
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 66, NO. 1, JANUARY 2019 313

A High-Performance and Energy-Efficient
FIR Adaptive Filter Using Approximate

Distributed Arithmetic Circuits
Honglan Jiang , Student Member, IEEE, Leibo Liu , Member, IEEE, Pieter P. Jonker, Member, IEEE,

Duncan G. Elliott , Member, IEEE, Fabrizio Lombardi , Fellow, IEEE,
and Jie Han , Senior Member, IEEE

Abstract— In this paper, a fixed-point finite impulse response
adaptive filter is proposed using approximate distributed arith-
metic (DA) circuits. In this design, the radix-8 Booth algo-
rithm is used to reduce the number of partial products in the
DA architecture, although no multiplication is explicitly per-
formed. In addition, the partial products are approximately
generated by truncating the input data with an error compensa-
tion. To further reduce hardware costs, an approximate Wallace
tree is considered for the accumulation of partial products.
As a result, the delay, area, and power consumption of the
proposed design are significantly reduced. The application of
system identification using a 48-tap bandpass filter and a 103-
tap high-pass filter shows that the approximate design achieves
a similar accuracy as its accurate counterpart. Compared with
the state-of-the-art adaptive filter using bit-level pruning in the
adder tree (referred to as the delayed least mean square (DLMS)
design), it has a lower steady-state mean squared error and a
smaller normalized misalignment. Synthesis results show that the
proposed design attains on average a 55% reduction in energy
per operation (EPO) and a 3.2× throughput per area compared
with an accurate design. Moreover, the proposed design achieves
45%–61% lower EPO compared with the DLMS design. A sac-
cadic system using the proposed approximate adaptive filter-
based cerebellar model achieves a similar retinal slip as using
an accurate filter. These results are promising for the large-scale
integration of approximate circuits into high-performance and
energy-efficient systems for error-resilient applications.

Index Terms— Adaptive filter, approximate arithmetic,
distributed arithmetic, radix-8 Booth algorithm, truncation,
Wallace tree.

I. INTRODUCTION

THE human beings’ superior ability to accurately control
complex movements, due to the cerebellum, has engaged

Manuscript received January 12, 2018; revised April 25, 2018 and
May 25, 2018; accepted June 4, 2018. Date of publication August 17, 2018;
date of current version December 6, 2018. This work was supported by the
Natural Sciences and Engineering Research Council of Canada under Project
RES0025211. This paper was recommended by Associate Editor C. Panazio.
(Corresponding author: Jie Han.)

H. Jiang, D. G. Elliott, and J. Han are with the Department of
Electrical and Computer Engineering, University of Alberta, Edmonton,
AB T6G 1H9, Canada (e-mail: honglan@ualberta.ca; delliott@ualberta.ca;
jhan8@ualberta.ca).

L. Liu is with the Institute of Microelectronics, Tsinghua University,
Beijing 100084, China (e-mail: liulb@tsinghua.edu.cn).

P. P. Jonker is with the Department of Biomechanical Engineering,
Delft University of Technology, 2628 CD Delft, The Netherlands (e-mail:
p.p.jonker@tudelft.nl).

F. Lombardi is with the Department of Electrical and Computer
Engineering, Northeastern University, Boston, MA 02115 USA (e-mail:
lombardi@ece.neu.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSI.2018.2856513

considerable attention. Many computational models have been
proposed to explain and to mimic the cerebellar function for
signal processing and motor control applications, including
the perceptron-based model [1], [2], the continuous spatio-
temporal model [3], the higher-order lead-lag compensator
model [4] and the adaptive filter-based model [5]. Among
them, the most widely used cerebellar model is based on the
adaptive filter due to its relatively low complexity and high
structural resemblance to the cerebellum. However, little has
been done on implementing the cerebellar model in hardware
due to its high complexity.

Adaptive filters are widely used in applications such as
image processing, signal prediction/identification and echo
suppression [6]. The finite impulse response (FIR) adaptive
filter is one of the most pervasively employed adaptive filters;
it is composed of an FIR filter with variable coefficients
(or weights) and a weight update module. The coefficients
are adjusted by an adaptive algorithm. Due to the closed-
loop adaptive process and related algorithm, the hardware
implementation of a direct form FIR adaptive filter is very
complex. Moreover, the high power consumption, large area
and long critical path of the weighted sum operation in the
linear filter significantly limit the throughput of such a digital
signal processing (DSP) system.

In this paper, distributed arithmetic (DA) is combined with
the radix-8 Booth algorithm and approximate computing for
a high-performance and energy-efficient FIR adaptive filter
design. To the best knowledge of the authors, this is the first
integrated FIR adaptive filter design using the radix-8 Booth
algorithm in a DA architecture. In this design, the computation
of weighted sums using multipliers and adders is transformed
to a DA architecture with no lookup table (LUT). Thus,
no multiplier is used; however, the partial product generation
and accumulation circuits are still required. By using the radix-
8 Booth algorithm, the number of partial products is reduced
by 2/3 compared to a conventional DA architecture. Therefore,
a significant reduction is achieved in the accumulation circuits.
Moreover, an input truncation scheme is proposed to approx-
imately generate the partial products and an approximate
recoding adder is used to reduce the critical path, area and
power consumption. To further reduce the latency, approximate
Wallace trees are used for the accumulation of partial
products.

The applications in system identification and the saccadic
system show that the proposed approximate FIR adaptive

1549-8328 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3705-4240
https://orcid.org/0000-0001-7548-4116
https://orcid.org/0000-0003-0438-1800
https://orcid.org/0000-0003-3152-3245
https://orcid.org/0000-0002-8849-4994


314 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 66, NO. 1, JANUARY 2019

filters incur a very small loss in accuracy compared with
the accurate implementation. Synthesis results indicate that
the proposed design achieves nearly 55% reduction in energy
per operation (EPO) and a 3.2× throughput per area (TPA).
Compared with the delayed least mean square (DLMS)-based
design of [7], the proposed design requires up to 60% lower
EPO with a higher accuracy (i.e., lower mean squared error
and misalignment).

This paper is organized as follows. Section II introduces the
cerebellar model, FIR adaptive filtering, the basic principles
of DA, and the review of FIR adaptive filters. Section III pro-
poses the architecture of the FIR adaptive filter using approx-
imate DA, including error computation and weight update
modules. The proposed truncated partial product generation
and approximate Wallace tree are presented in Section IV.
Section V shows the simulation and synthesis results of the
adaptive filter designs. Additionally, the proposed design is
compared with the most efficient existing designs in terms
of accuracy and hardware overhead. Section VI evaluates the
accuracy of the adaptive filter designs in a saccadic system.
Section VII concludes the paper.

II. BACKGROUND

A. Cerebellar Model

Fig. 1 shows a connection network of cerebellar cells [8],
where the Purkinje cell (PC), granule cell (GC), Golgi cell
(Go), mossy fibre (MF) and climbing fibre (CF) are key ele-
ments for the cerebellum. In the adaptive filter-based cerebellar
model, the GC and Go are combined and simplified to a tap-
delay line [9]. The output of the PC is given by

z(t) =
M−1�

i=0

wi (t) · xi (t), (1)

where wi (t) is the synaptic weight between the i th parallel
fibre (PF) and the PC, xi (t) = u(t − T i) is the delayed input
of u(t), T is the constant delay of the Go-GC system, and M is
the number of synapses. The synaptic weights are updated by
the error signal carried on the CF according to the least mean
square (LMS) algorithm. The LMS algorithm is formulated as

wi (t + T ) = wi (t) + μ · e(t) · xi (t), i = 0, 1, · · · , M − 1,

(2)

where μ is the step size, and e(t) = d(t) − z(t) is the error
between the desired signal d(t) and the PC output.

B. FIR Adaptive Filter Architecture

Fig. 2 shows the basic structure of an FIR adaptive filter.
It consists of an FIR filter with variable weights and a weight
update module. The weights of the FIR filter are adjusted
by the adaptive algorithm through a negative feedback loop.
An M-tap FIR filter is implemented by

y(n) = w(n) · x(n) =
M−1�

i=0

wi (n) · x(n − i), (3)

where w(n) = [w0(n),w1(n), · · · , wM−1(n)] is the weight
vector, x(n) = [x(n), x(n−1), · · · , x(n−M+1)]T is the input

Fig. 1. A connection network of cerebellar cells.

