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Abstract

3D scan registration is a classical, yet a highly useful

problem in the context of 3D sensors such as Kinect and

Velodyne. While there are several existing methods, the

techniques are usually incremental where adjacent scans

are registered first to obtain the initial poses, followed by

motion averaging and bundle-adjustment refinement. In this

paper, we take a different approach and develop minimal

solvers for jointly computing the initial poses of cameras

in small loops such as 3-, 4-, and 5-cycles1. Note that the

classical registration of 2 scans can be done using a min-

imum of 3 point matches to compute 6 degrees of relative

motion. On the other hand, to jointly compute the 3D reg-

istrations in n-cycles, we take 2 point matches between the

first n−1 consecutive pairs (i.e., Scan 1 & Scan 2, . . . , and

Scan n − 1 & Scan n) and 1 or 2 point matches between

Scan 1 and Scan n. Overall, we use 5, 7, and 10 point

matches for 3-, 4-, and 5-cycles, and recover 12, 18, and

24 degrees of transformation variables, respectively. Using

simulations and real-data we show that the 3D registration

using mini n-cycles are computationally efficient, and can

provide alternate and better initial poses compared to stan-

dard pairwise methods.

1. Introduction

Many geometers working on algebraic minimal solvers

have attempted to solve the notorious and classical 3-view

4-point relative pose estimation. Given 4 triplets of point

matches, the goal is to jointly find the poses of the 3 cam-

eras. There have been some great progress on this problem

using one-dimensional search [38] and semi-definite pro-

gramming [27], but we still miss the simple and direct min-

imal algebraic solver that we usually derive for most geo-

metric vision problems. If one manages to solve this prob-

lem for RGB cameras, what would be the next big chal-

lenge? Do we look at the 4-view 3-point relative pose prob-

lem? While there has been a great deal of effort to solve the

1A cycle graph Cn, also referred to as n-cycles, is a subgraph with n

nodes and edge set {(1, 2), . . . , (n− 1, n), (n, 1)}.

Figure 1: At the left we show four scans and seven 3D point

matches (2 from Scans 1 & Scan 2; 2 from Scans 2 & Scan

3; 2 from Scans 3 & Scan 4; and 1 from Scans 1 & Scan 4).

At the right, we show the registered scan using our minimal

solver for 4-cycle, that jointly computes the pose parame-

ters for all the four cameras.

higher-order pose estimation in the case of RGB sensors,

the equivalent problem with RGB-D cameras has received

no attention. In the case of RGB-D sensors, the number of

correspondences for the n-camera relative pose problem is

less notorious for n ≤ 5, and even practically deployable.

At this point, when the price point for commercial RGB-

D sensors is decreasing due to the progress in robotics and

self-driving industry, it would be a good time to fully equip

the arsenal with algebraic minimal solvers for depth sen-

sors.

In Fig. 1 we show four different scans collected using a

Kinect sensor. We jointly compute the 3D registration for

all four scans using a minimal solver that uses a total of

seven point matches. We are able to compute 18 degrees

of transformation variables, and the points from all the four

scans are registered as shown in Fig. 1. Previous methods

for RGB-D registration typically employ pair-wise registra-

tion where the initial poses are computed between pairs of

cameras, and a final refinement is done using a non-linear

refinement technique. The pairwise methods (see Orthogo-

nal Procrustes problem [45] that uses a minimum of three

point matches) typically accumulate drift even in the case

of three cameras. Our formulation naturally eliminates the



drift in these mini n−cycles, and thereby provides better

pose parameters. This paper systematically studies the pos-

sibility of joint 3D registration for mini n−cycles, and de-

rives algebraic minimal solvers, which are typically em-

bedded in a Random Sample Consensus (RANSAC) [13]

framework for robust estimation of pose parameters. It has

been well established that minimal solvers and RANSAC

tend to perform robustly in the presence of outliers.

1.1. Related Work

We carefully survey some of the classical and modern

registration algorithms that employ 3D sensors.

3D scan alignment: The classic approach to solve the 3D

scan alignment problem is the Iterated Closest Point (ICP)

algorithm, proposed in [3]. Over the years, several efficient

and robust solutions have been proposed in the literature to

solve the 3D multi-scan alignment using 3D points, such as

[46, 35, 36, 56, 15, 29, 40]. A method for fast and efficient

3D rotation search is proposed in [5].

Besides the classic approaches presented above, alter-

nate methods have been proposed that utilize the properties

of the observed 3D scene. In [12], a beam-based environ-

ment measurement model was introduced to achieve frame-

to-frame registration. In [42, 32, 4, 30] we use 3D planes to

improve the SLAM using 3D cameras. In [31] we extract

and use 3D straight lines for 3D SLAM, while [9] focuses

on edge detection. In [16], a more general method is pro-

posed to detect and enforce constraints (geometric relation-

ships and feature correspondences). Surveys on the eval-

uation of 3D SLAM methods were presented in [11, 49].

There have also been some solvers for the non-rigid 3D reg-

istration problems (see for example [59, 2, 47, 33]). A sur-

vey on rigid and non-rigid registration of 3D point clouds is

presented in [51].

In addition to finding the 3D transformations that align

3D scans, there have been some developments on doing

both the 3D registration and semantic segmentation using

RGB-D images. Several works were proposed such as

[52, 44, 57, 58].

Recently, some deep learning techniques techniques

were used in order to obtain 3D registration. In [10], lo-

cal 3D geometric structures are extracted using a deep neu-

ral network auto-encoder. Compact geometric features are

learned in [18]. Automatic reconstruction of floorplans is

achieved using a deep learning algorithm in [30].

Minimal solvers: We review some of the minimal solu-

tions that are relevant to pose estimation using RGB cam-

eras. Several solutions were proposed for the absolute

pose for central perspective cameras (three 3D point corre-

spondences between the world and image), see for exam-

ple [19, 17, 55, 41]. The pose estimation has also been

studied for the pose of multi-perspective systems, such

Cycle

#Cameras
#Correspondences Total #Solutions

Two #3(S1,S2) 3 2

Three #2(S1,S2); #2(S2,S3); #1(S1,S3); 5 4

Four
#2(S1,S2); #2(S2,S3); #2(S3,S4);

#1(S1,S4)
7 16

Five
#2(S1,S2); #2(S2,S3);

#2(S3,S4); #2(S4,S5) #2(S1,S5)
10 32

Table 1: This table summarizes the minimal number of cor-

respondences required to compute the 3D point registration.

