IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 66, NO. 1, JANUARY 2019 189

Low-Power Approximate Unsigned Multipliers
With Configurable Error Recovery

Honglan Jiang™, Student Member, IEEE, Cong Liu, Fabrizio Lombardi*, Fellow, IEEE,

and Jie Han

Abstract— Approximate circuits have been considered for
applications that can tolerate some loss of accuracy with
improved performance and/or energy efficiency. Multipliers are
key arithmetic circuits in many of these applications including
digital signal processing (DSP). In this paper, a novel approx-
imate multiplier with a low power consumption and a short
critical path is proposed for high-performance DSP applications.
This multiplier leverages a newly designed approximate adder
that limits its carry propagation to the nearest neighbors for
fast partial product accumulation. Different levels of accuracy
can be achieved by using either OR gates or the proposed
approximate adder in a configurable error recovery circuit.
The approximate multipliers using these two error reduction
strategies are referred to as AM1 and AM2, respectively. Both
AMI1 and AM2 have a low mean error distance, i.e., most of
the errors are not significant in magnitude. Compared with a
Wallace multiplier optimized for speed, an 8 x 8 AM1 using four
most significant bits for error reduction shows a 60% reduction
in delay (when optimized for delay) and a 42% reduction in
power dissipation (when optimized for area). In a 16 x 16 design,
half of the least significant partial products are truncated for
AM1 and AM2, which are thus denoted as TAM1 and TAM2,
respectively. Compared with the Wallace multiplier, TAM1 and
TAM?2 save from 50% to 66% in power, when optimized for
area. Compared with existing approximate multipliers, AMI1,
AM2, TAM1, and TAM2 show significant advantages in accuracy
with a low power-delay product. AM2 has a better accuracy
compared with AM1 but with a longer delay and higher power
consumption. Image processing applications, including image
sharpening and smoothing, are considered to show the quality
of the approximate multipliers in error-tolerant applications.
By utilizing an appropriate error recovery scheme, the proposed
approximate multipliers achieve similar processing accuracy as
exact multipliers, but with significant improvements in power.

Index Terms— Approximate computing, multiplier, adder,
error recovery, low-power, image processing.

Manuscript received July 7, 2017; revised January 20, 2018 and
March 15, 2018; accepted July 3, 2018. Date of publication August 16,
2018; date of current version December 6, 2018. This work was supported
in part by the Natural Sciences and Engineering Research Council of Canada
under Project RES0025211. This paper was recommended by Associate Editor
Y. Ha. (Honglan Jiang and Cong Liu contributed equally to this work.)
(Corresponding author: Jie Han.)

H. Jiang, C. Liu, and J. Han are with the Department of Electrical and
Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9,

Canada (e-mail: honglan@ualberta.ca; cong4@ualberta.ca; jhan8@
ualberta.ca).
F. Lombardi is with the Department of Electrical and Computer

Engineering, Northeastern University, Boston, MA 02115 USA (e-mail:
lombardi @ece.neu.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCS1.2018.2856245

, Senior Member, IEEE

I. INTRODUCTION

PPROXIMATE computing has emerged as a potential
Asolution for the design of energy-efficient digital sys-
tems [1]. Applications such as multimedia, recognition and
data mining are inherently error-tolerant and do not require
a perfect accuracy in computation. For digital signal process-
ing (DSP) applications, the result is often left to interpretation
by human perception. Therefore, strict exactness may not
be required and an imprecise result may suffice due to the
limitation of human perception. For these applications, approx-
imate circuits play an important role as a promising alternative
for reducing area, power and delay, thereby achieving better
performance in energy efficiency.

As one of the key components in arithmetic circuits, adders
have been extensively studied for approximate implementa-
tion [2]-[8]. As the typical carry propagation chain is usually
shorter than the width of an adder, the speculative adders use
a reduced number of less significant input bits to calculate
the sum bits [2]. An error detection and recovery scheme
has been proposed in [3] to extend the scheme of [2] for a
reliable adder with variable latency. A reliable variable-latency
adder based on carry select addition has been presented in [8].
As a number of approximate adders have been proposed, new
methodologies to model, analyze and evaluate them have been
discussed in [9]-[12].

A multiplier usually consists of three stages: partial product
generation, partial product accumulation and a carry propa-
gation adder (CPA) at the final stage [13]. In the underde-
signed multiplier (UDM), approximate partial products are
computed using inaccurate 2 x 2 multiplier blocks, while
accurate adders are used in an adder tree to accumulate
the approximate partial products [14]. In [15], approximate
4 x 4 and 8 x 8 bit Wallace multipliers are designed by
using a carry-in prediction method. Then, they are used in the
design of approximate 16 x 16 Wallace multipliers, referred
to as AWTM. The AWTM is configured into four different
modes by using a different number of approximate 4 x 4
and 8 x 8 multipliers. The use of approximate speculative
adders has been discussed in [10] for the final stage addition
in a multiplier. The error tolerant multiplier (ETM) of [16]
is based on the partition of a multiplier into an accurate
multiplication part for most significant bits (MSBs) and a
non-multiplication part for least significant bits (LSBs). The
static segment multiplier (SSM) utilizes a similar partition
scheme [17]. In an n x n SSM, an m x m accurate multiplier

1549-8328 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3705-4240
https://orcid.org/0000-0003-3152-3245
https://orcid.org/0000-0002-8849-4994

190 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 66, NO. 1, JANUARY 2019

(m > n/2) is used to multiply the m consecutive bits from
the two input operands. Whether the (n — m) MSBs of each
input operand are all zero determines the selection of the
inputs for the accurate multiplier (m MSBs or m LSBs). These
approximate multipliers are designed for unsigned operation.
Signed multiplication is usually implemented by using a Booth
algorithm. Approximate designs have been proposed for fixed-
width Booth multipliers [18]-[20].

