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Abstract—Since for Markov signals age minimization generally
implies prediction error minimization, we pursue in this paper
the potential connection between age and what we call effective
age. Effective age is loosely defined as an age-related metric
that captures both the information structure of the signal and
the sampling pattern that is used, and that it is minimized
when the error is minimized. We consider several options for
sampling mechanisms and signal models, and we evaluate age and
prediction/estimation errors as steps in the quest for a meaningful
effective age concept definition.

I. INTRODUCTION

Until now, the studies of the age of information [1], [2] have
focused mostly on calculating and minimizing the average
age [3]-[5] or the peak age [6], [7]. We believe that minimizing
age is useful because it implies minimizing prediction, or
current value estimation error. If the signal that we monitor
is a first-order Markov process, then it is clear that for an
individual sample, the smaller the value of its age, the smaller
the prediction or estimation error. However, when we consider
average age (or average peak age), we know that the sampling
pattern that minimizes them does not necessarily minimize the
error. See for example the work of Yates et al. [8] on “just-in-
time” sampling, or the work of Sun et al. [9] on the threshold
policy optimality for minimizing age or error for a Wiener
process.

The reason for this apparent disparity is that the value of
the age is determined by two separate factors. One is the
processing/transmission delay (including possible queueing
delay). The other is the sampling pattern. Thus, a first concern
is to consider modifying the “physical” or “actual” age so
that its average value minimization (when we choose the
sampling pattern) also achieves minimization of the predic-
tion/estimation error. A second concern is to modify the defini-
tion of the physical age so as to capture more meaningfully the
information content of the process. For example for a process
with strong correlation properties, the physical age is not a
good indicator of its prediction error. These concerns motivate
our efforts to propose an “effective” age, the average value of
which would correspond to the size of the error, and would
capture the information structure (or content) of the process.
This is of course a rather tall order, and in this paper we only
begin to chart out a path towards these goals.

Our paper consists of two parts. In the first part, we outline
some of our recent work on sampling patterns for the simplest
of signals, namely a 2-state Markov Chain (generalized also
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to an N-state Markov Chain). We consider the “zero-wait”
(also called “‘just-in-time”) sampling pattern and compare the
average age to that of a “threshold-like” sampling policy that
generates a sample only when there is a state transition out of
the current state. Our error parameter is the squared error in
estimating the current value of the signal based on the most
recent sample.

In the second part, we take a somewhat different approach
where we focus on the micro-scale of the process values by
considering “bit-by-bit” the encoded values of the process and
consider a scheme of sampling (i.e., of what to transmit) that
is akin to a threshold-like policy but focuses on a detailed
view of the encoding properties. Our take on this approach is
somewhat artificial in that it assumes that during each “clock”-
time or slot, only one bit of the encoded symbol is transmitted.
We believe that this restrictive model can be relaxed at some
complexity cost, but it does offer some new insights.

Lastly, we present some effective age metrics that were
introduced in our recent work and reassess whether they still
satisfy our requirements in light of the current work. Our
results are only tentative for the moment and rely mostly on
simulation rather than analysis. We believe that the main value
of our contribution consist of the key ideas behind our models
and not so much the numerical results.

II. THRESHOLD SAMPLING POLICY

For a first-order Markov process, when estimating the cur-
rent state based on a single sample, a lower age for the sample
will yield a lower achievable estimation error. However, this
does not necessarily extend to the average error when sampling
and estimating a process in real time. It has been shown that
in a remote monitoring system, in which there is a random
delay from source to the monitor, for a Wiener process [9]
and for a Markov process [10] the sampling strategy at the
source that yields a lower average age does not necessarily
yield a lower average error over the estimated process. In this
work, we explore the relationship between age and error for
a Markov process, and attempt to converge on a new concept
of age, called “effective age.”

