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Abstract

As matter accretes onto the central supermassive black holes in active galactic nuclei (AGNs), X-rays are emitted.
We present a population synthesis model that accounts for the summed X-ray emission from growing black holes;
modulo the efficiency of converting mass to X-rays, this is effectively a record of the accreted mass. We need this
population synthesis model to reproduce observed constraints from X-ray surveys: the X-ray number counts, the
observed fraction of Compton-thick AGNs [log (NH/cm

−2)>24], and the spectrum of the cosmic X-ray
background (CXB), after accounting for selection biases. Over the past decade, X-ray surveys by XMM-Newton,
Chandra, NuSTAR, and Swift-BAT have provided greatly improved observational constraints. We find that no
existing X-ray luminosity function (XLF) consistently reproduces all these observations. We take the uncertainty in
AGN spectra into account and use a neural network to compute an XLF that fits all observed constraints, including
observed Compton-thick number counts and fractions. This new population synthesis model suggests that,
intrinsically, 50%±9% (56%± 7%) of all AGNs within z;0.1 (1.0) are Compton-thick.

Key words: galaxies: active – Galaxy: center – Galaxy: evolution – methods: data analysis – quasars: supermassive
black holes – X-rays: diffuse background

1. Introduction

Supermassive black holes (SMBHs) are found at the cores of
most galaxies, and their masses correlate closely with the host
bulge mass, velocity dispersion, and luminosity (Magorrian et al.
1998; Richstone et al. 1998; Gebhardt et al. 2000; Kormendy &
Gebhardt 2001; Merritt & Ferrarese 2001; Ferrarese & Ford 2005;
Kormendy & Ho 2013). This suggests that SMBHs may regulate
star formation rates, e.g., through molecular and ionized wind
mass outflows (Ferrarese & Merritt 2000; Gebhardt et al. 2000; Di
Matteo et al. 2005; Merloni et al. 2010; Fiore et al. 2017; Martín-
Navarro et al. 2018). If so, the accretion history of SMBHs has
important implications for the evolution of galaxies.

The growth of SMBHs over cosmic time can be traced
through the light emitted during rapid growth phases, when the
galaxy appears as an active galactic nucleus (AGN). A
population synthesis model describes the number density of
AGNs as a function of their luminosity and redshift (X-ray
luminosity function (XLF)); together with the spectral energy
distributions, this model describes all the radiation produced by
SMBH growth throughout the universe.

High-energy X-rays are a prime tracer of AGNs because they
are produced close to the black hole and they can penetrate all but
the thickest columns of absorbing material (Brandt & Hasinger
2005; Cardamone et al. 2008; Donley et al. 2012; Mendez et al.
2013; Kirkpatrick et al. 2015; Del Moro et al. 2016). Additionally,
X-ray surveys detect mostly active galaxies rather than inactive
galaxies. Therefore, X-rays have the advantage of both sensitivity

to obscured AGNs and efficiency of detecting AGNs. Hard X-ray
bands are especially important for heavily obscured Compton-
thick objects (with column densities NH>1024 cm−2), as well as
obscured Compton-thin sources (NH=1022–1024 cm−2). Indeed,
the number density of heavily obscured objects was one of the
most uncertain parts of early population synthesis models because
the first X-ray surveys were fairly soft (Maccacaro et al. 1991;
Boyle et al. 1993; Comastri et al. 1995; Jones et al. 1997; Page
et al. 1997; Miyaji et al. 2000; Gilli et al. 2001). As higher-energy
X-ray data (>3 keV) became available (Boyle & Terlevich 1998;
Cowie et al. 2003; Ueda et al. 2003, 2014; Gilli et al. 2007;
Treister et al. 2009; Aird et al. 2015; Buchner et al. 2015), more
obscured AGNs were included.
At this point, there exists a large ensemble of broadband X-ray

surveys with different combinations of depth and volume,
collectively spanning an extensive range in luminosity and redshift
(which in any one flux-limited survey are strongly correlated). In
particular, the Chandra X-Ray Observatory (Weisskopf et al.
2002) has contributed the Chandra Deep Field South (CDFS) 7Ms
catalog (Luo et al. 2017), which reaches the faintest fluxes at
E<10 keV; extended CDFS (Lehmer et al. 2012; Xue et al.
2012; Luo et al. 2017); COSMOS (Elvis et al. 2009); ChaMP
(Kim et al. 2007); and Stripe 82X (LaMassa et al. 2013a,
2013b, 2016; Ananna et al. 2017). The XMM-Newton observatory
has a slightly harder response function than Chandra and has also
carried out both deep and wide surveys, including XMM-CDFS
(Ranalli et al. 2013), XMM-COSMOS (Cappelluti et al. 2007),
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2XMMi (Mateos et al. 2008), Stripe82X (LaMassa et al.
2013a, 2016), and XMM-XXL (Pierre et al. 2016).

At still higher X-ray energies, both the Neil Gehrels Swift
Observatory Burst Alert Telescope (BAT; 14–195 keV;
Gehrels et al. 2004; Barthelmy et al. 2005) and NuSTAR
(3–79 keV; Harrison et al. 2013) have contributed the most
unbiased surveys to date. Swift-BAT and NuSTAR are
particularly sensitive to heavily obscured AGNs, as higher-
energy X-ray photons are less susceptible to absorption. Swift-
BAT is a nonfocusing X-ray observatory that images the sky in
five bands between 14 and 195 keV (Barthelmy et al. 2005).
NuSTAR observes in a lower-energy band (3–79 keV) and is
the first orbiting telescope that focuses X-ray light above
10 keV, increasing its sensitivity by two orders of magnitude.

In this work, we show that existing XLFs cannot explain the
X-ray data observed in all these new surveys. We explore the
uncertainty in AGN X-ray spectra and, using a neural network,
find an XLF that satisfies all observed constraints. Those
constraints include the integrated spectrum of the cosmic X-ray
background (CXB), the overall X-ray number counts (i.e., the
number of AGNs observed per unit area of the sky as a function
of flux), and the Compton-thick AGN number counts and
fraction in each survey.

Our new population synthesis model is presented as follows:
The X-ray spectra of AGNs are discussed in Section 2. The
most recent XLFs are described in Section 3. The observational
constraints from X-ray surveys are discussed in Section 4. Our
approach of formulating a new population synthesis model is
described in Section 5. Our results are presented in Section 6.
The conclusions and summary of this work are presented in
Sections 7 and 8, respectively.

2. AGN X-Ray Spectra

In this work, we focus on the light emitted in X-ray bands as
SMBHs grow. Understanding AGN X-ray spectra is necessary to

interpret observed X-ray samples and to constrain the population
synthesis model. Figure 1 shows the X-ray spectra of a moderately
obscured AGN at three different redshifts while keeping all other
spectral parameters constant. It also shows energy windows of
Chandra and XMM-Newton (<10 keV), NuSTAR (8–24 keV),
and Swift-BAT (14–195 keV) X-ray instruments.
The AGN X-ray spectrum affects the conversion between

number counts and flux, as well as the sensitive area of each
survey. The origin of the X-ray spectra (shown in Figures 2–4)
is the hot corona around the accretion disk, and the shape of the
spectrum is a power law, with a photon index in the range
Γ;1.4–2.1 (Nandra & Pounds 1994; Ueda et al. 2014; Ricci
et al. 2017) and an exponential cutoff energy, i.e., F
(E)∝E E Eexp cutoff--G ( ). This emission is reflected by the
accretion disk, which is <1 pc from the central SMBH
(Nenkova et al. 2002; Jiménez-Vicente et al. 2014), and
reprocessed by a torus-like distribution of obscuring material
;10–100 pc from the AGN (Nenkova et al. 2002). The torus
absorbs optical, ultraviolet, and X-ray photons and reemits it in
infrared. The unabsorbed continuum can be scattered by gas
outside the torus region. The Fe Kα emission line at around
6.4 keV is prominent in AGN spectra and is thought to have
originated either in the outer regions of the accretion disk or in
the inner region of the torus (Nandra 2006).
Each of these components has to be modeled in order to

calculate observable quantities, such as CXB. For this work,
each component was modeled using XSPEC (Arnaud 1996).
The Compton reflection from the accretion disk is modeled
using the PEXRAV (Magdziarz & Zdziarski 1995) or PEXMON
(Nandra et al. 2007) model, where the latter updates the former
with self-consistent Fe Kα emission lines relative to the power
law. Torus models such as BNTORUS (Brightman & Nandra
2011) self-consistently account for transmitted power law,
reflection, and fluorescence lines from metals. The Thomson-
scattered component, from ionized material within the torus

Figure 1. Observed-frame spectra with intrinsic L2−10=1044 erg s−1, log (NH/cm
−2)=23 at z=0.002 (solid lines) and z=1 (dashed lines) in the top panel and

z=3 (dotted lines) in the bottom panel. The plot shows the unabsorbed component scattered by gas outside the torus region (dark-gray lines), the reflection
component (light-blue lines) from the accretion disk, transmitted emission (purple lines) from the torus, the total AGN spectra (light-green lines), and the window of
observation in typical energy bands. Chandra observes in the 0.5–8 keV band, and XMM-Newton observes in the 0.5–10 keV band, Swift-BAT in the 14−195 keV
band, and NuSTAR in the 3–79 keV band at this redshift. At z=1.0, the observed flux is six orders of magnitude lower than in the local universe owing to distance,
while redshifting allows the instruments to probe higher rest-frame energy bands. The Chandra and XMM hard bands and, to a larger extent, NuSTAR play a vital role
in quantifying the strength of the reflection component.
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opening angle, has the same shape as the power law and some
fraction ( fscatt) of its magnitude. This component dominates at
E<2 keV, as shown in Figure 1.

Buchner et al. (2015) show that the sum of torus, PEXMON,
and scattering is currently the best prescription to model AGN
spectra. A second-order effect that could slightly modify the
spectra is a Compton scattering of the PEXMON component,
which itself is a neutral Compton reflection from the accretion
disk, by the compact torus. A multiplicative XSPEC model that
downscatters photons for a Compton-thick obscurer is not
currently available. However, this effect is likely to be marginal
compared to the uncertainty due to the range of reflection
scaling factors used in the literature.

Figure 2 demonstrates the effects of obscuration on AGN
spectra by varying levels of equivalent hydrogen atom column
density (NH/cm

−2). We can see that at E<10 keV, a Compton-
thin obscuring column density of log (NH/cm

−2)=23 can
significantly decrease the observed fluxes, especially in the soft
band where the total E2 F(E) drops by almost two orders of
magnitude. For this reason, heavily obscured Compton-thin and
Compton-thick objects are difficult to observe in the local
universe using E<10 keV bands, and the higher-energy bands
from NuSTAR and Swift-BAT are required at z<1. At higher
redshifts, the spectrum gets shifted to lower-energy bands (as
shown in Figure 1) and can be detected at observed frame
E<10 keV.