Fig. 2. An FIR adaptive filter [13]. n is the iteration number, x(n) is the
input vector, w(n) is the weight vector, y(n) is the output signal, d(n) is the
interfered desired signal with the undesired noise, and e(n) is the error output.

vector at the nth iteration, and M is the length of w(n) and the
tap of the FIR filter. The weights of the FIR filter are variables
with the iteration number n as determined by the adaptive
algorithm. They are updated until a set of optimized values are
obtained. There are many adaptive algorithms, e.g. the LMS,
the normalized LMS, the recursive LMS algorithms [10] and
the affine projection algorithm [11]. The selection of an adap-
tive algorithm is based on a tradeoff between computational
complexity and convergence speed. As the LMS algorithm is
very simple with a satisfactory convergence [12], it is widely
used for hardware implementation and thus it is considered in
this paper. The LMS algorithm is formulated as

wi (n+1)=wi(n) + μ · e(n) · x(n − i), i = 0, 1, · · · , M − 1,

(4)

where μ is the step size, and e(n) = d(n) − y(n) is the
error signal between the desired signal d(n) (interfered by
an undesired noise) and the filter output y(n).

As per Fig. 2, the implementation of an FIR adaptive filter
can be divided into the error computation and the weight
update modules; they are implemented by delay registers,
multipliers and adders (shown in Figs. 3 and 4, respectively).
In Fig. 4, the step size μ is set to 2−q (where q is a positive
integer); thus the multiplication by μ is realized by a right
shift operation.

Still, 2M multipliers (with M multipliers for the error com-
putation and M multipliers for the weight update) are required
for an M-tap FIR adaptive filter. This process consumes a
significant amount of power and it also incurs a large area for
the required hardware implementation.

C. Distributed Arithmetic

Distributed arithmetic presents an efficient computation
structure for DSP. It is widely used in the computation of
sum of products or inner products [14]. For example, consider



JIANG et al.: HIGH-PERFORMANCE AND ENERGY-EFFICIENT FIR ADAPTIVE FILTER USING APPROXIMATE DA CIRCUITS 315

Fig. 3. Error computation module.

Fig. 4. Weight update module.

computing the inner product of an M-dimensional vector pair
x = [x0, x1, · · · , xM−1] and y = [y0, y1, · · · , yM−1], where
M is the number of numbers in each vector pair

z =
M−1�

i=0

xi yi . (5)

Assume that yi = −yi,m−12m−1 + �m−2
j=0 yi, j 2 j is a binary

number in 2’s complement, where m is the bit width of yi .
Then, (5) becomes

z =
M−1�

i=0

xi (−yi,m−12m−1 +
m−2�

j=0

yi, j 2 j )

= −2m−1
M−1�

i=0

xi yi,m−1 +
m−2�

j=0

(

M−1�

i=0

xi yi, j )2
j (6)

As yi, j is either ‘0’ or ‘1’,
�M−1

i=0 xi yi, j has 2M possible
values. Take M = 3 as an example,

�2
i=0 xi yi, j can be 0,

x0, x1, x1 + x0, x2, x2 + x0, x2 + x1 or x2 + x1 + x0. These
23 values can be precomputed and stored in an 8-word LUT,
and [y0, j , y1, j , y2, j ] is used to address the LUT. Finally,
a shifted accumulator is required to obtain the final result z
for the inner product.

As the length of the vector pair increases, the size of
the required LUT grows exponentially if a full LUT based
DA is used to compute the inner product, i.e., 2M -word. Thus,
directly using full LUT based DA to compute the inner product
is not efficient when M is large. Usually, decomposition
techniques are used to decompose the M-dimensional vector
pair into K -dimensional vector pairs (K < M) [15]. The inner
product of a K -dimensional vector pair is implemented using
a full LUT (2K -word) based DA. Then, the inner product of
the M-dimensional vector pair is obtained by accumulating
the inner products of the K -dimensional vector pairs. Another
way to solve this problem is to compute

�M−1
i=0 xi yi, j on line

by accumulating the partial products xi yi, j for a large M [16].
The partial products can be accumulated in a bit-serial or bit-
parallel mode [17]. An adder tree and a scaling accumulator

are sufficient for a bit-serial DA, however, m processing cycles
are required for an m-bit input. A parallel DA is significantly
faster, but it requires m adder trees and a shifted adder tree
to accumulate the partial products, incurring a larger area and
higher power dissipation.

D. Review of FIR Adaptive Filter Designs

Several FIR adaptive filter designs based on DA have been
proposed to reduce the critical path for high throughput. In the
two DA-based FIR adaptive filters presented in [18], weights
are used as addresses to access the LUTs storing the sums of
the weighted delayed inputs. Two schemes have been proposed
for updating the LUTs. Although the memory requirement is
reduced by half compared with previous schemes, the size of
the LUT increases exponentially with the order of the adaptive
filter. Therefore, these designs are not suitable for adaptive
filters with high orders. An efficient DA formulation has been
presented for the block least mean square (BLMS) algorithm
in an FIR adaptive filter [19]. In this design, the LUT is
shared between the computations of the filter output and the
weight increment; only one column of LUTs is updated in
each iteration by shifting the weight-vectors. Thus, figures of
merits such as circuit area, power and timing are improved
for the LUT updating process. However, the size of the
LUT is still L times (where L is the block size of the BLMS
algorithm) the size of the LUT in [18] and hence, the area and
power dissipations of this design are rather large. Therefore,
DA-based FIR adaptive filter designs using LUTs perform well
for a low order; however, they are not efficient for adaptive
filters of a high order due to the overheads for updating and
accessing the LUTs. For high-order designs, DA architecture
using decomposition techniques or without using LUTs is
more efficient [16].

A novel shared-LUT design has been proposed to
implement DA for a reconfigurable FIR filter [20]. In this
design, an M-dimensional vector pair is decomposed into L
P-dimensional small vector pairs (i.e., M = L P). A 2P -word
LUT is shared by the bit slices (consisting of P bits) of
different weightage. Totally, L partial product generators,
L 2P -word LUTs, m (as the bit width of inputs) adder
trees and a shift-add tree are required to compute the inner
product. The contents in the LUTs are updated in parallel. This
FIR filter achieves a significant reduction in energy compared
with the systolic decomposition of a DA-based design.

A different methodology to improve the throughput
of an adaptive filter is to use a pipelined structure.
However, the LMS algorithm does not directly sup-
port pipelining due to its recursive operation. There-
fore, the LMS algorithm is modified into the so-called
DLMS [21]. DLMS significantly reduces the critical path delay
of an adaptive filter by pipelining, whereas the performance
of convergence is degraded significantly due to the adaptation
delay [22]. A DLMS FIR adaptive filter with a low adaptation
delay has been proposed in [7] by using a novel partial product
generator and an optimized balanced pipeline; a bit-level
pruning of the adder tree is further employed to reduce the
area and power consumption of the implementation. Synthesis
and simulation have shown that this scheme consumes less



316 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 66, NO. 1, JANUARY 2019

power and requires less area than other DLMS adaptive filter
designs. However, a large number of additional latches are
used for the pipelined implementation of a DLMS adap-
tive filter and hence, overheads in area and power dissipa-
tion are incurred compared to an adaptive filter using the
LMS algorithm.

Many other techniques have been combined with DA to
increase its efficiency. Factor sharing has been employed in a
DA architecture to reduce the number of adders [23]. It reduces
44.5% of the adders in a multistandard transform core design.
A result-biased circuit for DA has been used in the filter
architectures for computing the discrete wavelet transform; it
leads to a 20% to 25% reduction in hardware [24].

III. PROPOSED ADAPTIVE FILTER ARCHITECTURE

For an M-tap direct-form FIR adaptive filter (i.e., an m-bit
fixed-point implementation), the critical path delay is the sum
of delays in the error computation (tM + �log2(M + 1)� × tA)
and weight update processes (tM + tA), where tM and tA

are the critical path delays of an m × m multiplier and an
m-bit adder, respectively. Therefore, the sample rate of the
input signal is limited due to this long latency. An impor-
tant feature of the proposed adaptive filter using DA is the
reduction of the latency to achieve a high throughput with
significantly low area and power consumption.

In the adaptive learning process for the weight update,
errors in the adaptive filter circuit can be inherently com-
pensated or corrected. Therefore, power and area efficient
approximate arithmetic circuits are considered for a fixed-
point implementation. Truncation is an efficient method to
save power and area for approximate arithmetic circuits at
a limited loss of accuracy [25], so it has been extensively
used in the design of fixed-width multipliers [26]. Most
existing designs are based on the truncation of the par-
tial products to save circuitry for partial product accumu-
lation [27]. All bits of the input operands are required for
these multipliers and therefore, memory is not reduced for
storage requirements. However, memory consumes a signif-
icant amount of power and accounts for a large area in
an application involving a large data set. Moreover, effi-
cient data transfers are very important for achieving a high
throughput [28].

