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Abstract—Since for Markov signals age minimization generally
implies prediction error minimization, we pursue in this paper
the potential connection between age and what we call effective
age. Effective age is loosely defined as an age-related metric
that captures both the information structure of the signal and
the sampling pattern that is used, and that it is minimized
when the error is minimized. We consider several options for
sampling mechanisms and signal models, and we evaluate age and
prediction/estimation errors as steps in the quest for a meaningful
effective age concept definition.

I. INTRODUCTION

Until now, the studies of the age of information [1], [2] have

focused mostly on calculating and minimizing the average

age [3]–[5] or the peak age [6], [7]. We believe that minimizing

age is useful because it implies minimizing prediction, or

current value estimation error. If the signal that we monitor

is a first-order Markov process, then it is clear that for an

individual sample, the smaller the value of its age, the smaller

the prediction or estimation error. However, when we consider

average age (or average peak age), we know that the sampling

pattern that minimizes them does not necessarily minimize the

error. See for example the work of Yates et al. [8] on “just-in-

time” sampling, or the work of Sun et al. [9] on the threshold

policy optimality for minimizing age or error for a Wiener

process.

The reason for this apparent disparity is that the value of

the age is determined by two separate factors. One is the

processing/transmission delay (including possible queueing

delay). The other is the sampling pattern. Thus, a first concern

is to consider modifying the “physical” or “actual” age so

that its average value minimization (when we choose the

sampling pattern) also achieves minimization of the predic-

tion/estimation error. A second concern is to modify the defini-

tion of the physical age so as to capture more meaningfully the

information content of the process. For example for a process

with strong correlation properties, the physical age is not a

good indicator of its prediction error. These concerns motivate

our efforts to propose an “effective” age, the average value of

which would correspond to the size of the error, and would

capture the information structure (or content) of the process.

This is of course a rather tall order, and in this paper we only

begin to chart out a path towards these goals.

Our paper consists of two parts. In the first part, we outline

some of our recent work on sampling patterns for the simplest

of signals, namely a 2-state Markov Chain (generalized also

to an N -state Markov Chain). We consider the “zero-wait”

(also called “just-in-time”) sampling pattern and compare the

average age to that of a “threshold-like” sampling policy that

generates a sample only when there is a state transition out of

the current state. Our error parameter is the squared error in

estimating the current value of the signal based on the most

recent sample.

In the second part, we take a somewhat different approach

where we focus on the micro-scale of the process values by

considering “bit-by-bit” the encoded values of the process and

consider a scheme of sampling (i.e., of what to transmit) that

is akin to a threshold-like policy but focuses on a detailed

view of the encoding properties. Our take on this approach is

somewhat artificial in that it assumes that during each “clock”-

time or slot, only one bit of the encoded symbol is transmitted.

We believe that this restrictive model can be relaxed at some

complexity cost, but it does offer some new insights.

Lastly, we present some effective age metrics that were

introduced in our recent work and reassess whether they still

satisfy our requirements in light of the current work. Our

results are only tentative for the moment and rely mostly on

simulation rather than analysis. We believe that the main value

of our contribution consist of the key ideas behind our models

and not so much the numerical results.

II. THRESHOLD SAMPLING POLICY

For a first-order Markov process, when estimating the cur-

rent state based on a single sample, a lower age for the sample

will yield a lower achievable estimation error. However, this

does not necessarily extend to the average error when sampling

and estimating a process in real time. It has been shown that

in a remote monitoring system, in which there is a random

delay from source to the monitor, for a Wiener process [9]

and for a Markov process [10] the sampling strategy at the

source that yields a lower average age does not necessarily

yield a lower average error over the estimated process. In this

work, we explore the relationship between age and error for

a Markov process, and attempt to converge on a new concept

of age, called “effective age.”

A. Communication System

The communication system that we consider for sampling

and prediction is a slotted-time system. If a sample is gen-

erated and thus available for transmission, the transmission

delay Si for the ith packet is an independent geometric random
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Fig. 1. Age function for “generate-at-will” model.