A. Communication System

The communication system that we consider for sampling
and prediction is a slotted-time system. If a sample is gen-
erated and thus available for transmission, the transmission
delay S; for the ith packet is an independent geometric random
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Fig. 1. Age function for “generate-at-will” model.
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Fig. 2. N-state Markov chain.

variable with parameter 0 < p < 1. The packet is fully
received at the end of the transmission S;. We assume the
length of the time slots are equal to the transmission time for
a Markov state. The sampling opportunities are just prior to
the start of a new time slot, and there are no new samples
generated until the transmission is successful. The source
decides how many slots to wait, Z;, before generating a new
sample to begin transmission immediately. A sample path of
the age function for such a system is shown in Fig. 1.

B. Markov Source

The signal that is being sampled is a discrete-time Markov
source in which the time step is equal to a time slot length
of the communication system. The Markov process is given
by X,, and the state transition is given by Pr(X,41|X,).
Although this model can be kept general, for the purpose of
this work, we consider a special case in which we have an
N-state birth-death type of Markov chain, where transitions
only occur between state ¢ — 1 and ¢ for 1 < ¢ < N — 1,
and self-transitions. Specifically, we consider the transition
probabilities to be Pr(X,,11 = i|X, =i—1) = Pr(X,41 =
i—1|X, =1) =p, for 1 <i < N — 1. This Markov chain is
shown in Figure 2.

C. Age vs. Prediction Error

The age of information of a monitored process is defined
as A(t) = t — u(t), where u(t) is the time of generation
of the latest status update received at the destination. We are
interested in the time-averaged age A = limp_, fOT A(t)dt.

At the destination, the monitor estimates (predicts) the cur-
rent state at the source based on the states that it has received.
For the Markov source described above, with p < 0.5, the
estimate given the last received state X, ;) is chosen to be
X, = u(t)- A reasonable error metric is the probability of
error e , = Pr(Xn # X,,). Given the structure of the birth-
death N-state Markov chain shown here, we can also use the
squared error eg ,, = (Xn — X,,)? as an error metric, where

—8— Thresh=0
150- Thresh=1
—4— Thresh=2

—— Thresh=3

Average Age
-
o
S}

1
=}

Fig. 3. Age vs. p, p = 0.1, 7 states.

X, X, € {0,1,...,N — 1}." The goal is to minimize the
average estimation error, or in this case, the mean squared error
(MSE) € = limy_,(1/N) 25:0 e2.n,.> We are interested in
the tradeoff between the average age and average MSE.

D. Sampling Policy

The sampling policy that we study in this section is a
discrete threshold policy, in which a sample is generated
if there is no other sample currently being served and the
distance between the last state sampled and the current state is
greater than or equal to some threshold. The optimal threshold
for the Wiener process (continuous state) was derived in [9].
The error probability was analyzed for the 2-state Markov
process in [10] (called “zero-wait” and “sample-at-change” for
threshold values of 0 and 1, respectively). It was shown that
for this process, sampling at every opportunity (threshold of 0)
yielded a smaller age but larger average error than sampling
only when the state changed (threshold of 1). The average
error probabilities were derived in [10] and are as follows:

p(2p + p(1 —2p)(2 — p))
(1 +2p —2up)?
p(p+p — pp)
p? 4+ 2p(p+p— p(p+p)

Pr(&s,) = (1)

Pr(Es,) = )

E. Simulations

We simulated a 7-state Markov source to evaluate how the
optimal threshold value changes with p. We ran each simu-
lation so that there would be on average 200 state changes,
and we averaged the age over time and over 1000 simulation
runs. In Fig. 3, we have plotted the average age as a function
of p for threshold values 0,1,2,3. As expected, the age is
larger for larger thresholds, since the source waits for a larger
change before sampling. In Fig. 4(a), we have plotted the MSE
vs. p for the various threshold values. Clearly, the MSE does
not follow the same trend or relative ordering between the
threshold values as the age. We observe that for a threshold
of 0, the MSE is less than when the threshold is 3 for p < 0.1,

'The squared error metric is dependent on the somewhat arbitrary labeling
of states, since it is a discrete state space. For example, the states could take
values 0, 1,10, 100, ... instead of 0, 1,.... The labeling here is chosen to
approximate a continuous state space.