As per the results in [25], compared to the partial product
truncation, truncating the input operands achieves more signif-
icant reduction in hardware overhead for adder and multiplier
designs. Thus, truncation on the input operands is applied to
achieve savings in the partial product generation.

A. Error Computation Module

A weight wi (n) can be represented in 2’s complement as
wi (n) = −wm−1

i (n)2m−1 + �m−2
j=0 w

j
i (n)2 j , where w

j
i (n) is

the j th least significant bit (LSB) of wi (n) and m is the
width of the binary representation. For the ease of analysis,
wi (n) is represented as an integer; it can be easily transformed
to a fixed-point format by shifting. By using the radix-8 Booth
encoding, as shown in Table I, four bits of wi (n) are grouped

TABLE I

THE RADIX-8 BOOTH ENCODING ALGORITHM

with one overlapping bit. Then, wi (n) is given by

wi (n) =
�m/3�−1�

j=0

(−22w
3 j+2
i (n) + 2w

3 j+1
i (n) + w

3 j
i (n)

+w
3 j−1
i (n))23 j

=
�m/3�−1�

j=0

w
j
i (n)23 j , (7)

where w−1
i = 0, w

j
i (n) = −22w

3 j+2
i (n) + 2w

3 j+1
i (n) +

w
3 j
i (n) + w

3 j−1
i (n), and w

j
i (n) ∈ {−4,−3,−2,−1, 0, 1,

2, 3, 4}. Sign extension is used when the width of the encoded
input is shorter than 3 × �m/3�.

The filter output y(n) in (3) is then obtained as

y(n) = w(n) · x(n) = δ · w(n) · x(n), (8)

where

w(n)=

⎡

⎢⎢⎢⎢⎣

w0
0(n) w0

1(n) · · · w0
M−1(n)

w1
0(n) w1

1(n) · · · w1
M−1(n)

...
... · · · ...

w
� m

3 �−1
0 (n) w

� m
3 �−1

1 (n) · · · w
� m

3 �−1
M−1 (n)

⎤

⎥⎥⎥⎥⎦
, (9)

δ = [20, 23, · · · , 23�m/3�−3], and x(n) = [x(n), x(n −
1), · · · , x(n − M + 1)]T . By computing pp(n) = w(n) · x(n)
first through the accumulation of partial products and then
y(n) = δ ·pp(n) by a shift accumulation, a DA architecture is
obtained. Let pp(n) be [pp0(n), pp1(n), · · · , pp�m/3�−1(n)]T ,
then pp j(n) is given by

pp j (n) =
M−1�

i=0

w
j
i (n)x(n − i) =

M−1�

i=0

P Pij , (10)

where P Pij = w
j
i (n)x(n − i) is the j th row in the partial

product array of wi (n)x(n − i) using the radix-8 Booth
algorithm.

Compared with a conventional DA architecture, the number
of partial products in pp(n) is reduced by roughly m −
�m/3� ≈ 2m

3 due to the use of the radix-8 Booth algorithm.
Thus, the required number of accumulations to obtain y(n) is
reduced by about 2/3.



JIANG et al.: HIGH-PERFORMANCE AND ENERGY-EFFICIENT FIR ADAPTIVE FILTER USING APPROXIMATE DA CIRCUITS 317

Fig. 5. Proposed error computation scheme using distributed arithmetic. PPG: the partial product generator; CLA: the m-bit carry lookahead adder.

Fig. 5 shows the proposed error computation module
using DA. In this design, no LUT is used due to the large
size incurred in a high-order filter. Thus, the partial product
vectors P Pij are generated online and accumulated. Initially,
the inputs w(n) and x(n) are truncated and compensated (will
be discussed in Section IV-A). Then, the partial product vec-
tors P Pij (i = 0, 1, · · · , M −1 and j = 0, 1, · · · , �m/3�−1)
in the weighted sum operation for computing y(n) are gen-
erated using the radix-8 Booth encoder, the partial product
generator (PPG) and the approximate recoding adder in [29].
The Radix-8 Booth encoder is used to encode every 4 bits
in the weight wi (n) (with an overlap of one bit) into
one number w

j
i (n) (i.e., 0,±1,±2,±3 and ±4), as per

Table I and (7). The PPG and the approximate recoding
adder (to generate 3x(n − i)) are used to produce partial
products P Pij as per (10). The partial product vectors are
then accumulated by the Wallace trees.

An M-input Wallace tree is used to compute (10) and hence,
�m/3� such Wallace trees are required to obtain pp(n). Let the
two intermediate results generated by the j th Wallace tree be
pt j0 and pt j1, then pp j(n) = pt j0 + pt j1. To implement it,
a multi-bit carry-propagation adder is needed, which causes
a long latency. Thus, the intermediate results pt j0 and pt j1
are kept for the next stage to eliminate the long latency.
In this case, y(n) = δ · pp(n) = [20, 23, · · · , 23�m/3�−3] ·
[pt00+pt01, pt10+pt11, · · · , pt(�m/3�−1)0+pt(�m/3�−1)1]T . Let
δ = [20, 20, 23, 23, · · · , 23�m/3�−3, 23�m/3�−3] and pp(n) =
[pt00, pt01, pt10, pt11, · · · , pt(�m/3�−1)0, pt(�m/3�−1)1]T , then
y(n) = δ · pp(n). The negative error signal −e(n) = y(n) −
d(n) = [δ, 1] ·



pp(n)
−d(n)

�
. This step can be implemented by

shifting the intermediate results followed by a Wallace tree,
as shown in Fig. 5. Also, −d(n) is the input to the Wallace
tree to reduce the long latency of a carry-propagation adder for
computing e(n). Thus, a (2�m/3� + 1)-input Wallace tree is
used. Finally, the negative error output is obtained by adding
the two output vectors of the Wallace tree using an m-bit carry
lookahead adder (CLA).

Specifically, several LSBs of the input signals and the
weights are initially truncated and compensated. Then, the par-
tial products are generated by the PPGs as in [29]. The partial
product vectors P Pij are obtained by left shifting the multi-
plicand when the recoded digit number w

j
i (n) is +2 or +4.

For a +3 value of w
j
i (n), a recoding adder is required to

generate 3x(n − i). In this design, the approximate recoding
adder in [29] is used to reduce the latency (albeit not shown
in Fig. 5). When w

j
i (n) is negative, the P Pij is approximately

computed by inverting all bits of the partial product vector
produced by the corresponding positive w

j
i (n). As in the

approximate radix-8 Booth multiplier (ABM2-R15) [29], half
of the partial products at the LSB positions is truncated for
a fixed-width multiplication output, as shown in Fig. 6. The
‘1’ in the last row is the average error compensation due to
partial product truncation. Finally, the approximate Wallace
trees proposed in Section IV-B and one accurate CLA are
used to implement the accumulation operation.

Compared with the conventional error computation circuit
in Fig. 3, the proposed design saves the delay of a final
adder in the multiplier due to DA. Moreover, the use of the
Wallace trees in the proposed scheme makes it even faster.
Finally, the area and power consumption of the design are
significantly reduced due to the approximation in the partial
product generation and accumulation.

B. Weight Update Module

For the weight update in the FIR adaptive filter, μe(n)
is first obtained by right shifting with a truncation error
compensation. Let the m-bit negative output in 2’s com-
plement from the error computation module be −e(n) =
−em−12m−1 + �m−2

j=0 e j 2 j , where e j is the j th LSB in the
output. In this case e(n) is represented as an integer for
easier analysis; it can be easily transformed to a fixed-point
format by shifting. If the step size μ for the weight update is
2−q and q is a positive integer, −μe(n) = −em−12m−q−1 +�m−2

j=0 e j 2 j−q by right shifting −e(n) by q bits. By truncating



318 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 66, NO. 1, JANUARY 2019

Fig. 6. Partial product tree of an approximate 20×20 radix-8 Booth multiplier
with truncation. : a partial product; : a sign bit; : a inverted sign bit.

