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Topological Hochschild Homology and Higher
Characteristics
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We show that an important classical fixed point invariant, the Reidemeister trace,
arises as a topological Hochschild homology transfer. This generalizes a corre-
sponding classical result for the Euler characteristic and is a first step in showing the
Reidemeister trace is in the image of the cyclotomic trace. The main result follows
from developing the relationship between shadows [23], topological Hochschild
homology, and Morita invariance in bicategorical generality.

16D90, 19D55, 55R12; 18D05, 55M20

1 Introduction

Many of the technical achievements of modern homotopy theory and algebraic geometry
are motivated by questions arising from fixed point theory. Lefschetz’s fixed point
theorem is an incredibly successful application of cohomology theory, and it provides the
intuition for Grothendieck’s development of étale cohomology, via the Weil conjectures.
Building on the Riemann-Roch theorem, the Atiyah-Singer index theorem [1] is in
essence also a fixed point theorem. In each of these theorems, the goal is to obtain
geometric information about fixed points from cohomological information. In this
paper, we begin to relate the cyclotomic trace to fixed point theory, with topological
Hochschild homology playing the role of the cohomology theory.

The most basic cohomological invariant of a self-map f : X → X is the Lefschetz
number; it is a sort of twisted Euler characteristic. The Lefschetz number detects fixed
points, but it is not a complete invariant. For that we need a more powerful invariant:
the Reidemeister trace, defined as follows. Let {x1, . . . , xn} be the set of fixed points
of f . We say xi and xj are in the same fixed point class if there is a path γ from xi to
xj such that γ ' f (γ) relative {xi, xj} = {f (xi), f (xj)}. This is an equivalence relation
which partitions the set of fixed points into fixed point classes, and the free abelian
group on fixed point classes is denoted Z[π1(X)f ]. The Reidemeister trace of f is
R(f ) =

∑
xi

ind(xi)[xi] ∈ Z[π1Xf ]. We then have L(f ) =
∑

xi
ind(xi). The Reidemeister
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trace is a more refined invariant than the Lefschetz number since it supports a converse
to the Lefschetz fixed point theorem [13, 35].

From the perspective of homotopy theory, this description of the Reidemeister trace
is unsatisfying. There are many reasons for this. One is that in this formulation the
Reidemeister trace appears to be a strange combination of unstable and stable data. This
can be resolved by recognizing that the Reidemeister trace is a map of spectra

S→ Σ∞+ L Xf ,

where L Xf is the space of paths x→ f (x) [23, 24].

Experience with algebraic K -theory makes the above formulation of the Reidemeister
trace very suggestive. Algebraic K -theory is a universal receptacle for Euler characteris-
tics [34, 2, 5], and it comes equipped with the “cyclotomic trace” map K(R)→ THH(R),
where the target is an invariant known as topological Hochschild homology [8]. For
a topological space X , the algebraic K -theory of X is defined to be K(Σ∞+ ΩX), and
π0K(Σ∞+ ΩX) contains a canonical element [X] corresponding to X . It is a folk theorem
that the composition

S [X]−−→ K(Σ∞+ ΩX) tr−→ THH(Σ∞+ ΩX) ' Σ∞+ L X → S

is the Euler characteristic.

The appearance of the loop space and Euler characteristic strongly suggests that the
“twisted Euler characteristic” R(f ) should arise in a very similar way, and there should
be corresponding higher traces. In future work we show that indeed, R(f ) is in the
image of some cyclotomic trace. The main step in showing that is completed in this
paper.

Theorem 1.1 Let X be a topological space homotopy equivalent to a finite CW-complex.
The Reidemeister trace is naturally equivalent to the THH transfer

THH(Modc
S)→ THH(Modc

Σ∞+ ΩX)→ THH(Modc
Σ∞+ ΩX; F).

In this statement Modc
A is the category of compact A modules. The object THH(Modc

A; F)
is a twisted variant of THH (Definition 2.9).

The equivalence referenced in Theorem 1.1 is induced by Morita equivalences, which
are maps

THH(A) ∼−→ THH(Modc
A).

In this direction the map is not hard to define, but the homotopy inverse is far less
obvious. It would be desirable to know the inverse. We give a reasonably description of
the inverse, and give a very explicit description on π0 .
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For a ring spectrum A, an endomorphism f : M → M of a compact A-module spectrum
determines a map S → End(M). Composing with the inclusion of the zero skeleton
defines a map

S→ End(M)→ THH(Modc
A)

and so an element [f ] ∈ π0 THH(Modc
A). This sets up the second main theorem of this

paper.

Theorem 1.2 The image of [f ] ∈ π0 THH(Modc
A) under the Morita invariance isomor-

phism

THH(Modc
A) ' THH(A)

is the bicategorical trace of f . In particular, for a module M ∈ Modc
A , the image of

[idM] is χ(M).

The bicategorical trace is defined in Definition 3.7.

As indicated above, all of these invariants are generalizations of the Euler characteristic
and, less obviously, they share many formal properties. This observation provides a
conceptually clean and very general approach to both Theorems 1.1 and 1.2: duality,
shadows and traces in bicategories [23, 26] exactly capture the relevant properties of the
Euler characteristic and its generalizations. Then these theorems are special cases of far
more general results that are proven without any reference to a particular bicategory.

The relevant bicategorical theoretic machinery is developed or recalled in the body of
the paper. The key foundational concepts are

• base change objects (see Definition 2.7).

• the trace (see Definition 3.7)

• the Euler characteristic (see Definition 3.12)

• Morita equivalences (see Section 4)

Every theorem in this paper studies the interplay between some of these ingredients.
For the convenience of the reader, we provide a concordance of these results in Fig. 1,
so that they may see the logical dependencies. The four boxed theorems at the top of
the figure are the results from which all of the results in this paper follow. The logical
progression is one of gradual specialization — the difficulty is in identifying the correct
categorical context for proving the main results, not in the category theory itself.
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Lemma 3.11

Theorem 3.14
Composite of dual pairs

Corollary 3.15

Proposition 4.5
Morita equivalence and

Euler characteristics

Proposition 4.6
Morita equivalence

and traces

Corollary 4.7 Proposition 5.7

Lemma 5.8
Euler characteristic

and base change

Corollary 5.9

Theorem 5.13

Corollary 5.14Corollary 5.16

Proposition 6.5

Theorems 1.1 and 6.6

Proposition 7.3

Theorem 7.6

Theorems 1.2 and 7.8

Proposition 3.16
Tightening

Figure 1: Concordance of results
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1.1 Outline

In Section 2 we establish some results about the bicategory of spectral categories, and
how THH behaves on these. We prove that THH is a shadow in the sense of [23]. In
Section 3 we define traces and Euler characteristics in bicategories. In the bicategorical
context, the Euler characteristic is an invariant of 1-cells, and we establish a number of
results about the composition of these characteristics.

Section 4 and Section 5 are devoted to the properties of traces and Euler characteristics
under Morita invariance. These are the technical core of the paper, and every result
needed to address the main example is treated in great generality in these sections.
Section 4 addresses how traces behave with respect to Morita invariance, while Section 5
discusses how bicategorical Euler characteristics behave under certain base change
maps.

Having related shadows and THH, in Section 6 we relate the transfer in THH to the
Reidemeister trace. This is achieved by observing that transfers in THH are nothing
more than an example of base change. The results from Section 4 and Section 5 then
allow us to very explicitly identify certain transfers.

In Section 7 we show that the “inclusion of objects” map on THH is exactly computed
by the bicategorical trace, finally relating the two notions of trace that arise in the
literature.

A crucial, but lengthy, computation is relegated to the appendix.

1.2 Bicategories and Notation

Here we set our definitions and notations for bicategories. For much more thorough
treatments see [3, 18]. A bicategory B consists of objects, A,B, . . ., called 0-cells,
and categories B(A,B) for each pair of objects A,B. Objects in the category B(A,B)
are called 1-cells and morphisms are called 2-cells. The unit 1-cell associated to a
0-cell A is denoted UA . There are horizontal composition functors

� : B(A,B)×B(B,C)→ B(A,C).

They need not be strictly associative or unital.

The most illuminating examples of bicategories for this paper are:

• The bicategory whose 0-cells are rings and, for rings A and B, B(A,B) is the
category of (A,B)-bimodules. The horizontal composition is the tensor product.

Algebraic & Geometric Topology XX (20XX)



1006 Jonathan A. Campbell and Kate Ponto

• The bicategory whose 0-cells are spaces and, for spaces A and B, B(A,B) is the
category of spaces over A× B. The horizontal composition is the pullback along
the diagonal. This bicategory also has a stable version [22].

1.3 Acknowledgments

This paper should be regarded as a step in manifesting a perspective linking fixed point
theory, K -theory, and topological Hochschild homology that has long been known to
experts like Randy McCarthy, John Klein, and Bruce Williams. Parts of this perspective
have appeared explicitly in the unpublished thesis of Iwashita [16].

Campbell thanks Randy McCarthy for a useful conversation about K -theory and fixed
point theory. He also thanks Ralph Cohen for teaching him the ubiquity and utility of
the free loop space. Ponto was partially supported by a Simons Collaborations Grant.

We are especially appreciative of the efforts of a very helpful referee whose insights
significantly improved this paper.

2 THH for Spectral Categories and Shadows

In this section we define topological Hochschild homology and review the properties of
spectral categories that are useful for our main applications. We show that THH, as
an invariant of spectrally enriched categories, is a shadow in the sense of [23]. This
allows us to work in the generality of bicategories, easing and clarifying proofs and
simplifying later work.

As we will make clear, the natural home for THH is the bicategory of spectral categories.
The other familiar property of THH, Morita invariance, is a consequence of this
structure. We emphasize that for proving general theorems about THH almost no
other structure is used except for that provided by shadows. There is precedent for this
viewpoint in the literature. In [6] the authors essentially manipulate THH as a shadow.
As another example, in order to explore formal properties of Hochschild homology of
DG-categories, Kaledin in [17] defines “trace functors” and then notes that they are
similar to the second-named author’s shadows. From this perspective, there is in some
sense nothing “special” about THH. Of course, its main property is that it receives a
map from algebraic K -theory, but we are not yet using that structure.

Topological Hochschild homology is defined at varying levels of generality: it can be
defined for ring spectra [7], rings with a bimodule coordinate [11], spectral categories
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and spectral categories with a bimodule coordinate [6]. For the moment, we work in
the generality of spectral categories and bimodules. We begin by considering spectral
categories enriched in either symmetric or orthogonal spectra [21].

Definition 2.1 A spectral category C is pointwise cofibrant if each mapping spectrum
C (a, b) is cofibrant in the enriching category.

Definition 2.2 Let C be a spectral category. Then a C -module is a spectral functor
C → Sp.

Definition 2.3 A (C ,D)-bimodule is a functor M : C op ∧D → Sp. That is, M is
a collection of spectra M (c, d) for c ∈ C , d ∈ D together with maps

C (c, c′) ∧M (c′, d)→M (c, d)

M (c, d) ∧D(d, d′)→M (c, d′)

An (C ,D)-bimodule is pointwise cofibrant if M (c, d) is cofibrant. A morphism
of (C ,D)-bimodules M →M ′ is a collection of maps M (c, d)→M ′(c, d) which
commute with the appropriate structure.

Remark 2.4 Note that this has the opposite variance of what is standard for bimodules
in the literature. This convention seems to be more useful for bookkeeping for us.

Definition 2.5 Let C be a pointwise cofibrant spectral category, and Q a (C ,C )-
bimodule. The topological Hochschild homology of C with coefficients in Q is the
geometric realization of a spectrum whose nth simplicial level is

THH(C ; Q)n := Ncy
n (C ,Q) =

∨
c0,...,cn

C (c0, c1)∧C (c1, c2)∧· · ·∧C (cn−1, cn)∧Q(cn, c0)

That is,
THH(C ; Q) := |THH(C ; Q)•|

Remark 2.6 The reader is warned that most literature makes a distinction between
Bökstedt’s construction THH(C ; Q) and Ncy(C ; Q). When C is pointwise cofibrant,
they are equivalent. Since we will work on the level of homotopy categories, and ignore
questions of equivariance, we therefore ignore the distinction.