The contribution to the CXB by objects in each NH bin
distinctly shapes the overall CXB spectrum because of the way
obscuration affects AGN spectra, as shown in Figure 2. Even
with a high reflection scaling factor of R=0.83, the
unabsorbed spectrum is relatively flat. If the CXB were
dominated by unabsorbed objects with log (NH/cm

−2)<22, it
should have a shape similar to an unabsorbed AGN spectra.
Similarly, a Compton-thin-dominated CXB should be low at
<2 keV but rise and become approximately flat until
60–70 keV, depending on the cutoff energy of the intrinsic

power law. A substantial contribution from Compton-thick
objects will produce the characteristic peak (Compton hump) at
20–30 keV that we observe in the CXB, similar to the spectrum
of a Compton-thick object.
Figures 3 and 4 provide some insight into how the spectrum

varies owing to variation in photon index and reflection scaling
factor, which in turn helps us understand how this affects the
CXB. These figures show the reflected and the transmitted
components of the AGN spectra (the scattered component does
not vary greatly, so it is removed from the figures for clarity)
and the sum of all components. Figure 3 shows that higher Γ
causes steeper decline at E>10 keV. Figure 4 shows how the
reflection component changes with reflection scaling factor R,

Figure 2. Variation in X-ray spectra with absorbing column density
log (NH/cm

−2), where column density varies from log (NH/cm
−2)=21 (solid

lines) to log (NH/cm
−2)=23 (dashed lines) to log (NH/cm

−2)=25 (dotted
lines). The components are reflection (blue lines) from the accretion disk,
reprocessed emission (purple lines) from the torus, and the sum of all
components (green lines). The scattered component is not shown for clarity.
Spectral parameters other than absorption are fixed at Γ=1.96, R=0.83 for
unabsorbed and R=0.37 for absorbed sources, EC=200 keV, and
fscatt=1%.

Figure 3. Variation in X-ray spectra with photon index Γ, where Γ is varied
from 1.72 (solid lines) to 1.84 (dashed lines) to 1.96 (dotted lines). The
components are reflection (blue lines) from the accretion disk, reprocessed
emission (purple lines) from the torus, and the sum of all components (green
lines). The scattered component is not shown for clarity. Spectral parameters
other than Γ are fixed at a constant scattering fraction ( fscatt=1%), cutoff
energy (EC=200 keV), absorbing column density (log (NH/cm

−2)=23), and
reflection scaling factor (R=0.83).

Figure 4. Variation in X-ray spectra with reflection scaling factor R, where R is
varied from 0.37 (solid lines), 0.83 (dashed lines), to 2 (dotted lines). The
components are reflection (blue lines) from the accretion disk, reprocessed
emission (purple lines) from the torus, and the sum of all components (green
lines). The scattered component is not shown for clarity. Spectral parameters
other than reflection scaling factor are fixed at Γ=1.96, cutoff energy
EC=200 keV, log (NH/cm

−2)=23, and fscatt=1%.
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with a more prominent bump for stronger reflection. Thus, a
high R value, rather than a large number of obscured sources,
can also cause the prominent bump; however, spectral fitting of
Swift-BAT and NuSTAR sources shows that R generally lies
below 1 (Ricci et al. 2017; Zappacosta et al. 2018).

2.1. Observed AGN Spectra

Ricci et al. (2017) presented a detailed X-ray spectral
analysis of AGNs of the local universe. This analysis was
carried out using Swift-XRT (Burrows et al. 2005; Moretti et al.
2009), XMM-Newton, and Chandra data for E<10 keV and
Swift-BAT data in 14–150 keV for 836 sources in the local
universe (85% of the sources are at z<0.1). The wide
wavelength coverage, large sample size, and relatively
unbiased data make the parameter distribution from this sample
a robust empirical measure of X-ray spectral parameters. Ricci
et al. (2017) report that a Kolmogorov–Smirnov (K-S) test
between the distributions of photon indices of unobscured and
obscured sources shows that the two distributions are
significantly different. Fitting a Gaussian to the photon indices
of unobscured AGNs yields áGñ;1.8 and σΓ=0.24, higher
than those of obscured AGNs: áGñ;1.72 and σΓ=0.31.
Tueller et al. (2008), Burlon et al. (2011), Ueda et al. (2014),
and Zdziarski et al. (2000) also find a higher photon index for
unobscured sources compared to obscured sources.

Ricci et al. (2017) report that the reflection scaling factor R
varies significantly based on obscuration: Rmedian=0.83±0.14
for unobscured sources and Rmedian=0.37±0.11 for obscured
sources. We performed a K-S test on the cutoff energy parameter
of the AGN power law for obscured and unobscured objects but
did not find a statistically significant difference between the two
distributions (p-value=0.42). The cutoff energy was well
constrained for 161 sources. The median cutoff energy found
by Swift-BAT for these 161 objects is 76 keV, and most of these
energies are below 100 keV. The overall distributions of these
three parameters are shown in Figure 5.

Swift-BAT covers the widest wave band, but the BAT sample
is at low redshifts: 85% of the sample is below z=0.1. Spectral
fitting is also susceptible to biases: Ricci et al. (2017) report that
cutoff energies in the Swift-BAT 70-month survey data can only
be constrained for sources where this value lies below 100 keV,
and reflection parameters are easier to constrain when this value is
large. Even though the median of all observed cutoff energy

values is 76 keV, a Kaplan−Meier estimator on these energy
values, including all the lower limits, yields a median value of
200±29 keV. Additionally, spectral parameters may be coupled.
Zdziarski et al. (1999) and Petrucci et al. (2001) report a
correlation between reflection parameter and photon index,
whereas Matt (2001) report a positive correlation between photon
index and cutoff energies. These correlations may occur as a result
of the intrinsic nature of the spectra, or the fact that they are
strongly related in the fitting procedure. Similarly, the difference
of observed parameters between obscured and unobscured sources
might be intrinsic but can also arise owing to imperfections in the
modeling of the obscurer (Baloković et al. 2018).
Ueda et al. (2014) fit 14–195 keV spectra of Swift-BAT

9-month catalog sources with a power-law model, with fixed
reflection parameter (R=0.5) and cutoff energy (300 keV),
and derived photon indices of áGñ=1.84 for obscured sources
and áGñ=1.94 for unobscured sources. Nandra & Pounds
(1994) reported Γ=1.9−2.0, assuming power-law spectra
without a cutoff energy. Ricci et al. (2017) also find a áGñ value
consistent with these results by fitting 14−195 keV data with a
simple power-law model ( BATáG ñ=1.96), even though the áGñ
for overall broadband spectral fitting is lower (i.e., áGñ=1.72
for obscured sources and áGñ=1.80 for unobscured sources).
The predicted CXB and number counts from any XLF vary

depending on the assumed spectra. The consequence of spectral
parameter uncertainties on observed constraints is explored
further in Sections 5 and 6.

2.2. Modeled AGN Spectra in Existing Population Synthesis
Models

Here we describe the AGN spectra of the three population
synthesis models examined in this paper. The main spectral
parameters are summarized in Table 1. The XLFs of these
models are discussed in more detail in Section 3. Ueda et al.
(2014, hereafter U14) assume constant Γ;1.84 and 1.94 for
obscured and unobscured sources, respectively, a reflection
scaling factor of R=0.5, based on the averaged reflection
strength of local Seyfert galaxies, modeled using PEXRAV. For
the torus component, U14 uses BNTORUS, where the opening
angle of the torus is related to the fraction of absorbed AGNs.
The scattering component is dependent on the torus opening
angle∝(1–cos OAq ). The cutoff energies of these spectra are
assumed to be 300 keV.

Figure 5. AGN power-law spectral photon index (left), reflection scaling factor (middle), and cutoff energy (right) distributions for the Swift-BAT 70-month sample
(Ricci et al. 2017). In the left and middle panels, the unabsorbed and absorbed population Γ distributions are plotted in two distinct histograms, log (NH/cm

−2)<22
(light green) and log (NH/cm

−2)>22 (orange). Most of the reflection scaling factor values are upper limits, whereas most of the cutoff energy values are lower limits.
Ueda et al. (2014) parameter values are indicated by black solid and dashed vertical lines in the left and middle panels. In the right panel, the U14 cutoff energy,
EC=300 keV, is shown with the dotted line, and the Swift-BAT 70-month observed median (EC=76 keV) and bias-corrected median (EC=200 keV) are shown
with solid and dashed lines, respectively.
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The same three spectral components are used in the Aird et al.
(2015, hereafter A15) AGN template spectra as well. The photon
index is modeled by a normal distribution with áGñ=1.9 and
σΓ=0.2. The reflection scaling factor is drawn from a uniform
distribution between 0 and 2.0, and the scattering fraction is of the
order of 1%, drawn from a lognormal distribution. The cutoff
energy is assumed to be 300 keV as well.

Buchner et al. (2014) presented a Bayesian analysis of
spectra of ;350 AGNs from the 4Ms CDFS. The most
probable model is similar to the U14 model, in that it also has
scattering, reflection, and torus components. A power law is
assumed as the intrinsic spectrum, but without any cutoff
energies. The reflected component is modeled with PEXMON
instead of PEXRAV (which was used by U14), and the transmitted
component was modeled using BNTORUS. Buchner et al. (2015,
hereafter B15) use this spectrum in their population synthesis
model. The scattering component is independent of opening
angle and is allowed to vary uniformly between 0.0001 and 0.1 in
log space. The photon index can vary within a Gaussian
distribution with 1.95áGñ = and σΓ=0.15, and the reflection
scaling factor R is drawn from a log uniform distribution in the
range of 0.1–2.

We compared the distributions used in previous population
synthesis models with the parameters observed in Swift-BAT
70-month survey spectra. Figure 5 shows the observed
distribution plotted against suggested values for U14 spectra
(A15 and B15 uses a distribution for these parameters with áGñ
close to the dotted line). The Γ is slightly higher than observed
values for all the models, but the most noticeable difference is
the cutoff energy, which is much higher for the models. Note
that if observational biases are taken into account, the cutoff
energy is estimated to be higher (200 keV; Ricci et al. 2017).

3. A Brief Review of XLFs

Early XLFs were based on soft X-ray bands (Maccacaro
et al. 1991; Boyle et al. 1993; Jones et al. 1997; Page et al.
1997; Miyaji et al. 2000). One of the first hard XLFs, Ueda
et al. (2003), introduced an “absorption function” as part of the
XLF, which takes into account what fraction of objects at each
luminosity and redshift falls in each NH bin. This addition
meant that the spectrum of an AGN can be corrected in the rest
frame for absorption effects. This is important in hard XLFs,
which include more absorbed AGNs. The population synthesis
model of Ueda et al. (2003) defined the following three
components: (i) an AGN template spectrum, the shape and
normalization of which vary with NH and intrinsic rest-frame
luminosity (L2−10), respectively, as described in Section 2;
(ii) a distribution of how space density varies with L2−10 and z;

and (iii) an absorption function of how this space density is
distributed in NH bins. The second component, the space
density per comoving Mpc3, follows a double power-law
relationship as a function of luminosity (as shown in
Equation(11) in Ueda et al. 2003 and Equation(14) in Ueda
et al. 2014). The second and third components of population
synthesis models can be dependent on each other, so the most
general XLFs give space densities based on all three parameters
(z, L2−10, NH).
Most recent population synthesis models provide the same

three components (spectrum, XLF, and NH distribution),
although the form of the function is sometimes different (Aird
et al. 2010, 2015), or the AGN spectrum has different
components or a different distribution of spectral parameters.
We discuss three of the most recent XLFs in this section, which
were formulated using the most recent surveys with the most
representative samples of AGNs. We consider these three
models when fitting all the latest observed constraints.