2The estimator chosen is not the minimum mean squared estimator, so there
is room for further improvement.
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Fig. 4. MSE vs. p, 7 states.

but it has the highest MSE for p > 0.15. For a threshold of 1,
the MSE is lowest for p = 0.05, but it increases rapidly with
p relative to the cases where the threshold is 2 or 3. Setting
the threshold to 2 yields a lower MSE for p < 0.2, but for
p > 0.25, the MSE is lowest when the threshold is equal to
3. Thus, for a relatively low p = 0.1, a higher threshold than
1 should be used in most cases. This is probably due to the
likelihood of a larger change between successful receptions,
and that there is more value in transmitting a sample with a
larger change when receptions occur less often.

We repeated the simulation with ¢ = 0.5, and the age
follows a similar trend to Fig. 3 but with lower age, so we
omit it here. The MSE is plotted in Fig. 4(b), and we see that
now a threshold of 3 yields the largest MSE, and a threshold
of 2 is only best for p > 0.45. Applying similar reasoning
from the ;1 = 0.1 case, increasing the reception rate means
that there are smaller changes between successful receptions,
and receptions are successful enough that it need not wait
for larger changes to improve the prediction. In most cases, a
threshold of 1 provides the best prediction here.

We have also simulated for ;4 = 1.0 and plotted the MSE in
Fig. 4(c). In this case, using a threshold of zero or 1 yield the
lowest MSE. The reasoning is the same as in the 2-state case,
where transmission is successful on the first attempt, so there
is no benefit in waiting to transmit. This is the case in which
the relative ordering of the policies are virtually the same for
the age as for the MSE.

III. SAMPLING AT THE BIT LEVEL

In the second part of this paper, we consider the bit-level
encoded values of the monitored process, and we study the
sampling scheme at the time scale of bit transmissions. In the
first part of this paper, the approach was to sample based on
how much the state differed from the previous sample, whereas
here we take the opposite approach and resample based on
whether the state does not differ too much from the previous
sample. We study the impact of what we call the bit-level
replacement strategy on the age and prediction error, and we
compare the performance to that of a threshold policy.

A. Communication System Model

For the communication system, we again have a time-slotted
transmission as in Section II-A, but we assume an error-free

channel with no random delay. However, instead of each time
slot being equal to the time to transmit an entire state, each
slot here is simply the time required to transmit one bit of
information. Each state that is transmitted is represented by
m bits. In general, we can substitute bits for symbols for non-
binary signal constellations, but here we use bits for simplicity.

This model is clearly quite restrictive but it allows us to
study the age at a timescale that is smaller than that of a
single state transmission. This model is an error-free version
of the model considered in [11].

B. Markov Source

Similar to the Markov source model in Section II-B, we
have a discrete Markov process Xy, X1, ..., but each time step
is equal to the transmission time of a single bit, and each state
is represented by m bits, in which X, is one of 2" discrete
states, represented by m bits. Therefore, in this section we
only consider Markov chains where the number of states is a
power of 2. The transition probability from state ¢ to state j
is given by Pr(X,+1 =i X, = j).

C. Sampling Schemes

Since we have an error-free channel, a bit is successfully
received in each slot, and we first consider sampling for contin-
uous transmission schemes. The baseline scheme is zero-wait
sampling and transmission of the full state, in which a new
sample is taken after each m-bit state completes transmission,
in every m time slots.

We also consider a threshold policy similar to that of
Sec. II-D. If the threshold is not exceeded, no transmission
occurs. If the threshold is exceeded, the source transmits the
full state. It is possible to do differential encoding similar
to [11], but it is beyond the scope of this work.