Fig. 2. N -state Markov chain.

variable with parameter 0 < μ ≤ 1. The packet is fully

received at the end of the transmission Si. We assume the

length of the time slots are equal to the transmission time for

a Markov state. The sampling opportunities are just prior to

the start of a new time slot, and there are no new samples

generated until the transmission is successful. The source

decides how many slots to wait, Zi, before generating a new

sample to begin transmission immediately. A sample path of

the age function for such a system is shown in Fig. 1.

B. Markov Source

The signal that is being sampled is a discrete-time Markov

source in which the time step is equal to a time slot length

of the communication system. The Markov process is given

by Xn, and the state transition is given by Pr(Xn+1|Xn).
Although this model can be kept general, for the purpose of

this work, we consider a special case in which we have an

N -state birth-death type of Markov chain, where transitions

only occur between state i − 1 and i for 1 ≤ i ≤ N − 1,

and self-transitions. Specifically, we consider the transition

probabilities to be Pr(Xn+1 = i|Xn = i− 1) = Pr(Xn+1 =
i− 1|Xn = i) = p, for 1 ≤ i ≤ N − 1. This Markov chain is

shown in Figure 2.

C. Age vs. Prediction Error

The age of information of a monitored process is defined

as Δ(t) = t − u(t), where u(t) is the time of generation

of the latest status update received at the destination. We are

interested in the time-averaged age Δ = limT→∞
∫ T

0
Δ(t)dt.

At the destination, the monitor estimates (predicts) the cur-

rent state at the source based on the states that it has received.

For the Markov source described above, with p < 0.5, the

estimate given the last received state Xu(t) is chosen to be

X̂n = Xu(t). A reasonable error metric is the probability of

error e1,n = Pr(X̂n �= Xn). Given the structure of the birth-

death N -state Markov chain shown here, we can also use the

squared error e2,n = (X̂n − Xn)
2 as an error metric, where

Fig. 3. Age vs. p, μ = 0.1, 7 states.

Xn, X̂n ∈ {0, 1, . . . , N − 1}.1 The goal is to minimize the

average estimation error, or in this case, the mean squared error

(MSE) E = limN→∞(1/N)
∑N

n=0 e2,n.2 We are interested in

the tradeoff between the average age and average MSE.

D. Sampling Policy

The sampling policy that we study in this section is a

discrete threshold policy, in which a sample is generated

if there is no other sample currently being served and the

distance between the last state sampled and the current state is

greater than or equal to some threshold. The optimal threshold

for the Wiener process (continuous state) was derived in [9].

The error probability was analyzed for the 2-state Markov

process in [10] (called “zero-wait” and “sample-at-change” for

threshold values of 0 and 1, respectively). It was shown that

for this process, sampling at every opportunity (threshold of 0)

yielded a smaller age but larger average error than sampling

only when the state changed (threshold of 1). The average

error probabilities were derived in [10] and are as follows:

Pr(ES0
) =

p(2p+ μ(1− 2p)(2− μ))

(μ+ 2p− 2μp)2
(1)

Pr(ES1
) =

p(μ+ p− μp)

μ2 + 2p(μ+ p− μ(μ+ p))
. (2)

E. Simulations

We simulated a 7-state Markov source to evaluate how the

optimal threshold value changes with p. We ran each simu-

lation so that there would be on average 200 state changes,

and we averaged the age over time and over 1000 simulation

runs. In Fig. 3, we have plotted the average age as a function

of p for threshold values 0, 1, 2, 3. As expected, the age is

larger for larger thresholds, since the source waits for a larger

change before sampling. In Fig. 4(a), we have plotted the MSE

vs. p for the various threshold values. Clearly, the MSE does

not follow the same trend or relative ordering between the

threshold values as the age. We observe that for a threshold

of 0, the MSE is less than when the threshold is 3 for p ≤ 0.1,

1The squared error metric is dependent on the somewhat arbitrary labeling
of states, since it is a discrete state space. For example, the states could take
values 0, 1, 10, 100, . . . instead of 0, 1, . . .. The labeling here is chosen to
approximate a continuous state space.