Spectral bimodules may be manufactured from functors. This is an example of what we
later call base change.
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Definition 2.7 Let F : A → C and G : B → C be functors between spectral
categories. Define an (A ,B)-bimodule FCG as follows. For objects a ∈ A and
b ∈ B

FCG(a, b) := C (F(a),G(b)).

The right action of B on FCG is given by the functor G:

FCG(a, b) ∧B(b, b′) = C (F(a),G(b)) ∧B(b, b′)→ C (F(a),G(b)) ∧ C (G(b),G(b′))

→ C (F(a),G(b′)) = FCG(a, b′)

The left action of A is similar.

Example 2.8 When F : C → C is an endofunctor and G = id, we can form FC , and
similarly CF .

Definition 2.9 Let C be a pointwise cofibrant spectral category and F : C → C be an
endofunctor. We defined the right twisted topological Hochschild homology to be

THH(C ; F) := THH(C ; CF)

Remark 2.10 When F = id, we recover THH(C ).

Example 2.11 A good example to keep in mind is the following. Let A be a
commutative ring spectrum, P be an A-module, and let Modc

A denote the category
of compact A-modules. Consider the functor − ∧A P : Modc

A → Modc
A given by

M 7→ M ∧A P, where M ∈ Modc
A . We show in Example 5.11 that the twisted

THH(Modc
A;− ∧A P) coincides with THH(A; P).

Topological Hochschild homology is clearly functorial in the bimodule coordinate so
that given a map of (C ,C )-bimodules Q → Q′ there is a map

THH(C ; Q)→ THH(C ; Q′).

Furthermore, if A → C is a map, then we get an induced map THH(A )→ THH(C ).
There is also a refinement of both [6]. Let F : A → C be a map of spectral categories
and let Q be a (C ,C )-bimodule. Then there is a map

THH(A ; FQF)→ THH(C ,Q)

and if there is a map P → FQF we obtain

THH(A ; P)→ THH(C ,Q).
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We now describe the bicategory structure on the category of spectral categories. First,
we note some homotopical properties of spectral categories. In the sequel, we work with
a bicategory enriched in various homotopy categories; the following remarks establish
that we may do this.

To begin, we have the following rephrasing of [30, Prop. 6.1] found in [6, Prop. 2.4].

Proposition 2.12 The category, Mod(C ,D) of (C ,D)-bimodules forms a closed model
category with object-wise weak equivalences.

For any small spectral category C , we have the following rephrasing of [30, Prop. 6.3]
due to [6, Prop. 2.7, Prop. 2.8].

Proposition 2.13 Given a small spectral category C there is an endofunctor Q : C atSp →
C atSp such that QC is pointwise cofibrant and there is a map QC → C that is a
pointwise weak equivalence. Furthermore, if M is a cofibrant (C ,D)-module, then
M is pointwise cofibrant.

Furthermore, by the remark following [6, Prop. 3.6], if C is pointwise cofibrant, and
P →P ′ is a weak equivalence of spectral categories, then the induced map

THH(C ,P)→ THH(C ,P ′)

is a weak equivalence. Thus, for instance, if QP →P is a cofibrant replacement of
P , THH(C ,QP)→ THH(C ,P) is a weak equivalence.

These propositions imply that can move between models and replace bimodules by
weakly equivalent ones at will. Given this, we work on the level of homotopy categories.

Definition 2.14 The bicategory of small spectral categories is the bicategory whose
objects are pointwise cofibrant small spectral categories, and whose morphism categories
are

Ho
(
Mod(C ,D)

)
for pointwise cofibrant small spectral categories C and D .

Remark 2.15 The composition of 1-cells is defined as follows. Let M be an (C ,D)-
bimodule and N an (D ,E )-bimodule. Then we may form an (C ,E )-bimodule
M �N

(M �N )(c, e) := M (c,−) ∧L
D N (−, e)

:= B(M (c,−),D ,N (−, e))

Algebraic & Geometric Topology XX (20XX)
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where B(−,−,−) denotes the two-sided bar construction.

This descends to

Ho
(
Mod(C ,D)

)
× Ho

(
Mod(D ,E )

)
→ Ho

(
Mod(C ,E )

)
Checking that this is associative is straightforward but tedious. One explicitly writes
out the bar construction and cofibrantly replaces as needed. The composition of 2-cells
is the composition of natural transformations.

As a cyclic bar construction, THH has cyclic invariance built into it. This cyclic
invariance is also present in Hochschild homology and is an essential part of the
Hattori-Stallings trace

K0(A)→ HH0(A).

There is a general categorical setup due to the second named author [23] that encodes
exactly the kind of properties that THH enjoys as a functor of spectral categories.

Definition 2.16 ([23]) Let B be a bicategory. A shadow functor for B consists of
functors

〈〈−〉〉: B(C,C)→ T

for each object C of B and some fixed category T, equipped with a natural isomorphism

θ : 〈〈M � N〉〉
∼=−→ 〈〈N �M〉〉

for M ∈ B(C,D) and N ∈ B(D,C) such that the following diagrams commute
whenever they make sense:

〈〈(M � N)� P〉〉 θ //

〈〈a〉〉
��

〈〈P� (M � N)〉〉
〈〈a〉〉

// 〈〈(P�M)� N〉〉

〈〈M � (N � P)〉〉 θ // 〈〈(N � P)�M〉〉
〈〈a〉〉

// 〈〈N � (P�M)〉〉

θ

OO

〈〈M � UC〉〉 θ //

〈〈r〉〉 &&

〈〈UC �M〉〉

〈〈 l〉〉
��

θ // 〈〈M � UC〉〉

〈〈r〉〉xx
〈〈M〉〉

Note that if 〈〈−〉〉 is a shadow functor on B , then the composite

〈〈M � N〉〉 θ // 〈〈N �M〉〉 θ // 〈〈M � N〉〉

is the identity [26, Prop. 4.3].
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Theorem 2.17 Topological Hochschild Homology is a shadow. That is, it gives a
family of functors

THH(−) : Ho
(
Mod(C ,C )

)
→ Ho(Sp)

that satisfy the required properties.

Proof The main property of shadows is that for (C ,D)-bimodule M and a (D ,C )-
bimodule N , there is an isomorphism

θ : 〈〈M �N 〉〉→ 〈〈N �M〉〉.

Unpacking this into the usual notation, this is equivalent to the demand that there is an
isomorphism

θ : THH(C ,B(M ,D ,N ))→ THH(D ,B(N ,C ,M ))

However, this is the classical Dennis-Morita-Waldhausen argument [6, Prop. 6.2] — in
this case, there is an isomorphism of underlying point-set spectra.

The commutativity of the rest of the diagrams follow from essentially the same
argument.

3 Duality and trace

In the previous section, we showed that THH is an example of a shadow on a bicategory.
This is quite a general notion, and many bicategories possess shadows. In addition,
in any bicategory with shadow, one can define a notion of trace, which one can think
of as a vast generalization of the trace of an endomorphism in a symmetric monoidal
category. In this section we recall the definitions required to define a trace and collect
the results about the trace that we will need below. It is at this point that we begin to
work in bicategorical generality.

As a starting point it is useful to have a few bicategories in mind. The following two
examples are very important for our intended applications. Let V be a symmetric
monoidal category. (In what follows, one can imagine that V is the category of spectra.)

(1) Let B(Mon(V )) be the bicategory whose objects are monoids in V , 1-cells are
bimodules over monoids in V and whose 2-cells are maps of bimodules.

(2) Let B(Cat(V )) be the bicategory whose objects are categories enriched in V ,
whose 1-cells are functors F : C op⊗D → V (also known as (C ,D)-bimodules)
and whose 2-cells are natural transformations of such.
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These bicategories both have shadows that take values in V .

Example 3.1 Let V = Sp. Then B(Cat(V )) is the bicategory of spectral categories.
Because of the homotopical issues outlined above we work in the full subcategory of
pointwise cofibrant small spectral categories. In general, if V and Cat(V ) have some
kind of homotopical structure, we understand B(Cat(V )) to be modified in order to
give the homotopically correct definitions.

Remark 3.2 Note that every monoid in V can be made into a V -category with one
object, giving an embedding Mon(V ) → Cat(V ); this is the enriched version of
the usual embedding Mon → Cat. Thus, at the level of bicategories, we have an
embedding

B(Mon(V ))→ B(Cat(V )).

The following definition is at the core of all of the constructions in this paper.

Definition 3.3 We say that a 1-cell M ∈ B(C,D) in a bicategory is right dualizable
if there is a 1-cell N ∈ B(D,C), called its right dual, and coevaluation and evaluation
2-cells η : UC → M � N and ε : N �M → UD satisfying the triangle identities. We
say that (M,N) is a dual pair, that N is left dualizable, and that M is its left dual.

Remark 3.4 While we will not use them as a formal proof, some of the results in the
next sections have illuminating graphical descriptions as pasting diagrams.

In our pasting diagrams vertices represent 0-cells, edges represent 1-cells, and colored
regions represent 2-cells. Since we will need to eventually make circular diagrams
(Fig. 3), we do not identify 0-cells when they are the same. Instead we rely on the
convention that vertices in consecutive layers that align should be regarded as the same.
We suppress unit isomorphisms and many unit 1-cells. Pale gray regions are identity
2-cells.

See Fig. 2 for pasting diagrams for a dual pair.

Example 3.5 For rings C and D, an (C,D)-bimodule M is right dualizable if it is
finitely generated and projective as a right D-module. A choice of dual is the (D,C)-
bimodule of right D-module homomorphisms HomD(M,D). Note that HomD(M,D)
is regarded as a (D,C)-bimodule using the left C-module structure on M and left
D-module structure on D.

Algebraic & Geometric Topology XX (20XX)
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C D

C
D C

D

C D

M

M M

M

N
=

C D

C D

M

M

D C

D
C D

C

D C

N

N M N

N

=

D C

D C

N

N

Figure 2: Pasting diagrams for dual pairs.

The coevaluation map is the composite

C→ HomD(M,M) ∼←− M ⊗D HomD(M,D)

where the second map is an isomorphism since M is finitely generated and projective as
an D module. The evaluation map for this dual pair is the evaluation map

HomD(M,D)⊗C M → D.

Dually, M is left dualizable if it is finitely generated and projective as a left C-module.

Example 3.6 Costenoble-Waner duality [22, Chapter 18] is a special case of the duality
theory above and generalizes Spanier-Whitehead and Atiyah duality.

The parameterized stable homotopy category Ex of [22] has a fiberwise suspension
spectrum functor from the bicategory of fibered spaces (without sections). If we regard
a closed smooth manifold X , or compact ENR, as a space over ∗ × X its fiberwise
suspension spectrum is dualizable with dual the desuspension of the fiberwise one point
compactification of the normal bundle [22, 18.5.1].

Using this definition and that of a shadow we can define traces of 2-cells associated to
dualizable 1-cells. The following definition will be crucial for the constructions below.
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CQ

C

C

D

M

N

Q

D

C

D

P

N

M

D

P

Figure 3: The trace

Definition 3.7 [23] Let B be a bicategory with a shadow functor and (M,N) be a
dual pair. The trace of a 2-cell f : Q�M → M � P is the composite:

〈〈Q〉〉∼= 〈〈Q� UC〉〉
〈〈 idQ�η〉〉−−−−−→ 〈〈Q�M � N〉〉

〈〈 f�idN〉〉−−−−→ 〈〈M � P� N〉〉 θ−→ 〈〈N �M � P〉〉
〈〈ε�idP〉〉−−−−→ 〈〈UD � P〉〉∼= 〈〈P〉〉.