In this paper, a novel approximate multiplier design is
proposed using a simple, yet fast approximate adder. This
newly designed adder can process data in parallel by cutting
the carry propagation chain. It has a critical path delay that
is shorter than a conventional one-bit full adder. Albeit with
a high error rate, this adder simultaneously computes the sum
and generates an error signal; this feature is employed to
reduce the error in the final result of the multiplier. In the
proposed approximate multiplier, a simple tree of the approx-
imate adders is used for partial product accumulation and the
error signals are used to compensate errors for obtaining a
better accuracy.

The proposed multiplier can be configured into two designs
by using OR gates and the proposed approximate adders for
error reduction, referred to as approximate multiplier 1 (AM1)
and approximate multiplier 2 (AM2), respectively. Different
levels of error recovery can also be achieved by using a differ-
ent number of MSBs for error recovery in both AM1 and AM?2.
As per the analysis, the proposed multipliers have signif-
icantly shorter critical paths and lower power dissipation
than the traditional Wallace multiplier. Functional and circuit
simulations are performed to evaluate the performance of
the multipliers. Image sharpening and smoothing are consid-
ered as approximate multiplication-based DSP applications.
Experimental results indicate that the proposed approximate
multipliers perform well in these error-tolerant applications.
The proposed designs can be used as effective library cells
for the synthesis of approximate circuits [21], [22].

This paper is a significant extension of [23] and is organized
as follows. Section II presents the proposed approximate adder
and the design of the multiplier. Section III discusses the
error reduction schemes for AM1 and AM2. Section IV shows
the accuracy results and in section V, delay, area and power
consumption are obtained. Section VI compares the proposed
approximate multipliers with the existing designs in terms
of accuracy and hardware costs. Section VII discusses the
application of the proposed multiplier to image processing
applications. Section VIII concludes the paper.

II. PROPOSED APPROXIMATE MULTIPLIER
A. The Approximate Adder

In this section, the design of a new approximate adder
is presented. This adder operates on a set of pre-processed
inputs. The input pre-processing (IPP) is based on the com-
mutativity of bits with the same weights in different addends.
For example, consider two sets of inputs to a 4-bit adder:
i) A = 1010,B = 0101 and ii)) A = 1111, B = 0000.
Clearly, the additions in i) and ii) produce the same result.
In this process, the two input bits A; B; = 01 are equivalent to

TABLE I

TRUTH TABLE OF THE APPROXIMATE ADDER CELL. ‘X’ REPRESENTS
THAT NO SUCH A COMBINATION OCCURS DUE TO THE IPP

BiBi-\
00 01 11 10
00 | 0/0 X X X
01 0/0 1/0 X X
11 1/0 1/1 10 0/0
10 1/0 X X 0/0

Si/Ei

AiAi—l

A;B; = 10 (with i being the bit index) due to the commuta-
tivity of the corresponding bits in the two operands.

The basic rule for the IPP is to switch A; and B; if A; =0
and B; = 1 (for any i), while keeping the other combinations
(i.e., A;B; = 00,10 and 11) unchanged. By doing so,
more 1’s are expected in A and more 0’s are expected in B.
If A;B; are the i'" bits in the pre-processed inputs, the IPP
functions are given by:

A = A + B, 4))
B; = A;B;. (2)

Equations (1) and (2) compute the propagate and generate
signals used in a parallel adder such as the carry look-
ahead adder (CLA). The proposed adder can process data in
parallel by cutting the carry propagation chain. Let A and B
denote the two input binary operands of an adder, S be the
sum result, and E represent the error vector. A;, B;, S; and E;
are the i least significant bits of A, B, S and E, respectively.
A carry propagation chain starts at the i’ bit when B; = 1,
A,-+1 =1, B,-+1 = 0. In an accurate adder, S;+1 is 0 and the
carry propagates to the higher bit. However, in the proposed
approximate adder, S;4+1 is set to 1 and an error signal is gen-
erated as E;;1 = 1. This prevents the carry signal from prop-
agating to the higher bits. Hence, a carry signal is produced
only by the generate signal, i.e., C; = 1 only when B; = 1,
and it only propagates to the next higher bit, i.e., the (i + 1)"
position. Table I shows the truth table of the approximate
adder, where Ai, Bi and Bi,l are the inputs after IPP. The error
signal is utilized for error compensation purposes as discussed
in a later section. In this case, the approximate adder is similar
to a redundant number system [24] and the logical functions
of Table I are given by

Si = Bi_1 + BiA;, (3)
E; = BiBi_1A;. 4)
By replacing A; and B; using (1) and (2) respectively, the logic
functions with respect to the original inputs are given by
Si = (A ®Bi)+Ai—1Bi1, (5
E; = (A; ® Bi))A;_1B;_1, (6)
where i is the bit index, i.e.,i =0, 1, --- , n for an n-bit adder.
Let Ay = B_; = 0 when i is O, thus, So = Ay & Bp and
Eyg=0. Also, E; =0 when A;_{ or B;_1 is 0.

