded feature map data, when accessed by SparseCode
mechanism. We implement a 16-entry buffer, which is sufficient based
on our performance evaluation.

Sparsity register. We employ a 16-bit register to determine whether a
feature map is sufficiently sparse for adopting the SparseCode mecha-
nism. The register counts the number of non-zero values with a index
that is smaller than a predefined threshold. After investigating the first
65536 (216) accessed data values, we identify that a feature map is dense
if the register value is larger than certain threshold. In our evaluation,
most of the feature maps are identified as sparse when we set the thresh-
olds of index and register values to be eight and 32768, respectively.

Encoding counters. We add a 4-bit counter to count the number of 0s
between two non-zero values in the data flow sent to each memory bank.
Our SparseCode mechanism employs the counter results to generate
index values. Whenever reaching a non-zero value in the data flow, we
simply reset the counter. If there are more than 15 continuous 0s, the
counter not only should be reset but also change the following data
value to 0.

4.3 Software Support

Our design requires software hints on the categories of data being
accessed. We implement the hints as annotations added in in CNN
frameworks, such as Caffe [16] and TensorFlow [1]. For example, before
a convolutional layer outputs a feature map, we mark first data blob with
begin_feature(i, N) and define the size (the number of data blobs)
of the feature map. Based on such information, the address remapping
logic in the memory controller can calculate the address range of the
feature map.



Table 2: System configuration.

CPU Intel Xeon E5-2620 V3@2.4GHz
Main memory 16GB DDR4
Operating system Ubuntu 16.04.2
GPU NVIDIA GeForce GTX 1080 Ti (Pascal)
GPU cores 28 SMs, 128 CUDA cores per SM, 1.5GHz
L1 cache 24KB per SM
L2 cache 4096KB
Memory interface | 8 memory controllers, 352-bit bus width
GPU main memory 11GB GDDR5X

Table 3: Memory access parameters comparison.

MLC STT-RAM DRAM
Read energy (pJ/bit) 0.51 1.39

Soft Transition: 1.81 0.33

Hard Transition: 2.69
Read speed (ns/bit) 3.2 7.1
Write speed (ns/bit) Soft Transition: 9.3 7.1
Hard Transition: 19.2

Write energy (pJ/bit)

5 EVALUATION

5.1 Experimental Setup

VGG-19 and AlexNet. Our experiments evaluate VGG-19 [24] and
AlexNet [19], two of the latest winners of ILSVRC [14]. The applications
perform image classification and localization. The workloads are widely
used in recent studies on CNN training and image classification [18, 23].
Datasets. We employ ImageNet as our training datasets. It is a huge
image dataset which contains millions of images belong to thousands
of categories. Beginning at 2010, ILSVRC [14] has been held annually.
ILSVRC exploits a subset of ImageNet with 1.3 million training images,
50000 validation images, 150000 testing images in 1000 categories. Every
category has about 1300 of training images and 50 validation images.
Training framework. We adopt Caffe [16] as our training framework.
Caffe is a widely-used deep learning framework developed by Berkeley
Al Research.

Real machine configuration. Table 2 lists the details of our system
configuration.

5.2 Performance and Energy Modeling

Our evaluation adopts the MLC STT-RAM cell performance, energy, and
area parameters provided by prior MLC STT-RAM designs [2, 7]. We
scale the parameters to 32nm technology node the same way as previous
studies [4]. We employ NVSim [9] to calculate the required MLC STT-
RAM parameters as listed in Table 3. To evaluate the performance of
GPU systems with MLC STT-RAM, we developed an in-house script with
a performance model incorporated with MLC STT-RAM-based GPU
memory and memory controllers. We obtain memory access statistics
from real-machine profiling and feed the statistics into our performance
model to estimate the memory access performance of our proposed
design. To evaluate GPU processor power and energy, we employ the
power statistics obtained by NVIDIA profiler [20]. We calculate the
dynamic energy of MLC STT-RAM using our energy parameters listed
in Table 3 and our performance results.

5.3 Results

In the following result analysis, we compare among the following mem-

ory configurations:

e DRAM - traditional GDDR5X-based GPU memory.

e MLC STT-RAM - MLC STT-RAM-based GPU memory without our
data remapping, BitLevel, and SparseCode mechanisms.
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Figure 9: Energy consumption saving and performance improv-
ing comparing with DRAM for VGG-19.

e BitLevel - MLC STT-RAM-based GPU memory with our data remap-
ping and BitLevel mechanisms.
e BitLevel&SparseCode - MLC STT-RAM-based GPU memory with all

our proposed mechanisms.
Energy consumption. We only show the memory access energy con-

sumption reduction and performance improvement in the following
sections, because memory access is the main bottleneck for energy con-
sumption and performance (Figure 1), also our proposed modifications
to memory controller only introduces negligible overhead. We observe
that naively replacing main memory with MLC STT-RAM can hardly
improve energy efficiency and performance from Figure 9 10 Although
MLC STT-RAM can lead to lower read energy than DRAM-based mem-
ory, it significantly increases write energy because substantial amount
of writes need to be performed in two steps. For VGG-19, with our data
remapping scheme and BitLevel mechanism, we reduce 26% write en-
ergy compared with the naive replacement. Combining our SparseCode
mechanism with BitLevel can reduce memory dynamic energy consump-
tion by 45% compared to the baseline DRAM-based design, with further
energy savings in both reads and writes. For AlexNet, our design can
reduce memory dynamic energy consumption by 40% compared to the
baseline (Figure 10). We also perform a sensitivity study on the size of
data blocks in BitLevel mechanism, ranging from a single 32-bit floating
point value to 128-bit floating point values. As shown in Figure 9(a), the
increase of the data block size will further reduce the memory energy
consumption.