The trace of a 2-cell g : N � Q→ P� N is

〈〈Q〉〉∼= 〈〈UC � Q〉〉
〈〈η�idQ〉〉−−−−→ 〈〈M � N � Q〉〉

〈〈 idM �g〉〉
−−−−−→ 〈〈M � P� N〉〉 θ−→ 〈〈P� N �M〉〉

〈〈 idP�ε〉〉−−−−→ 〈〈P� UD〉〉∼= 〈〈P〉〉.

Remark 3.8 After applying the shadow, we glue together vertical edges to form a
bullseye diagram as in Fig. 3. As above, we do collapse most 0-cells. In these diagrams
we read 2-cells as directed from the innermost circle to the outermost circle and 1-cells
clockwise.

Once we have applied the shadow we compose 2-cells by stacking circles.

The bicategorical trace generalizes both the symmetric monoidal trace [10] and the
Hattori-Stallings trace [15, 33].
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Remark 3.9 In [10], there is a particularly elegant proof of the Lefschetz fixed point
theorem that relies on the observations that the fixed point index [9] is the trace in the
stable homotopy category, the Lefschetz number is the trace in the homotopy category
of chain complexes, and the symmetric monoidal trace is functorial: that is

F(tr(f )) = tr(F(f )).

The Reidemeister trace, in its many variants, is an example of the bicategorical trace
[23]. Since these are bicategorical traces, the identification of the varied forms of the
Reidemeister trace is a consequence of the functoriality of the bicategorical trace.

Let (M,N) be a dual pair and Q and P be 1-cells so that N � Q�M and M � P� N
are defined. We then fix the following notation:

η(M,N)
Q : Q�M ∼= UC � Q�M

η�idQ� idM−−−−−−−→ M � N � Q�M

ε(M,N)
P : M � P� N �M idM � idP�ε−−−−−−−→ M � P� UD ∼= M � P

(M,N)ηQ : N � Q ∼= N � Q� UC
idN � idQ�η−−−−−−−→ N � Q�M � N

(M,N)εP : N �M � P� N ε�idP� idN−−−−−−−→ UD � P� N ∼= P� N

Remark 3.10 If (M,N) is a dual pair, the dual of a map g : N �Q→ P�N , denoted
g? , is the composite

Q�M
η(M,N)

Q−−−→ M � N � Q�M
idM �g�idM−−−−−−−→ M � P� N �M

ε(M,N)
P−−−→ M � P

Since tr(g) = tr(g?) [26, Prop. 7.6] we freely move between traces defined with respect
to M and those defined with respect to N .

Note that η(M,N)
Q is the dual of (M,N)ηQ , ε(M,N)

Q is the dual of (M,N)εQ , and

〈〈Q〉〉
tr
(
η(M,N)

Q

)
=tr( (M,N)ηQ)

−−−−−−−−−−−−−→ 〈〈N � Q�M〉〉 and 〈〈M � P� N〉〉
tr
(
ε(M,N)

P

)
=tr( (M,N)εP)

−−−−−−−−−−−−−→ 〈〈P〉〉

Lemma 3.11 For a dual pair (M,N) and 1-cells Q and P so that N � Q �M and
M � P� N are defined, tr

(
ε(M,N)

P

)
is

〈〈M � P� N〉〉 ∼−→ 〈〈P� N �M〉〉
〈〈 idP�ε〉〉−−−−→ 〈〈P� UD〉〉∼= 〈〈P〉〉

and tr
(
η(M,N)

Q

)
is the composite

〈〈Q〉〉∼= 〈〈Q� UC〉〉
〈〈 idQ�η〉〉−−−−−→ 〈〈Q�M � N〉〉∼= 〈〈N � Q�M〉〉.
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D

C

C

P

M

N

C

D

C

D

C

P

M

N

M

N

C

D

C

M

N

P

P

C

(a) The trace of ε(N,M)
P

C

D

C

M

N

P

P

C

(b) After collapsing the coevalua-
tion/evaluation pair

Figure 4: Diagrams for Lemma 3.11

Proof In the trace of ε(M,N)
P (Fig. 4a) there is a coevaluation/evaluation pair that can be

canceled. Canceling this pair gives the composite above and is illustrated in Fig. 4b.
The proof for η(M,N)

Q is similar.

The stable homotopy category is symmetric monoidal and the suspension spectrum of
a closed smooth manifold or compact ENR X is dualizable. The trace of the identity
map of X is a stable map S → S and this is the Euler characteristic of X under the
identification of stable π0 with Z. As a result, we refer to symmetric monoidal traces
of identity maps and bicategorical traces of identity 2-cells as Euler characteristics
and denote them by χ(X). We formalize this in a definition.

Definition 3.12 If M ∈ B(C,D) and M is right dualizable, the Euler characteristic
(Fig. 5) is the trace of the identity 2-cell of M and is a map

〈〈UC〉〉→ 〈〈UD〉〉.
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CUC CD

M

N

D UD

Figure 5: The Euler characteristic

If N is the right dual of M , χ(M) = χ(N).

Remark 3.13 Thinking of the Euler characteristic as a map rather than a object is
an important psychological move for working with constructions in the sequel. The
importance of this formulation of the Euler characteristic cannot be overstated.

The Euler characteristic is multiplicative on fibrations and its refinements to the
Lefschetz number and Reidemeister trace satisfy the appropriate generalizations of
multiplicativity [27]. These results are consequences of the following very convenient
result describing the compatibility between traces and bicategorical composition. It is
an easy generalization of the corresponding symmetric monoidal fact and is an essential
foundation for many of the results in the next sections.

Theorem 3.14 [22, 16.5.1][26, Prop. 7.5] If M1 ∈ B(C,D) and M2 ∈ B(D,E) are
right dualizable, then M1 �M2 is right dualizable. The trace of

Q1 �M1 �M2
f1�idM2−−−−→ M1 � Q2 �M2

idM1 �f2−−−−−→ M1 �M2 � Q3

is
〈〈Q1〉〉

tr(f1)−−→ 〈〈Q2〉〉
tr(f2)−−→ 〈〈Q3〉〉.

Fig. 6 is a graphical representation of the composite of traces. The trace of (idM1 �f2)(f1�
idM2) can be visualized by sliding the outer colored segments over the inner light gray
segments.
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D

Q2

E

D

D

Q2

N2

M2

E

D

E

Q3

N2

M2

E

Q3

Figure 6: Composite of traces

We will use Theorem 3.14 in the following form. Given dual pairs (M1,N1) and (M2,N2),

a 1-cell L so that M1 � L�M2 is defined, and an endomorphism Q� L
f−→ L� P, let

M1 � f �M2 be the composite

M1 � Q� N1 �M1 � L�M2
ε

(M1,N1)
Q �idL� idM2−−−−−−−−−−−→ M1 � Q� L�M2

idM1 �f�idM2−−−−−−−−→ M1 � L� P�M2

idM1 � idL�η
(M2,N2)
P−−−−−−−−−−−→ M1 � L�M2 � N2 � P�M2.

Corollary 3.15 If L is right dualizable

〈〈M1 � Q� N1〉〉
tr(M1�f�M2) //

tr
(
ε

(M1,N1)
Q

)
��

〈〈N2 � P�M2〉〉

〈〈Q〉〉 tr(f ) // 〈〈P〉〉

tr
(
η

(M2,N2)
P

)OO

commutes.

As the definition of M1 � f �M2 suggests, this follows by applying Theorem 3.14 to
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the maps

M1 � Q� N1 �M1
ε

(M1,N1)
Q−−−−→ M1 � Q

Q� L
f−→ L� P

P�M2
η

(M2,N2)
P−−−−→ M2 � N2 � P�M2

Finally, we record a useful proposition that will be a needed on a few occasions. It is an
easy consequence of the formal properties of the trace.

Proposition 3.16 [26, Prop. 7.1] Let M be right dualizable, let f : Q�M → M � P,
g : Q′ → Q and h : P→ P′ be 2-cells. Then

〈〈h〉〉◦ tr(f ) ◦ 〈〈g〉〉= tr(idM �h) ◦ f ◦ (g� idM).

4 Morita equivalence in bicategories

The Morita invariance of THH is one of its defining properties, and one of its most
useful. If one takes the view that THH is a shadow on a bicategory, then the Morita
invariance becomes a property not of THH itself, but rather its categorical context. That
is, Morita equivalence is the natural notion of an equivalence in a bicategory, so THH
is a Morita invariant simply because it is a bicategorical construct. Since everything
we prove about Morita invariance is true at the level of bicategories, we work at that
level of generality. This section recalls the definition of a Morita equivalence in a
bicategory, and develops the basic properties of such equivalences with respect to trace
and Euler characteristic. Since it is a notion of equivalence, the trace and characteristic
are essentially insensitive to Morita equivalence, but keeping track of isomorphisms is
important for the sequel and future work.

Definition 4.1 A pair of one cells M ∈ B(C,D) and N ∈ B(D,C) is a Morita
equivalence if (M,N) and (N,M) are dual pairs and the coevaluation and evaluation
maps for each dual pair are inverses. That is, if η(M,N) and ε(M,N) are the coevaluation
and evaluation for (M,N) and η(N,M) and ε(N,M) are the coevaluation and evaluation for
(N,M) then

η(N,M) ◦ ε(M,N) = idN�M ε(N,M) ◦ η(M,N) = idUC

η(M,N) ◦ ε(N,M) = idM�N ε(M,N) ◦ η(N,M) = idUD
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D D

D

C

D
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C

UD

N M

N M

=

D
C

D

D
C

D

N M

N M

Figure 7: The diagrams for Morita equivalence. For one dual pair the coevaluation is red and
the evaluation is green. For the other the coevaluation is orange and the evaluation is blue.

Definition 4.2 If M ∈ B(C,D) and N ∈ B(D,C) define a Morita equivalence, then
C and D are said to be Morita equivalent.

Remark 4.3 Note that we use the dual pair as a subscript on the coevaluation and
evaluation when there are multiple dual pairs. We will use a similar notation for the
Euler characteristic.

Example 4.4 In the bicategory of rings, bimodules, and homomorphisms, a Morita
equivalence is a (C,D)-bimodule M and a (D,C)-bimodule N so that (M,N) and
(N,M) are dual pairs and, using the coevaluation and evaluation from these dual pairs,

M ⊗D N ∼= C and N ⊗C M ∼= D.

This is the familiar notion of Morita equivalence for rings and implies the functor

N ⊗C − : ModC → ModD

is equivalence of the category of (left) modules over C and the category of (left) modules
over D.

The most familiar example of Morita equivalence is that the ring of n-by-n matrices
with elements in C is Morita equivalent to C for any n > 0.

Morita equivalence is the correct notion of equivalence for 0-cells in a bicategory. As a
result it should respect the Euler characteristic and the trace. We now consider both of
these, starting with the special case of the Euler characteristic.

Proposition 4.5 Suppose (M,N) is a Morita equivalence. Then χ(M,N)(M) =

χ(M,N)(N) is an isomorphism with inverse χ(N,M)(N) = χ(N,M)(M).
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CUC CD

M

N

D
D

C

M

N

CUDUC

(a) The composite of Euler characteristics

CUC

M

N

D
C

CUC

(b) After canceling the middle maps

Figure 8: Euler characteristics and Morita equivalence (Proposition 4.5)

Proof Fig. 8a is a graphical representation of the composite of Euler characteristics
where we have nested the red/green dual pair inside the orange/blue dual pair. Following
Fig. 7 we can first cancel the concentric green and orange regions resulting in Fig. 8b.
Then the red and blue regions cancel.

the commutative diagrams below are a more formal proof.