In the table, #i(Sj ,Sk) means i point correspondences

within the sequence of point clouds Sj and Sk.

as [54, 24, 7, 34].

When considering the relative pose estimation, several

approaches have also been proposed for solving the min-

imal relative pose problem. See for example [37, 28] for

calibrated cameras. There are other solutions such as [25]

which studies the relative pose estimation with a known

relative rotation angle, [14, 43] for the relative pose with

known directions, [26] for the relative pose with unknown

focal length, solutions invariant to translation [20], and so-

lutions to the generalized relative pose problem [48, 53].

In [6], a hybrid minimal solver that combines relative with

absolute poses is proposed.

1.2. Notation and Problem Definition

For simplicity, we use Sn to denote Scan n. The ith

3D point in Sn is denoted as pSn

i ∈ R
4, which is rep-

resented in homogeneous coordinates. Rotation matrices

and translation vectors are denoted as RSn,Sm ∈ SO(3) &

tSn,Sm ∈ R
3, for transformations from Sn to Sm. We use

the n-cycle to denote the sequences of n 3D scans with loop

closure (first and last point clouds in the sequence have 3D

point correspondences).

The goal is to find the transformation matrices TSn,Sm ∈
SE(3) that transform 3D points from coordinate system Sn

to Sm such that

pSm

i ≃
[
RSn,Sm tSn,Sm

01,3 1

]

︸ ︷︷ ︸
TSn,Sm

pSn

i . (1)

We are given sets of 3D point matches (pSn

i ,pSm

i ). Symbol

≃ denotes that the terms are equal up to a scale factor.

Contributions: We propose novel minimal solvers for the

mini n−cycles in 3D point cloud registration. We propose

three solvers for 3-, 4-, and 5-cycles for the general six de-

grees of freedom and planar motions. The Tab. 1 highlights

the different n−cycles, required point correspondences, and

the number of solutions. To the best of our knowledge, we

are the first to propose and solve these cases.



2. Minimal Solvers

In this section, we formulate the minimal solution for

jointly estimating the poses of n−cameras that occur in an

n−cycle. In all the n−cycles, when n > 2 we use a sim-

ple geometric idea. Let us assume that we would like to

find the registration between two different camera scans S1

and S2. As shown in Fig. 2(a), the basic idea is to first use

two point correspondences to construct a virtual axis pass-

ing through these two points. Now we align the coordinate

frames of S1 and S2 in such a manner that the z−axis of

both these frames are aligned along this virtual axis. The

triplets {ex, ey, ez} and {fx,fy,fz} denote the coordinate

frames for both these cameras after the alignment. Next, the

problem of estimating the transformations between these

coordinate frames can be seen as just estimating the rota-

tion angle around the z−axis. This idea of using simple

predefined transformations before the actual registration al-

lows us to simplify the constraint equations. Once we obtain

the final registration, we can always find the relative poses

between the original coordinate frames, by just using the

inverses of the predefined transformation matrices.

Next, we show the details of the predefined transforma-

tions that we use on the original scans, so that the actual

minimal solvers become easier to derive (see Tab. 1).

2.1. Setting the Stage for Minimal Solvers

Let us consider two point matches (pS1

1 ,pS1

2 ) and

(pS2

1 ,pS2

2 ) in S1 and S2, respectively. We consider the pre-

defined transformations to align the scans such that the new

coordinates frames of S1 and S2 satisfy the following con-

ditions:

• Centered in pS1

1 and pS2

1 , respectively;

• z−axis of both frames are aligned with directions (pS1

2

- pS1

1 ) and (pS2

2 - pS2

1 ), respectively.

A depiction of these predefined transformations is shown in

Fig. 2(a). To get these, we define transformation matrices

HS1,S̃1 ,GS2,S̃2 ∈ SE(3) such that

pS̃1

1,2 ≃ HS1,S̃1pS1

1,2 and pS̃2

1,2 ≃ GS2,S̃2pS2

1,2, (2)

where S̃n denotes the transformed point clouds and

HS1,S̃1 =

[
US1,S̃1 0

0 1

] [
I −qS1

1

0 1

]
and (3)

GS2,S̃2 =

[
VS2,S̃2 0

0 1

] [
I −qS2

1

0 1

]
, (4)

in which US1,S̃1 ,VS2,S̃2 ∈ SO(3) are any rotation matri-

ces that align the z−axis of S1 and S2 (respectively) with

the direction from p1 to p2, and q1 ∈ R
3 represents the

regular coordinates of p1.

(a) Predefined transformations for two point clouds and two correspon-

dences. The remaining degree of freedom is α. Note that e and f are the

transformed coordinate frames of S1 and S2, respectively.

(b) Three point clouds, two correspondences between S1 & S2 and S2 &

S3. α and β are the remaining degrees of freedom.

(c) Four point clouds, two correspondences between S1 & S2, S2 & S3,

and S3 & S4. α, β, and γ are the remaining degrees of freedom.

Figure 2: Representation of the predefined transformations

(a) and the resulting degrees of freedom for the three cam-

era 3D registrations, with two point correspondences be-

tween point clouds one & two and two & three (b). (c)

shows the remaining degrees of freedom for four point

clouds and two 3D point correspondences between one &

two, two & three, and three & four.

The transformation matrix from S1 to S2, after applying

predefined transformations, is as follows:

TS1,S2 = GS2,S̃2

−1




cα −sα 0 0
sα cα 0 0
0 0 1 0
0 0 0 1




︸ ︷︷ ︸
L(α)

HS1,S̃1 , (5)

where L(α) is a single degree of freedom transformation

matrix representing a rotation around the z−axis. We use

cα and sα to denote cos(α) and sin(α), respectively.