Consider an n-bit adder, the inputs are given by A =
An_1---A1Ap and B = B,_;--- BBy, the exact sum is

JIANG et al.: LOW-POWER APPROXIMATE UNSIGNED MULTIPLIERS WITH CONFIGURABLE ERROR RECOVERY

Approximate Partial Product Accumulation

Stagel

191

First Level Errors

®©0 0000 00 0E1
®© 000 0 0EFE2

® ® 0 0E3
0 0 E4

®0®0 0 00 E5
® 00 E6

Oo0O000 E7

|

\ b

Fig. 1.

Error Accumulation]

An approximate multiplier with partial error recovery using 5 MSBs of the error vector. ®: a partial product, sum or an error bit generated at the

first stage; @: an error bit generated at the second stage; O: an error bit generated at the last stage.

S = En_l ---§1§0. Then, §,~ can be computed as S; + E;
and thus, the exact sum of A and B is given by

S=S+E. (7)

In (7) ‘+ means the addition of two binary numbers rather
than the ‘OR’ function. The error E is always non-negative
and the approximate sum is always equal to or smaller than
the accurate sum. This is an important feature of this adder
because an additional adder can be used to add the error to
the approximate sum as a compensation step. While this is
intuitive in an adder design, it is a particularly useful feature
in a multiplier design as only one additional adder is needed
to reduce the error in the final product.

B. Proposed Approximate Multiplier

A distinguishing feature of the proposed approximate multi-
plier is the simplicity to use approximate adders in the partial
product accumulation. It has been shown that this may lead
to low accuracy [14], because errors may accumulate and it
is difficult to correct errors using existing approximate adders.
However, the use of the newly proposed approximate adder
overcomes this problem by utilizing the error signal. The
resulting design has a critical path delay that is shorter than
a conventional one-bit full adder, because the new n-bit adder
can process data in parallel. The approximate adder has a
rather high error rate, but the feature of generating both the
sum and error signals at the same time reduces errors in the
final product. An adder tree is utilized for partial product
accumulation; the error signals in the tree are then used to
compensate the error in the output to generate a product with
a better accuracy.

The architecture of the proposed approximate multiplier is
shown in Fig. 1. In the proposed design, the simplification
of the partial product accumulation stage is accomplished by
using an adder tree, in which the number of partial products is
reduced by a factor of 2 at each stage of the tree. This adder
tree is usually not implemented using accurate multi-bit adders
due to the long latency. However, the proposed approximate

A ’ ’\Al
\
“\. ./Bl

J ol

Fig. 2. Symbols for (a) an OR gate, (b) a full adder or a half adder and
(c) an approximate adder cell

adder is suitable for implementing an adder tree, because it is
less complex than a conventional adder and has a much shorter
critical path delay.

Exact fast multipliers often include a Wallace or Dadda tree
using full adders (FAs) and half adders (HAs); compressors
are also utilized in the Wallace or Dadda tree to further
reduce the critical path with an increase in circuit area. These
designs require a proper selection of different circuit modules;
for example, 4:2 compressors, FAs and HAs are commonly
used in a Wallace tree and a judicious connection of these
modules must be considered in a tree design. This increases
the design complexity, especially when multipliers of different
sizes are considered; the proposed design is simple for various
multiplier sizes.

III. ERROR REDUCTION

The approximate adder generates two signals: the approx-
imate sum S and the error E; the use of the error signal is
considered next to reduce the inaccuracy of the multiplier.
As (7) is applicable to the sum of every single approximate
adder in the tree, an error reduction circuit is applied to
the final multiplication result rather than to the output of
each adder. Two steps are required to reduce errors: i) error
accumulation and ii) error recovery by the addition of the
accumulated errors to the adder tree output using a CPA. In the
error accumulation step, error signals are accumulated to a
single error vector, which is then added to the output vector of
the partial product accumulation tree. Two approximate error
accumulation methods are proposed, yielding the approximate
multiplier 1 (AM1) and approximate multiplier 2 (AM2).
Fig. 2 shows the symbols for an OR gate, a full adder and

192 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 66, NO. 1, JANUARY 2019

half adder cell and an approximate adder cell used in the error
accumulation tree.

A. Error Accumulation for Approximate Multiplier 1

As shown in Fig. 1, each approximate adder Ai generates a
sum vector Si and an error vector Ei, where i = 1,2,---,7.
If the error signals are added using accurate adders, the accu-
mulated error can fully compensate the inaccurate product;
however to reduce complexity, an approximate error accumula-
tion is introduced. Consider the observation that the error vec-
tor of each approximate adder tends to have more 0’s than 1’s.
Therefore, the probability that the error vectors have an error
bit ‘1’at the same position, is quite small. Hence, an OR gate
is used to approximately compute the sum of the errors for a
single bit. If m error vectors (denoted by E1, E2, ..., Em) have
to be accumulated, then the sum of these vectors is obtained as

E; =E1; OR E2; OR ... OR Em;. (8)