〈〈UC〉〉
〈〈η(M,N)〉〉 //

id

''

〈〈M � N〉〉 ∼ //

id

''

〈〈N �M〉〉
〈〈ε(M,N)〉〉 //

id

''

〈〈UD〉〉

〈〈η(N,M)〉〉
��

〈〈UD〉〉

〈〈η(N,M)〉〉
��

id

''

〈〈N �M〉〉

∼
��

〈〈N �M〉〉

∼
��

id

''

〈〈M � N〉〉

〈〈ε(N,M)〉〉
��

〈〈M � N〉〉

〈〈ε(N,M)〉〉
��

id

''

〈〈UC〉〉

〈〈UC〉〉 〈〈η(M,N)〉〉
// 〈〈M � N〉〉 ∼ // 〈〈N �M〉〉

〈〈ε(M,N)〉〉
// 〈〈UD〉〉

More generally, we have the following proposition.
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Proposition 4.6 Suppose (M,N) is a Morita equivalence. If Q is a 1-cell so that
N � Q�M is defined,

〈〈Q〉〉
tr
(
η(M,N)

Q

)
−−−−−−→ 〈〈N � Q�M〉〉

is an isomorphism with inverse 〈〈N � Q�M〉〉
tr
(
ε(N,M)

Q

)
−−−−−−→ 〈〈Q〉〉.

Proof Recall from Lemma 3.11 that the trace of ε(N,M)
Q is

〈〈N � Q�M〉〉 ∼−→ 〈〈Q�M � N〉〉
〈〈 idQ�ε(N,M)〉〉−−−−−−−→ 〈〈Q� UC〉〉∼= 〈〈Q〉〉

and the trace of η(M,N)
Q is

〈〈Q〉〉∼= 〈〈Q� UC〉〉
〈〈 idQ�η〉〉−−−−−→ 〈〈Q�M � N〉〉∼= 〈〈N � Q�M〉〉.

Composing these maps in both orders we have the following commutative diagrams.

〈〈N � Q�M〉〉 θ //

id

((

〈〈Q�M � N〉〉
〈〈 idQ�ε(N,M)〉〉 //

id ,,

〈〈Q� UC〉〉 //

〈〈 idQ�η(M,N)〉〉
��

θ

((

〈〈Q〉〉

〈〈Q〉〉

id

((

〈〈Q�M � N〉〉
θ

((

〈〈UC � Q〉〉

OO

〈〈η(M,N)�idQ〉〉
��

〈〈UC � Q〉〉

〈〈η(M,N)�idQ〉〉
��

θ

((

OO

〈〈M � N � Q〉〉

θ
��

〈〈M � N � Q〉〉

θ
�� ((

〈〈Q� UC〉〉 id

%%
〈〈 idQ�η(M,N)〉〉
��

〈〈N � Q�M〉〉.

〈〈N � Q�M〉〉 θ // 〈〈Q�M � N〉〉
〈〈 idQ�ε(N,M)〉〉

// 〈〈Q� UC〉〉 // 〈〈Q〉〉

Corollary 4.7 Suppose (M1,N1) is a dual pair, (M2,N2) is a Morita equivalence, Q
and P are 1-cells so that M1 � Q � N1 and N2 � P � M2 are defined. For a right
dualizable 1-cell L so that M1 � L�M2 is defined, and a 2-cell f : Q� L→ L� P the
following diagram commutes.

〈〈M1 � Q� N1〉〉
tr(M1�f�M2) //

tr
(
ε

(M1,N1)
Q

)
��

〈〈N2 � P�M2〉〉

tr
(
ε

(N2,M2)
P

)
��

〈〈Q〉〉 tr(f ) // 〈〈P〉〉
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Proof This follows from Proposition 4.6 and Corollary 3.15.

5 Euler characteristics for base change objects

Given a map f : A→ C of monoids in a symmetric monoidal category V , we can define
an (A,C)-bimodule f C which has an action on the left through f : A→ C . Similarly,
we get a (C,A)-bimodule Cf . These objects are used to change base in the following
sense. Given a (C,D)-bimodule M , computing the composition f C �M is the same as
computing (f × idD)∗M . These types of objects arise in any bicategory defined from an
indexed monoidal category [25], but we need not work in that generality here. Instead,
we work in the two examples from Section 3.

The main concern of §5.1 will be recovering the classical “Morita invariance” statement
that THH(A) ∼−→ THH(Modc

A) as well as a new, twisted, version of that statement by
working in bicategories. Unraveling the necessary category theory, this hinges on the
following question. Given a functor of V -categories F : A → C , we have an associated
map of 2-cells F : UA → UC . Applying the shadow, we get a map 〈〈UA 〉〉→ 〈〈UC〉〉. We
could instead consider the 1-cell FC (defined carefully in Definition 5.3) and compute
χ(FC ) : 〈〈UA 〉〉→ 〈〈UC〉〉. It is clear that these maps should be the same, and we verify
this in Lemma 5.8. This simple observation is the core of what allows us to prove our
main theorems.

In §5.2 we use this identification to describe traces across Morita equivalences. Com-
bining Theorem 5.13 and Lemma 5.8 gives Corollary 5.16. This result is then used to
show Theorem 1.1.

5.1 Morita equivalence arising from base change

In what follows, let V be a symmetric monoidal category.

Remark 5.1 We may choose V to be any symmetric monoidal model category that
satisfies the conditions of [30, Prop. 6.1]. In that case, the categories described below
have associated model structures and homotopy categories.

Definition 5.2 Let f : A → C be a morphism in Mon(V ). Then there is an (A,C)-
bimodule f C , which is C with a left A-action given by f , and a (C,A)-bimodule Cf

which is C with a right A-action given by f .
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Definition 5.3 Let F : A → C be a morphism in Cat(V ), i.e. a functor of categories
enriched in V . Then there is an (A ,C )-bimodule FC where the left action of A is
given by

A (a, a′)⊗ (FC )(a′, c) = A (a, a′)⊗ C (F(a′), c)

→ C (F(a),F(a′))⊗ C (F(a′), c)→ C (F(a), c) = FC (a, c)

There is a dual (C ,A )-bimodule that we denote CF .

Definition 5.4 We call any of f C , Cf , FC , CF base change 1-cells.

Remark 5.5 It is important to remember that the maps f : A → C and F : A → C

are not 1-cells in the categories B(Mon(V )) and B(Cat(V )). They are the vertical
1-cells in an attendant double category (see, e.g. [32]).

In special cases, base change one cells may exhibit a Morita equivalence. We isolate
this special case in a definition.

Definition 5.6 A V -functor F : A → C is a Morita equivalence if (FC ,CF) is a
Morita equivalence. In particular, F is a Morita equivalence if and only if F is full and
faithful and the map induced by composition

C (c,F(−))� C (F(−), c′)→ C (c, c′)

is an isomorphism.

The first step in answering the questions posed in the introduction to this section is
to give descriptions of the coevaluation, evaluation, and Euler characteristic for base
change objects.

Proposition 5.7 [23, Appendix][25, Lem. 7.6]

(1) If f : A→ C is a monoid homomorphism, (f C,Cf ) is a dual pair.

(2) If F : A → C be a V -functor between V -categories, (FC ,CF) is a dual pair.

For objects a and a′ in A , a choice for the coevaluation is

A (a, a′) F−→ C (F(a),F(a′)) ∼= C (F(a),F(a′))⊗ 1V

→ C (F(a),F(a′))⊗ C (F(a′),F(a′))→ C (F(a),−)� C (−,F(a′))
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For objects c, c′ of C , the corresponding evaluation is induced by the composition of
morphisms as in the following diagram.∐

a∈A C (c,F(a))⊗ C (F(a), c′) //

��

C (c, c′)

C (c,F(−))� C (F(−), c′)

55

If M is a (C ,D)-bimodule and F : A → C and G : B → D are enriched functors,
FMG is the (A ,B)-bimodule defined as the composite

A op ⊗B
F⊗G−−−→ C op ⊗D

M−→ V

If Q is an (C ,C )-bimodule and F is as above, we have the following composite

εF
Q : FQF � FC ∼= FC �Q � CF � FC

ε
(FC ,CF )
Q−−−−−→ FC �Q

and the corresponding maps for ηF
Q , FεQ , and FηQ . The are also versions of these

maps for monoids.

The following statement (and its restriction to the case of monoids) follows immediately
from the coevaluation and evaluation above.

Lemma 5.8 Let F : A → C be a V -functor between V -categories and Q be a
(C ,C )-bimodule. Then the following two diagrams commute.∐

a A (a, a)

��

F //
∐

a C (F(a),F(a)) //
∐

c C (c, c)

��
〈〈UA 〉〉

χ(FC ,CF )(FC )=χ(FC ,CF )(CF)
// 〈〈UC〉〉

∐
a Q(F(a),F(a)) //

��

∐
c Q(c, c)

��
〈〈FQF〉〉

tr(εF
Q) // 〈〈Q〉〉

While unassuming and an immediate consequence of this choice of evaluation and
coevaluation for base change dual pairs, this lemma is a fundamental connection between
traces and maps of hom sets. The left diagram above implies

χ(FC ,CF)(FC ) = χ(FC ,CF)(CF) = 〈〈F〉〉.

This observation will be used in Corollaries 5.9, 5.14 and 5.16. If F is the inclusion of
a subcategory, tr(εF

Q) is the map on shadows induced by that inclusion.

Corollary 5.9 If F : A → C is a Morita equivalence and Q is a (C ,C )-bimodule

〈〈F〉〉: 〈〈A 〉〉→ 〈〈C〉〉 and tr
(
εF
Q

)
: 〈〈FQF〉〉→ 〈〈Q〉〉

are isomorphisms.

Algebraic & Geometric Topology XX (20XX)



1026 Jonathan A. Campbell and Kate Ponto

Proof Propositions 4.5 and 4.6 with the substitutions

M N Q
FC CF Q

imply

χ(FC ,CF)(FC ) = χ(FC ,CF)(CF) : 〈〈A 〉〉→ 〈〈C〉〉 and tr
(
εF
Q

)
: 〈〈FQF〉〉→ 〈〈Q〉〉

are isomorphisms. The remaining identification follows from Lemma 5.8.

The following is a crucial example. It is a classical fact for rings [11, Prop. 2.1.5], and
known for spectra [6] and it provides important motivation for this paper. The example
shows that it follows from purely bicategorical facts.

Example 5.10 Let B(Cat(Sp)) be the bicategory of spectral categories (with the
proper homotopy theoretic considerations, see Example 3.1) . Let A be a ring spectrum.
There are two spectral categories naturally associated with A

(1) The spectral category Modc
A .

(2) The one object spectral category whose hom spectrum is A. We denote this
category EndModc

A
(A) since it is the full subcategory of Modc

A with the single
object A.

There is an inclusion functor

EA : EndModc
A
(A)→ Modc

A

and so we can construct a 1-cell (i.e. a spectral bimodule) EA(Modc
A). There is similarly

a spectral bimodule (Modc
A)EA . These two bimodules are a Morita equivalence.

Applying Corollary 5.9 with the substitutions

A C F
EndModc

A
(A) Modc

A EA

the map

(1) THH(A) ∼= THH
(
EndModc

A
(A)
)
→ THH

(
Modc

A
)

induced by the inclusion of A into Modc
A as a module over itself is an isomorphism.

We will give an explicit description of the inverse of this map on π0 in Theorem 7.6.
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Example 5.11 Let A be a ring spectrum, Q be an (A,A)-bimodule, and

− ∧A Q : Modc
A → Modc

A

be given by M 7→ M ∧A Q. Then (Modc
A)−∧AQ is an (Modc

A,Modc
A)-bimodule and the

inclusion
EA : EndModc

A
(A)→ Modc

A

defines a (EndModc
A
(A),EndModc

A
(A))-bimodule EA((Modc

A)−∧AQ)EA .