Once we align the coordinate frames using the prede-

fined transformations, all we have to compute is one rota-



tion angle for every pair of 3D scans (see Fig. 2). So, for

the case of having two scans, we just focus on getting the

one unknown rotation from Scan 1 to Scan 2. In the next

few sections, we show the minimal solutions for n−cycles.

Note that this idea of using virtual axis to register scans is

straightforward in the case of two cameras, but a little in-

triguing when we start using multiple axes. For different

pairs of cameras in the case of n−cycles, when n > 2, the

underlying idea is still the same. We use only 2 point cor-

respondences between different pairs of 3D scans to realize

the predefined transformations (refer to Fig. 2(a)). Follow-

ing this, we just need to find the corresponding rotation an-

gles.

2.2. Pairwise Registration

We show the two camera registration for illustrating the

idea. By considering the predefined transformations defined

in the previous subsection, this can be easily achieved by

considering a third point correspondence between S̃1 and

S̃2 (see (2)), and checking for α that satisfies

pS̃2

3 ≃ L(α)pS̃1

3 . (6)

Notice that (6) has two linear equations as a function

of cα and sα, meaning that we can compute a single so-

lution for both variables, and therefore a single solution for

α. However, when using noisy data, solutions for cα and sα

will not satisfy the trigonometric constraints cα2+sα2 = 1.

To avoid this, we consider a single constraint of (6), which

we solve as a function of cα and replace it in cα2+sα2 = 1,

which gives up to two solution to the problem. Although

this approach gives more than one solution, they ensure

L(α) is a rotation matrix and therefore TS1,S2 is a transfor-

mation matrix. In addition, one can remove one of the so-

lutions by back-substituting them in (6). As in Procrustes’s

solver, this can be computed in closed-form.

In the following sections, we show the registration for

n−cycles for n > 2. Note that we establish constraints

between different pairs of cameras, but the 3D registration

for all the cameras is computed by jointly solving all the

equations. In other words, the registration is a higher-order

one and not solving different pairwise registrations indepen-

dently.

2.3. 3­Cycle Registration

Now, let us consider three point clouds S1, S2, and S3,

and two correspondences between S1 and S2, and two cor-

respondences between S2 and S3. We start by considering

some predefined transformations to the point clouds, to en-

sure that the respective 3D points satisfy the assumptions of

Sec. 2.1. We aim at finding S̃1, S̃2, and S̃3 that allow us to

write constraints similar to (6). For this purpose, one has

to find HS1,S̃1 , GS2,S̃2 , HS2,S̃2 , and GS3,S̃3 similar to the

ones in (3) and (4), such that

pS̃1

i ≃ HS1,S̃1pS1

i and pS̃3

j ≃ GS3,S̃3pS3

j . (7)

Using these predefined transformations, we define the trans-

formation from S̃1 to S̃3 as

TS̃1,S̃3 = L(β)HS2,S̃2 GS2,S̃2

−1

︸ ︷︷ ︸
K2∈SE(3)

L(α). (8)

By doing this, we reduce the problem of estimating the

transformation between three 3D scans to two degrees of

freedom (in this case angles α and β). A graphical repre-

sentation of this problem is shown in Fig. 2(b).

Now, to compute the transformations we have to use ad-

dition information. Let us consider that we have a corre-

spondence between S1 and S3, i.e. a correspondence to

close the cycle between the first and third cameras (notice

that additional correspondences between S1 & S2 and S2

& S3 can be solved by the method proposed in Sec. 2.3).

Let us denote the correspondence point between S1 and S3

as pS1

5 and pS3

5 , respectively. By applying the predefined

transformation to the data as shown in (7), and using (8),

we get three constraints of the form

pS̃3

5 ≃ L(β)K2L(α)p
S̃1

5 . (9)

Notice that we have two unknowns and three constraints in

(9). Therefore, in general, it is possible to find α and β with

only one point correspondence.

To solve this problem, we use the fact that the third con-

straint in (9) (i.e. its third row) only depends on the un-

known parameter α:

a1cα+ a2sα+ a3 = 0, (10)

where a1, a2, a3 are known coefficients. On the other hand,

if we consider the inverse transformation TS̃3,S̃1 :

pS̃1

5 ≃ L(α)TK−1
2 L(β)TpS̃3

5 (11)

and use, again, the third row of (11), we get a constraint that

only depends on β:

a4cβ + a5sβ + a6 = 0. (12)

Now, to solve the problem we just have to solve (10) &

(12), using the trigonometric constraints cα2 + sα2 = 1 &

cβ2 + sβ2 = 1. Note that the unknowns are decoupled,

meaning that we can compute them separately. This can

be done as follows: 1) we solve (10) as a function of cα;

2) substitute the solution in cα2 + sα2 = 1 (which gives

a two degree polynomial equation in cα); and 3) compute

the roots of the resulting equation giving up to two solu-

tions to cα. The value for sα is given by choosing one in



{±
√
1− cα2} that satisfy (10). This procedure is repeated

for the sβ and cβ, giving two additional solutions for these

two unknowns. Since the pairs of solutions for α and β are

decoupled, we will have up to four valid solutions for our

problem (as reported in Tab. 1). Next, we study the four 3D

scans case.

2.4. 4­Cycle Registration

Let us consider 4 point clouds. Again, assume that we

have two correspondences between S1 & S2, S2 & S3, and

S3 & S4 (see Fig. 2(c)). By following the same assumptions

of previous subsections, we get TS1,S2 as in (5),

TS2,S3 =
(
GS3,S̃3

)−1

L(β)HS2,S̃2 , and (13)

TS3,S4 =
(
GS4,S̃4

)−1

L(γ)HS3,S̃3 . (14)

The matrices G and H are given by applying the method

in Sec. 2.1. Therefore, we have only three degrees of free-

dom remaining to get the relative poses between all the four

3D scans. More specifically, angles α, β, and γ. A triv-

ial solution to this problem would be to consider additional

correspondences between S1 & S2, S2 & S3, or S3 & S4.

One could use a combination of the methods presented in

the previous subsections to solve the relative positions be-

tween the cameras. However, here we are interested in the

4-cycles, i.e. only one correspondence between S1 and S4

in addition to the pairwise correspondences.