2The estimator chosen is not the minimum mean squared estimator, so there
is room for further improvement.
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(a) μ = 0.1 (b) μ = 0.5 (c) μ = 1.0

Fig. 4. MSE vs. p, 7 states.

but it has the highest MSE for p ≥ 0.15. For a threshold of 1,

the MSE is lowest for p = 0.05, but it increases rapidly with

p relative to the cases where the threshold is 2 or 3. Setting

the threshold to 2 yields a lower MSE for p ≤ 0.2, but for

p ≥ 0.25, the MSE is lowest when the threshold is equal to

3. Thus, for a relatively low μ = 0.1, a higher threshold than

1 should be used in most cases. This is probably due to the

likelihood of a larger change between successful receptions,

and that there is more value in transmitting a sample with a

larger change when receptions occur less often.
We repeated the simulation with μ = 0.5, and the age

follows a similar trend to Fig. 3 but with lower age, so we

omit it here. The MSE is plotted in Fig. 4(b), and we see that

now a threshold of 3 yields the largest MSE, and a threshold

of 2 is only best for p ≥ 0.45. Applying similar reasoning

from the μ = 0.1 case, increasing the reception rate means

that there are smaller changes between successful receptions,

and receptions are successful enough that it need not wait

for larger changes to improve the prediction. In most cases, a

threshold of 1 provides the best prediction here.
We have also simulated for μ = 1.0 and plotted the MSE in

Fig. 4(c). In this case, using a threshold of zero or 1 yield the

lowest MSE. The reasoning is the same as in the 2-state case,

where transmission is successful on the first attempt, so there

is no benefit in waiting to transmit. This is the case in which

the relative ordering of the policies are virtually the same for

the age as for the MSE.

III. SAMPLING AT THE BIT LEVEL

In the second part of this paper, we consider the bit-level

encoded values of the monitored process, and we study the

sampling scheme at the time scale of bit transmissions. In the

first part of this paper, the approach was to sample based on

how much the state differed from the previous sample, whereas

here we take the opposite approach and resample based on

whether the state does not differ too much from the previous

sample. We study the impact of what we call the bit-level
replacement strategy on the age and prediction error, and we

compare the performance to that of a threshold policy.

A. Communication System Model
For the communication system, we again have a time-slotted

transmission as in Section II-A, but we assume an error-free

channel with no random delay. However, instead of each time

slot being equal to the time to transmit an entire state, each

slot here is simply the time required to transmit one bit of

information. Each state that is transmitted is represented by

m bits. In general, we can substitute bits for symbols for non-

binary signal constellations, but here we use bits for simplicity.

This model is clearly quite restrictive but it allows us to

study the age at a timescale that is smaller than that of a

single state transmission. This model is an error-free version

of the model considered in [11].

B. Markov Source

Similar to the Markov source model in Section II-B, we

have a discrete Markov process X0, X1, . . ., but each time step

is equal to the transmission time of a single bit, and each state

is represented by m bits, in which Xn is one of 2m discrete

states, represented by m bits. Therefore, in this section we

only consider Markov chains where the number of states is a

power of 2. The transition probability from state i to state j
is given by Pr(Xn+1 = i|Xn = j).

C. Sampling Schemes

Since we have an error-free channel, a bit is successfully

received in each slot, and we first consider sampling for contin-

uous transmission schemes. The baseline scheme is zero-wait

sampling and transmission of the full state, in which a new

sample is taken after each m-bit state completes transmission,

in every m time slots.

We also consider a threshold policy similar to that of

Sec. II-D. If the threshold is not exceeded, no transmission

occurs. If the threshold is exceeded, the source transmits the

full state. It is possible to do differential encoding similar

to [11], but it is beyond the scope of this work.