Since EA is a Morita equivalence, applying Corollary 5.9 with the substitutions

A C F Q

EndModc
A
(A) Modc

A EA (Modc
A)−∧AQ

gives an isomorphism 〈〈EA((Modc
A)−∧AQ)EA〉〉→ 〈〈(Modc

A)−∧AQ〉〉. We also have identifica-
tions

〈〈EA((Modc
A)−∧AQ)EA〉〉= 〈〈Q〉〉= THH(A; Q)

〈〈(Modc
A)−∧AQ〉〉= THH(Modc

A;− ∧A Q)

and so an isomorphism

THH(A; Q)→ THH(Modc
A;− ∧A Q)

Thus, the classical Morita invariance of THH holds in a twisted context as well.

5.2 Morita equivalence and trace

We now turn to the comparison of traces across Morita equivalence following Proposi-
tions 4.5 and 4.6. We start with an example to help motivate the following results. If
φ : M → M is a endomorphism of a right dualizable (C,D)-bimodule the trace of φ is
a map

THH (C)→ THH (D).

We can also consider the functor Modc
C → Modc

D given by tensoring with M on objects
and tensoring with φ on morphisms. With the Morita equivalences for C and Modc

C
and for D and Modc

D these give us the following diagram.

THH (C)

��

tr(φ) // THH (D)

��
THH (Modc

C)
THH (−⊗φ)// THH (Modc

C;−⊗CM (Modc
D)−⊗CM)

tr
(
ε
−⊗CM
Modc

D

)
// THH (Modc

D)
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At this level of generality we can directly confirm this diagram commutes, but it will be
more convenient to prove a significant generalization and then verify that this diagram
is a special case. This generalization (Theorem 5.13) is one of the main results of the
paper and underlies the ideas in Section 6.

We first fix some notation.

Definition 5.12 If C is a category enriched in V and c is an object of C let EndC (c)
denote the full subcategory of C whose single object is c. Let Ec : EndC (c)→ C be
the inclusion.

Theorem 5.13 Let C and D be categories enriched over V , c be an object of C , d
be an object of D , M be a right dualizable (C ,D)-bimodule, and suppose Ed is a
Morita equivalence. Let Q be a (C ,C )-bimodule, P be a (D ,D)-bimodule and

φ : Q �M →M �P

be a natural transformation. Then

(2) 〈〈EcQEc〉〉

tr
(
εEc
Q

)
��

tr(EcC�φ�DEd )
// 〈〈EdPEd〉〉

tr
(
ε

Ed
P

)
��

〈〈Q〉〉 tr(φ) // 〈〈P〉〉
commutes.

Proof This is a consequence of Corollary 4.7 with the substitutions

M1 N1 M2 N2 Q P L f
EcC CEc DEd EdD Q P M φ

We can now recover a main result of Lind-Malkiewich [19, Prop. 5.5].

Corollary 5.14 Let A and C be categories enriched over V , a be an object of A , c
be an object of C , and F : A → C be a V -functor. If Ec : EndC (c)→ C is a Morita
equivalence,

〈〈EndA (a)〉〉

〈〈Ea〉〉
��

χ(F◦EaCEc ) // 〈〈EndC (c)〉〉

〈〈Ec〉〉
��

〈〈A 〉〉
〈〈F〉〉

// 〈〈C〉〉
commutes.
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Note that F◦EaCEc is C (F(a), c) as a (EndA (a),EndC (c))-bimodule.

Proof This follows from Theorem 5.13 with the substitutions

C D c d M Q P φ

A C a c FC UA UC id

Lemma 5.8 identifies the vertical and bottom maps.

Example 5.15 Let C and D be rings and M be a (C,D)-bimodule that is that is finitely
generated and projective as an right D-module.

By Corollary 5.14 with the substitutions

A a C c F
Modc

C C Modc
D D −⊗C M

the following diagram, where the vertical maps are inclusions, commutes.

〈〈C〉〉 χ(M) //

��

〈〈D〉〉

��
〈〈Modc

C〉〉
〈〈−⊗CM〉〉

// 〈〈Modc
D〉〉

In later examples the map φ in Theorem 5.13 is a composite

(3) Q �M
ψ�idM−−−−→M �P �N �M

ε(M ,N )
P−−−−→M �P

for a map ψ : Q →M �P �N . Then Proposition 3.16 implies the trace of (3) is

the composite 〈〈Q〉〉
〈〈ψ〉〉
−−→ 〈〈M �P �N 〉〉

tr
(
ε(M ,N )
P

)
−−−−−−−→ 〈〈P〉〉and (2) becomes

(4) 〈〈EcQEc〉〉

tr
(
εEc
Q

)
��

tr(EcC�φ�DEd )
// 〈〈EdPEd〉〉

tr
(
ε

Ed
P

)
��

〈〈Q〉〉
〈〈ψ〉〉

// 〈〈M �P �N 〉〉
tr
(
ε(M ,N )
P

)
// 〈〈P〉〉

An important example of this is the 2-cells that arise from a natural transformation
as in Corollary 5.16. We first describe how these two cells are defined. For enriched
categories A and C , enriched functors

J : A → A ,K : C → C and F : A → C ,
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and a natural transformation Φ : F ◦ J → K ◦ F let φ : AJ � FC → FC � CK be the
2-cell defined by

(a α−→ J(a′),F(a′)
β−→ c) 7→ (F(a)

F(α)−−→ F(J(a′))
Φa′−−→ K(F(a′))

K(β)−−→ K(c))

and ψ : AJ → FC � CK � CF be 2-cell defined by

(a α−→ J(a′)) 7→ (F(a)
F(α)−−→ F(J(a′))

Φa′−−→ K(F(a′)))

This choice of φ and ψ are related as in (3).

Corollary 5.16 For A , C , J , K , F , φ and ψ as above and objects a of A and c of
C , the following diagrams, where vertical maps are induced by inclusions on hom sets,
commute.

〈〈A (a, J(a))〉〉

��

tr(EaA�φ�CEc) // 〈〈C (c,K(c))〉〉

��
〈〈AJ〉〉

tr(φ) // 〈〈CK〉〉

〈〈A (a, J(a))〉〉

��

tr(EaA�φ�CEc) // 〈〈C (c,K(c))〉〉

��
〈〈AJ〉〉

〈〈ψ〉〉
// 〈〈FC � CK � CF〉〉 // 〈〈CK〉〉

The remaining unlabeled map is induced by the map∐
a∈A

C (F(a),K(F(a)))→
∐
c∈C

C (c,K(c)).

Proof Theorem 5.13 with the substitutions

C c D d M Q P

A a C c FC AJ CK

gives the following commutative diagram.

〈〈Ea(AJ)Ea〉〉

tr
(
εEa
AJ

)
��

tr(EaA�φ�CEc) // 〈〈Ec(CK)Ec〉〉

tr
(
εEc
CK

)
��

〈〈AJ〉〉
tr(φ) // 〈〈CK〉〉

The diagram in (4) becomes

〈〈Ea(AJ)Ea〉〉

tr
(
εEa
AJ

)
��

tr(EaA�φ�CEc) // 〈〈Ec(CK)Ec〉〉

tr
(
εEc
CK

)
��

〈〈AJ〉〉
〈〈ψ〉〉

// 〈〈FC � CK � CF〉〉
tr
(
εF
CK

)
// 〈〈CK〉〉

The remaining simplifications follow from Lemma 5.8.
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For later applications it is convenient to note that EaA � φ� CEc is

A (a, J(a))� C (F(a), c)→ C (F(a),K(c))

(a α−→ J(a),F(a)
β−→ c) 7→ (F(a)

F(α)−−→ F(J(a)) Φa−→ K(F(a))
K(β)−−→ K(c))

Example 5.17 We now return to the example at the beginning of this subsection. Let
C and D be rings, Q be an (C,C)-bimodule, P be an (D,D)-bimodule, M be an
(C,D)-bimodule that is finitely generated and projective as an right D-module, and let
f : Q⊗C M → M ⊗D P be a homomorphism.

Corollary 5.16 with the substitutions

A a C c J K F Φ

Modc
C C Modc

D D −⊗C Q −⊗D P −⊗C M −⊗C f

implies the bottom square in the following diagram commutes.

〈〈Q〉〉

��

tr(f ) // 〈〈P〉〉

��
〈〈Modc

C(C,Q)〉〉

��

tr(f∗) // 〈〈Modc
D(D,P)〉〉

��
〈〈(Modc

C)−⊗CQ〉〉
〈〈ψ〉〉

// 〈〈−⊗CM(Modc
D)−⊗CM⊗DP〉〉 // 〈〈(Modc

D)−⊗DP〉〉

In this example, EC (Modc
C)� φ� (Modc

D)ED is

Modc
C(C,Q)�Modc

D(M,D)→ Modc
D(M,P)

(C α−→ Q,M
β−→ D) 7→ (C ⊗C M α⊗id−−−→ Q⊗A M

f−→ M ⊗D P
β⊗id−−−→ D⊗D P)

The top square is the identification of Modc
C(C,Q) with Q and Modc

D(D,P) with P and
the observation that the trace of the dual of a map is the trace of the map.

6 Example: Fixed Point Invariants

We now return to the motivating example from fixed point theory described in the
introduction and prove Theorem 1.1 in Theorem 6.6.

Let R be a ring spectrum and A, C be R-algebras. A map of R-algebras f : A → C
defines an (A,C)-bimodule f C . If f C is left dualizable, we have an adjunction

Cf ∧A − : Modlc
(A,R) � Modlc

(C,R) : f C ∧C −
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between the bimodules that are left-compact (that is, for example, an (A,R)-bimodule
is compact when considered as an A-module). Letting R be the sphere spectrum and
taking THH of both sides of the adjunction gives us maps

res : THH(Modc
A) � THH(Modc

C) : trf

which are usually referred to as restriction and transfer. There is a restriction for any
map f , but there is only a transfer if C is compact as an A-module. Using Morita
invariance restriction and transfer give maps between THH(A) and THH(C). We should
note that the transfer map has appeared in many THH calculations and seems to provide
powerful characteristic-type invariants [28, 29, 4].

It is well know that the composite

S ∼= THH(S) trf−→ THH(Σ∞+ ΩX) res−→ THH(S) ' S

is the Euler characteristic. In this section we show that similar results hold for the
generalizations of the Euler characteristics used in fixed point theory. In particular we
show that the spectrum-level Reidemeister trace of the second author [23, 24] arises
from transfer maps in THH. The transfer maps we use are “twisted” by a bimodule
coordinate in THH.

Since transfer maps are nothing more than an example of base change we can apply the
results of the previous section. Taking a more bicategorical perspective, we have a map

(5) UC � Cf → Cf � UA

which, upon taking traces gives us a map 〈〈UC〉〉→ 〈〈UA〉〉, or THH(C)→ THH(A). This
is an example of what is referred to as an Euler characteristic above. Similarly,

(6) UA � f C→ f C � UC

gives 〈〈UA〉〉→ 〈〈UC〉〉, i.e. THH(A) → THH(C). Then the following result is simply a
restatement of Example 5.15.

Proposition 6.1 The diagrams

THH(C)

∼
��

tr(5) // THH(A)

∼
��

THH(Modc
C) trf // THH(Modc

A)

THH(A)

∼
��

tr(6) // THH(C)

∼
��

THH(Modc
A) res // THH(Modc

C)

commute.

Remark 6.2 The above was proved in [19], as a step in verifying the first-named
author’s conjecture that the Becker-Gottlieb transfer factors through the THH transfer.
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Thus, restriction and transfer maps are examples of a rather trivial bicategorical trace:
the Euler characteristic. It is no coincidence that transfer maps in THH seem to
produce results reminiscent of characteristics. The proposition further gives a very
small, relatively computable model for the transfer map. In fact, it gives compact
formulas for the usual restriction-transfer compositions

Theorem 6.3 (Restriction-Transfer)

res ◦ trf = χ(f Cf ) : THH(A)→ THH(A)

trf ◦ res = χ((Cf )� (f C)) : THH(C)→ THH(C).