By premultiplying the transformations defined in (5),

(13), and (13), we can define

TS̃1,S̃4 = L(γ)K3L(β)K2L(α), (15)

where Ki ∈ SE(3) = HSi,S̃i GSi,S̃i
−1

(similar to (8)).

Now, if we have an additional correspondence between

S1 and S4 (let’s say p7), we write

pS̃4

7 ≃ L(γ)K3L(β)K2L(α)p
S̃1

7 . (16)

Notice that we have three equation and three unknowns,

meaning that in general one can get a solution for the rela-

tive poses using a single point correspondence.

To solve the problem, we take the three constraints in

(16), together with cα2 + sα2 = 1, cβ2 + sβ2 = 1, and

cγ2 + sγ2 = 1. Since in this case we have many unknowns

and high degree polynomial equations, we aim at using au-

tomatic solvers (e.g. [22, 23]). In this paper we use the

automatic Grobner Basis generator provided in [21]. As in-

puts for the automatic generator, we give the unknowns cα,

cβ, cγ, sα, sβ, & sγ and the three constraints of (16) plus

the three trigonometric constraints. The solver gives up to

16 solutions, as indicated in the Tab. 1.

2.5. 5­Cycle Registration

We start by trying a general method for n−cycles, and

show that is feasible only till n = 5. Similar to the cases de-

fined in the previous subsections, we consider two point cor-

respondences between the sequences of 3D scans (without

closing any cycle). Using this data and considering the pre-

viously defined predefined transformations (Sec. 2.1), we

get matrices Ki as shown in (8) and (15). Using this infor-

mation and applying the predefined transformations to the

first and last point-clouds (similar to (7)), for an n−cycle

loop we define the transformation from S̃1 to S̃n as

TS̃1,S̃n = L(θn−1)Kn−1L(θn−2) · · ·L(θ2)K2L(θ1),
(17)

where θi are the unknown degrees of freedom.

Now, for any n = {5, 6, 7}, we will have between four to

six degrees of remaining unknowns. Since each point corre-

spondence between the first and the last 3D scans generates

three constraints, we will need two point correspondences

to close the loop between S̃1 and S̃n:

pS̃n

l+1 ≃ TS̃1,S̃npS̃1

l+1 and pS̃n

l+2 ≃ TS̃1,S̃npS̃1

l+2, (18)

where l = 2(n− 1).
Similar to what we did in the previous subsection, we

use the standard Grobner Basis generator [21]. Specifically,

we provide the generator cθi and sθi (a total of 2(n − 1)
variables) as the unknowns, and choose n − 1 constraints

within the set of equations in (18). The remaining n − 1
constraints are given by the trigonometric relations cθ2i +
sθ2i = 1. The number of solutions for the solver with n = 5
is 32 (as shown in Tab. 1). As we can observe, this line

of research may become computationally infeasible when

n > 5 [6, 50]. For example, in the case of n = 6, we may

have up to 288 solutions and there is no easy way to build

the solver.

3. Planar Motion Case

We consider the problem of solving the 3D registration

between scans when there is only planar motion between

the point-clouds (3 degrees of freedom – 2 translation and 1

rotation).

We note that, in Sec. 2.1, while p1 is used to set the point

cloud’s coordinate system (see (2)), the p2 is only used to

set the direction of the z−axis. Now, one of the features of

the planar motion is that the rotation matrices between the

sequences of 3D scans will have associated a single rota-

tion angle. Without loss of generality, the respective rota-

tion axis can be freely chosen, and in this case we choose the

z−axis. Using this choice, one can conclude that the second

point correspondence in the method presented in Sec. 2.1 is

not needed. Therefore, for the computation of the prede-

fined transformations defined in Sec. 2.1, only one 3D point



Loop Cycle

#Cameras
#Correspondences Total #Solutions

Two #2(S1,S2) 3 2

Three #1(S1,S2); #1(S2,S3); #1(S1,S3) 3 4

Four
#1(S1,S2); #1(S2,S3);

#1(S3,S4); #1(S1,S4)
4 16

Table 2: This table summarizes the minimal number of cor-

respondences required to compute the poses in n−cycles

while considering planar motions. In the table, #i(Sj ,Sk)
means i point correspondences within the sequence of point

clouds Sj ,Sk.

correspondence is required for each pair of 3D scans. The

rest of the solvers follow the steps derived in Secs. 2.2, 2.3,

2.4, and 2.5.

A summary of the number of the correspondences

needed for these problems, as well as the number of solu-

tions that the solvers give is shown in Tab. 2. Notice that, in

this case, the minimal solution for the two point-cloud reg-

istration is two 3D points, meaning that we are looking for

cycles that consider less than two point correspondences be-

tween point-clouds. For that reason, we are only interested

in mini-loop cycles up to four 3D scans.

4. Motion Averaging

In this section, we show a method to use our n−cycle

solvers to generate initial relative poses for a large collec-

tion of 3D scans. First, we construct a graph G = {V, E}
to denote the pose relationship between the cameras. The

vertices V of this graph denote the poses of the cameras,

and the edges E exist if two cameras have any scene over-

lap. We use SURF feature correspondences on the RGB

components of the data to identify the edges for all pairs of

cameras in the pose graph. We consider an edge between

two cameras if we find at least T feature correspondences

between them.

Edge-disjoint pose graph decomposition: In this method,

we decompose the pose graph into edge-disjoint mini-loops.

To achieve this we use a simple depth first search (DFS)

traversal of the graph to identify n−cycles and remove the

corresponding edges, so that they do not reappear in the

next iteration. We first identify all the edge-disjoint 5-cycles

from the graph, and then move on 4-cycles. Once we iden-

tify all the cycles with n = 3, 4, 5, the remaining edges are

handled using the pairwise method. We initialize the rel-

ative poses between pairs of cameras using the associated

n−cycle solvers, or the simple pairwise solver if an edge is

not a member of an n−cycle.