3.1. Ueda et al. (2014)

U14 used a maximum likelihood method to fit a double
power-law luminosity function for the local universe and a
redshift evolution function, which together follow a complex
luminosity-dependent density evolution (LDDE) relationship.
The AGN samples used to derive the XLF are selected in
0.5–195 keV in X-ray bands and have high identification
completeness (�90%).
Even though all available samples are used to formulate the

XLF, to construct a robust absorption function, U14 only uses
samples with the highest photon counts: the Swift-BAT
9-month survey (Tueller et al. 2008), ASCA Medium
Sensitivity Survey (AMSS; Ueda et al. 2001; Akiyama et al.
2003), and Subaru/XMM-Newton Deep Survey (SXDS; Ueda
et al. 2008) data. Swift-BAT data were used to quantify the
local absorption function, and AMSS and SXDS data were
used to formulate the redshift/luminosity evolution. XMM-
Newton and Chandra sources were not used to constrain the
absorption function because the faint flux limits result in too
few photons to construct a reliable X-ray spectrum. U14
constrains the absorption function separately from the XLF to
avoid strong parameter coupling.

3.2. Buchner et al. (2015)

B15 used a nonparametric approach on ;2000 AGNs
selected in the 2−7 keV band to derive an XLF that does not
impose any form on the luminosity function. The final product
of this approach are 3D matrices of space densities in z, L2−10,
and log (NH/cm

−2) bins. A thousand equally likely Markov

Table 1
Summary of X-Ray Spectral Parameters in Recent Population Synthesis Models and Observations

Model/Observation Photon Index áGñ Refl. Scaling Factor (R) Ecutoff (keV) fscatt

Ricci et al. (2017)a 1.72 (obscur), 1.8 (unobsc) 0.37 (obscur), 0.83 (unobsc) 76b ;1%
Ueda et al. (2014)c 1.84 (obsc), 1.94 (unobsc) 0.5 300 ;1%
Aird et al. (2015)c 1.9 0–2. (uniform) 300 ;1%
Buchner et al. (2015)c 1.95 0.1–2. (log uniform) No cutoff ;1%

Notes.
a Observed parameters determined by detailed X-ray spectral fittings to Swift-BAT 70-month survey sources.
b The cutoff energies measured in Swift-BAT can only be adequately constrained when the value is lower than 100 keV.
c Parameter values assumed to model X-ray spectra for each respective X-ray luminosity function.
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chain Monte Carlo (MCMC) samples/matrices are generated
based on the uncertainties imposed by the data. The Bayesian
prior in this approach are two types of smoothness assumptions
about how space densities vary from one bin to another:
(i) constant value prior and (ii) constant slope prior. The
constant value prior requires that the space density from one
bin to the next stays constant unless constraints are imposed by
the data. The value of a bin scatters around its neighbor’s
density value following a normal distribution with an allowed
correlation width for luminosity and redshift axes. The constant
slope prior is only applied to L2−10 and log (NH/cm

−2) and
requires that the space density follows a constant power-law
slope from one bin to the next unless constraints are imposed
by the data. The slope scatters around the neighbor’s slope
following a normal distribution. Each of the two assumptions
provides 500 samples, resulting in a total of 1000.

3.3. Aird et al. (2015)

The A15 XLF was formulated using a parametric Bayesian
approach. A15 derived XLFs for 0.5–2 keV and 2–7 keV X-ray
samples separately and then incorporated absorption effects
and modeled the unobscured and obscured samples separately.
Consequently, there are two components of the A15 XLF, with
different sets of parameters, one for absorbed and one for
unabsorbed AGNs. Unlike U14 and B15, A15 does not
calculate NH for individual sources. However, their approach
statistically predicts an NH distribution by global comparisons
between the soft- and hard-band samples. A15 account for
contribution from star-forming galaxies to the CXB by
formulating a galaxy luminosity function. This contribution
should not be ignored when synthesizing the CXB using
AGN XLFs.

We briefly summarize these XLFs again when we discuss
our approach in this work in Section 5.

4. The Observed Constraints

In Table 2, we list all the observed constraints considered in
this work, and we explain each of these constraints in this
section. Along with the CXB, we consider AGN number
counts and observed Compton-thick fractions. The AGN
number counts, i.e., the number of AGNs observed per square
degree of the sky at a given flux limit in an X-ray band, should
be reproduced by a complete population synthesis model, for
surveys of all depths, volumes, and energy ranges.

Every X-ray survey probes some region of LX, z, and NH space.
Typically, large-volume X-ray surveys, such as Stripe82X
(LaMassa et al. 2013a, 2013b, 2016; Ananna et al. 2017) and
XMM-XXL (Pierre et al. 2016), sample more rare, luminous
quasars, whereas deep pencil-beam surveys, such as CDFS
(Giacconi et al. 2002; Lehmer et al. 2012; Luo et al. 2017), are
sensitive down to very low fluxes but are limited to finding low-
to moderate-luminosity AGNs. The CDFS 7Ms (Luo et al. 2017)
catalog is the deepest of X-ray surveys, covering a total area of
484.2 arcmin2, with 1008 sources detected in the 0.5–7 keV
energy range. It has been previously shown that existing
luminosity functions reasonably reproduce number counts down
to 10−15 erg cm−2 s−1 in this energy range (Ballantyne et al.
2011). The deeper CDFS 7Ms catalog allows comparison to even
fainter fluxes, and our new results are presented in Section 6.

We also include number counts in the 0.5–2 keV and 2–10 keV
bands from 2XMMi (Mateos et al. 2008), XMM-COSMOS

(Cappelluti et al. 2007), Chandra COSMOS (Elvis et al. 2009),
XMM-CDFS (Ranalli et al. 2013), and Stripe82X (LaMassa et al.
2013a, 2013b, 2016; Ananna et al. 2017) and 0.5–2 keV and
2–8 keV number counts from Extended Chandra Deep Field
Survey (E-CDFS; Lehmer et al. 2005) and Chandra Multi-
wavelength Project (ChaMP; Kim et al. 2007). 2XMMi is an
XMM-Newton Serendipitous Survey covering 132.3deg2 and
contains more than 30,000 objects down to flux limits of
10−15 erg cm−2 s−1 in the 0.5–2 keV bin and 10−14 erg cm−2 s−1

above 2 keV. XMM-COSMOS is a 2.13deg2 survey with a total
exposure time of ∼1.5Ms, reaching similar flux levels to 2XMMi
homogeneously for 90% of the total area. Chandra COSMOS
covers a smaller area in the COSMOS-Legacy field (0.9 deg2), but
with twice the effective exposure time as XMM-COSMOS, and
reaches nearly 10−16 erg cm−2 s−1 flux levels in both soft and
hard bands. ChaMP covers a ∼10 deg2 area, with the deepest
0.5–8 keV levels reaching 9×10−16 erg cm−2 s−1, and has a
range of exposure times of 0.9–124 Ks. For ease of comparison,
we convert all the hard-band Chandra and XMM surveys to the
2–7 keV band. To convert the harder-band fluxes (2–10 keV and
2–8 keV) to 2–7 keV, we use the photon indices adopted by each
survey: Γ=1.6 for 2XMMi; Γ=1.7 for XMM-CDFS, XMM-
COSMOS, Stripe82X; and Γ=1.4 for E-CDFS, Chandra
COSMOS, and ChaMP.
Heavily obscured Compton-thick sources are one of the

biggest remaining uncertainties in population synthesis models.
Lanzuisi et al. (2018) provide a careful analysis of Chandra
COSMOS-Legacy survey spectra to produce Compton-thick
number counts in the 0.04<z<3.5 range. We compare these
Compton-thick number counts with existing models in
Section 6.
At E>10 keV bands, the Swift-BAT 70-month catalog

provides a hard-X-ray-selected sample in the nearby universe
(z<0.1), and NuSTAR Extragalactic Surveys provide an
equivalent sample up to z ∼1 (Aird et al. 2015; Harrison
et al. 2016; Lansbury et al. 2017). We calculate overall number
counts of the Swift-BAT 70-month catalog presented in Ricci
et al. (2017), in the 14–195 keV band. We compare the Swift-
BAT overall counts, as well as NuSTAR Extragalactic Survey
overall number counts from Harrison et al. (2016), with
existing models. The NuSTAR Extragalactic Surveys are a
wedding cake survey, and we look at three tiers in this work:
UKIDSS Ultra Deep Survey (UDS; Masini et al. 2018),
COSMOS (Civano et al. 2015), and Serendipitous Survey
(Alexander et al. 2013; Lansbury et al. 2017). The details of
each of these surveys are given in Table 2. Masini et al. (2018)
find an observed Compton-thick fraction in the UDS field—
11.5%±2.0%. Civano et al. (2015) calculate the Compton-
thick fraction using two objects (out of 91) from the NuSTAR
COSMOS field. The observed fraction of Compton-thick
objects found in this work is between 13% and 20%.
Lansbury et al. (2017) calculated NuSTAR band ratios from

the Serendipitous Survey to select eight (out of 497) heavily
obscured objects with the hardest X-ray spectra. They present
an analysis of the soft and hard X-ray properties of these
sources (the soft bands provided by Chandra, Swift-XRT, or
XMM-Newton), as well as multiwavelength properties. Of these
Compton-thick objects (in this case, NH>1.5×1024 cm−2),
three are at low redshifts (z;0.036, 0.034, 0.069) and one
Compton-thick AGN is at a relatively higher redshift (z ∼0.16).
Using these four objects, Lansbury et al. (2017) calculated
Compton-thick number counts with a low-redshift bias, an
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Table 2
Observed Constraints on AGN Population in X-Ray Band

Constraint Survey Band (keV) Area (deg2) Depth (erg cm−2 s−1) Number of Sources References

Integrated X-ray background Swift-BAT 14–195 All sky Ajello et al. (2008)
Chandra COSMOS 0.3–7 2.15 Cappelluti et al. (2017)
RXTE 3–20 22600 Revnivtsev et al. (2003)
ASCA SIS 2–10 0.14 Gendreau et al. (1995)

Number counts NuSTAR extragal. overall number counts: 8–24 124 Harrison et al. (2016)
(1) NuSTAR COSMOS 8–24 1.7 1.3×10−13 91 Civano et al. (2015)
(2) NuSTAR E-CDFS 8–24 0.3 2.5×10−14 19 Mullaney et al. (2015)
(3) NuSTAR EGS 8–24 0.23 2.5×10−14 J. Aird (2019, in preparation)
(4) NuSTAR Serendipitous Survey 8–24 13 2–10×10−14 24 Lansbury et al. (2017)
NuSTAR Ser. Compton-thick counts and fraction 8–24 4 Lansbury et al. (2017)
NuSTAR COSMOS Compton-thick fraction 8–24 2 Civano et al. (2015)
NuSTAR UDS Compton-thick fraction 8–24 0.6 2.7×10−14 6.8±1.2 Masini et al. (2018)
Swift-BAT 70-month all source counts 14–195 All sky 838 Ricci et al. (2017)
Chandra Deep Field South 7 Ms 0.5–7 0.1345 2.7×10−17 1008 Luo et al. (2017)
2XMMi 0.5–10 132.3 ×10−14 30,000 Mateos et al. (2008)
XMM-COSMOS 0.5–10 2.13 7×10−16 1416 Cappelluti et al. (2007)
Chandra COSMOS 0.5–10 0.5 5.7×10−16 1655 Elvis et al. (2009)
ChaMP 0.5–8 10 9×10−16 6800 Kim et al. (2007)
Stripe82X 0.5–10 31.3 2.1×10−15 6181 LaMassa et al. (2013a, 2013b, 2016)
XMM-CDFS 2–10 0.1345 6.6×10−16 339 Ranalli et al. (2013)
Extended CDFS 0.5–8 0.3 6.7×10−16 915 Lehmer et al. (2005)
Chandra COSMOS Leg. Comp.-thick num counts 2–8 41.9 Lanzuisi et al. (2018)

X-ray luminosity functions Ueda et al. (2014) 0.5–195
Buchner et al. (2015) 2−7
Aird et al. (2015) 0.5−7
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upper limit in Compton-thick number counts without any bias,
and a Compton-thick fraction. They report a Compton-thick
fraction of ;30% in the local universe (z<0.07).