Finally, the continuous sampling scheme we focus on is
called the bit-level replacement (BLR) scheme, in which we
observe the state at each time slot, and if the bits of the partial
state that have been sent match with the corresponding bits of
the current state (mid-transmission of a full state), we send the
remaining bits of the current state and refresh the time stamp
with the current time. If there is no match between the current
state and what has been sent, the remainder of the previous
state completes transmission with the time stamp unchanged.
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The more detailed example of how the BLR works is as
follows:

1) The transmission begins at time=0 by sending the first
bit of the initial status (first bit of X).

2) At the next time slot (time=1), if the first bit of the
current status matches that of the previous status, the
second bit of the current status (X7) is transmitted
and the time stamp of the current status is updated
to 1. However, if there is a mismatch in the first bit,
the remaining bits of the initial status (time stamp =
0) are transmitted over the next m — 1 slots, and the
transmission process starts over again.

3) On the other hand, if there was a match in the first
bit and the second bit of X; was transmitted, then in
the next slot, the first two bits of the current status are
compared to the bits that have already been transmitted.
If the bits match, then the third bit of the current status
(X3) is transmitted and the time stamp of the status is
updated to 2. However, if there is a mismatch in bits, the
remaining bits of the previous status (X ) are transmitted
with time stamp = 1, and the transmission process starts
over again.

4) This process continues with each remaining bit until
there is a mismatch in the previously transmitted bits
or until the status completes transmission, and the latest
updated time stamp is provided.

D. Bit Encoding of States

The BLR allows for a newer state to preempt a previous
state without having to start a new transmission, thus reducing
the age. The performance of the BLR depends on the encoding
of the bits to each state in the Markov chain, and this bit
encoding can be optimized for BLR. The problem is to assign
an m-bit codeword to each state.

1) Optimal algorithm: We devise a recursive algorithm that
produces the optimal bit encoding. First, the states are divided
into two partitions, and then each partition is likewise divided
into two. This partitioning occurs a total of m times until each
state is its own partition. At each step, the partitions are chosen
such that the sum of the transition probabilities (weighted by
the stationary probabilities of the starting states) between pairs
of nodes in the same partition is maximized. The states of one
partition are assigned a zero bit (in order of most significant
bit) while those of the other partition are assigned the one bit.
This repeats for every partition until all bits are assigned. Due
to the complexity of having to consider all possible partitions
and the sum of weighted transition probabilities, we are only
able to compute the bit encoding for up to 4 bits (16 states).

2) Greedy algorithm: To handle larger numbers of states,
we devised a suboptimal greedy algorithm for the bit encoding.
First, the weighted transition probabilities are sorted from
largest to smallest. The starting and ending states for the
largest weighted transition probability are assigned to any
two codewords that have the most consecutive significant bits
in common. Those codewords are removed from the set of
available m-bit codewords for assignment. For each successive
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Fig. 5. Full State vs. BLR, p=0.1

transition probability, it is possible that both, one, or neither
of the starting or ending states has already been assigned
a codeword. If both states have been assigned a codeword,
then the algorithm simply moves on to the next transition
probability. If exactly one of the states is already assigned a
codeword, the other state is assigned the codeword that has the
most consecutive significant bits in common with the already
assigned state. If neither state has been assigned a codeword,
then the they are assigned the two available codewords with the
most consecutive significant bits in common. This algorithm
iterates through each transition probability from largest to
smallest until all states have been assigned a codeword.

E. Simulations

We simulated the bit-by-bit communication system for
the various sampling strategies. We start with a comparison
between continuous transmission schemes with and without
bit-level replacement. In Figure 5, we plot the age and the
MSE vs. the number of bits per state m, so that the number
of states is increasing by a factor of 2. The value of p for the
Markov chain is set to 0.1. We observe that the BLR schemes
outperform the full state scheme in terms of age and MSE, and
that the relative ordering is preserved from the age to MSE. For
this error-free, deterministic delay system, the relative ordering
to be preserved, as we observed in Sec. II-E, such that lower
age implies lower prediction error. The optimal bit encoding
does the best, but we are unable to generate results beyond
4 bits per state due to the computational complexity of the
recursive algorithm.