Rotation averaging using Lie group: We obtain the rela-

tive poses between different pairs of cameras using n−cycle

minimal solvers. Due to the redundancy in the edges (i.e.,

Method Pairwise 3-cycle 4-cycle 5-cycle

Mean [ms] 0.0392 0.1192 3.3422 24.954

Table 3: Computation timings for n−cycle solvers in mil-

liseconds (ms). Note that the implementation is in Matlab, a

C++ implementation would speedup the computation time.

we only need a set of edges in a spanning tree to uniquely

compute the pose of each camera), we will have to perform

some kind of averaging of the pose parameters. We use

the rotation averaging framework developed by Chatterjee

and Govindu [8]. Their approach is to first consider the Lie

group structure of 3D rotations and solve the rotation aver-

aging using the L1 method. Using the results from L1 op-

timizers as initialization, they use an iteratively reweighted

least squares (IRLS) approach to derive solutions that are

robust to outliers. Once the rotation parameters are com-

puted, the remaining problem is just linear in the translation

and standard least squares minimization can be used.

5. Experimental Results

We conducted two sets of experiments: (1) 3D regis-

tration on small n−cycle graphs to illustrate the advan-

tages over pairwise methods, (2) 3D registration on a large

dataset by first decomposing the pose graph into smaller

edge-disjoint n−cycles, solving the registration using mini-

mum n−cycle solvers, and finally evaluating the error with

respect to the ground truth.

5.1. Synthetic Data

We consider 400 randomly generated 3D points and five

3D cameras in the environment, within a cube of 400 units

of side length. We consider point correspondences between

different camera pairs. We select a subset of 20 to 70%
random correspondences for testing our algorithms.

Computational time and the number of solutions: From

the data as defined above, we select the minimal number

of correspondences for each of the methods in Tab. 1, and

compute the 3D registration as defined in Sec. 2. We con-

sider the cases: Pairwise, 3-, 4-, and 5-cycles. We repeat

this procedure 105 times with randomly generated data in

each test. In Fig. 3, we show the distribution of the number

of solutions2. The computation time for the solvers is given

in Tab. 3. Note that the pairwise and 3-cycle cases can be

computed using closed-form operations, while the 4- and 5-

cycle cases require iterative techniques, this is reflected in

the experimental results.

Evaluation of the proposed solvers: We use Gaussian

noise with a standard deviation that depends on the distance

2This graphic is limited in both the number of solutions (the number of

solutions for more than 16 is very small) and the number of occurrences.



Figure 3: Number of solutions

obtained from the n−cycle

solvers proposed in Sec. 2. 105

randomly generated trials were

considered.

Figure 4: We aim at finding the transformations between five 3D scans. We consider

four different approaches: 1) Pairwise which uses only the technique of Sec. 2.2; 2)

3-cycle that uses only the method in Sec. 2.3 (compute S1 to S3 and S3 to S5); 3)

4-,2-cycle that uses the method in Sec. 2.4 from S1 to S4 and the one in Sec. 2.2 from

S4 to S5; and, finally, 4) 5-cycle that uses only the method in Sec. 2.5.

of the points from the camera center, to simulate a real 3D

sensor, and the following methods:

• Pairwise: in which we use the method of Sec. 2.2

to compute individual 3D registrations from S1 to S2,

S2 to S3, S3 to S4, and S4 to S5.

• 3-cycle: method in Sec. 2.3 to compute transforma-

tions between S1, S2, & S3 and S3, S4, & S5;

• 4-,2-cycle: method in Sec. 2.4 to compute the 3D

registrations from S1, S2, S3, & S4, and the method

in Sec. 2.2 to compute the 3D registrations from S4 to

S5; and

• 5-cycle: method in Sec. 2.5 to compute all the

transformation from S1, S2, S3, S4, and S5.

The minimal solvers were used in the RANSAC framework.

A fixed number of 1000 RANSAC iterations was used, with

no adaptive stopping criterion. A point distance of 50 units

was used for the inlier counting. The registration from S1 to

S5 is computed by multiplying each of the individual trans-

formations from S1 to S5.

We show the angular rotation & translation errors and

the percentage inliers in Fig. 4. For each level of noise, 103

randomly generated trials were used. These results show

that the n−cycle solvers reduce the overall error in the es-

timation of the rotation and translation parameters. While

the 5−cycle gives the lowest rotation and translation error,

it also achieves the lowest number of inliers.

5.2. Real Experiments

For real experiments, we use three sequences from the

TUM dataset [39] that come with the ground-truth positions

of the cameras (freiburg1 room, freiburg1 xyz,

and freiburg2 desk sequences). We extract and match

features using SURF [1] on the RGB images, and get the

associated 3D points from the correspondent points in the

Depth image. We start by analyzing the performance of the

individual solvers separately and, then, we show their appli-

cation in a large sequence using the pose graph and motion

averaging discussed in Sec. 4.

Performance of the minimal solvers: From the dataset,

we get sequences of 5 scans with loop cycles (i.e. sets of

scans with enough correspondences between Si & Sj , to

compute the poses using the respective minimal solvers).

For each set of 5 scans, we compute the 3D registra-

tions of all the 5 scans using the Pairwise, 3-cycle,

4-,2-cycle, and 5-cycle methods in a RANSAC

framework, similar to what was done in the evaluation of the

proposed solvers in the previous subsection. A fixed num-

ber of 2000 RANSAC iterations was used for all the meth-

ods, with no adaptive stopping criterion. A point distance

of 10[cm] was used as the threshold for the inlier counting.

After getting the solutions, the inliers from all the different

four alternatives are injected in a non-minimal pairwise 3D

registration refinement method [45], to compute the cam-

eras’ relative position from S1 to S2, S2 to S3, S3 to S4,

and S4 to S5.

The rotation and translation errors in the transforma-

tion from S1 to S5 (given by multiplying each of the pair-

wise transformations matrices from S1 to S5) are shown

in Tab. 4. The n-cycle methods generally outperforms the

pairwise technique. The 3-cycle performs slightly better

than the 4-,2-cycle. The 5-cycle solver produces

better results in terms of rotation errors. In addition, in

Tab. 4 we also show the number of times that the n−cycles

outperforms the Pairwise technique.

TUM sequences: We get 100 3D scans from the

three sequences, and define a graph according to Sec. 4.