Example 6.4 We present two examples of these types of restriction-transfer identities

• Let X be a path-connected space of the homotopy type of a finite CW-complex.
If we let A = S and C = Σ∞+ ΩX , then A is compact as a C-module. The
composite

S ' THH(S) trf−→ THH(Σ∞+ ΩX) res−→ THH(S) ' S

is χ(X), regarded as an element of π0(S).

• Let H be a subgroup of G where [G : H] < ∞. Then the base change object
associated to the inclusion of the group ring A = Z[H] into C = Z[G] is
dualizable. The shadow is HH0(Z[G],Z[G]) and

HH0(Z[H],Z[H]) trf−→ HH0(Z[G],Z[G]) res−→ HH0(Z[H],Z[H])

is multiplication by [G : H]. This has an interpretation in terms of the character
theory of group representations, since HH0(Z[G],Z[G]) ∼= Z[CG] where CG

denotes the conjugacy classes of G. Since maps from Z[CG] are exactly class
functions, this is the same [G : H] that appears in the classical induction-restriction
maps in character theory for representations of finite groups.

To extend these ideas to the Reidemeister trace we need an elaboration of the transfer.
For algebras A and C , a commuting diagram of maps of algebra

A
j //

f
��

A

f
��

C k // C
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defines a commuting diagram of functors

Modc
C

−∧CCf

��

−∧CCk// Modc
C

−∧CCf

��
Modc

A
−∧AAj // Modc

A

and induces maps

Ck � Cf → Cf � Aj.(7)

(Modc
C)−∧CCk � −∧CCf (Modc

A)→ −∧CCf (Modc
A)� (Modc

A)−∧AAj(8)

Proposition 6.5 Suppose f , j, and k are as above. If Cf is right dualizable then the
following diagram commutes.

THH(C; Ck)
tr (7) //

∼
��

THH(A; Aj)
∼

��
THH(Modc

C;− ∧ Ck)
tr (8) // THH(Modc

A;− ∧ Aj).

Proof This follows from Corollary 5.16 with the substitutions

A C I K F Φ

Modc
C Modc

A − ∧C Ck − ∧A Aj − ∧C Cf id

If k is the identity map this reduced to a commutative diagram

THH(C)
tr (7) //

∼
��

THH(A; Aj)
∼

��
THH(Modc

C)
tr (8) // THH(Modc

A;− ∧ Aj).

In this case the bottom map is the composite

THH(Modc
C)→ THH(Modc

A)→ THH(Modc
A;− ∧ Aj)

where the first map is the transfer and the second map is induced by the map S→ Aj .

We now come to one of our main applications, which is simply a particular case of
Proposition 6.5 (and so a consequence of Theorem 5.13). Let X be path-connected
space that has the homotopy type of a finite CW-complex, and let f : X → X be a
self map. The map X → ∗ gives a map Σ∞+ ΩX → S which exhibits S as a compact
Σ∞+ ΩX -module, and so there is a transfer S → THH(Σ∞+ ΩX). Also, f induces a
self-map f : Σ∞+ ΩX → Σ∞+ ΩX .
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Theorem 6.6 The Reidemeister trace of f : X → X is the THH transfer

S ' THH(S)→ THH(Σ∞+ ΩX;− ∧ Σ∞+ ΩXf ) ' Σ∞+ L Xf

Recall that twisted THH was defined in Definition 2.9, and L Xf in the introduction —
but see also Definition A.3.

Proof In [23, Prop. 3.2.3] the Reidemeister trace of the introduction is identified with
a bicategorical trace. This trace is identified with a more homotopically satisfying
trace in [23, Prop. 6.2.2] and finally identified with a trace in the parameterized stable
homotopy bicategory, Ex, in [24, Thm. 4.1].

In the bicategory of parameterized spectra, let SX denote the fiberwise suspension
spectrum of X regarded as a space over ∗ × X via the identity map. If f : X → X is a
continuous map Xf is the fiberwise suspension spectrum of {(γ, x) ∈ XI×X|γ(1) = f (x)}
regarded as a space over X × X via the map (γ, x) 7→ (γ(0), x). Then f defines a map
of spectra

(9) S� SX → SX � Xf

If X is a closed smooth manifold, SX is right dualizable and the trace of (9) is a map
〈〈S〉〉→ 〈〈Xf〉〉. This map is one form of the Reidemeister trace.

Now, we use the Morita equivalence of [20] to compare the shadows in Ex(X,X)
and (Σ∞+ ΩX,Σ∞+ ΩX)-bimodules. Let BimodS be the bicategory of ring spectra
and spectral bimodules, and Bimodgp

S be the full-subcategory of ring spectra of the
form Σ∞+ ΩX . Then, [20, Thm. 6.4] as applied in [19, Thm. 5.1] gives that the
parameterized stable homotopy bicategory (when restricted to connected spaces) and
Bimodgp

S are bicategorically equivalent with an induced equivalence on shadows. Under
this equivalence (given in detail before [19, Thm. 5.1]) the map of parameterized spectra
in (9) passes to the map of (S,Σ∞+ ΩX)-bimodule spectra

(10) S ∧S Σ∞+ ΩX → Σ∞+ ΩX ∧Σ∞+ ΩX Σ∞+ ΩXf .

The functoriality of the trace [23] implies the following diagram commutes.

〈〈S〉〉

∼
��

tr (9) // 〈〈Xf〉〉

∼
��

〈〈S〉〉 tr (10) // 〈〈Σ∞+ ΩXf〉〉.
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Then Proposition 6.5 implies

〈〈S〉〉

∼
��

tr (10) // 〈〈Σ∞+ ΩXf〉〉

∼
��

THH(Modc
S) // THH(Modc

Σ∞+ ΩX;− ∧ Σ∞+ ΩXf )

commutes and Corollary A.14 identifies

THH(Σ∞+ ΩX; Σ∞+ ΩXf ) ' Σ∞+ L Xf .

7 A π0-level cyclotomic trace

Much of the motivation for the present paper comes from very concrete questions about
THH. Above we used bicategories to understand the relationship between base change
and traces using shadows, which yields information about THH. Here we consider
a different, though related, question that will be essential for future work. Let A be
a ring spectrum, and let f : P → P be an endomorphism of an A-module P. Then f
determines an element of π0(THH(Modc

A)) as follows. First, it determines a map of
modules S→ End(P) adjoint to f . This includes into the zero skeleton of THH(Modc

A),
which is

sk0(THH(Modc
A)) =

∨
M∈Modc

A

End(M) =
∨

M∈Modc
A

Modc
A(M,M).

The zero skeleton includes into THH(Modc
A). Thus, we have a composite

S→ EndModc
A
(P) ↪→

∨
M∈Modc

A

Modc
A(M,M) ↪→ THH(Modc

A)

Finally, Morita invariance extends this map to

(11) S→ EndModc
A
(P) ↪→

∨
M∈Modc

A

Modc
A(M,M) ↪→ THH(Modc

A) ∼−→ THH(A)

yielding a map S → THH(A), i.e. an element of π0 THH(A). The question is: What
element of π0 THH(A) does f determine? Intuitively, the answer should clearly be
tr(f ), but it is far from obvious given how we have defined it. It is therefore desirable
to have an actual proof of this, and a categorical proof is even better. This is given in
Proposition 7.3.
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Remark 7.1 Since traces are additive, the association [f ] 7→ tr(f ) given by the
composite (11) descends to a map from the Grothendieck group of endomorphisms of
A-modules, also called K0(End(A)). Thus, we obtain a map

K0(End(A))→ π0 THH(A).

Indeed, connoiseurs will recognize (11) as the usual “inclusion of objects” map that is
used to define the cyclotomic trace (see, e.g. [11]). We are only defining this at the
level of π0 , so the usual difficulties don’t intervene, but this is useful to keep in mind.

Since Proposition 7.3 is somewhat hard to parse, we motivate it by rephrasing the
objects and maps involved in the trace in greater generality.

• The Morita equivalence

THH(Modc
A) ∼−→ THH(A)

is implemented by a base change dual pair, so the last map in (11) is the Euler
characteristic of some (C ,D)-bimodule M for appropriate choices of C ,D ,M .

• The middle term in (11),
∨

M∈Modc
A

Modc
A(M,M), is the shadow of a bimodule

with trivial actions. That is, we’ve taken the shadow of the bimodule Modc
A

where the usual left and right actions have been base changed to be trivial. Then
the map ∨

M∈Modc
A

Modc
A(M,M) ↪→ THH(Modc

A)

is the map induced on shadows from Modc
A with trivial left and right actions to

Modc
A with the usual Modc

A actions.
If we rephrase this categorically, using the conventions above, Modc

A is C and
the base change is implemented by a functor F′ : A ′ → C . The module with
trivialized action is F′CF′ — note that this is a (A ′,A ′)-bimodule. Then the
third map in (11) is the map

〈〈F′CF′〉〉→ 〈〈C〉〉

induced by F′ . By Lemma 5.8 this map is 〈〈F′CF′〉〉
tr
(
εF′

UC

)
−−−−−→ 〈〈C〉〉.

• In the inclusion
EndModc

A
(P) ↪→

∨
M

EndModc
A
(M)

the module EndModc
A
(P) is a shadow obtained by trivializing more of the action.

Phrasing this categorically, EndModc
A
(P) is FCF where F is a composite A →

A ′ → C .
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• Finally
S→ EndModc

A
(P)

is simply a map of spectra (i.e. S-modules). In the more categorical setting, this
is a map of (A ,A )-bimodules Q → FCF .

To summarize, if we have an (C ,D)-bimodule M , a functor F : A → C and a map
of (A ,A )-bimodules Q → FCF , we have a map

〈〈Q〉〉→ 〈〈FCF〉〉
tr
(
εF

UC

)
−−−−−→ 〈〈C〉〉 χ(M )−−−→ 〈〈D〉〉.

The first map comes from the 2-functoriality of shadows. Having placed ourself in a
purely category theoretic context, we may do this nearly trivially. Many illuminating
examples arise from specializations of the category theory including, of course, the
main example.

Definition 7.2 If M is an (C ,D)-bimodule and F : A → C is a functor let εF,M
C be

the (A ,D)-bimodule map given by composite

FCF � FM
idFCF �∼←−−−−−− FCF � FC �M

εF
UC
�idM

−−−−−−→ FC �M
∼−→ FM

This map is induced by the action of C on M restricted to the objects in the image of
F .

Proposition 7.3 If M is a right dualizable (C ,D)-bimodule and F : A → C is an
enriched functor, the trace of εF,M

C is the composite

〈〈FCF〉〉
tr
(
εF

UC

)
−−−−−→ 〈〈C〉〉 χ(M )−−−→ 〈〈D〉〉.

If α : Q → FCF is a map of (A ,A )-bimodules the trace of Q � FM
α�idFM−−−−−→

FCF � FM
εF,M
C−−−→ FM is

〈〈Q〉〉
〈〈α〉〉
−−→ 〈〈FCF〉〉

tr
(
εF

UC

)
−−−−−→ 〈〈C〉〉 χ(M )−−−→ 〈〈D〉〉.

Proof Using Theorem 3.14 χ(M )◦ tr
(
εF

UC

)
is the trace of the top row of the following

commutative diagram.

FCF � FC �M

��

εF
UC
�idM

//

��

FC �M

��
FCF � FM

εF,M
C // FM
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Since the vertical maps are identity maps on twisting objects and an isomorphism on
the dualizable object the trace of εF

UC
� idM and εF,M

C are the same.