Fig. 7. Partial product tree of an approximate 12×20 radix-8 Booth multiplier
with truncation. : a partial product; : a sign bit; : a inverted sign bit.

the q LSBs in the fractional part, −μe(n) ≈ −em−12m−q−1 +�m−2
j=q+1 e j 2 j−q + 1 = (em−1 · · · eq+2eq+11)2, where the ‘1’

at the LSB position is the error compensation for trunca-
tion. μe(n) is then obtained by a 2’s complement operation,
i.e., μe(n) = (em−1 · · · eq+2eq+11)2, where ei is the inverted
value of ei , i = q + 1, q + 2, · · · , m − 1. After shifting and
the 2’s complementing operation, μe(n) can be represented
by (m − q) bits by keeping one sign bit. Therefore, an
(m − q) × m multiplication is sufficient for computing each
weight increment μe(n)x(n − i). Fig. 7 shows the par-
tial product tree based on an approximate Booth multiplier
(ABM-R15) when m and q are 20 and 8, where the partial
products at the 19 LSB positions are truncated.

Let v(n) = μe(n), and v(n) = −vm−q−1(n)2m−q−1 +�m−q−2
j=0 v j (n)2 j in 2’s complement, where v j (n) is the

j th LSB of v(n). As per the radix-8 Booth algorithm, v(n) can
be represented as

v(n) =
�(m−q)/3�−1�

j=0

(−22v3 j+2(n) + 2v3 j+1(n) + v3 j (n)

+v3 j−1(n))23 j

=
�(m−q)/3�−1�

j=0

v j (n)23 j , (11)

where v j (n) = −22v3 j+2(n)+2v3 j+1(n)+v3 j (n)+v3 j−1(n) is
the radix-8 recoded number in {−4,−3,−2,−1, 0, 1, 2, 3, 4}.
According to (4), wi (n + 1) is given by

wi (n + 1) = v(n) · x(n − i) + wi (n)

= [δv , 1] ·



v(n) · x(n − i)
wi (n)

�
, (12)

where δv = [20, 23, · · · , 23�(m−q)/3�−3], and v(n) = [v0(n),
v1(n), · · · , v�(m−q)/3�−1(n)]T . Therefore, a (�(m−q)/3�+1)-
input Wallace tree and a final m-bit adder are sufficient for
implementing the accumulation in (12).

Fig. 8 shows the proposed weight update circuit; only
one radix-8 Booth encoder is required for the M multi-
plications because μe(n) is the same for the M weights.

Also, the recoding adders for calculating 3x(n − i) are shared
with the ones in the error computation module as they share the
same input multiplicands ([x(n), x(n−1), · · · , x(n−M+1)]).
Similarly, a PPG is used to compute the partial product vectors
v(n) · x(n − i). Then, the partial product vectors and the
weight at the former iteration wi (n) are accumulated by a
(�(m−q)/3�+1)-input Wallace tree. The new weight wi (n+1)
is obtained by adding the two output vectors of the Wallace
tree using an m-bit CLA. As the weight update module is more
sensitive to errors, a smaller number of LSBs is approximated
in the Wallace tree.

Consequently, the proposed weight update design saves
(M − 1) radix-8 Booth encoders and M recoding adders
compared with a conventional multiplier based design. It sig-
nificantly reduces the area and power dissipation when M is
large. Moreover, the critical path delay of the proposed design
is reduced by 2× of the delay of an adder (i.e., by the delays
of the recoding adder and the final adder in the multiplication)
compared with the design in Fig. 4.

IV. TRUNCATED PARTIAL PRODUCT GENERATION

AND APPROXIMATE ACCUMULATION

To reduce area, power dissipation and critical path delay of
the proposed design, the partial products in DA are generated
by truncating some LSBs of the inputs.

In a parallel DA architecture, accumulation is usually imple-
mented by an adder tree. As the carry-propagating adders in an
adder tree are very slow, a Wallace tree is used in this design
to speed up the accumulation stage. Moreover, the Wallace
tree is approximated to lower the power dissipation.

A. Truncated Partial Product Generation

Due to the partial product accumulation, the final result of
an inner product will not be significantly affected if the average
error of the approximate partial products is small.

An m-bit number A in 2’s complement can be represented
as A = −am−12m−1 + �m−2

i=0 ai 2i , where ai is the i th LSB
of A, m is the bit width of A, and the most significant bit am−1
is the sign bit. Let AH be the remaining value of A with k
(1 ≤ k ≤ m/2) LSBs truncated. Then, AH = −am−12m−1 +�m−2

i=k ai 2i . Let AL be
�k−1

i=0 ai 2i , the truncation error is then
AH − A = −AL . Let the probability of ai = 1 be p, where
0 ≤ p ≤ 1. The average error due to truncation is given by

E[−AL] = −p
k−1�

i=0

2i = p(1 − 2k), (13)

where E[·] denotes an expected value. The maximum error
distance (in the absolute value of the error) occurs when the
k LSBs of A are all ones. So, the maximum error distance
(Dmax ) of AH is

Dmax =
k−1�

i=0

2i = 2k − 1. (14)

As per (13), the average error of a truncated number is
approximately −2k p. To compensate this error, 2k p is added
to AH . Assume 0 and 1 are equally likely to occur, i.e., the



JIANG et al.: HIGH-PERFORMANCE AND ENERGY-EFFICIENT FIR ADAPTIVE FILTER USING APPROXIMATE DA CIRCUITS 319

Fig. 8. Proposed weight update scheme. PPG: the partial product generator; CLA: the m-bit carry lookahead adder.

probability of ai = 1 or ai = 0 is 2−1. In this case,
the compensation error is 2k−1. The compensated number A�
is given by

A� = AH + 2k−1 = −am−12m−1 +
m−2�

i=k−1

ai 2i , (15)

where ak−1 is ‘1’. In this case, truncation error becomes
A� − A = −AL + 2k−1; the average error of the truncated
number in (13) is reduced to E[−AL] + 2k−1 = 2−1. The
Dmax occurs when k LSBs of A are zeros; it is reduced
to 2k−1. Using this error compensation scheme for the trun-
cated input operands, the average error of the partial products
can be computed in a signed multiplication. Assume that
X = X H + X L and Y = YH + YL are the multiplicand
and multiplier, respectively, the average error of the partial
products is then given by

E[E P P ] = E[(X H + 2k−1)(YH + 2k−1)

− (X H + X L)(YH + YL)], (16)

where X H = −xm−12m−1 + �m−2
i=k xi 2i , X L = �k−1

i=0 xi 2i ,
YH = −ym−12m−1 + �m−2

i=k yi 2i and YL = �k−1
i=0 yi2i . When

the probability of xi = 1 and yi = 1 is 0.5, E[X H ] = E[YH ]
is 2−1(−2m−1 + �m−2

i=k 2i ) = −2k−1, and E[X L] = E[YL ]
is 2k−1 − 2−1 as per (13). As X and Y are independent,
E[YH X L ] = E[YH ]E[X L], E[X H YL] = E[X H ]E[YL] and
E[X LYL ] = E[X L ]E[YL]. The average error of the partial
products in (16) becomes

E[E P P ] = (2k−1(E[X H ] + E[YH ]) + 22k−2)

−(E[X H ]E[YL] + E[YH ]E[X L] + E[X L]E[YL])
= −2−2. (17)

This result indicates that the number of partial products in
a DA architecture can be reduced by truncating some LSBs of
the input data, and the accumulated sum can be rather accurate
by using the proposed error compensation.

For a fixed-width implementation of DA, the partial prod-
ucts at the LSB positions can be truncated as in the fixed-width
multiplication. Thus, the partial product generation and error
compensation schemes for a fixed-width multiplier are further
applied to the proposed DA partial product generation. In the
fixed-width multiplier design, the partial products at the lower
half bit positions are truncated, and the error is compensated
by an error compensation strategy. Several error compen-
sation strategies have been proposed for fixed-width Booth

multipliers [29]–[32]. Among them, the probabilistic [32]
and approximate recoding adder based approaches are very
efficient and applicable to the radix-8 Booth algorithm. The
comparison in [29] shows that the approximate recoding adder
based scheme is significantly more accurate and hardware-
efficient than the probabilistic approach for a fixed-width
radix-8 Booth multiplier.