Finally, the continuous sampling scheme we focus on is

called the bit-level replacement (BLR) scheme, in which we

observe the state at each time slot, and if the bits of the partial

state that have been sent match with the corresponding bits of

the current state (mid-transmission of a full state), we send the

remaining bits of the current state and refresh the time stamp

with the current time. If there is no match between the current

state and what has been sent, the remainder of the previous

state completes transmission with the time stamp unchanged.
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The more detailed example of how the BLR works is as

follows:

1) The transmission begins at time=0 by sending the first

bit of the initial status (first bit of X0).

2) At the next time slot (time=1), if the first bit of the

current status matches that of the previous status, the

second bit of the current status (X1) is transmitted

and the time stamp of the current status is updated

to 1. However, if there is a mismatch in the first bit,

the remaining bits of the initial status (time stamp =

0) are transmitted over the next m − 1 slots, and the

transmission process starts over again.

3) On the other hand, if there was a match in the first

bit and the second bit of X1 was transmitted, then in

the next slot, the first two bits of the current status are

compared to the bits that have already been transmitted.

If the bits match, then the third bit of the current status

(X2) is transmitted and the time stamp of the status is

updated to 2. However, if there is a mismatch in bits, the

remaining bits of the previous status (X1) are transmitted

with time stamp = 1, and the transmission process starts

over again.

4) This process continues with each remaining bit until

there is a mismatch in the previously transmitted bits

or until the status completes transmission, and the latest

updated time stamp is provided.

D. Bit Encoding of States

The BLR allows for a newer state to preempt a previous

state without having to start a new transmission, thus reducing

the age. The performance of the BLR depends on the encoding

of the bits to each state in the Markov chain, and this bit

encoding can be optimized for BLR. The problem is to assign

an m-bit codeword to each state.

1) Optimal algorithm: We devise a recursive algorithm that

produces the optimal bit encoding. First, the states are divided

into two partitions, and then each partition is likewise divided

into two. This partitioning occurs a total of m times until each

state is its own partition. At each step, the partitions are chosen

such that the sum of the transition probabilities (weighted by

the stationary probabilities of the starting states) between pairs

of nodes in the same partition is maximized. The states of one

partition are assigned a zero bit (in order of most significant

bit) while those of the other partition are assigned the one bit.

This repeats for every partition until all bits are assigned. Due

to the complexity of having to consider all possible partitions

and the sum of weighted transition probabilities, we are only

able to compute the bit encoding for up to 4 bits (16 states).

2) Greedy algorithm: To handle larger numbers of states,

we devised a suboptimal greedy algorithm for the bit encoding.

First, the weighted transition probabilities are sorted from

largest to smallest. The starting and ending states for the

largest weighted transition probability are assigned to any

two codewords that have the most consecutive significant bits

in common. Those codewords are removed from the set of

available m-bit codewords for assignment. For each successive

(a) Age vs. # bits per state (b) MSE vs. # bits per state

Fig. 5. Full State vs. BLR, p=0.1

transition probability, it is possible that both, one, or neither

of the starting or ending states has already been assigned

a codeword. If both states have been assigned a codeword,

then the algorithm simply moves on to the next transition

probability. If exactly one of the states is already assigned a

codeword, the other state is assigned the codeword that has the

most consecutive significant bits in common with the already

assigned state. If neither state has been assigned a codeword,

then the they are assigned the two available codewords with the

most consecutive significant bits in common. This algorithm

iterates through each transition probability from largest to

smallest until all states have been assigned a codeword.

E. Simulations

We simulated the bit-by-bit communication system for

the various sampling strategies. We start with a comparison

between continuous transmission schemes with and without

bit-level replacement. In Figure 5, we plot the age and the

MSE vs. the number of bits per state m, so that the number

of states is increasing by a factor of 2. The value of p for the

Markov chain is set to 0.1. We observe that the BLR schemes

outperform the full state scheme in terms of age and MSE, and

that the relative ordering is preserved from the age to MSE. For

this error-free, deterministic delay system, the relative ordering

to be preserved, as we observed in Sec. II-E, such that lower

age implies lower prediction error. The optimal bit encoding

does the best, but we are unable to generate results beyond

4 bits per state due to the computational complexity of the

recursive algorithm.