The total number of edges in the pose graph for the

sequences freiburg1 room, freiburg1 xyz, and

freiburg2 desk are 435, 1751, and 687, respectively.

The number of n-cycle loops generated from each pose



Figure 5: Results for the 3D point-cloud registration, using the TUM RGB-D data-set [39]. We use three different sequences

of 3D scans, freiburg1 room (at the left), freiburg1 xyz (at the center), and freiburg2 desk (at the right) and

the method described in the paper to compute the relative transformations between the cameras. In these figures we show the

registration of 100 RGB-D scans.

Errors
n−cycles better

than Pairwise

n−cycles equal

to the Pairwise

Method Rot. Tran. Rot. Tran. Rot. Tran.

Pairwise 0.90 2.53 — — — —

3-cycle 0.80 2.44 53% 48% 30% 32%

4-,2-cycle 0.80 2.47 46% 36% 36% 39%

5-cycle 0.77 2.60 63% 46% 8% 9%

Table 4: Mean errors for the rotation (in degrees), trans-

lation (centimeters), and the number of times that the

n−cycles outperforms the Pairwise technique3, using mini

sequences of 5 3D scans in the TUM dataset.

graph is shown in Tab. 5(a).

After getting the poses on the pose graph using the pro-

posed solvers in the RANSAC framework, we use the ro-

tation averaging framework [8] to compute the final rota-

tion matrices for all the cameras. After getting the rotations

from the sequences, we get the corresponding translation

parameters that satisfy the 3D point correspondences, using

a standard least squares minimization method. The errors

in the relative poses w.r.t. the ground-truth are shown in

Tab. 5(b). The final registered scans are shown in Fig. 5.

6. Discussion

The main contribution of this paper is to show that one

can jointly compute the pose of the cameras in n−cycles

using the minimal number of point correspondences. In

contrast to pairwise methods, the proposed approach uses

only a fewer point correspondences. For example, comput-

ing the poses of 4 cameras in 4-cycles would only require 7

point correspondences, while the pairwise methods would

require a minimum of 9 correspondences (3 between every

camera pair). This may come as a surprise to many of us,

since we assume that we need a minimum of 3 point corre-

spondences for registering two scans. Actually, the 3-point

relative pose solver for 3D cameras is not a minimal solu-

tion. It is only a near-minimal solution. To be precise, we

3Equal in the table means that the differences in the errors computed

by the n−cycles and pairwise are less than 10−4[deg] and 10−3[mm].

Data-Set Pairwise 3-Cycle 4-Cycle 5-Cycle

freiburg1 room 58 1 1 74

freiburg1 xyz 57 0 1 338

freiburg2 desk 53 2 2 124

(a) #n-cycle loops in the 100 3D scans.

Data-Set Rotation [deg] Translation [cm]

freiburg1 room 1.96 4.52

freiburg1 xyz 0.740 2.44

freiburg2 desk 1.33 2.26

(b) Errors in the estimation of the transformation parameters.

Table 5: Results obtained for the data-sets tested in this

paper, i.e. 3D registrations shown in Fig. 5. (a) shows the

the number of edges covered by each of the solvers, and (b)

presents the average of the rotation and translation errors.

actually need only 2 1
3 point correspondences to register two

scans if we count the number of pose variables and number

of constraints from point correspondences. Thus we can

see that for obtaining 4 camera poses (assuming one of the

cameras as the reference frame), our method only requires

3 × 2 1
3 = 7 point matches. This implies that our n−cycle

solvers are exactly minimal, and not near minimal ones.

The proposed solvers provide alternate ways to obtain

relative poses for pairs of cameras, in addition to standard

pairwise methods, and this can be very beneficial in pose

graph refinement or any motion averaging framework [8].

We observed that it is not practically feasible to solve the

n−cycle solver when n > 5.

Acknowledgements

This work was partially supported by the Portuguese

Foundation for Science and Technology (FCT), project

UID/EEA/50009/2019, National Science Foundation (NSF)

grant IIS 1764071, and by the Swedish Foundation for

Strategic Research (SSF), project COIN. We thank the re-

viewers and ACs for valuable feedback.



References

[1] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF:

Speeded up robust features. In European Conf. Computer

Vision (ECCV), pages 404–417, 2006.

[2] Florian Bernard, Frank R. Schmidt, Johan Thunberg, and

Daniel Cremers. A combinatorial solution to non-rigid 3D

shape-to-image matching. In IEEE Conf. Computer Vision

and Pattern Recognition (CVPR), pages 1436–1445, 2017.

[3] Paul J. Besl and Neil D. McKay. A method for registration

of 3-D shapes. IEEE Trans. Pattern Analysis and Machine

Intelligence (T-PAMI), 14(2):239–256, 1992.

[4] Uttaran Bhattacharya, Sumit Veerawal, and Venu Madhav

Govindu. Fast multiview 3D scan registration using planar

structures. In Int’l Conf. 3D Vision (3DV), pages 548–556,

2017.

[5] Alvaro Parra Bustos, Tat-Jun Chin, Anders Eriksson, Hong-

dong Li, and David Suter. Fast rotation search with stereo-

graphic projections for 3D registration. IEEE Trans. Pattern

Analysis and Machine Intelligence (T-PAMI), 38(11):2227–

2240, 2016.

[6] Federico Camposeco, Andrea Cohen, Marc Pollefeys, and

Torsten Sattler. Hybrid camera pose estimation. In

IEEE/CVF Conf. Computer Vision and Pattern Recognition

(CVPR), pages 136–144, 2018.

[7] Federico Camposeco, Torsten Sattler, and Marc Pollefeys.

Minimal solvers for generalized pose and scale estimation

from two rays and one point. In European Conf. Computer

Vision (ECCV), pages 202–218, 2016.

[8] Avishek Chatterjee and Venu Madhav Govindu. Efficient and

robust large-scale rotation averaging. In IEEE Int’l Conf.

Computer Vision (ICCV), pages 521–528, 2013.

[9] Changhyun Choi, Alexander J. B. Trevor, and Henrik I.