In the proposed FIR adaptive filter, therefore, the m-bit
input data are truncated by k LSBs and compensated first.
The partial products are then approximately generated using
the radix-8 Booth encoder and the PPG in the (m − k +
1) × (m − k + 1) ABM2-R15. To assess the accuracy of
the approximate partial product generation scheme for DA,
the inner product of a 64-dimensional vector pair is simulated.
In this simulation, 5 LSBs of the inputs are truncated and
compensated. The inputs are five million combinations; each
combination consists of 64 16-bit random integers generated
from the normal distribution. The inputs are divided by 215 to
ensure that the inputs are in the range of [−1, 1) and in the
fixed-point representation with 1 sign bit and 15 fractional bits.
The input combinations for the simulation are selected to make
sure their inner products are in the range of [−1, 1). Thus,
the inner products are also represented by 16-bit fixed-point
numbers with 1 sign bit and 15 fractional bits. Errors are then
computed as the difference between the approximate results
and the accurate results. To show the errors in integers, both
the accurate and approximate inner products are multiplied
by 215. The simulation results show that about 99.79% of the
errors are within (−400, 400). Fig. 9 shows the distribution
of the errors, where the mean and standard deviation of the
errors are around 4 and 122, respectively. Since the range for
the accurate outputs is [−32768, 32767), the simulation results
indicate that most of the errors due to the approximate partial
product generation are very small.

B. Approximate Accumulation

Fig. 10(a) and (b) show the structures of a traditional
adder tree (AT) and a Wallace tree (WT) for six m-bit inputs,
respectively. For an AT, there are (M − 1) m-bit adders in
�log2M� stages for M inputs (M > 2). Thus, the circuit
area and the critical path delay are CAT = (M − 1) × Cm A

and tAT = �log2M� × tm A , where Cm A and tm A are the
circuit area and critical path delay of an m-bit adder. However,
the WT requires �log1.5M	 (for M > 13; there is not a general
formula to represent the number of required stages in a WT for



320 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 66, NO. 1, JANUARY 2019

TABLE II

ERROR AND CIRCUIT MEASUREMENTS OF DESIGNS FOR PARTIAL PRODUCT ACCUMULATION

Fig. 9. The error distribution of the proposed approximate partial product
generation for DA.

M ≤ 13) carry-save stages and one final m-bit carry propagate
adder for M inputs. Thus, the circuit area and the critical path
delay of the WT are CW T = (M − 2) × m × CF A + Cm A

and tW T = �log1.5M	 × tF A + tm A , where CF A and tF A are
the circuit area and critical path delay of a full adder [33].
It is evident that CAT ≥ CW T when Cm A ≥ m × CF A , and
tAT > tW T when tm A > log1.52

1−1/ log2 M × tF A . As log1.52
1−1/ log2 M

decreases with the increase of M , a WT is more efficient in
delay than an AT when M is large. In an extreme case where
M = 4, tAT = 2×tm A and tW T = 2×tAF +tm A (a 4-input WT
requires 2 stages). Therefore, a WT is faster than an AT as
long as tm A > 2× tF A . For the ripple carry adder (RCA), Cm A

and tm A are proportional to m, while they are proportional to
log2m and mlog2m, respectively, for a fast CLA. Obviously,
a WT has a similar size of circuit with an AT when RCAs are
used. On the other hand, a WT has a smaller circuit than an AT
when CLAs are used. Additionally, the speed of a WT can be
improved by up to 30% by optimizing the signal connections
among full adders using the algorithm in [34]. Thus, a speed-
optimized WT is implemented for the parallel mode DA in
the proposed FIR adaptive filter design.

To further reduce circuit complexity, approximation is
applied to the less significant part of a WT as in the lower-
part-OR adder (LOA) [27]. In the LOA, the less significant
bits are “added” by OR gates and an AND gate is used to
generate a carry-in signal for the more significant bits that are
summed by a precise adder. LOA is an efficient approximate

Fig. 10. Accumulation of partial products by (a) a traditional adder tree,
(b) a Wallace tree and (c) an approximate Wallace tree. : an input bit;

: the sum bit from the previous layer; : the carry bit from the previous

layer; : a full adder; : an OR gate; : an AND gate.

adder for the accumulative operation due to its low average
error [25]. Fig. 10(c) shows an approximate Wallace tree
(AWT), in which the less significant bits are accumulated
by 3-input OR gates instead of full adders, and 2-input AND
gates are used to generate the carry bits for the more significant
bits (that are accurately accumulated by full adders). The
number of approximate LSBs determines the accuracy of
an AWT. Thus, by changing the number of approximate LSBs,
the AWT is configured into a circuit with variable accuracy.
As the number of ‘1’s in the intermediate results increases
within a Wallace tree due to the OR operation, it is more
likely to generate an error in a later stage. Therefore, the last
few stages in a Wallace tree can be accurately accumulated by
using full adders to ensure a high accuracy.

The accuracy and measurement of various accumulation
circuits are shown in Table II. The accuracy and power
dissipation are obtained using 10 million input combinations.
Each input combination consists of 64 or 128 16-bit random



JIANG et al.: HIGH-PERFORMANCE AND ENERGY-EFFICIENT FIR ADAPTIVE FILTER USING APPROXIMATE DA CIRCUITS 321

integer numbers. Specifically, the critical path delay and area
are reported by the Synopsys design compiler (DC) by syn-
thesizing the designs in ST’s 28 nm CMOS technology with
a supply voltage of 1.0 V. The power dissipation is estimated
by the PrimeTime-PX with a clock period of 1 ns. Table II
shows that the accurate WT is slightly faster and consumes
similar or slightly lower power than the AT using CLAs.
The area of the WT is significantly smaller than that of its
AT counterpart. More significant improvements in latency, area
and power dissipation are obtained for a larger bit width.

For the AWTs, their average errors are very small when
the number of approximate LSBs is smaller than 5. Also,
the standard deviation increases rapidly when the number of
approximate LSBs is larger than 4. For hardware, the AWTs
with 4 approximate LSBs achieve more than 43% reduction in
area-delay product (ADP) and about 30% reduction in power-
delay product (PDP) compared with conventional ATs.

V. SIMULATION AND SYNTHESIS RESULTS

The adaptive filter is employed to identify an unknown
system as an application of system identification. 64-tap and
128-tap FIR adaptive filters are considered to assess the pro-
posed design as low and high order applications. The unknown
systems under consideration are a 48-tap bandpass FIR filter
and a 103-tap high-pass FIR filter, which are identified by a
64-tap FIR adaptive filter and a 128-tap FIR adaptive filter,
respectively. The step size for the adaptive algorithm is 2−8.
The input signal is a random vector generated from the
standard normal distribution in [−1, 1). White Gaussian noise
with a signal-to-noise ratio of 40 d B is added to the output
signals of the unknown systems as interference noise.

For an m-bit fixed-point implementation of the FIR adaptive
filter, 1 bit is used for the sign bit and m − 1 bits are used for
the fractional part as the input is within the range [−1, 1).

A. Accuracy Evaluation

To evaluate the accuracy and convergence of the designs,
the mean squared error (MSE) and the normalized mis-
alignment are considered. The MSE measures the difference
between the outputs of an unknown system and the adaptive
filter. To show the performance in convergence, the MSE
is computed at each iteration of the algorithm. Considering
the variance in the MSE and computation time, the MSE is
averaged over 20 independent trials smoothed by a 20-point
moving-average filter. The normalized misalignment indicates
the difference between an unknown system’s weights and the
weights estimated by the adaptive filter at each iteration. It is
given by [35]

η(n) = 20log10
�h − w(n)�

�h� , (18)

where � · � is the Euclidean norm operation, h is the weight
vector of the unknown system, and w(n) is the adaptive weight
vector at the nth iteration.

Initially, the accurate direct-form FIR adaptive filters in
Figs. 3 and 4 at different resolutions (or bit widths) are sim-
ulated to investigate the effect of the resolution on accuracy.

Fig. 11. The impulse responses of the identified systems by using accurate
FIR adaptive filters at different resolutions.

For an m-bit implementation, the multiplication and addition
are implemented by an accurate m×m radix-8 Booth multiplier
and an accurate m-bit CLA, respectively. The 2m-bit product
by an m × m multiplier is truncated and rounded to m-bit.
For the “unknown system” of a 48-tap FIR bandpass filter,
Fig. 11 shows the impulse responses of the identified systems
using 20-bit, 16-bit, 14-bit and 12-bit fixed-point FIR adaptive
filters after 30,000 iterations. It can be seen that the results
by the 12-bit and 14-bit implementations are far off from
the “unknown system,” while the results by the 16-bit and
20-bit implementations are more accurate due to the higher
resolutions.