To reduce errors, an accumulated error vector is added to the
adder tree output using a conventional CPA (e.g. a carry look-
ahead adder). However, only several (e.g. k) MSBs of the error
signals are used to compensate the outputs to further reduce the
overall complexity. The number of MSBs is selected according
to the extent that errors must be compensated. For example
in an 8 x 8 adder tree, there are a total of 7 error vectors,
generated by the 7 approximate adders in the tree. However,
not all the bits in the 7 vectors need to be added, because
the MSBs of some vectors are less significant than the least
significant bits of the k MSBs. In the example of Fig. 1,
5 MSBs (i.e. the (11 — 14)"" bits, no error is generated at
the 157 bit position) are considered for error recovery and
therefore, 4 error vectors are considered (i.e., the error vectors
E3, E4, E6 and E7). The error vectors of the other three
adders are less significant than the 11 bit, so they are not
considered. The accumulated error E is obtained using (8);
then, the final result is found by adding E to S using a
fast accurate CPA. The error accumulation scheme is shown
in Fig. 3. As no error is generated at the least significant
two bits of each approximate adder Ai (i = 1,2,---,7),
the least significant two bits of each error vector Ei are not
accumulated.

B. Error Accumulation for Approximate Multiplier 2

The error accumulation scheme for AM2 is shown in Fig. 4.
To introduce the design of AM2, an 8 x 8 multiplier with
two inputs X and Y is considered. For example, consider
the first two partial product vectors XoY7, XoYe, ..., X0Yo and
X1Y7, X1Ye, ..., X1Yo accumulated by the first approximate
adder (Al in Fig. 1), where X; and Y; are the i'h least
significant bits of X and Y, respectively. Recall from (6) for
the approximate adder, the condition for E; =1 is

Ai_1=Bj_1 =1 and A; # B;.)

For the first approximate adder in the partial product accu-
mulation tree, its inputs are A = XoY7, X0Ys, ..., XoYo and
B = X 1Y7, X1Ys, ..., X1Yy. Thus, the i least significant bits
for A and B are A; = XoY; and B; = X1Y;_1, respectively.

Error Accumulation — AM1

oooodqw‘Es
000000 OE7

Stage 1

\StageVSV/
00000 OCOGCOGOOSNODS

Fig. 3. Error accumulation tree for AMI.

Error Accumulation — AM2

.00\0.055
ooo\g oo

Stage 1 ooooooonv

Siag_c 2 L

Stage3
00 0000O0OGCOGEONOSEOOS

Fig. 4. Error accumulation tree for AM2.

If Xo or X is 0O, there will be no error in this approximate
adder because either A or B is zero. Therefore, no error
occurs unless XoX| = 11. When XoX; = 11, A; and B; are
simplified to Y; and Y;_1, respectively. Then to calculate Ej,
A;_1, Bi_1, Aj and B; are replaced by Y;_1, Y;_2, Y; and Y;_1,
respectively. For E; to be 1, Y;Y;_1Y;_o = 011 according
to (9). Therefore, an error only occurs when the input has
“011” as a bit sequence. Based on this observation, the “dis-
tance” between two errors in an approximate multiplier is at
least 3 bits. Thus, two neighboring approximate adders in the
first stage of the partial product tree cannot have errors at
the same column, because the errors in a lower approximate
adder are those in the upper adder shifted by 2 bits when
both errors exist. The errors in two neighboring approximate
adders can then be accurately accumulated by OR gates, e.g.,
an OR gate can be used to accumulate the two bits in the error
vectors E1 and E2 in Fig. 1. After applying the OR gates to
accumulate E1 and E2 as well as E3 and E4, the four error
vectors are compressed into two. For ES, E6 and E7, they are
generated from the approximate sum of the partial products
rather than the partial products. Therefore, they cannot be
accurately accumulated by OR gates.

JIANG et al.: LOW-POWER APPROXIMATE UNSIGNED MULTIPLIERS WITH CONFIGURABLE ERROR RECOVERY 193

Partial
Products

1st Level
Errors

Approximate
Adders

y

Approximate
Result

Approximate
Adders

A
MUX

A
Final Result

Fig. 5. Block diagram of the proposed multipliers.

Another interesting feature of the proposed approximate
adder is as follows. Assume E; = 1 in (6), then A;—; =
Bi—-1 = 1 and A; # B;. Since A;_1 = Bi_1 = 1,
ie., Aj_1 & Bi_1 = 0, it is easy to show that E;_| .
Moreover, as A; # Bj, i.e.,, AiB; = 0, then E;y .
Thus, once there is an error in one bit, its neighboring bits are
error free, i.e., there are no consecutive error bits in one row.
Therefore, there is no carry propagation path longer than
two bits when two error vectors are accumulated, and the
error vectors are accurately accumulated by the proposed
approximate adder.

Based on the above analysis, E5 and E6 are accurately
accumulated by one approximate adder in the first stage of the
error accumulation. After the first stage of error accumulation,
three vectors are generated, and another two approximate
adders are then used to accumulate these three vectors as well
as the error vector remaining from the previous stage (E7).
Simulation results (found in later sections) show that the
modified error accumulation outperforms the OR-gate error
accumulation with little overhead on delay and power.