Memory access performance. We evaluate the memory access perfor-
mance of our design by taking into account the latency of both memory
access. Again, figure 9(b) shows that naive memory replacement with
MLC STT-RAM only introduce 11% speedup on average write latency
of VGG-19 memory access. Yet, the direct replacement can improve
read performance by 1.4, despite the 47% write performance degra-
dation. Our data remapping with BitLevel mechanism improves both
read and write performance, leading to 30% improvement of overall
memory access speedup. Combining SparseCode can further improve
access performance. Overall, our design results in 76% and 70% speedup
of memory access for VGG-19 and AlexNet, respectively.

In-memory data characteristics. Figure 11 shows the bit-level neigh-
bor data similarity for VGG-19. Overall, the average similarity across
all layers can reach up to 67.3%. As shown in Figure 4, between two
maxpooling layers, convolutional layers and ReLU layers have almost
same memory capacity utilization. Therefore, the number of write oper-
ations in order to store the feature maps can also be similar. Figure 12
illustrates the compression ratio of each ReLU layer with the SparseC-
ode mechanism for VGG-19. Across all layers, the mechanism can up to
26.9% compression ratio with 128-bit value (data block) size. This leads
to substantial reduction in memory accesses and capacity consumption.
AlexNet also has the same trend in bit-level similarity and ReLU layer
compression ratio, so we do not show them in this section.

Memory capacity utilization. In Figure 12, we present the compres-
sion ratio with three different bit-width: 32-bit, 64-bit and 128-bit, which
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Figure 12: Compression ratio of each ReLU layer for VGG-19.

can accommodate various requirements for precisions of different net-
works. When the bit-width is increasing, the compression efficiency will
also be improved, because SparseCode uses a 4-bit index to represent
data with longer bit length. With our proposed SparseCode mechanism,
the total system’s feature map compression ratio of VGG-19 and AlexNet
can reach to 26.9% and 26% with 128-bit length, respectively. What is
more, due to the unique cell architecture of MLC STT-RAM, with same
quantity of memory cells, the memory capacity of MLC STT-RAM main
memory will be doubled than traditional DRAM main memory.
Memory bandwidth. Figure 1(b) shows that memory read bandwidth
is higher than memory write bandwidth, so in this section we will ana-
lyze read and write bandwidth respectively. With our proposed scheme,
for VGG-19, memory read bandwidth can be reduced to 33% of DRAM
based main memory bandwidth. However, due to the poor write perfor-
mance of MLC STT-RAM, memory write bandwidth increases by 14%
comparing with DRAM based main memory bandwidth. Considering
CNN s are memory read intensive applications (Figure 1(b)), total mem-
ory bandwidth of VGG-19 and AlexNet will be still lower than DRAM
based main memory bandwidth with 45%, 40%, respectively.

Memory area efficiency. We use NVSim [9] to obtain MLC STT-RAM
area model and area efficiency. With the same size of 2GB, DRAM costs
area of 419 mm? and MLC STT-RAM only costs 372 mm?. Also, the area
efficiency of MLC STT-RAM is 37.8%, is higher than DRAM’s 25.2%.

6 RELATED WORK

A large body of previous works endeavor to reduce memory intensity
and energy consumption of neural networks. Network pruning [11, 12]
aims to reduce the memory consumption through pruning small valued
weight connections in neural networks. Other redundancy alleviating
methods exploit reduced precision [17] to reduce the number of bits
required by corresponding neural networks. In addition, recent works
proposed a variety of CNN inference accelerators [5, 6, 21, 22]. These

designs improve the energy efficiency and performance of neural net-
works. However, none of these studies focuses on the memory issues
of CNN training. Moreover, most of previous works focus on improv-
ing the efficiency of storing the weights in neural networks. However,
in training phase, most of the memory space is used by storing fea-
ture maps. Most previous works do not explore the impact of feature
maps on performance and energy of CNNs. Finally, prior design with
reduced precision policies can result in the decrease of CNN accuracy.
Our design does not sacrifice precision, when improving memory access
performance and energy efficiency.

Rhu et al. demonstrated that the increase of memory demand of neural
network training phase can outpace the development of commodity
GPU systems. Their study proposed a runtime memory manager to
virtualize the memory usage of DNNs and schedule CPU memory and
GPU memory simultaneously [23]. This study reduces the average GPU
memory usage, by trading off performance, energy consumption and
memory bandwidth. However, our design simultaneously improves
memory energy, performance, and capacity utilization.

7 CONCLUSION

GPU memory capacity, bandwidth, and energy consumption are be-
coming critical system bottlenecks with increasingly larger-scale CNN
trainings. In this paper, we propose an energy-efficient GPU memory
management scheme that leverages the access asymmetry of soft and
hard bits in MLC STT-RAM technology and the characteristics of image
classification training workloads. The evaluation results shows that our
proposed scheme can improve the performance of VGG-19 and AlexNet
training by 76% and 70%, respectively. Meanwhile, 45% and 40% GPU
memory access energy and 26.9% and 26% capacity utilization of VGG-19
and AlexNet have been reduced, respectively.
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