The learning curves in the MSE in Fig. 12(a) indicate
that low resolution (e.g., 12-bit and 14-bit) implementations
converge more slowly to a higher steady-state MSE than high
resolution implementations. This occurs because an imple-
mentation with a higher resolution retains more information
of the processed data, which makes the learning process
more efficient than that with a lower resolution. The 16-bit
implementation has a similar learning curve in the MSE as
the 20-bit implementation. However, the learning curves in
the normalized misalignment in Fig. 12(b) show that the
weights obtained by the 20-bit implementation are closer to
those of the “unknown system.” Similar results are obtained
for identifying a 103-tap FIR high-pass filter using accurate
128-tap FIR adaptive filters at different resolutions, except that
the difference in misalignment between the 16-bit and 20-bit
implementations is larger.

Based on the comparison results of the accurate FIR
adaptive filters, the 20-bit implementation for the proposed
FIR adaptive filter is selected to compare with the most
efficient DLMS-based designs in [7] at the same resolution.
Four configurations of the proposed design are considered
for different numbers of truncated LSBs on the input data:
T0 (with no truncated bit), T5 (with 5 truncated LSBs), T7
(with 7 truncated LSBs) and T9 (with 9 truncated LSBs).
The simulation results in Table II show the tradeoff between
accuracy and hardware usage of the AWT. It shows that the
AWT with 4 approximate LSBs achieves the best tradeoff with
a high accuracy and low power dissipation. Thus, in the error
computation module, 4 LSBs are approximated in the four
least significant WTs, and 2 LSBs are approximated in the



322 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 66, NO. 1, JANUARY 2019

Fig. 12. Learning curves of accurate FIR adaptive filters at different
resolutions in (a) the mean squared error and (b) the normalized misalignment.

two more significant WTs. The other Wallace trees used in
the proposed design remain accurate. For the DLMS design,
the schemes without pruning and with a pruning parameter
of 11, referred to as DLMS (T0) and DLMS (T11), are
considered as well.

As shown in the learning curves for the 64-tap filters in
Fig. 13, the proposed designs have a similar convergence
speed and steady-state MSE as the 20-bit and 16-bit accurate
designs. Compared with the DLMS design, the proposed
designs converge slightly faster to a lower MSE, as shown in
Fig. 13(b). The normalized misalignment shown in Fig. 14
indicates that the proposed designs result in similar learning
processes as the 20-bit accurate design; these designs outper-
form the other considered designs. The DLMS design causes
a high misalignment, which indicates that the system weights
identified by the DLMS design are far from those of the actual
system.

For the 128-tap FIR adaptive filter designs, the learning
results are shown in Fig. 15. As can be seen, the convergence
speeds of the proposed T0 and T5 are slightly slower, whereas
the learning curves in the MSE for the T7 and T9 are
similar to the accurate 20-bit and 16-bit designs. Fig. 15(b)
shows that the proposed designs (except for the T0) perform
better than the DLMS designs with lower steady-state MSEs.
Similar learning curves in the normalized misalignment are
obtained for the 128-tap designs and shown in Fig. 16.

Fig. 13. Comparison of learning curves in the mean squared error
between the proposed 64-tap adaptive filters and (a) accurate implementations
and (b) DLMS-based designs.

Fig. 14. Learning curves in the normalized misalignment of 64-tap
FIR adaptive filter designs.

However, the differences between the proposed designs are
rather noticeable. In this case, the learning curves in the
misalignment of T0 and T5 are closer to the accurate 16-
bit design, and the curves for T7 and T9 are closer to the
accurate 20-bit design. Moreover, the steady-state MSEs of
the considered designs (reported in Table III) show a similar
trend.

B. Hardware Efficiency

To evaluate the hardware efficiency, the filter designs are
implemented in VHDL and synthesized by the Synopsys DC



JIANG et al.: HIGH-PERFORMANCE AND ENERGY-EFFICIENT FIR ADAPTIVE FILTER USING APPROXIMATE DA CIRCUITS 323

TABLE III

STEADY-STATE MSES OF CONSIDERED FIR ADAPTIVE FILTER DESIGNS IN AN INCREASING ORDER (d B )

TABLE IV

HARDWARE CHARACTERISTICS OF THE FIR ADAPTIVE FILTER DESIGNS

in ST’s 28 nm CMOS technology. For ease of comparison, all
designs are synthesized in the same process with the same
supply voltage, temperature, optimization option and clock
period. The supply voltage and temperature are 1.0 V and
25 ◦C, respectively. The critical path delay and area of the
designs are reported by the Synopsys DC. The average power
dissipation is estimated by using the PrimeTime-PX with the
same inputs as in the accuracy evaluation. The clock period
for the power estimation is 4 ns.

For the performance evaluation, the values of the energy per
operation (EPO) and throughput per area (TPA) are computed
for the considered designs [36]. The EPO is defined as the
energy consumed per operation during one clock period, and
the TPA is defined as the number of operations per unit time
and per unit area. They are respectively given by

E P O = top × Power, (19)

and

T P A = 1/(tmin × Area), (20)

where top and tmin are respectively the time required per
operation, i.e., the operating clock period of a circuit, and
the shortest time required per operation (or the critical path
delay of a combinational circuit). Power is the total power
consumption including the dynamic and leakage powers. Area
is the circuit area.

Table IV shows the hardware measurements of the FIR
adaptive filter circuits. The “shared-LUT” denotes an accu-
rate 20-bit fixed-point implementation of the FIR adaptive
filter using shared LUTs (16-word) [20]; CLAs are used to
implement the additions in this design. For a fair comparison,
in the other accurate implementations without using DA (20-
bit, 16-bit, 14-bit and 12-bit), the multiplications and additions
are implemented by radix-8 Booth multipliers and CLAs,
respectively. The additions in the DLMS-based design and the
shared-LUT design are implemented by CLAs too. During
the synthesis, the shortest critical path delay is found such
that the tightest timing constraint is applied to each design
with no timing violation. Table IV shows that the shared-
LUT design is the slowest and that its improvements in area
and power are very small compared to the accurate 20-bit
implementation. The long delay is mainly due to the update
and access of the LUTs. The DA architecture using LUTs
is more efficient for an FIR filter with fixed coefficients,
for which no update is required for the LUTs. The hard-
ware efficiency of the shared-LUT design decreases with the
increase of the filter length. The proposed designs require
shorter critical path delays than the accurate designs; however,
the DLMS designs use the shortest delays due to the pipelining
implementation. Increasing the number of truncated LSBs on
the inputs has a more significant effect on reductions in area
and power consumption than on delay, because the critical



324 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 66, NO. 1, JANUARY 2019

Fig. 15. Comparison of learning curves in the mean squared error between
the proposed 128-tap adaptive filters and (a) accurate implementations and
(b) DLMS-based designs.

Fig. 16. Learning curves in the normalized misalignment of 128-tap
FIR adaptive filter designs.

path of the Wallace tree in the proposed design is very short
and reducing the accumulated partial product bits does not
change it much. Among the considered designs, the proposed
designs require the lowest area and power dissipation. The
accurate designs incur the largest critical path delay, and
the DLMS designs require slightly smaller area than the
accurate ones. Furthermore, the DLMS designs incur higher
power dissipations than some accurate designs due to the
large hardware overhead caused by the additional latches used

Fig. 17. A simplified model of the VOR.

for pipelining. The proposed designs show the lowest EPO,
whereas the DLMS designs require the highest EPO.

Finally, the EPO reduction and TPA increase of the filter
designs are reported in the last two columns of Table IV.
The proposed designs achieve nearly a 55% EPO reduction
and a 3.2× TPA on average compared to the accurate 20-bit
implementation. Additionally, they show a 45%-51% reduction
in EPO and 2.3× to 2.9× TPA compared with an accurate
12-bit implementation. The EPO of the DLMS designs is
larger by 2%-9% due to the high power dissipation. However,
the TPAs are larger by 3.4× to 3.9× due to the shorter critical
path delay. Compared with DLMS designs, the proposed
ones show lower TPAs and smaller EPOs by 15%-38% and
45%-61%, respectively.