Next we compare the bit-level replacement to threshold-
based sampling. Although not shown here, we observed that
for this communication system, a threshold of 1 was better
than a threshold of 2 in terms of both age and MSE. In
Figure 6, we compare the threshold scheme (threshold=1)
with the full state scheme (threshold=0) and the Greedy BLR
scheme for the case where p = 0.1. We observe that the age
for the threshold policy is the worst (Fig. 6(a)), but unlike in
Figure 4(c), the error performance is better than that of the
full state scheme. This is because the states can change at
any of the m bit transmission of a full state, so delaying until
the state changes can improve the MSE. However, it is not
as good as the Greedy BLR scheme for m > 4 (Fig. 6(b)).
The Optimal BLR scheme is the best in both age and MSE
wherever it can be evaluated.
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IV. EFFECTIVE AGE METRICS

In [10], we proposed two effective age metrics that are
minimized when the error is minimized. The first is the
sampling age, which conveys the age relative to some ideal
sampling pattern. The idea is that in the 2-state Markov source
system, the age that matters with regards to estimation error is
not the actual Aol, but rather the age of the sampling instant
relative to the time the status changed (and should have been
sampled). Assuming we have a sampling pattern that optimizes
the error, we define g(¢) to be the most recent “optimal”
sampling time relative to time t. We then define s(¢) to be
the first actual sampling time following ¢(¢). If no sample
has occurred between ¢(t) and ¢, we let s(t) = t. Finally, the
sampling age is defined as Agqmp () = s(t)—g(¢). If the actual
sampling pattern coincides with the optimal sampling pattern,
or even if there are samples in between the optimal samples,
the sampling age is zero for all ¢. Otherwise, the sampling age
increases linearly after each optimal sampling instant until the
actual sampling instant, at which time it remains constant until
the next optimal sampling instant.

This age metric may work for the first communication
model studied here, but it needs to be amended for other
models, such as queueing systems, to account for the impact
of oversampling. Specifically, we define s(t) not as the first
time a sample is taken and placed in a queue, but we
define it as the time a sample (taken after g(t)) first enters
service. Furthermore, this metric does not directly apply to
the bit-by-bit communication model, which re-samples before
completing transmission of a state, so a metric should be
tailored to such a model.

The second metric proposed is the cumulative marginal
error (CME), defined as Acpp(t) = f:(t) h(7)dr, where
h(t) is some penalty function, and 7(¢) is the reception
time of the packet received with most recent timestamp. The
idea here is that for each time period between samples, we
accumulate the total error penalty (or estimated error) as time
progresses, since we are interested in prediction error. For
MSE, we propose letting h(7) be the squared error at time 7.
Further investigation is needed into whether this choice yields
a relative ordering of the CME that is the same as for the
MSE.

V. CONCLUSION

In this work, we investigated the impact of the sampling
policy on the age of information and the error in predicting the
current state of a Markov source. We consider two variations
on the threshold-based sampling idea. First we consider sam-
pling only after the distance between the current state and the
last sampled state meets a threshold. For longer service time,
a larger threshold tends to do better, particularly for higher
probability of transition in the Markov chain. In the second
case, we consider sampling and transmission at the bit level.
We propose resampling while we are still transmitting a state,
provided that the current state has not veered too far from the
state(s) already sampled during a single state transmission, a
policy we call bit-level replacement (BLR). The performance
depends on the bit assignment of the states, and we provide an
optimal and greedy bit assignment algorithm. Our simulations
demonstrate that greedy BLR outperforms the zero-wait and
sample-at-change (threshold of 0 and 1, respectively) policies
in both age and prediction error in most cases. Finally we
reintroduce our proposed effective age metrics and make some
new observations. Further study into these and possibly other
metrics is needed in light of the current work.
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