Hereafter, the proposed n x n approximate multiplier with
k-MSB OR-gate based error reduction is referred to as
an n/k AMI1, while an n x n approximate multiplier with
k-MSB approximate adder based error reduction is referred to
as an n/k AM2. The structures of AM1 and AM2 are shown
in Fig. 5.

=0
=0

C. 16 x 16 Approximate Multipliers

In both AM1 and AM2, all the error vectors are com-
pressed to one error vector, which is then added back to
the approximate output of the partial product tree. Compared
to 8 x 8 designs, 16 x 16 multipliers generate more error
vectors, and too much information would be ignored if the
same error reduction strategies are used. That is, using only
one compressed error vector does not make a good estimate
of the overall error. In the modified designs, the error vectors
generated by the approximate adders are compressed to two
final error vectors. Take a 16 x 16 AMI1 as an example,

the eight error vectors generated at the first stage of the partial
product accumulation tree are compressed to one error vector,
EV1, using OR gates. The remaining seven error vectors from
the second, third and fourth stages are compressed to another
error vector EV2. Then both EV1 and EV2 are added back to
the output of the partial product at the fourth stage. Similarly,
the proposed approximate adders are used in a 16 x 16 AM2 to
compress the eight error vectors from the first stage to one
error vector and the remaining error vectors to another error
vector.

Truncation can also be applied to the proposed designs
for large input operands. Therefore, 16 LSBs of the partial
products are truncated in 16 x 16 AM1 and AM?2, resulting in
truncated AM1 (TAM1) and truncated AM2 (TAM?2).

IV. ACCURACY EVALUATION

Arithmetic accuracy in approximate circuits is compromised
for improvements in other metrics (such as reduced circuit
complexity and delay). In [9], the error distance (ED) and
mean error distance (MED) are proposed to evaluate the per-
formance of approximate arithmetic circuits. For multipliers,
ED is defined to be the arithmetic difference between the
accurate product (M) and the approximate product (M’), i.e.,

ED = |M' — M|. (10)

MED is the average of EDs for a set of outputs (obtained by
applying a set of inputs). A metric applicable for comparing
multipliers of different sizes is the normalized MED (NMED),
i.e.,

MED
NMED = ,

max

(1)

where M,y is the maximum magnitude of the output of an

accurate multiplier, i.e. (2" — 1)? for an n x n multiplier. The

relative error distance (RED) is defined as:

M —M ED

RED = |=— == 2=

M M|

Similarly, the mean relative error distance (MRED) can be
obtained.

The error rate (ER) is defined as the percentage of erroneous
outputs among all outputs [25]. For evaluating the worst-case
output, the maximum error (ME) is defined as the maximum
error distance normalized by the maximum output of the
accurate multiplier. In this paper, the NMED, MRED, ER and
ME are used to evaluate the proposed multipliers.

(12)

A. Accuracy Evaluation of 8 x 8 Multipliers

As an error can occur at any stage (e.g., the partial product
accumulation stage and the error accumulation stage) and
complicated correlations exist, it is difficult, if not impossible,
to develop mathematical models for the error analysis of the
approximate multipliers. Thus, the functions of the proposed
multipliers are realized using Matlab and an exhaustive simu-
lation is performed for an 8 x 8 approximate multiplier.

Approximate multipliers with both the OR gate and the
approximate adder based error reduction, as well as the

194 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 66, NO. 1, JANUARY 2019

log, (NMED)
log,(MRED)

log, (ER)

log, (ME)

2 =B AM1
Y
-G Eror

Fig. 6.
reduction. (a) NMED. (b) MRED. (c) ER. (d) ME.

4 6 8
Number of bits used for error reduction

(©) (d)

Accuracy comparison of the approximate 8 x 8 multipliers using approximate and exact error accumulation vs. different number of bits for error

55
—A— AM1 =B AMI1
- AM2 & - AM2

8- TAMI 4 £ TAMI
e TAM2 K> ~ 9 TAM2

log,(NMED)
(MRED)

log

log,(ER)
log, (ME)

Fig. 7. Accuracy comparison of the approximate 16 x 16 multipliers vs. the number of bits used for error reduction. (a) NMED. (b) MRED. (c¢) ER. (d) ME.

accurate adder based error reduction, are evaluated. Fig. 6
shows the four metrics (NMED, MRED, ER and ME) in
logarithm when using different numbers of MSBs for error
reduction. For the approximate multipliers, there is no error
in the least significant 2 bits of the output, so the largest
number of MSBs used for error reduction is 14. Let k denote
the number of MSBs used for error reduction. The values of
NMED and MRED of AMI1 and AM2 drop drastically as k
is increased from 4 to 8 and continues to drop as k increases,
even though at a slower rate. In terms of ER, the values for
the proposed multipliers decrease slowly with an increasing k
from 4 to 8 and then follow a sharper decline. The MEs for
AMI and AM2 do not decrease as much as the multiplier
with an accurate error accumulation when & increases. This
occurs because some errors at the higher bit positions are not
accurately accumulated by using the OR gates or the proposed
approximate adders. The values of NMED, MRED, ER and
ME finally drop to zero for the accurate error accumulation
when 14 MSBs are used for error reduction (not shown in
Fig. 6 because the logarithmic values are infinite).