If Q is an (A ,A )-bimodule and α : Q → FCF is a module homomorphism, then
Proposition 3.16 implies

〈〈Q〉〉
〈〈α〉〉
−−→ 〈〈FCF〉〉

tr
(
εF,M
C

)
−−−−−→ 〈〈D〉〉

is the trace of the composite Q � FM
α�idFM−−−−−→ FCF � FM

εF,M
C−−−→ FM .

Before we consider examples of this result we need to fix some notation and give an
example of Lemma 5.8. If C is a category enriched in V , let 1C be the category whose
objects are the objects of C and

1C (c, c′) =

{
1V if c = c′

∅ if c 6= c′

The composition map is the unit isomorphism. Let I : 1C → C be the functor that
picks out the identity map for each c ∈ C . If c is an object of C , and we regard 1V as
a one object category with object ∗, there is a functor Ic : 1V → 1C → C that picks
out the identity map of c. As in Lemma 5.8, the following diagrams commute.

(12)
∐

c C (I(c), I(c))
∐

c C (c, c)

��
〈〈I(UC )I〉〉

tr
(
εI

UC

)
// 〈〈C〉〉

and C (Ic(∗), Ic(∗)) //
∐

c C (c, c)

��
〈〈Ic(UC )Ic〉〉

tr
(
εIc

UC

)
// 〈〈C〉〉

These commuting squares provide the necessary connection between maps of endomor-
phisms and traces.

Example 7.4 If V is the category of abelian groups and categories C and D each
have a single object, then C is a ring C , D is a ring D. An (C ,D )-bimodule M is an
(C,D)-bimodule M . If i : Z→ C is the map that picks out the monoidal unit,

εi
C : iCi ⊗ iC→ iC

is the ring multiplication in C and

εi,M
C : iCi ⊗ iM → iM

is the module structure map. If f : A → C is a ring homomorphism, and M is an
(C,D)-bimodule

ε
i,f M
A : iAi ⊗ i(f M)→ i(f M)
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is given by εi,f M
A (a,m) = f (a)m.

Proposition 7.3 implies the trace of the module structure map εi,M
C : iCi ⊗ iM → iM is

the composite

〈〈 iCi〉〉→ 〈〈C〉〉
χ(M)−−−→ 〈〈D〉〉

The commuting diagram in (12) identifies the first map as the map C→ 〈〈C〉〉.

If α : Z→ iCi is a module homomorphism, the composite

M ∼= Z⊗ iM
α⊗id−−−→ iCi ⊗ iM

εi,M
C−−→ iM

is given by n 7→ α(1)n. While this is very similar to the description of εi,f M
A , since α is

a module homomorphism there is greater flexibility in the image of 1.

Proposition 7.3 implies the trace of

Z� iM
α�idiM−−−−→ iCi � iM

εi,M
C−−→ iM

is 〈〈Z〉〉
〈〈α〉〉
−−→ 〈〈 iCi〉〉

tr(εi
C)

−−−→ 〈〈C〉〉 χ(M)−−−→ 〈〈D〉〉.

While we focused on the case where V is the category of abelian groups, Example 7.4
holds as long as objects of V have underlying sets.

Corollary 7.5 For a functor F : A → C , a right dualizable (C ,D)-bimodule M , an
object a ∈ A and a map of (1V , 1V )-bimodules α : 1V → IaAIa the trace of

1V � F◦IaM
α�idF◦Ia M

−−−−−−→ IaAIa � F◦IaM
∼= IaAIa � Ia(FM )

ε
Ia,FM
A−−−−→ Ia(FM ) ∼= F◦IaM

as a map of (1V ,D)-bimodules is

1V
α−→ 〈〈IaAIa〉〉

tr(εIa
UD

)
−−−−→ 〈〈A 〉〉 χ(FM )−−−−→ 〈〈D〉〉.

Proof This follows from Proposition 7.3 with the substitutions

A C D M F Q

1V A D FM Ia 1V

Algebraic & Geometric Topology XX (20XX)



Topological Hochschild Homology and Higher Characteristics 1041

Theorem 7.6 For a Morita equivalence Ea : EndA (a)→ A , an object b of A , and a
map of modules α : 1V → IbAIb , the trace of

1V � IbAEa
α�id−−−→ IbAIb � IbAEa

ε
Ib,AEa
A−−−−→ IbAEa

is the composite

1V
α−→ A (b, b)→ 〈〈A 〉〉

χ(AEa ,Ea A )(AEa )
−−−−−−−−−→ 〈〈EndA (a)〉〉.

Proof This follows from Proposition 7.3 with the substitutions

A C D M F Q

EndA (b) A EndA (a) AEa Ib 1V

Example 7.7 Let V be the category of abelian groups. For a ring C and a finitely
generated projective C-module P, an endomorphism f : P → P is represented by a

map of abelian groups Z [f ]−→ Hom(P,P), i.e. a map of Z-modules. Despite the fact
that Hom(P,P) has the structure of a monoid, the map is not a map of monoids.

Applying Theorem 7.6 with the substitutions

A a b α

Modc
C C P [f ]

the composite

Z [f ]−→ Modc
C(P,P)→ 〈〈Modc

C〉〉
χ(

(Modc
C )EC

,EC
(Modc

C )
)((Modc

C)EC )
−−−−−−−−−−−−−−−−−−−→ 〈〈EndModc

C
(C)〉〉

is the trace of
(13)

Modc
C(P,C) ∼= Z⊗Modc

C(P,C)
[f ]�id−−−→ EndModc

C
(P)⊗Modc

C(P,C)
ε

IP,(Modc
C )EC

UModc
C−−−−−−−→ Modc

C(P,C).

Following Example 7.4 the second map is the action of EndModc
C
(P) on Modc

C(P,C)
by composition, and so the the image of ψ ∈ Modc

C(P,C) in Modc
C(P,C) is ψ ◦ f . So

(13) is the dual of f and the trace of (13) is the trace of f as in Remark 3.10.

With Theorem 7.6 in place, we can state one of the main theorems of this paper,
concerning the relationship between the cyclotomic trace and the bicategorical trace.
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Theorem 7.8 Let R be a ring spectrum, and f : M → M an endomorphism of compact
R-modules. Then the composition

S
f−→ Modc

R(M,M) ↪→
∨
M

Modc
R(M,M) ↪→ THH(Modc

R)
χ−→ THH(R)

coincides with the bicategorical trace S→ THH(R) induced by f : M → M .

Proof We use Theorem 7.6 with the substitutions

A a b 1V α

Modc
R R M S f .

A Identifying L Xf via THH

This appendix is devoted to performing a computation that is necessary for Theorem 6.6.
We note that this computation is not strictly necessary since Theorem A.12 can be
deduced from structural results. However, the inclusion of this exposition is useful for
understanding geometrically why the twisted free loop space should be appearing.

Given a map f : X → X we identify the twisted THH spectrum THH(Σ∞+ ΩX; Σ∞+ ΩXf )
with a twisted free loop space L Xf . It is probable that computations of this sort for
arbitrary self-maps of ring spectra, g : A→ A, are interesting; but we content ourselves
with the current example.

It is a classical fact due to Goodwillie [14] that the cyclic bar construction applied to
the based loop space is the free loop space: Bcy(ΩX) ' L X . In modern categories of
spectra, the suspension spectrum functor interacts nicely with bar constructions [12],
and so this provides a computation of the topological Hochschild homology of the
“spectral group ring” Σ∞+ ΩX :

THH(Σ∞+ ΩX) ' Σ∞+ L X

In the bar construction above, ΩX is considered as an (ΩX,ΩX)-bimodule in the
obvious way. In what follows, we consider ΩX as an (ΩX,ΩX)-bimodule with the
action twisted by an endomorphism f : X → X . That is, let ω ∈ ΩX and let γ be the
path from ∗ to f (∗), then we define the left action of ω′ ∈ ΩX by ω′ ∗ ω and the right
action by ω ∗ γ ∗ f (ω′) ∗ γ−1 . Let ΩXf be ΩX with this bimodule structure; we may
then ask about Bcy(ΩX; ΩXf ). We compute this below and show it to be homotopy
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equivalent to a twisted version of the free loop space, which is the proper receptacle for
the Reidemeister trace.

The computation proceeds mostly as in [14]. We compare the cyclic bar construction
as a simplicial space with the singular simplicial space of the twisted free loop space.
In order to work with strict topological monoids and bimodules we need to work with
Moore path spaces, Moore loop spaces, etc. Also, the introduction of γ above in order
to transport between loops based at ∗ and loops based at f (∗) is unfortunate and we
avoid it below by choosing two different models for ΩX when it suits us.

Definition A.1 The free Moore path space is defined to be

PMX = {(γ, u) ∈ Map([0,∞),X)× [0,∞) : γ(t) = γ(u) t ≥ u}.

Here Map([0,∞),X) is given the compact open topology. The space PMX comes
equipped with two maps s : PMX → X and t : PMX → X given by evaluation at 0
and u.

Definition A.2 Let X be a based space with base ∗. Then the Moore loop space is

ΩMX = {(γ, u) ∈PMX : γ(0) = γ(u) = ∗}

that is, it is the pullback
ΩMX //

��

PMX

s×t
��

∗ // X × X

For work below, it is convenient to denote the “length” of the path, u, by |ω|.

For use in the two-sided bar construction, we need another version of this loop space.
The following construction allows us to act on the left by loops based at ∗ and on the
right by loops based at f (∗).

Definition A.3 The f -twisted Moore loop space is the topological space

ΩMXf = {(γ, u) ∈PMX : γ(0) = ∗, γ(u) = f (∗)}

i.e. it is given as a pullback
ΩMXf //

��

PMX

��
∗ id×f // X × X

Again, |ω| denotes the length of the path ω .
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This space ΩMXf is homotopy equivalent to ΩMX and has the structure of an
(ΩMX,ΩMX)-bimodule. For α ∈ ΩMX , γ ∈ ΩMXf and β ∈ ΩMX

α · γ = α ∗ γ γ · β = γ ∗ f (β)

For our definition of the free loop space, it is more convenient to use the naive definition,
not the Moore-style definition. We let PX be paths in X and ΩX be loops in X .

Definition A.4 The f -twisted free loop space is defined to be

L Xf = {γ ∈PX : γ(0) = f (γ(1))}

That is, L Xf arises as the pullback

L Xf

��

// PX

ev0× ev1

��
X

id×f // X × X

Consequently, L f X sits in a fibration sequence

ΩXf → L f X → X

We can now define the main object of concern in this section.

Definition A.5 Ncy(ΩMX,ΩMXf ) is the geometric realization of the simplicial space
with n-simplices

Ncy
n (ΩMX,ΩMXf ) = ΩMX × · · · × ΩMX︸ ︷︷ ︸

n times

×ΩMXf

The face maps di : Ncy
n → Ncy

n−1 are given by

di(ω0, . . . , ωn−1, ω) =


(ω0, . . . , ωiωi+1, . . . , ωn−1, ω) i < n

(ω0, . . . , ωn−1ω) i = n

(ω1, . . . , ωn−1, ωf (ω0)) i = n + 1

The degeneracies sj : Ncy
n → Ncy

n+1 are given by the insertion of trivial paths:

sj(ω0, . . . , ωn−1, ω) = (· · · , ωj, ∗, ωj+1, . . . )

Remark A.6 Level-wise this is equivalent to the cyclic bar construction that computes
L X , but the face maps are different.
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In order to proceed with the comparison, we need to define various simplicial spaces.
In what follows elements in ∆n referred to by the barycentric coordinates (u0, . . . , un).

The ∆n are assembled into a cosimplicial space ∆• via the cosimplicial maps

di(u0, . . . , un) = (u0, . . . , ui + ui+1, . . . , un)

si(u0, . . . , un) = (u0, . . . , ui, 0, ui+1, . . . , un)

For γ ∈ Map(∆n,PX) and (u0, . . . , un) ∈ ∆n , γu0,...,un denotes the result of evaluating
γ at (u0, . . . , un).