In Table 2, we list the three luminosity functions we examine
in this work as observed constraints as well. Since these
luminosity functions were derived from data, they should
reasonably agree with each other, as well as any new
luminosity function. Each survey and model is a step toward
converging on the correct solution, and so we compare
luminosity functions against each other to verify whether they
are in reasonable agreement. The results of these comparisons
are presented in Section 6.

5. New Model

Existing population synthesis models do not reproduce all
observed constraints (shown in Section 6), so we attempted to
update the existing XLF, which is best fit to the CXB (U14),
using a newer absorption function by Ricci et al. (2015,
hereafter R15). The R15 absorption function is based on the
Swift-BAT 70-month sample whereas the U14 function was
based on the Swift-BAT 9-month sample.

R15 reports a completeness-corrected absorption function
for the Swift-BAT 70-month survey, based on assumptions
about the geometry of the torus component. Specifically, the
corrections to the absorption functions are calculated by
assuming two different opening angles of the torus component
of the AGN, 35° and 60°. These corrections are calculated in
two luminosity bins: log (L14−195/erg s

−1)=40−43.7 and
log (L14−195/erg s

−1)=43.7−46. The corrected fractions are
shown in Figure4 of R15 and also in Section 6 of this work.

Both U14 and R15 absorption functions are normalized in
the log (NH/cm

2)=20–24 range. Using Swift-BAT 9-month
data, U14 quantified the fraction of objects in four equally
spaced log (NH/cm

2) bins in the 20–24 range at a fixed
luminosity: log (L2−10/erg s

−1)=43.75. Then, luminosity
dependence and redshift dependence were added to these
fractions based on observed relationships. U14 assumes that the
number of Compton-thin objects is equal to the number of
Compton-thick objects at any redshift and luminosity bin, and
evenly divided over the log (NH/cm

2)=24–26 bin.
As U14 underestimates Compton-thick number counts, we

updated it with the R15 absorption function with the higher
Compton-thick fractions: the correction that assumes a torus
opening angle of 60°. As Swift-BAT is a local sample, we
assume the R15 distribution locally and add the same redshift
evolution as U14. The details of the update are explained in
Appendix A. We found that this update still leaves the
Compton-thick counts largely underestimated. Therefore, we
used a neural network to modify the XLF further. In this
section, we describe this neural network.

5.1. Neural Network to Optimize XLF

In order to reasonably modify the luminosity function to find
a solution that fit all the observed constraints, we used a neural
network. This neural network finds all the XLFs that fit the
CXB given a set of input spectra. The spectral parameter
distributions of these input spectra can be luminosity, redshift,
and/or NH dependent.

The distinct contribution to the CXB from each NH bin is
discussed in Section 2. However, different proportions of
AGNs within the same absorption range, but with different

luminosities, can produce the same CXB. To break the
degeneracy within luminosity bins, all available number counts
can be used for cross-validation.
Therefore, the neural network modifies the space densities to

find all the solutions that fit the CXB. In this way, the X-ray
background acts as a training set. The rest of the number counts
and Compton-thick fractions act as a test set to verify the
accuracy of the output models.
We carried out the changes as follows. We convert the U14

+R15 XLF described in Appendix A into a 3D matrix of space
densities rather than a parametric function because it provides
more flexibility to apply changes. This is a 3D matrix with
dimensions z, L2−10, and NH, and a simple linear interpolator
will provide space densities at any (z, L2−10, and NH)
coordinate. It differs from the B15 final product, as there is
no binning involved. B15 space densities are flat over the width
of each 3D bin, whereas the space densities in our matrix vary
continuously, similar to U14 and A15.
A neural network is used to tune this matrix so that it

produces an increasingly better fit to the CXB. This neural
network employs back-propagation and gradient descent
algorithms, which are described in Appendix B.
We summarize our approach to deriving a new XLF in

Figure 6. After optimizing the neural network for best
performance, the best configuration was as follows: we divided
the matrix reweighting into 15 blocks, i.e., three NH bins
(unabsorbed, Compton-thin, and Compton-thick) times five
luminosity bins (log (L2−10/erg s

−1): 41–42, 42–43, 43–44,
44–45, 45–47). The neural network has 15 input neurons, and
each block is input into each neuron. The weights associated
with each input neuron are the factors by which all space
densities in each of these blocks are renormalized. After
renormalization using these weights, CXB is calculated using
the pre-defined spectra and this modified XLF. The neural
network then calculates the cost function, which is the sum of
squares of the difference between the observed CXB and the
model prediction, divided by 2× the number of observed data
points. We use CXB observed data points from Chandra
COSMOS (Cappelluti et al. 2017), RXTE (Revnivtsev et al.
2003), and Swift-BAT (Ajello et al. 2008), as these are the most
updated estimates of the CXB. After calculating costs, the
neural network then updates the space densities in these 15 bins
simultaneously by calculating derivatives of the cost function
with respect to the weights.
We initialize weights for the 15 neurons randomly between

0.3 and 5 and run 100 neural networks in parallel to find all the
solutions that converge. Some parallel networks sometimes get
trapped in local minima or diverge. We consider all branches
that converge to costs �5.0, as it roughly corresponds to a
reduced χ2�2 and should not be ruled out without cross-
validation. We used the CXB as a training set and then cross-
validated the resulting XLFs on the rest of the observed
constraints: the number counts and the Compton-thick
fractions. If an XLF fits the CXB with a reduced χ2< 2.0,
it has contributions from the three absorption bins (unabsorbed,
Compton-thin, and Compton-thick) in correct proportions.
However, different distributions in luminosity bins can produce
the same CXB. The degeneracy in distribution in luminosity
bins is broken by choosing the solution that minimizes reduced
χ2 with respect to all the observed number counts/Compton-
thick fractions.
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The number of parallel networks is limited by computational
power. Increasing the number of parallel networks increases the
probability of a quick convergence, as the number of steps
needed to reach a minimum via gradient descent is sensitive to
initial position. However, each point in the CXB requires a
numerical integration over redshift, LX, NH, and energy, using
Monte Carlo sampling. Therefore, the number of multiple
processes that can be run is limited.

We present a summary of the approaches taken to
formulate U14, A15, B15, and this work in Table 3.

5.2. A Discussion on Spectral Parameters

To calculate the expected CXB and number counts from the
XLF, we have to integrate the AGN spectra over a range of
energies for all AGNs. Because of the uncertainty in spectral
parameters due to various biases and parameter couplings, as
explained in Section 2.1, we tested our neural network with
different combinations of Γ, R, and Ecutoff. The combinations of
spectral parameters used are determined by observed values that
exist in the literature. A representative sample is listed in Table 4.
The XSPEC syntax of the spectral model isFSCATT×CUTOFFPL
+ WABS ×PEXMON + BNTORUS×HIGHECUT.

For all five sets of spectra, the scattered component is
proportional to the initial cutoff power law, with a scattering

fraction ( fscatt) of 0.01. The torus is modeled using BNTORUS.
The value of the half-opening angle is drawn from a uniform
distribution between 55° and 61° (Section 5.3.1 of Ricci et al.
2017). For unabsorbed sources, the physical inclination angle
should be pole-on (Masini et al. 2016). BNTORUS assumes
line-of-sight column density for all angles, so the change in
observed spectra with respect to inclination angle is very small.
However, to be physically consistent, we fix the inclination
angle for Nlog cm 21H

2 <-( ) objects at 25°, smaller than the
opening angle of the torus. The inclination angles for

Nlog cmH
2-( )=21–24 objects are larger than the opening

angle by 15°, and the inclination angle of Nlog cm 24H
2 >-( )

is fixed at the maximum possible value of 87°. The reflection
component is modeled using the self-consistent PEXMON
model, with an inclination angle of 30° (all parameters typical
of Swift-BAT AGNs).
Spectral Set 1 in Table 4 is the observed spectral parameter

distributions from the Swift-BAT 70-month catalog. For the
intrinsic cutoff power law, we draw Γ from two normal
distributions: áGñ;1.8 and σΓ=0.24 for unobscured AGNs,
and áGñ;1.72 and σΓ=0.31 for obscured AGNs. We choose
cutoff energy values of the 161 objects for which this value was
properly constrained and draw from that distribution to produce
AGN spectra. The reflection scaling factor is drawn from two

Table 3
Summary of Approaches Taken to Formulate XLF in Recent Worksa

MODEL APPROACH RESULTS

Ueda et al. (2014) Maximum likelihood methods on survey data Parametric function
to formulate XLF and NH distribution

Aird et al. (2015) Bayesian analysis of survey data Parametric function
Buchner et al. (2015) Bayesian analysis of survey data Nonparametric space density 3D grid
This work Neural network fitting to X-ray background, cross-validation Nonparametric space density 3D grid

using number counts/fractions from surveys

Note.
a The details of the spectra for each model are given in Table 1, where this work uses observed parameter distributions from Swift-BAT, explained in Section 5.2.

Figure 6. Summary of our neural network to find space densities that reproduce the X-ray background. The result is then validated using number counts and Compton-
thick fractions from Chandra, XMM, Swift-BAT, and NuSTAR surveys.
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Gaussian distributions: ( Rá ñ=0.83, σR=0.14) and ( Rá ñ=0.37,
σR=0.11) for unobscured and obscured AGNs, respectively.
These Rá ñ were calculated by Ricci et al. (2017) by taking the
upper and lower limits in R into account to produce a
representative median for obscured and unobscured sources.
The lower Rá ñ value for obscured sources could arise because the
reflection component from the accretion disk is higher for objects
that are observed pole-on than for the ones that are observed
edge-on.