For the same k, AM2 has a better performance than AM1 in
terms of NMED, MRED and ER. For example, if 8 MSBs are
used for error reduction, the NMED of AM2 is 0.17% while it
is 0.30% for AM1. Moreover, if 14 MSBs are used for error
reduction, AM1 has an error rate of 17.6%, while the error
rate of AM2 can be as low as 5.8%.

These four figures also indicate that the proposed approx-
imate multiplier has a rather high error rate, but the errors
are usually very small compared to both the accurate and
the largest possible output of the approximate multiplier. For
example, for k=8, the error rate of AMI1 can be as high as
61.55%, but the MRED is only 1.87%, i.e., most of the errors
are not significant.

B. Accuracy Evaluation of 16 x 16 Multipliers

Fig. 7 shows the Monte Carlo simulation results for the
16 x 16 designs of AMI, AM2, TAMI1 and TAM2 with
103 random inputs. Likewise, the error decreases with an
increasing number of bits used for error reduction. It is still
true that AM2/TAM?2 has a better accuracy than AM1/TAMI1.
Another observation is that AM1/AM?2 has a better accuracy
than TAM1/TAM?2, as expected.

AM1/AM2 has a smaller NMED than TAM1/TAM2, how-
ever the difference is very small. This is because truncation of
several LSBs does not significantly affect the overall NMED.
For the same reason, the ME of TAMI/TAM?2 is slightly
higher than AM1/AM2. Yet for MRED, we can see that the
difference between AMI/AM2 and TAMI/TAM2 becomes
more significant because the relative error is easily affected
by truncation. All these four approximate designs have high
ERs (98%-100%), and TAM1/TAM2 results in nearly an ER
of 100%. This is not surprising since 16 x 16 designs generate
more error bits than 8 x 8 designs, and the truncation even
generates more errors. However, the NMED and MRED are
still kept very small.

V. DELAY, AREA AND POWER EVALUATION
A. Analysis and Estimation

1) Delay Estimate: Based on the linear model of [26],
the delays of a full adder (Fig. 8(a)) and the approximate adder
cell (Fig. 8(b)) are approximately 4z, and 37, respectively,
where 7, is an approximate “gate delay”. The delay of an XOR
(or XNOR) gate is 27, due to its higher complexity compared
to an NAND (or NOR gate) [27].

For an n x n approximate multiplier (n is the power of 2),
there are m = log, n stages in the partial product accumulation

JIANG et al.: LOW-POWER APPROXIMATE UNSIGNED MULTIPLIERS WITH CONFIGURABLE ERROR RECOVERY 195

~Cour Aj1—

Bii—

) >

(@ (b)

Fig. 8. (a) An exact full adder and (b) the approximate adder cell.
TABLE II

ESTIMATED DELAY OF THE PARTIAL PRODUCT ACCUMULATION
TREE OF THE PROPOSED AND CONVENTIONAL MULTIPLIERS

n 8 16 32 64 2!
Dam(%) 11 14 18 21 3l+log,l
Dun(z) 15 18 24 27 3i+43log,l

Dy (tg) 16 24 32 40 ~6.5]

tree. The first stage with 2™ rows of partial products are
compressed to 2! rows of partial products in the second
stage and 2"~! error vectors. These error vectors are then
compressed (i.e., accumulated) using OR gates or approximate
adders in a similar tree structure. Since the numbers of rows
in the second partial product accumulation stage and the
errors generated by the first stage are the same, it takes
m — 1 stages for both stages to be compressed to 1. Again,
the number of error vectors generated by the second partial
product accumulation stage is the same as the partial product
rows in the third partial product accumulation stage; both
of them require m — 2 stages to compress the rows to 1.
Thus, when an n-row partial product tree is compressed to
1 row, errors from the log, n stages are also compressed to
log, n error vectors, provided that the delays for compressing
two partial products and accumulating two error vectors are
the same. As the delay of an OR gate is shorter than that
of the approximate adder, fewer error vectors remain after
log, n stages in AMI1. For ease of analysis, the numbers
of the remaining error vectors after log, n stages in both
AMI1 and AM2 are considered to be approximately log, n.
Then it takes |_10g2 log, n-| stages to finally compress these
log, n error vectors. Therefore, the delay of the proposed
partial product accumulation scheme is modeled to be the sum
of the delay of compressing the partial product tree and the
delay to accumulate the remaining log, n error vectors, i.e.

Dami = (logy n) x 37, + [log; logy n| x 71, (13)

where 7; = 7, (the delay of an OR gate for AMI1) fori =1
and 7; = 37, (the delay of an approximate adder for AM2)
fori =2.

There are 4 compression stages in an 8§ x 8 Wallace
multiplier, and |log, sn | stages in an n x n Wallace multiplier
(n > 16). Thus the delay of a Wallace tree is approximately
given by [28]

Dy =4 |_log1_5nJ Tg. (14)

Table II shows the delay of the partial product accumulation
tree in both the proposed and Wallace multipliers. For a 16 x 16

TABLE III

ESTIMATED AREA OF PARTIAL PRODUCT ACCUMULATION TREE FOR
THE PROPOSED AND CONVENTIONAL 8 X 8§ MULTIPLIERS

k 4 6 8 14

Aan(a) 205 221 245 281
Aa(a)) 213 264 305 385
Aw(op) 294 294 294 294

multiplier, the delay of an exact multiplier tree is nearly 1.5x
as large as the delay of the proposed multiplier tree. As the
size of the multiplier increases, this factor is approximately 2.
In the Wallace multiplier that is optimized for speed [27],
the partial product accumulation delay is improved for up
to 30% by optimizing the signal connections between full
adders. As a result, the proposed partial product accumulation
design is 29% faster than the optimized Wallace multiplier.
In summary, the proposed multiplier can significantly reduce
the delay of the partial product accumulation tree, which scales
with the size of the multiplier.