Christensen. RGB-D edge detection and edge-based registra-

tion. In IEEE/RSJ Int’l Conf. Intelligent Robots and Systems

(IROS), pages 1568–1575, 2013.

[10] Gil Elbaz, Tamar Avraham, and Anath Fischer. 3D point

cloud registration for localization using a deep neural net-

work auto-encoder. In IEEE Conf. Computer Vision and Pat-

tern Recognition (CVPR), pages 2472–2481, 2017.

[11] Felix Endres, Jurgen Hess, Nikolas Engelhard, Jurgen Sturm,

Daniel Cremers, and Wolfram Burgard. An evaluation of the

RGB-D SLAM system. In IEEE Int’l Conf. Robotics and

Automation (ICRA), pages 1691–1696, 2012.

[12] Felix Endres, Jurgen Hess, Jurgen Sturm, Daniel Cremers,

and Wolfram Burgard. 3-D mapping with an RGB-D camera.

IEEE Trans. Robotics (T-RO), 30(1):177–187, 2014.

[13] Martin A. Fischler and Robert C. Bolles. Random Sample

Consensus: A paradigm for model fitting with applications to

image analysis and automated cartography. Commun. ACM,

24(6):381–395, 1981.

[14] Friedrich Fraundorfer, Petri Tanskanen, and Marc Pollefeys.

A minimal case solution to the calibrated relative pose prob-

lem for the case of two known orientation angles. In Euro-

pean Conf. Computer Vision (ECCV), pages 269–282, 2010.

[15] Venu Madhav Govindu and Pooja A. On averaging multi-

view relations for 3D scan registration. IEEE Trans. Image

Processing (T-IP), 23(3):1289–1302, 2014.

[16] Maciej Halber and Thomas Funkhouser. Fine-to-coarse

global registration of RGB-D scans. In IEEE Conf. Com-

puter Vision and Pattern Recognition (CVPR), pages 6660–

6669, 2017.

[17] Tong Ke and Stergios I. Roumeliotis. An efficient algebraic

solution to the perspective-three-point problem. In IEEE

Conf. Computer Vision and Pattern Recognition (CVPR),

pages 4618–4626, 2017.

[18] Marc Khoury, Qian-Yi Zhou, and Vladlen Koltun. Learning

compact geometric features. In IEEE Int’l Conf. Computer

Vision (ICCV), pages 153–161, 2017.

[19] Laurent Kneip, Davide Scaramuzza, and Roland Siegwart. A

novel parametrization of the perspective-three-point problem

for a direct computation of absolute camera position and ori-

entation. In IEEE Conf. Computer Vision and Pattern Recog-

nition (CVPR), pages 2969–2976, 2011.

[20] Laurent Kneip, Roland Siegwart, and Marc Pollefeys. Find-

ing the exact rotation between two images independently of

the translation. In European Conf. Computer Vision (ECCV),

pages 696–709, 2012.

[21] Zuzana Kukelova, Martin Bujnak, and Tomas Pajdla. Au-

tomatic generator of minimal problem solvers. In European

Conf. Computer Vision (ECCV), pages 302–315, 2008.

[22] Zuzana Kukelova, Martin Bujnak, and Tomas Pajdla. Poly-

nomial eigenvalue solutions to minimal problems in com-

puter vision. IEEE Trans. Pattern Analysis and Machine In-

telligence (T-PAMI), 7(34):1381–1393, 2012.

[23] Viktor Larsson, Kalle Astrom, and Magnus Oskarsson. Poly-

nomial solvers for saturated ideals. In IEEE Int’l Conf. Com-

puter Vision (ICCV), pages 2307–2316, 2017.

[24] Gim Hee Lee. A minimal solution for non-perspective pose

estimation from line correspondences. In European Conf.

Computer Vision (ECCV), pages 170–185, 2016.

[25] Bo Li, Lionel Heng, Gim Hee Lee, and Marc Pollefeys. A

4-point algorithm for relative pose estimation of a calibrated

camera with a known relative rotation angle. In IEEE/RSJ

Int’l Conf. Intelligent Robots and Systems (IROS), pages

1595–1601, 2013.

[26] Hongdong Li. A simple solution to the six-point two-view

focal-length problem. In European Conf. Computer Vision

(ECCV), pages 200–213, 2006.

[27] Hongdong Li. Multi-view structure computation without ex-

plicitly estimating motion. In IEEE Conf. Computer Vision

and Pattern Recognition (CVPR), pages 2777–2784, 2010.

[28] Hongdong Li and Richard Hartley. Five-point motion esti-

mation made easy. In Int’l Conf. Pattern Recognition (ICPR),

volume 1, pages 630–633, 2006.

[29] Hongdong Li and Richard Hartley. The 3D-3D registra-

tion problem revisited. In IEEE Int’l Conf. Computer Vision

(ICCV), pages 1–8, 2007.

[30] Chen Liu, Jiaye Wu, and Yasutaka Furukawa. FloorNet:

A unified framework for floorplan reconstruction from 3D

scans. In European Conf. Computer Vision (ECCV), pages

203–219, 2018.

[31] Yan Lu and Dezhen Song. Robust RGB-D odometry using

point and line features. In IEEE Int’l Conf. Computer Vision

(ICCV), pages 3934–3942, 2015.



[32] Lingni Ma, Christian Kerl, Jorg Stuckler, and Daniel Cre-

mers. CPA-SLAM: Consistent plane-model alignment for

direct RGB-D SLAM. In IEEE Int’l Conf. Robotics and Au-

tomation (ICRA), pages 1285–1291, 2016.

[33] Lingni Ma, Jurg Stuckler, Christian Kerl, and Daniel Cre-

mers. Multi-view deep learning for consistent semantic map-

ping with rgb-d cameras. In IEEE/RSJ Int’l Conf. Intelligent

Robots and Systems (IROS), pages 598–605, 2017.

[34] Pedro Miraldo, Tiago J. Dias, and Srikumar Ramalingam. A

minimal closed-form solution for multi-perspective pose es-

timation using points and lines. In European Conf. Computer

Vision (ECCV), pages 490–507, 2018.