To account for the fact that the observed cutoff energies are
biased against high values (i.e., E>100 keV), we attempted
Spectral Set 2, where the observed values of Γ and R are
unchanged, and cutoff energy is drawn from a Gaussian
distribution of Ecutoffá ñ=200 keV and Ecutoff,σ=29 keV, as
found using the Kaplan−Meier estimator on observed values.
For Spectral Set 3, we use áGñ and Rá ñ for unobscured Swift-
BAT sources and a cutoff energy of 200 keV, as there is a
possibility that the difference in spectral parameters between
obscured and unobscured objects arise owing to imperfections
in the modeling of the obscurer. For Spectral Set 4, we adopted
a Gaussian cutoff energy distribution with Ecutoffá ñ=128 keV
and Ecutoff,σ=46 keV, as reported in Malizia et al. (2014)
keeping all other parameters identical to Spectral Set 1. In
Spectral Set 5, we adopt Ecutoffá ñ=200 keV and Eσ=29 keV
along with áGñ=1.96, which is the median ΓBAT reported in
Ricci et al. (2017), and consistent with high Γ values assumed
in earlier models and observed values in Nandra & Pounds
(1994), Gilli et al. (2007), and U14. The five sets of spectra in
each NH bin are shown in Figure 7. The results for these
spectral analysis are discussed in Section 6.

6. Results and Discussion

We find a modified XLF that satisfies all observed
constraints assuming the observed Swift-BAT 70-month
spectral parameter distributions (Spectral Set 1 in Table 4).
The results for Spectral Sets 2, 3, and 4 are shown in Figure 8.
For Spectral Set 2, where the observed values of Γ and R are
unchanged but the cutoff energy is drawn from a Gaussian
distribution of Ecutoffá ñ=200 keV and Eσ=29 keV, the CXB
at E>30 keV is generally overestimated. We demonstrate the
cause of this overestimation in Figure 8. In the top left panel of
the figure, the unabsorbed contribution to the CXB is fixed to
perfectly reproduce observations at E<2 keV. Generally, the
Compton-thin contribution becomes more significant at

E>2 keV and contributes to reproducing the slope of the
CXB between 3 and 10 keV. However, in the figure, this region
of the CXB is underestimated, whereas the CXB at
E>30 keV is overestimated. The Compton-thick contribution
to 3–10 keV is much smaller than at E>20 keV, so increasing
the Compton-thick contribution will improve fits at 3–10 keV
minimally but increase overestimation at E>30 keV.
Similarly, for Spectral Sets 3 and 4, either the CXB is

overestimated at high energies (E>30 keV) or the slope
cannot be matched at lower energies (E<10 keV). Although
Spectral Set 4 provides much more improved fits to the CXB,
the Compton-thick contribution is very low and does not match
observed number counts.
We obtain the best fit to all constraints using Spectral Set 5,

where we adopt Ecutoffá ñ=200 keV and Eσ=29 keV along
with áGñ=1.96. Our analysis indicates that to fit the CXB,
the effective mean of Γ and Ecutoff distributions has to be such
that if E 100 keVcutoffá ñ < then áGñ;1.7–1.8, or if
E 200 keVcutoff á ñ then 1.8áGñ > . This is possibly a
consequence of the correlation between the two parameters.
Since the cutoff energies and Γ values in Swift-BAT are
constrained together, the results of the spectral fit for these
two parameters are not independent. However, we do find a
closer fit to the observed constraints using a higher Γ and the
unbiased Ecutoffá ñ value of 200 keV.
The final results of our analysis are shown in Figures 9–17,

where we fit all the population synthesis models to observa-
tions. For clarity, we only show solutions for our best-fit results
for Spectral Set 5 (solid purple line in all figures) and include
the Spectral Set 1 results (dotted purple line) for comparison.
Our final population synthesis model is composed of Spectral
Set 5 and the XLF associated with it, which fits all the observed
constraints listed in Table 2. Figure 9 shows that the XLF
produced in this work has a shape similar to U14, monotonous
and smooth, but with a somewhat wider bend than a double
power law. At log (L2−10/erg s

−1)<44, the normalization is
closer to the B15 constant slope prior median prediction. We
plot our final result in the log (NH/cm

−2)=20–24 range
with U14. Figure 10 observed data points in the same
absorption bins, at four different redshifts. Figure 9 shows that
the U14 binned data points are reproduced by this work as well.
The top panels of Figure 10 show the absorption functions

for U14, B15, and A15 integrated up to z∼0.1. The top panels
show only the fraction of objects in each bin, normalized in the

Table 4
Spectral Parameters Used to Construct Spectra in This Work

Spectral Set Photon Index áGñ Refl. Scaling Factor (R) Ecutoff (keV) fscatt

1a 1.72 (obscur), 1.8 (unobsc) 0.37 (obscur), 0.83 (unobsc) 76 ;1%
2b 1.72 (obscur), 1.8 (unobsc) 0.37 (obscur), 0.83 (unobsc) 200±29 ;1%
3c 1.8 0.83 200±29 ;1%
4d 1.72 (obscur), 1.8 (unobsc) 0.37 (obscur), 0.83 (unobsc) 128±46 ;1%
5e 1.96 0.37 (obscur), 0.83 (unobsc) 200±29 ;1%

Notes.
a Observed parameters determined by detailed X-ray spectral fittings to Swift-BAT 70-month survey sources by Ricci et al. (2017).
b The cutoff energies measured in Swift-BAT can only be adequately constrained when the value is lower than 100 keV, so using a distribution that takes the lower
limits into account using a Kaplan–Meier estimator, the true median is found to be 200 keV.
c
Γ and R for unobscured sources from Swift-BAT, and Ecutoff=200 keV.

d Same parameter distribution as Spectrum 1, with Ecutoff=128±46 keV Gaussian distribution. This cutoff energy distribution is reported by Malizia et al. (2014).
e Spectrum 2 parameter distribution, with Γ=1.96±0.1, the median ΓBAT for non-blazar AGNs as observed in the Swift-BAT 70-month sample, consistent with
Nandra & Pounds (1994), Gilli et al. (2007), and U14.
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log (NH/cm
−2)=20–24 region, while the bottom panels show

the absolute number of objects per deg2. The obscuration-bias-
corrected absorption function for the Swift-BAT 70-month
catalog, calculated by R15, is also plotted in the top panels, for
both of the assumed torus opening angles. The low- and high-
luminosity bins are in the left and right panels, respectively.
This work is in agreement with the NH distribution derived by
R15 at Nlog cm 24H

2 <-( ) but predicts much higher fractions
of Compton-thick objects, similar to B15. This figure sheds
light on the discrepancy between this work and some of the
previous works. The space densities of unabsorbed and
Compton-thin objects in this work are comparable to those of
previous works, but the number densities of Compton-thick
objects are much higher than in U14 and A15 in both bins, and
equal to B15 in the lower-luminosity bin and higher in the
higher-luminosity bin, as shown in the bottom panels of
Figure 10.

We take the A15 galaxy contribution to the CXB into
account to avoid overestimating AGN space densities. The A15
galaxy contribution is calculated using a simple power law,
with Γ=1.9±0.2, that results in a constant (with respect to
energy) contribution of ;1.7 keV2 cm−2 s−1 keV−1 sr−1 to the

CXB at E<100 keV. Observations show that starburst galaxy
spectra drop off very quickly above 10 keV (Wik et al. 2014;
Lehmer et al. 2015; Yukita et al. 2016), and a cutoff power law
is more appropriate. Therefore, we introduce a uniform
distribution of cutoff energies between 20 and 30 keV to the
spectra (Persic & Rephaeli 2002, 2003; Treister et al. 2010;
Wik et al. 2014; Lehmer et al. 2015; Yukita et al. 2016) and
recalculate the contribution from galaxies using the A15 galaxy
luminosity function. The resulting galaxy X-ray background
drops off rapidly at E>7 keV. We add this contribution to the
CXB predictions from all models.

6.1. CXB

Figure 11 and Table 5 summarize the fits to the CXB by
prior XLFs and this work. The CXB is an important assessment
of X-ray population synthesis models: individual surveys and
number counts from these surveys can be affected by cosmic
variance, but data for the CXB come from a number of
different experiments, in general averaged over very large
areas, and converge on a similar shape (we show the latest data
in the plot for better presentation).

Figure 7. Resultant spectra from the five spectral parameter distributions explored in this work to find the XLF that fits all observed constraints. Top left: spectra of an
unabsorbed object; top right: spectra of a Compton-thin object; bottom: spectra of a Compton-thick object. The same parameters are used for both Compton-thin and
Compton-thick objects. All the spectra have an intrinsic X-ray 2−10 keV luminosity of 1044 erg s−1. The values of the parameters come from the Swift-BAT 70-month
survey (Ricci et al. 2017) and other spectral fittings (Nandra & Pounds 1994; Malizia et al. 2014; Ueda et al. 2014).
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The CXB plotted in Figure 11 for each model is our
computation using the prescriptions in each work, and not taken
directly from the results plotted in those papers. The discrepancy
in the CXB model predictions of U14 and A15 models between
this plot and those published in the corresponding papers is
addressed in Appendix C. We find a better fit to the CXB than
previous XLFs, as shown Figure 11 and Table 5. Of the previous
XLFs, U14 produces the best match to the CXB. Originally, B15
did not assume any cutoff energy, which leads to overproduction
of the CXB at high energies. We found that a cutoff energy of
200 keV greatly improves B15 fits, especially for the median
constant slope prior. For B15, the range spanned between constant
value prior and constant slope prior results illustrates the variety of

CXB predictions possible from fitting XLFs with no shape
imposed. The constant slope prior fits the CXB results more
closely, so we ignore the constant value prior results in the
remaining analysis.

6.2. Overall Number Counts

Figure 9 shows that the XLF presented in this work roughly
follows a bending power-law shape similar to U14—which is
expected, as U14+R15 is the basis of our function. We fit
overall counts from XMM, Chandra, Swift-BAT, and NuSTAR
using these XLFs to verify that our population synthesis model
reproduces these observations.

Figure 8. CXB data points fitted with three different assumed AGN spectra. Top left panel: the assumed spectra are from Spectral Set 2 from Table 4. Unabsorbed
AGNs (dotted line) dominate the E<1 keV region, so we fix the unabsorbed fraction such that this region is well fitted. Changing the unabsorbed contribution will
over- or underproduce the CXB in this region. The Compton-thin objects (dashed line) contribute heavily in the 3–10 keV region, where the CXB is underestimated by
�3σ with respect to RXTE data. Increasing the Compton-thin contribution will improve the fit in this region but overestimate the CXB at >30 keV, even with a
negligible contribution from Compton-thick objects (dotted-dashed line). Increasing the Compton-thick fraction will contribute minimally in the 3−10 keV region but
will lead to greater overestimation at higher energies, as the Compton-thick contribution peaks at 20–60 keV. The black solid lines in all three panels show the galaxy
contribution to the CXB, calculated using the A15 galaxy LF. Top right panel: Spectral Set 3 adopts a higher photon index (1.8) and reflection coefficient (0.87) for
absorbed objects, equal to those of unabsorbed objects. This model reaches better agreement with the CXB than Spectral Set 2 at E>30 keV but continues to
overestimate it, and it does not match all observed constraints. Bottom left panel: Spectral Set 4 adopts the same reflection parameter and photon index distributions as
Spectral Set 2, but a lower cutoff energy of 128±46 keV. It produces improved (but not perfect) fits to the CXB compared to Spectral Sets 2 and 3 but heavily
underestimates Compton-thick number counts and fractions, as a higher Compton-thick contribution will overproduce the CXB at E>30 keV.
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The XLF formulated using our neural network reproduces
the CDFS number counts in both soft and hard bands down to
the faintest fluxes, as shown in Figure 12. The figure contains
all of the soft-band (0.5−2 keV) and hard-band (2–7 keV)
number counts for XMM-Newton and Chandra surveys. U14
and A15 fit these number counts down to flux levels of
10−15.5 erg cm−2 s−1, but at fainter levels they start to under-
estimate counts by several σ. B15 overestimates counts in the
0.5–2 keV band at flux limits fainter than 10−14.5 erg cm−2 s−1

but fits the 2−7 keV band well. As there are many data sets
plotted on these two plots, we made interactive versions of
these plots available in the online Journal.12 The older 4 Ms
counts of CDFS (Lehmer et al. 2012) are also included in
that plot.