In an n xn Wallace multiplier, a final 2n-bit CPA is required
for adding the resultant two partial product rows. The entire
delay of a Wallace multiplier is given by the addition of the
delays caused by the Wallace tree and the final CPA. In the
proposed design, however, the partial products are compressed
to one row and thus, only a (k—1)-bit CPA (k < 2n) is required
to compensate the error. Thus, the proposed approximate
multiplier is faster than a Wallace multiplier when the same
adder design is used for final addition.

2) Area Estimate: Let the area of a basic gate be a,, and
the area for an XOR (or XNOR) gate be 2a, [29]. Then,
the area of a full adder cell is 7a,, and the area of the
approximate adder cell is 5ag. If the error signal E; is not
required, the circuit area for generating a sum S; is 4ay, i.e., an
NOR gate is not needed.

As the number of partial product rows is reduced by 1 by
using an (n — 1)-bit approximate adder, (n — 1) (n — 1)-bit
approximate adders are required to compress the n partial
product rows to one row. Also, (n — 1) error vectors are
generated, because each approximate adder produces an error
vector. The number of OR gates (or approximate adders) used
for error accumulation is determined by the number of MSBs
used for error reduction (i.e., k). Thus, the area of the proposed
partial product accumulation scheme is estimated to be

Aami = (n — 1)? x 4oy + a;, (15)

where ¢; is the area of the error generation and accumulation
circuit in AMi (i =1 or 2).

In an n x n Wallace multiplier, a full adder compresses
three partial products to two, i.e., one bit is reduced by using
a full adder. Thus, (n — 2) rows of full adders are used to
compress the n partial product rows to two; each row consists
of approximately (n — 1) full adders. The area of the Wallace

tree is given by
Aw =7(n —2)(n — Da,. (16)

Consider n = 8 as an example, Table III shows the estimated
areas of the Wallace tree and the partial product accumulation

196 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 66, NO. 1, JANUARY 2019

tree of the proposed multipliers using different numbers of
MSBs for error reduction. According to the estimate, the par-
tial product accumulation tree of AMI1 has a smaller area than
an Wallace tree, whereas the area of AM2’s partial product
accumulation tree is larger than an Wallace tree when the
number of MSBs used for error reduction is larger than 8. Note
that the final CPA used for error reduction in the proposed
multiplier has a smaller area than a Wallace multiplier. Thus,
to achieve a similar area as a Wallace multiplier, the number
of MSBs used for error reduction in AM2 can be larger than 8.
3) Power Estimate: The power consumption of a CMOS
circuit consists of short-circuit power, leakage power and
dynamic power [26]. Compared to the dynamic power,
the short-circuit and leakage powers are relatively small and
vary with device fabrication. Dynamic power is dissipated for
charging or discharging the load capacitance when the output
of a CMOS circuit switches. By using a probabilistic power
analysis, the average dynamic power of a circuit is given
by [30]
N
Pavg = fei - Viy z Cr(x;) - ap—1(x;),
i=1

a7

where fqr is the operating clock frequency of the circuit,
Vaq is the supply voltage, N is the number of nodes in
the circuit, Cr(x;) is the load capacitance at node x;, and
00—1(x;) is the probability of the logic transition from 0 to 1
at node x;. ag—1(x;) is computed by

a0—1(x;) = Py(x;) Py (;),

where Pg(x;) is the signal probability at node x;; it is defined
as the probability of a high signal value occurring at x;.

As the basic components of the Wallace and the proposed
multipliers, the full adder and the proposed approximate adder
are analyzed using (17). In (17), fex and Vg4 are the same for
the two components, Cy (x;) depends on the fabrication. Thus,
the difference in dynamic power dissipation between these two
components is mainly caused by ag_ 1 (x;).

Assume that 0 and 1 are equally likely to occur in each
input bit of the multiplication, i.e., the signal probability of
an input bit is 0.5, the partial product generated by a 2-input
AND gate has a signal probability of 0.5 x 0.5 = 0.25.
For ease of calculation, the input partial products to
the full adder and the proposed approximate adder are
assumed to be mutually independent. For the full adder in
Fig. 8(a), the signal probabilities of the two outputs are
computed as per their truth tables, i.e., Ps(S) = 7/16 and
Py (Cour) = 5/32. Thus, ag—1(S) = 7/16x(1-7/16) = 0.246
and ao—-1(Cour) = 0.132. Compared to the full adder,
the proposed approximate adder in Fig. 8(b) has a similar
signal probability at the sum output, i.e., Ps(S;) = 53/128,
while Ps(E;) = 3/128 that is significantly lower than
P (Cour)- So, 09—1(S;) = 0.243 and a1 (E;) = 0.023.