VI. CEREBELLAR MODEL EVALUATION

The cerebellum plays a key role in the control of eye move-
ment in the saccadic system; this involuntary eye movement
is referred to as the vestibulo-ocular reflex (VOR). The VOR
stabilizes a visual stimulus into the center of the retina (fovea)
for a clear vision when the head moves [37]. Fig. 17 shows a
simplified model of the VOR, where the cerebellum predicts
the eye plant output and indirectly compensates the movement
command. In the saccadic system, the head movements are
sensed by the vestibular system consisting of semicircular
canals and otolith organs [38]. For simplicity, only the horizon-
tal head velocity sensed by the horizontal canal is considered
as the input. The horizontal canal is modeled as a high-pass
filter, V (s) = s

s+1/Tc
, where Tc = 6 s [38]. The brainstem acts

as a control center that receives the sensory information and
compensation signals from the cerebellum. It then generates
commands to drive the eye muscles for movement. The trans-
fer functions of the brainstem and the eye plant are given by
B(s) = Gd + Gi

s+1/Ti
and P(s) = s(s+1/Tz)

(s+1/T1)(s+1/T2)
, respectively,

where Gd = 1, Gi = 5.05, Ti = 500 ms, T1 = 370 ms,
T2 = 57 ms and Tz = 200 ms [39].

To evaluate the accuracy of the approximate cerebellar
model, the saccadic system in Fig. 17 is implemented in
MATLAB. The cerebellar model is implemented in an n-bit
fixed-point format consisting of 1 sign bit and (n−1) fractional
bits. Fig. 18 shows the retinal slip (i.e., error signal) during a
5-s training, where the constant delay T is 1 ms, M is 128, and
the step size μ is set to 2−8. It can be seen that the accurate
20-bit fixed-point cerebellar model produces the lowest stable
retinal slip, followed by the 18-bit implementation, whereas
the retinal slip of the 16-bit implementation does not converge.
The proposed T0 and DLMS designs achieve a similarly small
retinal slip as the accurate 20-bit design. However, the DLMS
designs show more fluctuations than the proposed T0 at the



JIANG et al.: HIGH-PERFORMANCE AND ENERGY-EFFICIENT FIR ADAPTIVE FILTER USING APPROXIMATE DA CIRCUITS 325

Fig. 18. The retinal slip during a 5-s VOR training.

stable phase, as shown in the inset. The proposed T5 converges
faster than the other designs, but it generates a similar retinal
slip as the accurate 18-bit design that is slightly higher than
the accurate 20-bit design. As the VOR system requires a
higher accuracy than the system identification application,
a converged retinal slip cannot be obtained by using the other
configurations of the proposed design.

VII. CONCLUSION

This paper proposes a high-performance and energy-
efficient fixed-point FIR adaptive filter design. It utilizes an
integrated circuit of approximate distributed arithmetic (DA),
so it achieves significant improvements in delay, area and
power dissipation. The radix-8 Booth algorithm using an
approximate recoding adder is applied to the DA. More-
over, approximate partial product generation and accumulation
schemes are proposed for the error computation and weight
update modules in the adaptive filter. The critical path and
hardware complexity are significantly reduced due to the use
of approximate and distributed arithmetic.

Two system identification applications using 64-tap and
128-tap FIR adaptive filters are considered to assess the quality
of the proposed design. At a similar accuracy, the proposed
design consumes more than 55% lower EPO and achieves a
3.2× TPA compared with the corresponding accurate design.
Compared to a state-of-the-art design, the proposed design
achieves a 45%-61% reduction in EPO with a higher accuracy.
A visual saccadic system using the proposed approximate
adaptive filter in a cerebellar model achieves a similar retinal
slip in vestibulo-ocular reflex as using an accurate filter.
These results indicate that approximate arithmetic circuits are
applicable to integrated circuit designs for a better perfor-
mance and energy efficiency.

REFERENCES

[1] D. Marr, “A theory of cerebellar cortex,” J. Physiol., vol. 202, no. 2,
pp. 437–470, Jun. 1969.

[2] J. S. Albus, “A theory of cerebellar function,” Math. Biosci., vol. 10,
nos. 1–2, pp. 25–61, Feb. 1971.

[3] T. W. Calvert and F. Meno, “Neural systems modeling applied to the
cerebellum,” IEEE Trans. Syst., Man, Cybern., vol. SMC-2, no. 3,
pp. 363–374, Jul. 1972.

[4] M. Hassul and P. D. Daniels, “Cerebellar dynamics: The mossy fiber
input,” IEEE Trans. Biomed. Eng., vol. BME-24, no. 5, pp. 449–456,
Sep. 1977.

[5] M. Fujita, “Adaptive filter model of the cerebellum,” Biol. Cybern.,
vol. 45, no. 3, pp. 195–206, 1982.

[6] D. Comminiello, M. Scarpiniti, L. A. Azpicueta-Ruiz, J. Arenas-Garcia,
and A. Uncini, “Functional link adaptive filters for nonlinear acoustic
echo cancellation,” IEEE Trans. Audio, Speech, Language Process.,
vol. 21, no. 7, pp. 1502–1512, Jul. 2013.

[7] P. K. Meher and S. Y. Park, “Area-delay-power efficient fixed-point LMS
adaptive filter with low adaptation-delay,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 22, no. 2, pp. 362–371, Feb. 2014.

[8] M. Ito, “Cerebellar circuitry as a neuronal machine,” Prog. Neurobiol.,
vol. 78, no. 3, pp. 272–303, 2006.

[9] A. Lenz, S. R. Anderson, A. G. Pipe, C. Melhuish, P. Dean, and
J. Porrill, “Cerebellar-inspired adaptive control of a robot eye actuated
by pneumatic artificial muscles,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 39, no. 6, pp. 1420–1433, Dec. 2009.

[10] E. H. Krishna, M. Raghuram, K. V. Madhav, and K. A. Reddy, “Acoustic
echo cancellation using a computationally efficient transform domain
LMS adaptive filter,” in Proc. Int. Conf. Inf. Sci. Signal Process. Appl.,
May 2010, pp. 409–412.

[11] T. K. Paul and T. Ogunfunmi, “On the convergence behavior of the affine
projection algorithm for adaptive filters,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 58, no. 8, pp. 1813–1826, Aug. 2011.

[12] P. K. Meher and S. Y. Park, “Critical-path analysis and low-complexity
implementation of the LMS adaptive algorithm,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 61, no. 3, pp. 778–788, Mar. 2014.

[13] N. V. Thakor and Y.-S. Zhu, “Applications of adaptive filtering to ECG
analysis: Noise cancellation and arrhythmia detection,” IEEE Trans.
Biomed. Eng., vol. 38, no. 8, pp. 785–794, Aug. 1991.

[14] S. A. White, “Applications of distributed arithmetic to digital signal
processing: A tutorial review,” IEEE ASSP Mag., vol. 6, no. 3, pp. 4–19,
Jul. 1989.

[15] P. K. Meher, S. Chandrasekaran, and A. Amira, “FPGA realization
of FIR filters by efficient and flexible systolization using distributed
arithmetic,” IEEE Trans. Signal Process., vol. 56, no. 7, pp. 3009–3017,
Jul. 2008.

[16] H. Yoo and D. V. Anderson, “Hardware-efficient distributed arithmetic
architecture for high-order digital filters,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., vol. 5, Mar. 2005, pp. 125–128.

[17] S. Mirzaei, A. Hosangadi, and R. Kastner, “FPGA implementation of
high speed FIR filters using add and shift method,” in Proc. Int. Conf.
Comput. Design, Oct. 2007, pp. 308–313.

[18] R. Guo and L. S. DeBrunner, “Two high-performance adaptive filter
implementation schemes using distributed arithmetic,” IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 58, no. 9, pp. 600–604, Sep. 2011.

[19] B. K. Mohanty and P. K. Meher, “A high-performance energy-efficient
architecture for FIR adaptive filter based on new distributed arithmetic
formulation of block LMS algorithm,” IEEE Trans. Signal Process.,
vol. 61, no. 4, pp. 921–932, Feb. 2013.

[20] S. Y. Park and P. K. Meher, “Efficient FPGA and ASIC realizations of
a DA-based reconfigurable FIR digital filter,” IEEE Trans. Circuits Syst.
II, Exp. Briefs, vol. 61, no. 7, pp. 511–515, Jul. 2014.

[21] G.-H. Long, F. Ling, and J. G. Proakis, “The LMS algorithm with
delayed coefficient adaptation,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 37, no. 9, pp. 1397–1405, Sep. 1989.

[22] P. Kabal, “The stability of adaptive minimum mean square error equal-
izers using delayed adjustment,” IEEE Trans. Commun., vol. COM-31,
no. 3, pp. 430–432, Mar. 1983.

[23] Y.-H. Chen, J.-N. Chen, T.-Y. Chang, and C.-W. Lu, “High-throughput
multistandard transform core supporting MPEG/H.264/VC-1 using com-
mon sharing distributed arithmetic,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 22, no. 3, pp. 463–474, Mar. 2014.