Definition A.7 The space (ΩXf )∆n
is defined to be

(ΩXf )∆n
=

{
γ ∈ Map(∆n,PX)

∣∣∣∣γu0,...,un(0) = ∗, γu0,...,un(1) = f (∗)
for all (u0, . . . , un) ∈ ∆n

}
The cosimplicial structure on ∆• induces a simplicial structure on (ΩXf )∆•

. The face
maps are given by restriction:

di(γ)(t, u0, . . . , un) = γ(t, u0, . . . , ui, 0, ui+1, . . . , un)

where t is the path coordinate and the degeneracy maps are given by addition of
coordinates:

si(γ)(t, u0, . . . , un) = γ(t, u0, . . . , ui + ui+1, . . . , un)

Definition A.8 The topological space (L Xf )∆n
is defined to be

(L Xf )∆n
=

{
γ ∈ Map(∆n,PX)

∣∣∣∣γu0,...,un(0) = f (γu0,...,un(1))
for all (u0, . . . , un) ∈ ∆n

}
Again, the cosimplicial structure on ∆• induces a simplicial structure on (L Xf )∆•

.
The face and degeneracy maps are as above.

The idea is now to compare the bar constructions with known fibration sequences.
Consider the following diagram.

(14) (ΩMXf )•,c
A //

i
��

(ΩXf )∆•

i∆
•

��
Ncy(ΩMX,ΩMXf )

p
��

B // (L Xf )∆•

p∆•

��
B•Ω

MX C // X∆•
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The upper left corner is the constant simplicial space (ΩMXf )•,c , and the lower left
corner is the usual bar construction on the topological monoid ΩMX . The right side of
the diagram is simply the singular simplicial spaces of the fibration ΩXf → L Xf → X .

The left column will be a fibration sequence upon geometric realization, the right
hand side is trivially so, and we show that all horizontal maps are weak equivalences
following [14].

We now write out all of the maps in the diagram:

• The map
A : (ΩMXf )n,c → (ΩXf )∆n

is given by reparamterizing the loops:

A(ω)(t, u0, . . . , un) = ω(t|ω|)

• The map
B : Ncy

n (ΩMX,ΩMXf )→ (L Xf )∆n

is given by:

B(ω0, ω1, . . . , ωn−1, ω)(t, u0, . . . , un)

= ω̃

(
t(|ω0|+ |ω1|+ · · ·+ |ωn−1|+ |ω|)

+ u0(|ω0|+ · · ·+ |ωn−1|) + u1(|ω1|+ · · ·+ |ωn−1|) · · ·+ un−1(|ωn−1|)
)

where
ω̃ = ω0 ∗ · · · ∗ ωn−1 ∗ ω ∗ f (ω0) ∗ f (ω1) · · · · · · ∗ f (ωn−1)

• The map
C : BnΩMX → X∆n

is given by

C(ω0, . . . , ωn−1)(u0, . . . , un)

= (ω1 ∗ · · · ∗ ωn)
(

u0(|ω0|+ · · ·+ |ωn−1|) + u1(|ω1|+ · · ·+ |ωn−1|) + · · ·+ un(|ωn−1|)
)

• The maps i∆
•

and p∆•

the obvious ones induced by maps on spaces.

• The map i• is given level-wise as

in(ω) = (∗, . . . , ∗, ω)

and p• is given level-wise as

pn(ω0, . . . , ωn−1, ωn) = (ω0, . . . , ωn−1)
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| |

| |

| |

| | | | | |

u0 = 1

u1 = 1

u2 = 1

ω0 ω1 ω f (ω0) f (ω1)

ω̃

|
∗

|
∗

|
∗ |

f (∗)

|
f (∗)

|
f (∗)

ω0 ω1

ω

f (ω0)

f (ω1)

Figure 9: The map B

The definition of the map, B, above is somewhat elaborate. The example in Fig. 9
hopefully elucidates it.

Example A.9 We consider the case when n = 2 for the map B above, which is enough
to capture the issues. We define

ω̃ = ω0 ∗ ω1 ∗ ω ∗ f (ω0) ∗ f (ω1)

and a family of paths parameterized by the 2-simplex

∆2 = {(u0, u1, u2) : u0 + u1 + u2 = 1}.

We think of this simplex as interpolating between three extremes: the cases when each
of u0, u1 and u2 are 1. We’d like the extreme cases to be

• u2 = 1 — the path ω0 ∗ ω1 ∗ ω
• u1 = 1 — the path ω1 ∗ ω ∗ f (ω0)

• u0 = 1 — the path ω ∗ f (ω0) ∗ f (ω1).
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We would also like that if the path starts at x , the endpoint is f (x). Consider the path

ω̃(t(|ω0|+ |ω1|+ |ω|) + u0(|ω0|+ |ω1|) + u1(|ω0|))
We can check that when u2 = 1 then u0, u1 = 0 and the above gives ω̃(t(|ω0|+|ω1|+|ω|))
which is exactly ω0 ∗ ω1 ∗ ω . When u1 = 1, then the above is ω̃(t(|ω0|+ |ω1|) + |ω0|),
which is the path ω1 ∗ω ∗ f (ω0). Finally, when u0 = 1 we get the path ω ∗ f (ω0) ∗ f (ω1).

We also note that for any choice of u0, u1 ,

ω̃(u0(|ω0|+ |ω1|) + u1(|ω0|)
= ω̃(|ω0|+ |ω1|+ |ω|+ u0(|ω0|+ |ω1|) + u1(|ω0|))

essentially by definition, so that each path parameterized by u0, u1, u2 is in L Xf .

There are a few things we need to check about the maps above. First, we should check
that B is actually a map to (L Xf )∆•

— that is, check that the endpoints are correct.
The argument is the same as in the example.

Lemma A.10 The map B defined above, is well-defined.

Second, it is easy to observe that the diagram actually commutes. Third, it is clear that
A and C are simplicial maps. Though it is an irritating exercise, it is easy to check that
B is as well.

Proposition A.11 B : Ncy(ΩMX,ΩMXf )→ (L Xf )∆•

is a simplicial map.

The rest of the proof proceeds as in [14, Sect. V]. Upon geometric realization, the left
hand column of 14 becomes a fibration up to homotopy by [31], as does the right hand
column. To prove that B is a weak equivalence, it thus suffice to prove that A,C are
weak equivalences. This is done in [14, Sect. V].

All of this work entitles us to the following theorem.

Theorem A.12 Let X be a (connected) topological space. Then

Bcy(ΩMX,ΩMXf ) ' L Xf

As a corollary when f = Id we recover Goodwillie’s original computation.

Corollary A.13 [14, Sect. V.1] For a topological space, the geometric realization of
the cyclic bar construction on the based loop space is equivalent to the free loop space:

Bcy(ΩX) ' L X

and for X = BG where G is a finite group

Bcy(G) ' L BG
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As another corollary, we have a generalization of the classical computation

THH(Σ∞+ ΩX) ' Σ∞+ L X.

Corollary A.14
THH(Σ∞+ ΩX; Σ∞+ ΩXf ) ' Σ∞+ L Xf

The space L Xf is the space of homotopy fixed points of a self-map f : X → X ,
computed by taking a “derived intersection” of X and the image of X under f . One
could wish to have a similar THH description of the derived intersection of two maps
f , g : X → Y . The following corollary is a more general statement, and easy corollary
of the proof of Theorem A.12. Though we do not use this generality in the paper, it is
useful to record for later work.

Corollary A.15 Let f , g : X → Y be self maps and let L Y f ,g be the homotopy
pullback

L Y f ,g

��

// PY

ev0,ev1

��
X

f×g
// Y × Y

Similarly, let Σ∞+ ΩY f ,g be the (Σ∞+ ΩY,Σ∞+ ΩY)-bimodule Σ∞+ ΩX with left action by
f and right action by g. Then

THH(Σ∞+ ΩX; Σ∞+ ΩXf ,g) ' Σ∞+ L Y f ,g.

Proof The proof is identical to that of Theorem A.12
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arXiv:0807.1471

[24] K Ponto, Coincidence invariants and higher Reidemeister traces, J. Fixed Point Theory
Appl. 18 (2016) 147–165 arXiv:1209.3710

[25] K Ponto, M Shulman, Duality and traces for indexed monoidal categories, Theory
Appl. Categ. 26 (2012) No. 23, 582–659 arXiv:1211.1555

[26] K Ponto, M Shulman, Shadows and traces in bicategories, J. Homotopy Relat. Struct.
8 (2013) 151–200 arXiv:0910.1306

[27] K Ponto, M Shulman, The multiplicativity of fixed point invariants, Algebr. Geom.
Topol. 14 (2014) 1275–1306 arXiv:1203.0950

[28] C Schlichtkrull, The transfer map in topological Hochschild homology, J. Pure Appl.
Algebra 133 (1998) 289–316

[29] C Schlichtkrull, Transfer maps and the cyclotomic trace, Math. Ann. 336 (2006)
191–238

[30] S Schwede, B Shipley, Equivalences of monoidal model categories, Algebr. Geom.
Topol. 3 (2003) 287–334

[31] G Segal, Categories and cohomology theories, Topology 13 (1974) 293–312

[32] M Shulman, Framed bicategories and monoidal fibrations, Theory Appl. Categ. 20
(2008) No. 18, 650–738 arXiv:0706.1286

[33] J Stallings, Centerless groups—an algebraic formulation of Gottlieb’s theorem, Topol-
ogy 4 (1965) 129–134

[34] F Waldhausen, Algebraic K -theory of spaces, from “Algebraic and geometric topology
(New Brunswick, N.J., 1983)”, Lecture Notes in Math. 1126, Springer, Berlin (1985)
318–419

[35] F Wecken, Fixpunktklassen. I, Math. Ann. 117 (1941) 659–671

Department of Mathematics, Vanderbilt University, 1326 Stevenson Center, Nashville, Tennessee,
37240

Department of Mathematics, University of Kentucky, 719 Patterson Office Tower, Lexington,
Kentucky, 40506

j.campbell@vanderbilt.edu, kate.ponto@uky.edu

http://www.jonathanacampbell.com, http://www.ms.uky.edu/~kate/

Algebraic & Geometric Topology XX (20XX)

http://arxiv.org/abs/0807.1471
http://dx.doi.org/10.1007/s11784-015-0269-5
http://arxiv.org/abs/1209.3710
http://arxiv.org/abs/1211.1555
http://dx.doi.org/10.1007/s40062-012-0017-0
http://arxiv.org/abs/0910.1306
http://dx.doi.org/10.2140/agt.2014.14.1275
http://arxiv.org/abs/1203.0950
http://dx.doi.org/10.1016/S0022-4049(97)00117-5
http://dx.doi.org/10.1007/s00208-006-0783-2
http://dx.doi.org/10.2140/agt.2003.3.287
http://dx.doi.org/10.1016/0040-9383(74)90022-6
http://arxiv.org/abs/0706.1286
http://dx.doi.org/10.1016/0040-9383(65)90060-1
http://dx.doi.org/10.1007/BFb0074449
http://dx.doi.org/10.1007/BF01450034
mailto:j.campbell@vanderbilt.edu
mailto:kate.ponto@uky.edu
http://www.jonathanacampbell.com
http://www.ms.uky.edu/~kate/

	1 Introduction
	1.1 Outline
	1.2 Bicategories and Notation
	1.3 Acknowledgments

	2 THH for Spectral Categories and Shadows
	3 Duality and trace
	4 Morita equivalence in bicategories
	5 Euler characteristics for base change objects
	5.1 Morita equivalence arising from base change
	5.2 Morita equivalence and trace

	6 Example: Fixed Point Invariants
	7 A 0-level cyclotomic trace
	A Identifying L Xf via THH
	Bibliography