[35] Andriy Myronenko and Xubo Song. Point set registration:

Coherent point drift. IEEE Trans. Pattern Analysis and Ma-

chine Intelligence (T-PAMI), 32(12):2262–2275, 2010.

[36] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges,

David Molyneaux, David Kim, Andrew J. Davison, Push-

meet Kohi, Jamie Shotton, Steve Hodges, and Andrew

Fitzgibbon. Kinectfusion: Real-time dense surface mapping

and tracking. In IEEE Int’l Symposium on Mixed and Aug-

mented Reality (ISMAR), pages 127–136, 2011.

[37] David Nister. An efficient solution to the five-point relative

pose problem. IEEE Trans. Pattern Analysis and Machine

Intelligence (T-PAMI), 26(6):756–770, 2004.

[38] David Nister and Frederik Schaffalitzky. Four points in two

or three calibrated views: Theory and practice. Int’l J. Com-

puter Vision (IJCV), 67(2):211–231, 2006.

[39] Technical University of Munich (TUM). RGB-D SLAM

dataset and benchmark. https://vision.in.tum.

de/data/datasets/rgbd-dataset. Accessed:

2018-11-13.

[40] Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Colored

point cloud registration revisited. In IEEE Int’l Conf. Com-

puter Vision (ICCV), pages 143–152, 2017.

[41] Mikael Persson and Klas Nordberg. Lambda twist: An ac-

curate fast robust perspective three point (P3P) solver. In

European Conf. Computer Vision (ECCV), pages 334–349,

2018.

[42] Srikumar Ramalingam and Yuichi Taguchi. A theory of min-

imal 3D point to 3D plane registration and its generalization.

Int’l J. Computer Vision (IJCV), 102(1-3):73–90, 2013.

[43] Olivier Saurer, Pascal Vasseur, Cedric Demonceaux, and

Friedrich Fraundorfer. A homography formulation to the 3pt

plus a common direction relative pose problem. In Asian

Conf. Computer Vision (ACCV), pages 288–301, 2015.

[44] Johannes L. Schonberger, Marc Pollefeys, Andreas Geiger,

and Torsten Sattler. Semantic visual localization. In

IEEE/CVF Conf. Computer Vision and Pattern Recognition

(CVPR), pages 6896–6906, 2018.

[45] Peter H. Schonemann. A generalized solution of the orthog-

onal procrustes problem. Psychometrika, 31(1):1–10, 1966.

[46] Aleksandr V. Segal, Dirk Haehnel, and Sebastian Thrun.

Generalized-ICP. In Robotics: Science and Systems (RSS),

2009.

[47] Miroslava Slavcheva, Maximilian Baust, Daniel Cremers,

and Slobodan Ilic. KillingFusion: Non-rigid 3D reconstruc-

tion without correspondences. In IEEE Conf. Computer

Vision and Pattern Recognition (CVPR), pages 5474–5483,

2017.

[48] Henrik Stewenius, David Nister, Magnus Oskarsson, and

Kalle Astrom. Solutions to minimal generalized relative pose

problems. In Workshop on Omnidirectional Vision (OM-

NIVIS), 2005.

[49] Jurgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram

Burgard, and Daniel Cremers. A benchmark for the evalua-

tion of RGB-D SLAM systems. In IEEE/RSJ Int’l Conf. In-

telligent Robots and Systems (IROS), pages 573–580, 2012.

[50] Chris Sweeney, Laurent Kneip, Tobias Höllerer, and

Matthew Turk. Computing similarity transformations from

only image correspondences. In IEEE Conf. Computer Vi-

sion and Pattern Recognition (CVPR), pages 3305–3313,

2015.

[51] Gary K. L. Tam, Zhi-Quan Cheng, Yu-Kun Lai, Frank C.

Langbein, Yonghuai Liu, David Marshall, Ralph R. Mar-

tin, Xian-Fang Sun, and Paul L. Rosin. Registration of 3D

point clouds and meshes: A survey from rigid to nonrigid.

IEEE Trans. Visualization and Computer Graphics (T-VCG),

19(7):1199–1217, 2013.

[52] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-

Yi Zhou. Tangent convolutions for dense prediction in 3D. In

IEEE/CVF Conf. Computer Vision and Pattern Recognition

(CVPR), pages 3887–3896, 2018.

[53] Jonathan Ventura, Clemens Arth, and Vincent Lepetit. An

efficient minimal solution for multi-camera motion. In IEEE

Int’l Conf. Computer Vision (ICCV), pages 747–755, 2015.

[54] Jonathan Ventura, Clemens Arth, Gerhard Reitmayr, and Di-

eter Schmalstieg. A minimal solution to the generalized

pose-and-scale problem. In IEEE Conf. Computer Vision and

Pattern Recognition (CVPR), pages 422–429, 2014.

[55] Ping Wang, Guili Xu, Zhengsheng Wang, and Yuehua

Cheng. An efficient solution to the perspective-three-point

pose problem. Computer Vision and Image Understanding

(CVIU), 166:81–87, 2018.

[56] Jiaolong Yang, Hongdong Li, and Yunde Jia. Go-ICP: Solv-

ing 3D registration efficiently and globally optimally. In

IEEE Int’l Conf. Computer Vision (ICCV), pages 1457–1464,

2013.

[57] Anestis Zaganidis, Li Sun, Tom Duckett, and Grzegorz Ciel-

niak. Integrating deep semantic segmentation into 3-D point

cloud registration. IEEE Robotis and Automation Letters

(RA-L), 3(4):2018, 2942-2949.

[58] Huayi Zeng, Jiaye Wu, and Yasutaka Furukawa. Neural pro-

cedural reconstruction for residential buildings. In European

Conf. Computer Vision (ECCV), pages 759–775, 2018.

[59] Michael Zollhofer, Matthias Nießner, Shahram Izadi,

Christoph Rehmann, Christopher Zach, Matthew Fisher,

Chenglei Wu, Andrew Fitzgibbon, Charles Loop, Christian

Theobalt, and Marc Stamminger. Real-time non-rigid re-

construction using an RGB-D camera. ACM Trans. Graph.,

33(4):156:1–156:12, 2014.