[24] M. Martina, G. Masera, M. R. Roch, and G. Piccinini, “Result-biased
distributed-arithmetic-based filter architectures for approximately com-
puting the DWT,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62,
no. 8, pp. 2103–2113, Aug. 2015.

[25] H. Jiang, C. Liu, L. Liu, F. Lombardi, and J. Han, “A review, classifi-
cation, and comparative evaluation of approximate arithmetic circuits,”
ACM J. Emerg. Technol. Comput. Syst., vol. 13, no. 4, p. 60, 2017.

[26] E. J. King and E. E. Swartzlander, “Data-dependent truncation scheme
for parallel multipliers,” in Proc. Conf. Rec. 31st Asilomar Conf. Signals,
Syst. Comput., vol. 2, Nov. 1997, pp. 1178–1182.

[27] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-inspired
imprecise computational blocks for efficient VLSI implementation of
soft-computing applications,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 57, no. 4, pp. 850–862, Apr. 2010.



326 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 66, NO. 1, JANUARY 2019

[28] T. Chen et al., “DianNao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,” ACM SIGPLAN Notices, vol. 49, no. 4,
pp. 269–284, 2014.

[29] H. Jiang, J. Han, F. Qiao, and F. Lombardi, “Approximate radix-8 Booth
multipliers for low-power and high-performance operation,” IEEE Trans.
Comput., vol. 65, no. 8, pp. 2638–2644, Aug. 2016.

[30] K.-J. Cho, K.-C. Lee, J.-G. Chung, and K. K. Parhi, “Design of low-
error fixed-width modified booth multiplier,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 12, no. 5, pp. 522–531, May 2004.

[31] J. P. Wang, S. R. Kuang, and S. C. Liang, “High-accuracy fixed-width
modified booth multipliers for lossy applications,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 19, no. 1, pp. 52–60, Jan. 2011.

[32] C.-Y. Li, Y.-H. Chen, T.-Y. Chang, and J.-N. Chen, “A probabilistic
estimation bias circuit for fixed-width Booth multiplier and its DCT
applications,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 4,
pp. 215–219, Apr. 2011.

[33] C. B. K’Andrea, E. E. Swartzlander, Jr., and M. J. Schulte, “Analysis
of column compression multipliers,” in Proc. IEEE Symp. Comput.
Arithmetic, Jun. 2001, pp. 33–39.

[34] V. G. Oklobdzija, D. Villeger, and S. S. Liu, “A method for speed opti-
mized partial product reduction and generation of fast parallel multipliers
using an algorithmic approach,” IEEE Trans. Comput., vol. 45, no. 3,
pp. 294–306, Mar. 1996.

[35] K.-A. Lee, W.-S. Gan, and S. M. Kuo, Subband Adaptive Filtering:
Theory and Implementation. Hoboken, NJ, USA: Wiley, 2009.

[36] R. Wang, J. Han, B. Cockburn, and D. G. Elliott, “Stochastic circuit
design and performance evaluation of vector quantization for different
error measures,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 24, no. 10, pp. 3169–3183, Oct. 2016.

[37] M. Antonelli, A. J. Duran, E. Chinellato, and A. P. Del Pobil, “Adaptive
saccade controller inspired by the primates’ cerebellum,” in Proc. IEEE
Int. Conf. Robot. Automat., May 2015, pp. 5048–5053.

[38] M. Ranjbaran and H. L. Galiana, “Hybrid model of the context
dependent vestibulo-ocular reflex: Implications for vergence-version
interactions,” Frontiers Comput. Neurosci., vol. 9, p. 6, Feb. 2015.

[39] P. Dean, J. Porrill, and J. V. Stone, “Visual awareness and the cerebellum:
Possible role of decorrelation control,” Prog. Brain Res., vol. 144,
pp. 61–75, Jan. 2004.

Honglan Jiang (S’14) received the B.Sc. and mas-
ter’s degrees in instrument science and technology
from the Harbin Institute of Technology, Harbin,
Heilongjiang, China, in 2011 and 2013, respectively.
She is currently pursuing the Ph.D. degree with the
Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, AB, Canada.

Her current research interests are approximate
computing and stochastic computing.

Leibo Liu (M’10) received the B.S. degree in elec-
tronic engineering and the Ph.D. degree from the
Institute of Microelectronics, Tsinghua University,
Beijing, China, in 1999 and 2004, respectively.

He is currently a Full Professor with the Insti-
tute of Microelectronics, Tsinghua University. His
current research interests include reconfigurable
computing, mobile computing, and very large-scale
integration digital signal processing.

Pieter P. Jonker (M’91) received the M.Sc. degree
in electronic engineering from the Twente University
of Technology, Enschede, The Netherlands, in 1979,
and the Ph.D. degree in physics from the Delft
University of Technology (TUDelft), The Nether-
lands, in 1992. He is currently a Full Professor
of vision-based robotics with the Bio-Mechanical
Engineering Group, TUDelft. He runs the Dutch
Bio-Robotics Laboratory, TUDelft, under the super-
vision of Dr. M. Wisse. His current research interests
include bioinspired real-time embedded vision sys-

tems for robotics, surveillance, and augmented reality, and on hierarchical
reinforcement learning for walking robots. He is a Fellow of the IAPR.

Duncan G. Elliott (M’97) received the B.A.Sc.
degree in engineering science and the master’s and
Ph.D. degrees in electrical and computer engineering
from the University of Toronto. He was with Nortel
Networks Inc., in data communications, MOSAID
Technologies Inc., as a DRAM Designer, and IBM
Microelectronics as a Contractor in application spe-
cific memory design. He is currently a Professor
with the Department of Electrical and Computer
Engineering, University of Alberta, Edmonton, AB,
Canada. His research interests include RF and com-

munications circuits, merged microfluidic-microelectronic systems, informa-
tion processing architectures, unmanned aircraft systems, and satellites. He
received the Colton Medal in microelectronics for his work on computational
RAM in 2001, which has been commercialized. He is a member of the ACM.

Fabrizio Lombardi (M’81–SM’02–F’09) received
the B.Sc. degree (Hons.) in electronic engineer-
ing from the University of Essex, U.K., in 1977,
the master’s degree in microwaves and modern
optics from the Microwave Research Unit, Univer-
sity College London, in 1978, and the Diploma
degree in microwave engineering and the Ph.D.
degree from the University of London in 1978 and
1982, respectively. He is currently the Holder
of the International Test Conference Endowed
Chair Professorship with Northeastern University,

Boston, USA. His research interests are bio-inspired and nano manufac-
turing/computing, VLSI design, testing, and fault/defect tolerance of digital
systems.

He has extensively published in his research areas and co-authored/edited
seven books. He was the Editor-in-Chief of the IEEE TRANSACTIONS

ON COMPUTERS from 2007 to 2010 and the Inaugural Editor-in-Chief
of the IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

(2013-2017). He is currently the Editor-in-Chief of the IEEE TRANSACTIONS

ON NANOTECHNOLOGY.

Jie Han (S’02–M’05–SM’16) received the B.Sc.
degree in electronic engineering from Tsinghua Uni-
versity, Beijing, China, in 1999, and the Ph.D.
degree from the Delft University of Technology,
The Netherlands, in 2004. He is currently an Asso-
ciate Professor with the Department of Electrical
and Computer Engineering, University of Alberta,
Edmonton, AB, Canada. His research interests
include approximate computing, stochastic compu-
tation, reliability and fault tolerance, nanoelectronic
circuits and systems, and novel computational mod-

els for nanoscale and biological applications. He and his coauthors received
the Best Paper Award at the International Symposium on Nanoscale Archi-
tectures (NanoArch) in 2015, the Best Paper Nominations at the 25th Great
Lakes Symposium on VLSI (GLSVLSI) in 2015, NanoArch 2016, and the
19th International Symposium on Quality Electronic Design in 2018. He was
nominated for the 2006 Christiaan Huygens Prize of Science by the Royal
Dutch Academy of Science. His work was recognized by science, for devel-
oping a theory of fault-tolerant nanocircuits in 2005. He served as the General
Chair of the IEEE International Symposium on Defect and Fault Tolerance
(DFT) in VLSI and Nanotechnology Systems in 2013 and GLSVLSI 2017, and
the Technical Program Committee Chair of DFT 2012 and GLSVLSI 2016. He
is currently an Associate Editor of the IEEE TRANSACTIONS ON EMERGING
TOPICS IN COMPUTING, the IEEE TRANSACTIONS ON NANOTECHNOLOGY

and Microelectronics Reliability.