The NuSTAR observed overall counts in the 8–24 keV band
(Harrison et al. 2016) are shown in Figure 13. They are fitted
well by this work, B15, and U14. A15 overestimates the counts
in the lower fluxes.

We calculated Swift-BAT number counts using Ricci et al.
(2017) data in the 14–195 keV region, as shown in Figure 14.
This work provides the best fit to these number counts. U14
slightly overestimates these counts by 1σ–2σ. A15 over-
estimates the counts by 2σ–4σ at all fluxes, whereas B15
underestimates these counts by 1σ–4σ, with the discrepancy
increasing at lower fluxes.

6.3. Compton-thick Number Counts and Fractions

The Chandra COSMOS-Legacy Compton-thick counts span
the highest redshift space and are a result of the Bayesian
analysis presented in Lanzuisi et al. (2018) that considers the
total probability of being Compton-thick for each object in their
sample. They use this probability (fraction) to calculate number
counts. The model fits to these data are shown in Figure 15.
Our models, both Spectral Set 1 and 5, fit these data better than
prior XLFs. B15 also produces a close fit. U14 underestimates
the counts, as does A15.
Lansbury et al. (2017) calculated NuSTAR Compton-thick

number counts with low-redshift bias and an upper limit on

Figure 9. Number of objects per comoving Mpc3 against log Lx for z=0.1 (top left), z=0.9 (top right), z=1.8 (bottom left), and z=2.7 (bottom right), summed
over all absorption bins, including Compton-thick objects (solid lines), and summed in the log NH=20–24 bins (dashed lines). The models are this work (purple
lines), U14 (light-green line), A15 (yellow lines), B15 median of constant slope prior (gray solid lines), and median of constant value prior (gray dashed lines). The
shaded gray region is B15 uncertainty (1st–99th percentile). The blue and red data points are binned counts in the log NH=20–24 range from Ueda et al. (2014), in
the hard- and soft-X-ray-selected bands, respectively. The overall XLF in the log NH=20–24 for this work (dashed purple line) is also given for comparison with data
points.

12 See alsohttps://yale.box.com/s/dzrn0zfjvi0eepc6w924yaixwgelt59m.
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Compton-thick counts without the bias, using four objects with
extremely hard X-ray spectra from the NuSTAR Serendipitous
Survey data. These counts are shown in Figure 16. Our model
fit lies 2σ below the counts with low-redshift bias. B15 comes
slightly closer to these Compton-thick number counts, and U14
underestimates these counts by 2σ−3σ. The A15 Compton-
thick counts are much lower than the observations. As
explained in Lansbury et al. (2017), the sample is biased
because the three lowest-redshift, highest-flux objects show
evidence of being weakly associated with Swift-BAT AGN
targets of NuSTAR observations, which have a higher tendency
of galaxy clustering. The bias may be the cause of the
discrepancy between the models and these number counts. The
unbiased upper limit is calculated using only the highest-
redshift object, which is consistent with prior XLFs and our
results.

The Compton-thick fraction for the Lansbury et al. (2017)
NuSTAR sample is shown in the left panel of Figure 17, along

with the Swift-BAT observed 70-month and 3 yr Compton-thick
fractions (these fractions were calculated in the 8–24 keV band by
Lansbury et al. 2017). Our model fits all the fractions within 1σ–
1.5σ; B15 fits the NuSTAR fractions properly but overestimates
the Swift-BAT fractions by 2σ. U14 underestimates the NuSTAR
Compton-thick fraction by 2σ but fits the Swift-BAT 3 yr survey
fraction at high fluxes well. In the right panel of Figure 17, we
show that our model’s predicted Compton-thick fraction of 18% is
higher than the NuSTAR UDS (Masini et al. 2018) observed
Compton-thick fraction of 11.5%, but fits the NuSTAR COSMOS
Compton-thick fraction (Civano et al. 2015) well. B15 fits the
NuSTAR COSMOS Compton-thick fraction well but slightly
overestimates the UDS fraction, while both U14 and A15
underestimate these fractions.
U14 is within 2σ of most of these counts and does fit the

Swift-BAT Compton-thick fractions in Figure 17. A15 has
much smaller Compton-thick number counts and fractions than
the observed NuSTAR and Swift-BAT values. The reason

Figure 10. NH distributions assumed for the present work and for previous population synthesis models. Top panels: NH distributions for various models, integrated up
to z;0.1 (solid lines), including the completeness-corrected (Ricci et al. 2015) distributions assuming two different geometries for the torus: an opening angle of 60°
(black plus sign) and an opening angle of 35° (red plus sign). The observations are in the Nlog cm 20 25H

2 =-( ) – range. The models are this work (purple line),
Spectral Set 1 (dotted purple line, also from this work), U14 (light-green line), A15 (yellow line), and B15 (median of constant slope prior; gray solid line). All models
assume that the number densities of objects in the Nlog cm 24 25H

2 =-( ) – bin are equal to those of the Nlog cm 25 26H
2 =-( ) – bin for all redshifts and luminosities,

as there are very few data to constrain the Nlog cm 25 26H
2 =-( ) – bin. Therefore, the model predictions are constant over these two absorption bins. Left panel: NH

distributions for the lower-luminosity bin (log [L2−10/erg s
−1]<43.6); right panel: those for the higher-luminosity bin (log [L2−10/erg s−1]<43.6). Both panels are

normalized in the log (NH/cm
−2)=20–24 range. Bottom panels: total predicted number counts per square degree at each NH bin, integrated to redshift=0.1 in each

luminosity bin.
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behind this discrepancy is shown in the bottom panels of
Figure 10—A15 has lower Compton-thick space densities
compared to other models in both luminosity bins. This
discrepancy might be caused by the statistical approach A15
used to derive the absorption function. Instead of calculating
NH of individual sources through X-ray spectral fittings as done
by U14 and B15, they compare the 0.5−2 keV selected sample
with the 2–7 keV sample, taking into account the shift in AGN
spectra with redshift. A15 discusses the limitation in this
approach in distinguishing Compton-thick sources from
heavily absorbed Compton-thin sources. These uncertainties
may have contributed to underestimation of Compton-thick
number density.

The Compton-thick fractions found in this work and in B15,
as shown in Figure 10, are much higher than in U14 and A15;
this work fits the R15 fractions at log (NH/cm

−2)<24 (as
shown in the figure), but the Compton-thick fraction is much
higher than that derived by R15. This plot demonstrates why
the U14+R15 update failed to reproduce the Compton-thick
number counts. Our new model fits the NuSTAR and Chandra
COSMOS-Legacy Compton-thick number counts significantly
better because the Compton-thick number counts need to be
higher than R15 corrections in both luminosity bins. U14, Ricci
et al. (2015), and M. Balokovic (2019, in preparation) found
that even Swift-BAT is not completely unbiased toward
Compton-thick sources beyond log (NH/cm

−2)∼23, which

Figure 11. Empirical X-ray background (CXB) from Chandra COSMOS (red circles), ASCA (yellow squares), RXTE (green crosses), and Swift-BAT (blue squares).
One outlying data point from Chandra COSMOS at 1.5 keV was removed owing to incorrect background subtraction. Models are this work (solid purple line),
Spectral Set 1 results (dotted purple line, also from this work), U14 (light-green line), A15 (yellow line), B15 median of constant slope prior (gray solid line), and B15
median of constant value prior (gray dashed line). We added a cutoff energy of 200 keV to the B15 spectral model to bring the XLF in better agreement with the CXB
at higher energies. A galaxy contribution has been added to each CXB model prediction, according to the A15 galaxy luminosity function (black solid line). Total
contributions to the CXB from three absorption bins for this work are also shown: log (NH/cm

−2) = 20–22 is shown by the dotted purple line, log (NH/cm
−2)

= 22–24 is shown by the sparsely dashed purple line, and log (NH/cm
−2) = 24–26 is shown by the dotted-dashed purple line. The discrepancy in the CXB model

predictions of U14 and A15 models between this plot and those published in the corresponding papers is addressed in Appendix C.

Table 5
Statistical Significance of the Match to X-Ray Background

CXB Constraint Number of Data Points This Work (χ2) Ueda et al. (2014) (χ2) Aird et al. (2015) (χ2) Buchner et al. (2015) (χ2)a

Spec5Spec1 No EC EC=200 keV

Chandra COSMOS 25 21.7558.3 70.84 17.36 68.4355.91
RXTE 34 17.9845.74 46.5 152.95 203.0676.21
Swift-BAT 15 11.6646.02 36.5 137.88 109969.79
Total 74 51.4150.05 153.84 308.2 1370201.9
Reduced χ2 0.872.54 2.08 4.16 18.522.73

Note. Boldface shows results for the best-fit solutions.
a For B15, results for only the median constant slope prior are shown here.

15

The Astrophysical Journal, 871:240 (23pp), 2019 February 1 Ananna et al.



could be the cause of the discrepancy between our model and
the fractions derived by R15.

7. Conclusions

The most noteworthy aspect of our best-fit luminosity
function is the high intrinsic Compton-thick fraction predicted
by this model. Of the overall AGN population integrated up to
z;0.1 (1.0), 50%±9% (56%± 7%) is predicted to be
Compton-thick by this model. This intrinsic Compton-thick

fraction is consistent with observed number counts and
fractions when flux, redshift limits, and bandwidths in different
surveys are taken into account, as shown in Section 6.
This work generally has higher space densities of Compton-

thick objects compared to the three prior XLFs, as shown in
Figure 10. In the bottom panels of that figure, there is a
comparison between integrated space densities from the local
universe, up to z=0.1, in two luminosity bins. In the low-
luminosity bin, B15 has ;2% lower, U14 has ;72% lower,
and A15 has ;91% lower Compton-thick space densities than

Figure 12. Number counts per square degree of the sky vs. X-ray flux, as observed in the Chandra 7 Ms (black circle + vertical error bars), 2XMMi (gray triangle),
XMM-COSMOS (light-pink stars), Chandra COSMOS (green plus signs), ChaMP (blue triangles), Stripe82X (pink crosses), E-CDFS (deep-blue dotted line), and
XMM-CDFS (black dotted line) surveys (all references in text). The models are this work (Spectral Set 5, solid purple line), U14 (light-green line), A15 (yellow line),
and B15 median of constant slope prior (gray solid line). Spectral Set 1 results are also shown by the dotted purple line. As all the data points cannot be seen in this
static plot, an interactive version of this figure is available in the online Journal. Top panel: 0.5–2 keV number counts. Bottom panel: 2–7 keV band number counts.
For the Chandra 7 and 4 Ms number counts in both bands, nearly all existing luminosity functions considered in this work underestimate the number counts, although
the high flux number counts are generally well reproduced. The B15 constant slope prior median value reproduces the hard-band count for Chandra 7 Ms very well
but overestimates the soft counts by >2σ at log (S0.5–2 keV/erg cm

−2 s−1) ;−16.
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this work. In the high-luminosity bin, this work predicts the
highest space densities: B15 has 26% lower, U14 has ;51%
lower, and A15 has ;87% lower space densities of Compton-
thick objects than this work.