Next we compare the bit-level replacement to threshold-

based sampling. Although not shown here, we observed that

for this communication system, a threshold of 1 was better

than a threshold of 2 in terms of both age and MSE. In

Figure 6, we compare the threshold scheme (threshold=1)

with the full state scheme (threshold=0) and the Greedy BLR

scheme for the case where p = 0.1. We observe that the age

for the threshold policy is the worst (Fig. 6(a)), but unlike in

Figure 4(c), the error performance is better than that of the

full state scheme. This is because the states can change at

any of the m bit transmission of a full state, so delaying until

the state changes can improve the MSE. However, it is not

as good as the Greedy BLR scheme for m ≥ 4 (Fig. 6(b)).

The Optimal BLR scheme is the best in both age and MSE

wherever it can be evaluated.
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(a) Age vs. # of bits per state (b) MSE vs. # of bits per state

Fig. 6. Full State vs. BLR vs. Threshold=1, p = 0.1

IV. EFFECTIVE AGE METRICS

In [10], we proposed two effective age metrics that are

minimized when the error is minimized. The first is the

sampling age, which conveys the age relative to some ideal

sampling pattern. The idea is that in the 2-state Markov source

system, the age that matters with regards to estimation error is

not the actual AoI, but rather the age of the sampling instant

relative to the time the status changed (and should have been

sampled). Assuming we have a sampling pattern that optimizes

the error, we define g(t) to be the most recent “optimal”

sampling time relative to time t. We then define s(t) to be

the first actual sampling time following g(t). If no sample

has occurred between g(t) and t, we let s(t) = t. Finally, the

sampling age is defined as Δsamp(t) = s(t)−g(t). If the actual

sampling pattern coincides with the optimal sampling pattern,

or even if there are samples in between the optimal samples,

the sampling age is zero for all t. Otherwise, the sampling age

increases linearly after each optimal sampling instant until the

actual sampling instant, at which time it remains constant until

the next optimal sampling instant.

This age metric may work for the first communication

model studied here, but it needs to be amended for other

models, such as queueing systems, to account for the impact

of oversampling. Specifically, we define s(t) not as the first

time a sample is taken and placed in a queue, but we

define it as the time a sample (taken after g(t)) first enters

service. Furthermore, this metric does not directly apply to

the bit-by-bit communication model, which re-samples before

completing transmission of a state, so a metric should be

tailored to such a model.

The second metric proposed is the cumulative marginal
error (CME), defined as ΔCME(t) =

∫ t

r(t)
h(τ)dτ , where

h(t) is some penalty function, and r(t) is the reception

time of the packet received with most recent timestamp. The

idea here is that for each time period between samples, we

accumulate the total error penalty (or estimated error) as time

progresses, since we are interested in prediction error. For

MSE, we propose letting h(τ) be the squared error at time τ .

Further investigation is needed into whether this choice yields

a relative ordering of the CME that is the same as for the

MSE.

V. CONCLUSION

In this work, we investigated the impact of the sampling

policy on the age of information and the error in predicting the

current state of a Markov source. We consider two variations

on the threshold-based sampling idea. First we consider sam-

pling only after the distance between the current state and the

last sampled state meets a threshold. For longer service time,

a larger threshold tends to do better, particularly for higher

probability of transition in the Markov chain. In the second

case, we consider sampling and transmission at the bit level.

We propose resampling while we are still transmitting a state,

provided that the current state has not veered too far from the

state(s) already sampled during a single state transmission, a

policy we call bit-level replacement (BLR). The performance

depends on the bit assignment of the states, and we provide an

optimal and greedy bit assignment algorithm. Our simulations

demonstrate that greedy BLR outperforms the zero-wait and

sample-at-change (threshold of 0 and 1, respectively) policies

in both age and prediction error in most cases. Finally we

reintroduce our proposed effective age metrics and make some

new observations. Further study into these and possibly other

metrics is needed in light of the current work.
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