The three nearest AGNs (;4 Mpc), Circinus, NGC 4945,
and Centaurus A, are all heavily obscured, which can be
either due to a Compton-thick bias in the local universe or
representative of the true AGN population. Obscured sources
tend to be bright in IR owing to reprocessed emission.

Matt et al. (2000) explored the IR and X-ray emission from
some of the closest heavily obscured AGNs and found that the
IR LF is 20 times the XLF in the local universe. Gandhi &
Fabian (2003) also predict an obscured-to-unobscured ratio of
5:1 by formulating a population synthesis model where
obscured AGNs are assumed to follow the same distribution
as luminous IR galaxies. Fiore et al. (2008) selected sources
with a very high mid-IR-to-optical ratio in the CDFS field and
found that 80%±15% of these objects have no direct X-ray

Figure 13. NuSTAR Extragalactic Survey number counts for AGNs. Black data points are the differential number counts calculated using the NuSTAR COSMOS,
NuSTAR E-CDFS, NuSTAR EGS, and NuSTAR Serendipitous Surveys (Harrison et al. 2016). The models are this work (Spectral Set 5, solid purple line), U14 (light-
green line), A15 (yellow line), and the B15 median of constant slope prior (gray solid line). Spectral Set 1 results are also shown by the dotted purple line.

Figure 14. Swift-BAT overall number counts (blue circles with vertical error bars) calculated using the 70-month survey data (Ricci et al. 2017). The models are this
work (Spectral Set 5, solid purple line), U14 (light-green line), A15 (yellow line), and the B15 median of constant slope prior (gray solid line). Spectral Set 1 results
are also shown by the dotted purple line.
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detection in the hard X-ray band and are likely to be Compton-
thick. Chen et al. (2015) show that the obscured fraction is
30%–70% in objects with high far-IR luminosities (4×1012

Lsol); however, it is not clear what fraction of these obscured
objects are Compton-thick. Ultraluminous IR galaxies, which
tend to be gas-rich mergers (Clements et al. 1996), have
Compton-thick fractions as high as 65% (Ricci et al. 2017),
much higher than the Swift-BAT selected sample.

B15 and this work are closer to the high Compton-thick
number counts and fractions observed by Chandra, NuSTAR, and
Swift-BAT surveys. Previous works have stated that the most
efficient way to find Compton-thick objects is using high-energy
X-ray surveys (E>10 keV; Gilli et al. 2007; Treister et al.
2009; Ballantyne et al. 2011), and the results of these surveys,
particularly NuSTAR surveys, indicate higher Compton-thick
space densities than those predicted by prior models. It has been

Figure 16. Compton-thick number counts in the 8–24 keV band from the NuSTAR 40-month Serendipitous Survey, calculated by Lansbury et al. (2017). The filled
black circle is the unbiased upper limit on Compton-thick fraction for z<0.5, and the gray number counts, calculated using four objects with extremely hard spectra,
show the number counts with a low-redshift bias (z<0.07). The models are this work (Spectral Set 5, solid purple line), U14 (light-green line), A15 (yellow line), and
the B15 median of constant slope prior (gray solid line). Spectral Set 1 results are also shown by the dotted purple line. We find that the counts with the low-redshift
bias are underestimated by all the luminosity functions, but this work and B15 are within 1.5σ, and U14 is within 2σ. All the XLFs are consistent with the unbiased
upper limit.

Figure 15. Chandra COSMOS-Legacy Compton-thick number counts. The data points are represented by black circles. The models are this work (Spectral Set 5,
solid purple line), U14 (light-green line), A15 (yellow line), and the B15 median of constant slope prior (gray solid line). Spectral Set 1 results are also shown by the
dotted purple line. The counts were calculated using 41.9 objects after a careful Bayesian analysis of the spectra of each object by Lanzuisi et al. (2018). The flux area
curves for three different redshift ranges were calculated specifically using the spectra of Compton-thick objects. We use the appropriate areas by redshift and the
fractional probability of each object of being Compton-thick to calculate number counts for the whole sample.
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suggested that a smaller Compton-thick population and a very
large reflection component (R;2) at all luminosities can also
reproduce the CXB (Akylas et al. 2012; Aird et al. 2015). The
Ricci et al. (2017) Swift-BAT 70-month sample has a median
biased R value (biased toward high R) of 1.3 and a bias-corrected
median R value of 0.53. Zappacosta et al. (2018) analyzed
NuSTAR spectra of 63 sources and found Rá ñ=0.43 and an
interquartile range of 0.06−1.5. Therefore, observed R values are
smaller than the value required to support small Compton-thick
number densities. Therefore, these densities may indeed be very
high. In a future work, we will explore the consequences of these
space densities on SMBH mass function.

This work and U14 fit overall AGN number counts better
than A15 and B15, which serves as a cross-validation for the
higher proportion of Compton-thick objects. Currently, our
model is the only XLF that consistently fits all existing
constraints.

The second most important result from our work is that we
demonstrate, with examples, that the parameter space of AGN
spectra that can reasonably reproduce the CXB is limited.
Spectral Sets 2 and 3 are examples of a combination of spectral
parameters that do not consistently reproduce all parts of the
CXB for any underlying XLF, and Spectral Set 4 is an example
where the CXB can be reproduced reasonably, but number
counts, in this case Compton-thick number counts, remain
largely underestimated.

The results for Spectral Set 1 and Spectral Set 5 are very
similar, but the two spectral sets are not, as shown in Figure 7,
and therefore the XLFs that produce the results are also
different. We find that Spectral Set 5 is a better fit to the CXB
(Figure 11 and Table 5) and to the R15 intrinsic absorption
function (Figure 10). The similarity between Spectral Sets 1
and 5, as shown in Figure 7, is that despite the different Γ and
EC values, they are both considerably lower at E>20 keV
than Spectral Sets 2, 3, and 4. This steep decline of the intrinsic
power law seems to be a necessary condition to reproduce the

CXB spectra and can be caused by a higher photon index or a
lower cutoff energy. Observed AGN spectra indicate that cutoff
energies are ubiquitous (Ricci et al. 2017), and in our analysis
we find that a high photon index cannot be used to completely
replace cutoff energies; the B15 XLF originally did not have a
cutoff energy but had a high photon index (1.95). However,
this approach makes the CXB constant from E ;30 keV for all
1000 XLF predictions, consequently heavily overestimating the
CXB at E>30 keV (results of that fit are shown in Table 5).
Spectral Set 1 slightly underestimates the CXB at

E>60 keV. Spectral Set 5 produces a better fit and can
possibly be further improved with less steep spectra, i.e., with a
lower Γ value than 1.96. The best distribution of Γ, assuming
the bias-corrected cutoff energy from the Swift-BAT 70-month
sample (200 keV) and reflection scaling factors, should have a
áGñ between 1.8 and 1.96.

Finally, it must be noted that the upcoming Swift-BAT 105-
month spectral measurements and the increasing NuSTAR data
will contribute to better constraints on AGN spectra.

8. Summary

We find that the most recent population synthesis models do
not fit all the current X-ray observational constraints. We
generated a comprehensive population synthesis model for black
hole growth, consisting of AGN number densities as a function
of luminosity, redshift, and absorbing column density, which
simultaneously accounts for the number counts and Compton-
thick fractions in X-ray surveys spanning a range of depths
and areas (corresponding to a wide range in luminosity and
redshifts) and the integrated spectrum of the CXB. Specifically,
given a set of input AGN spectra, we employed a neural
network to find space densities that fit the X-ray background
and then identified the best-fit model according to fits to the
observed number counts and Compton-thick fractions. We took
observational uncertainties in AGN spectra into account.

Figure 17. For both panels, the models are this work (Spectral Set 5, solid purple line), U14 (light-green line), A15 (yellow line), and the B15 median of constant slope
prior (gray solid line). Spectral Set 1 results are also shown by the dotted purple line. Left: Compton-thick fraction in the 8–24 keV band from the NuSTAR 40-month
Serendipitous Survey and the Swift-BAT 70-month and 3 yr surveys. B15 fits the NuSTAR Compton-thick fraction well but overestimates the Swift-BAT fractions.
Spectrum 5 is within 1σ of the NuSTAR data and also fits the Swift-BAT data well. Spectrum 1 and U14 are 1σ below NuSTAR Compton-thick fraction but fit the Swift-
BAT data well. Right: Compton-thick fraction in the 8–24 keV band from the NuSTAR UDS (Masini et al. 2018) and COSMOS surveys (Civano et al. 2015). These
results span a higher redshift range (0<z<3) and are therefore plotted separately for clarity.

19

The Astrophysical Journal, 871:240 (23pp), 2019 February 1 Ananna et al.



We find that the new population synthesis model predicts a
much higher space density of Compton-thick objects, espe-
cially at high luminosities, than prior luminosity functions. This
population matches observed Compton-thick number counts
and fractions from XMM-Newton, Chandra, Swift-BAT, and
NuSTAR surveys and predicts that intrinsically 50%±9%
(56%± 7%) of all AGNs within z;0.1 (1.0) are Compton-
thick. We also show that AGN spectral assumptions affect the
shape of the predicted X-ray background in population
synthesis models, and certain spectral combinations do not
suitably reproduce it for any space densities of AGNs.

Our XLF is available as a 3D numpy array, with instructions
on calculating space densities using a 3D grid interpolator. It
can be downloaded from Bitbucket13 and is archived in Zenodo
(doi:10.5281/zenodo.2522799).

This material is based on work supported by the National
Science Foundation under grant no. AST-1715512 and Yale
University. E.T. acknowledges support from FONDECYT
Regular 1160999, CONICYT PIA ACT172033, and Basal-
CATA PFB-06/2007 and AFB170002 grants. T.A. wishes to
thank her parents, M. A. Quayum and Shamim Ara Begum, her
husband, Mehrab Bakhtiar, and her sisters, Arnita Tasnim and
Raysa Tasnim, for their support. T.A. also wishes to thank Dr.
Trey Ashton Belew for his help with multiprocessing and Dr.
Lia Sartori for advice on X-ray spectra.

Software: numpy (Van Der Walt et al. 2011), Astropy
(The Astropy Collaboration et al. 2018), Matplotlib
(Hunter 2007), Topcat (Taylor 2005), XSPEC and PYXPSEC
(Arnaud 1996), and Vegas (Lepage 1980). Parts of the neural
network code was adapted from Nielsen (2015).

Appendix A
Initial Approach: Updating NH Function

Here we provide a detailed background to the U14 absorption
function and how it was updated using R15 results. The first step
in formulating the U14 NH distribution was to find the fraction of
Compton-thin objects (ψ)—log (NH/cm

−2)=22–24—among all
objects with log (NH/cm

−2)<24. The function itself was
normalized within log (NH/cm

−2)=20–24, as there were too
few Compton-thick objects securely identified in the three fields to
adequately formulate the log (NH/cm

−2)>24 region. As a result,
the number/fraction of Compton-thick sources was essentially a
free parameter. The fraction of Compton-thin objects is dependent
on luminosity and redshift, ψ(LX, z), and is best constrained at log
(LX/erg s

−1)=43.75 in the local universe using Swift-BAT data.
Then, on the basis of Treister & Urry (2006) and Hasinger (2008)
and independent U14 analysis, a redshift dependence is added to
ψ (LX=43.75, z=0) as follows:

z z

z

1 2.0

1 2 2.0
. 1

0.48

0.48 
+ <
+

⎧⎨⎩
( )
( )

( )

Therefore, the complete luminosity- and redshift-dependent
absorbed fraction is L z,Xy y=( ) L z43.75, 0.24X = - ´( )

Llog 43.75X -( ), with forced upper and lower bounds at 0.84
and 0.2, respectively. These limits are imposed based on U14
analysis of Swift-BAT data (ψmax=0.84) and Burlon et al. (2011)
(ψmin=0.2).

The absorption function is described in detail in Section3.1
of U14. The data allowed the unabsorbed and Compton-thin
bins to be much more robustly constrained than Compton-thick
bins. Therefore, U14 normalized the absorption function in the
log (NH/cm

−2)=20–24 bins and assumed the same number of
Compton-thick sources (at each luminosity and redshift) as the
total number of Compton-thin sources, uniformly spread over
log (NH/cm

−2)=24–26 bins. We replaced the local absorp-
tion function using the R15 absorption function, as it is based
on the Swift-BAT 70-month survey, which updated the older
9-month survey.
The R15 intrinsic NH function is normalized to one between

log (NH/cm
−2)=20 and 25 in two 14–195 keV luminosity

bins, for a z<0.3 sample with median z∼0.055. These
luminosity boundaries translate to different 2–10 keV luminos-
ities, depending on the spectrum we assume. We convert log
(L14−195/erg s

−1)=43.7 to log (L2−10/erg s
−1)=43.58 assum-

ing Γ=1.76 and a cutoff energy of 60 keV, which are median
spectral parameters for the Swift-BAT 70-month sample (Ricci
et al. 2017).
In our initial attempt, we renormalized R15 in the

log (NH/cm
−2)=20–24 bins. We kept the total number of

U14 objects in log NH/cm
2<24 unchanged and only

redistributed objects within adjacent bins—which is sufficient
to reproduce the R15 absorption function (as shown in
Figure 10). However, we add more objects in the Compton-
thick bins, according to the R15 fraction. Then, we
incorporated luminosity dependence into ψ(Lx, z), by taking
the R15 fractions as flat for the two luminosity bins (log
(L2−10/erg s

−1)<43.58 and log (L2−10/erg s
−1)�43.58).

The luminosity and redshift dependence of the absorbed
fraction follows (z increases to a maximum value of 2)

L z
z L

z L
,

0.68 0.04 1 , 43.58

0.50 0.04 1 , 43.58.

2

x

0.48 0.05
2 10
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Following U14, we use a maximum and minimum ψ of 0.84
and 0.2, respectively. The updated NH function is normalized in
the log (NH/cm

−2)=20–24 region. The ratio of number of
objects in the log (NH/cm

−2)=23–24 bin to that in the log
(NH/cm

−2)=22–23 bin, the ò parameter from U14, is slightly
lower in the R15 model than in U14, but it is within the range
reported in the literature—between 1.3 and 1.7 (Risaliti et al.
1999; Tueller et al. 2008; Vasudevan et al. 2013). In the R15
log (L2−10/erg s

−1)<43.6 bin, ò=1.3205±0.17469, and in
the L2−10�43.6 bin, ò=1.4885±0.24079. U14 uses a fixed
value for ò. Overall, the absorption function is as follows.
For log (L2−10/erg s

−1)<43.58 (in the following equations,
ψ=ψ(Lx, z) as shown in Equation (2)),
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13 https://bitbucket.org/tonimatas/xlf-final-result/downloads/

20

The Astrophysical Journal, 871:240 (23pp), 2019 February 1 Ananna et al.

https://doi.org/10.5281/zenodo.2522799
https://bitbucket.org/tonimatas/xlf-final-result/downloads/


For log [L2−10/erg s
−1] � 43.58,

f L z N
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Similar to U14, we assumed the Compton-thick absorption
function to be flat over the log (NH/cm

−2)=24–26 range.
After editing the U14 XLF with the R15 absorption function
(U14+R15), we find that number counts in the 0.5–2 keV and
2–7 keV bands from the CDFS 7 Ms catalog are still
underestimated by ;40% at the faintest flux ends, and the
Compton-thick number counts remain underestimated. We also
tried adding the luminosity dependence of ψ found in Barger
et al. (2005), where it linearly decreases from 0.8 to 0.2
between log (L2−10/erg s

−1)=42.0 and 46.0. This relation-
ship can be incorporated without violating R15, if we relax the
linear fraction to vary from 0.7 to 0.3 for log (L2−10/erg s

−1) of
42.0 to 46.0. This made the absorption function more
complicated but did not improve results, so we neglected it.
We used the U14 XLF with a modified absorption function, as
described in Equations (2)–(4), as input into the neural
network.

Appendix B
Back-propagation Algorithm

Here we explain how a back-propagation algorithm is used
to determine our best-fit population synthesis model. In neural
networks, a layer of input neurons receives input broken down
into chunks; for instance, a handwriting recognition network
would take information about black-to-white ratio of pixels for
different parts of the image for different input neurons. This
input vector of the ratio would be called x—where xj is the
ratio of black to white ink in the jth input neuron. The inputs
from all the layers sum up and reach each neuron in a new layer
of neurons. Each of these neurons in the new layer has different
weights associated with the neurons in the previous layer, such
that, for neuron i in layer 2, the output “activation” value ai is

w x
w x

a
0, threshold
1, threshold

. 5i
i

i=
<⎧⎨⎩

·
· ( )

Here w is the vector of weights associated with each neuron in
the input layer, and thresholdi is the bias associated with neuron
i in the new layer (mathematically, bias=−threshold). If this
thresholdi value is exceeded by the dot product of the input and
weights, then this neuron is activated and sends an input signal
of 1 to the next layer, and if it falls below the threshold, this
neuron sends a 0 to the next layer. Usually a more sophisticated
function is used to calculate ai that outputs a range of values
between 0 and 1, rather than just the binary values. A sigmoid
function ( z

e

1

1 zs =
+ -( ) ) is a commonly used activation

function because its derivatives have nice properties, but we
cannot do an analytic differentiation with the CXB, so the
sigmoid function is not used in our neural network.

A normal neural network, such as a handwriting recognition
network, is composed of a series of layers of neurons, each
neuron with an array of weights associated with each neuron in
the previous layer, and a bias. All these weights and biases are
readjusted according to each input in the training data set, so
that the final set of weights and biases can predict which
handwritten letter is seen using the ratio of black and white
pixels in different parts of the image. The readjustment process
is done by optimizing a cost function, which is

C w y x a w , 6x
2µ S -( ) ∣∣ ( ) ( )∣∣ ( )

where w is the collection of all weights in the network, y is the
final output, and a is the activation. The weights are updated using
gradient descent (see comprehensive explanation by Nielsen
2015). In this work, the activation function is the predicted X-ray
background, and the cost function is the difference between the
observed X-ray background and the model predictions, as shown
in Figure 6:

C w
n

E E w
1

2
CXB CXB , , 7E obs model

2= S -( ) ∣∣ ( ) ( )∣∣ ( )

where E is the energy for each CXB data point, and CXBmodel

is evaluated using the integral

E w
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After calculating cost C, the derivative of C, C w wi i¶ ¶( )/ , is
calculated numerically for each weight:

C w

w

C w w w C w w

w

, , , , , ,
, 9i
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i i i

i
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¶

=
¼ + ¶ ¼ - ¼ ¼

¶
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where C(w1, K, wi, K) is the cost for the current step. The
weights are then updated so that the cost function is minimized:

w w w
C w

w
, 10i i i

i

i
h¢ = -
¶
¶

 ( ) ( )

where η is the step size. Using this method, we readjust weights
in such a way that the fit to the CXB improves with each
iteration. We present our best solution as a new XLF in
Section 6.

Appendix C
Discrepancy In CXB Plot

In U14, the photon index for absorbed objects is 1.84áGñ =
with a dispersion of Γμ=0.15, and the photon index of
unabsorbed objects is 1.94áGñ = with a dispersion of
Γμ=0.09. For A15, the photon index for all AGNs is

1.9áGñ = with a dispersion of Γμ=0.2. We find that using a
Gaussian distribution of photon indices with these dispersions
produces the CXB shown in Figure 11. However, if we keep
the photon index constant at áGñ values instead of using a
distribution, we recover the CXB published in U14 and A15.
The result of not using a distribution for A15 and U14 is shown
in Figure 18. In B15, no CXB was plotted for the model, so we
use a prescribed distribution of photon index in B15 in both
Figures 11 and 18. Here we show the 10th–90th percentile
predictions of the constant slope and constant value predictions
by B15.
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Figure 18. Empirical X-ray background (CXB) from Chandra COSMOS (red circles), ASCA (yellow squares), RXTE (green crosses), and Swift-BAT (blue squares).
The models are this work (solid purple line), Spectral Set 1 results (dotted purple line, also from this work), U14 (light-green line), A15 (yellow line), the B15 median
of constant slope prior (gray solid line), and the B15 median of constant value prior (gray dashed line). We added a cutoff energy of 200 keV to the B15 spectral model
to bring the XLF in better agreement with the CXB at higher energies. A galaxy contribution has been added to each CXB model prediction, according to the A15
galaxy luminosity function (black solid line). Total contributions to the CXB from three absorption bins for this work are also shown: log (NH/cm

−2) = 20–22 is
shown by the dotted purple line, log (NH/cm

−2) = 22–24 is shown by the sparsely dashed purple line, and log (NH/cm
−2) = 24–26 is shown by the the dotted-dashed

purple line. In this plot, we remove the dispersion in photon indices for the U14 and A15 models, which brings our calculations in agreement with published results in
U14 and A15. We also show the 10th–90th percentile CXB predictions (gray shaded region) for the B15 constant slope and constant value assumptions. We ignore the
constant value assumption in the number count plots, as the constant slope prediction is a closer match to X-ray background data.
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