As Pi(S;) < Ps(S) and Py(E;) < Py(Cour), the dynamic
power dissipated at the two outputs of the proposed approx-
imate adder is lower than a full adder. As for the internal
nodes, the full adder has one more node than the proposed
approximate adder. Thus, the proposed approximate adder
consumes lower dynamic power than a full adder. Moreover,

(18)

the dynamic power consumed by the error vector accumulation
circuit is very low due to the low switching activity at E;.
Consequently, the proposed approximate multiplier is more
power-efficient than a Wallace multiplier.

B. Simulation Results

1) 8 x 8 Multipliers: AM1 has shown advantages in speed
and power consumption compared to a Wallace multiplier
for FPGA implementations, as discussed in [23]. A more
detailed discussion of the circuit implementations is pursued
next. Designs for 8 x 8 AMI1 using 4,5,...,9 MSBs for
error reduction, 8 x 8 AM2 using 4, 5, ...,9 MSBs for error
reduction, and the 8 x 8 optimized Wallace multiplier [27]
have been implemented in VHDL and synthesized by using
the Synopsys Design Compiler (DC) with an industrial 28 nm
CMOS process. Simulations are performed at a temperature
of 25°C and a supply voltage of 1V. The modules for imple-
menting the multiplier circuits are taken from the 28 nm library
as C32_SC_12_CORE_LR_tt28_1.00V_25C. The critical path
delays of these multipliers are reported by the Synopsys DC
tool. The power dissipation is found by the PrimeTime-PX
tool using 10 million random input combinations with a clock
period of 2 ns. The delay, area, power and power-delay
product (PDP) are shown in Fig. 9, where the area is optimized
to the smallest value for the results in (a), (b), (¢) and (d),
and the critical path delay is constrained to the smallest value
without timing violation for the results in (e), (f), (g) and (h).
The reported power consumption is the total power, i.e., the
sum of the dynamic and static powers.

Figs. 9(a) and (e) indicate that the proposed approximate
multiplier designs have shorter delay than the accurate Wallace
multiplier. The critical path delay of AM1 and AM2 increases
with the number of MSBs employed in the error reduction
process. At the same number of MSBs in error reduction,
AMI1 shows a shorter delay than AM2; this occurs because
AMI1 uses a simpler OR-gate based error reduction scheme.
Specifically, the delays for 8/4 AMI, 8/4 AM2 and the
Wallace multiplier are 0.40 (0.16) ns, 0.43 (0.16) ns and 1.08
(0.40) ns, respectively, for the area (delay)-optimized circuits.
Thus AM1 and AM2 with 4-bit error reduction are faster by
63% and 60% than the Wallace multiplier when optimized
for area, while they are faster by 60% when optimized for
delay. For the 8-bit error reduction scheme, these values
are 22% (28%) and 19% (5%), respectively, for the area
(delay)-optimized circuits.

The power dissipation and area of the multipliers show the
same trend as the delay (Figs. 9(b), (f) and (c), (g)). For the
area-optimized circuits, 8/4 AM1 and 8/4 AM?2 save as much
as 42% in power and 34% in area compared with the Wallace
multiplier. The power improvements of AM1 and AM2 are
21% and 17% when 8 MSBs are used for error reduction. For
the delay-optimized circuits, 8/4 AM1 and 8/4 AM2 consume
a lower power by 53% and a smaller area by 38% than
the Wallace multiplier. For the 8-bit error reduction scheme,
the power savings of AM1 and AM2 are approximately 20%.
The area-optimized 8/4 AMI1 and AM2 use a smaller area
by nearly 23% (by 38% for delay-optimized circuits) than the
accurate design. However, the area of AM2 is larger than the

JIANG et al.: LOW-POWER APPROXIMATE UNSIGNED MULTIPLIERS WITH CONFIGURABLE ERROR RECOVERY 197

o AMI —A-AM2 --0- Wallace o AMI —&~AM2 --0- Wallace
12 170
| P— S S M S S S 5 L — e o PO P °
1 = 150
09 . ° 140 =1
2 > S o
zos L & E 130 P %
z07 e o S 120 T
206 = & Eio 'S
05 - =2 100 47
04 8 90 &
03 80
02 70
4 5 6 7 8 9 4 5 6 7 8 9
Number of bits used for error reduction Number of bits used for error reduction
(@ (b)
o AMI —A-AM2 -0~ Wallace o AMI —&—AM2 --0- Wallace
0.45 510
04 0--nnnn e P “0----o- Qrizzace 460 © 77" O oo ©------ ©-moe o -nmeo- °
0.35 & . 4
> e 410
g 03 > ° Z 360 &
Loas = o ¥ 20
202 o 1 T
8015 a 2 260 & °
0.15 1 >
ol 210 h
0.05 160
0 110
4 5 6 7 8 9 4 5 6 7 8 9
Number of bits used for error reduction Number of bits used for error reduction
(O] ®

o AMI -~&-~AM2 -- Wallace o AMI ~&-AM2 -0 - Wallace
200 190.0
190 A 170.0 0-===- -~ S O -meeen o -ou ©onaen °
O------- @------ B R O ot n ©
180 x 150.0 1
~170 - 130.0
I e - o
£ 160 v ® 21100 g 3
) = L
2 150 > & g 900
£ g o o
140 -4 70.0 pe >
B30 500 o
120 6 300 ¢
110 10.0
4 5 6 7 8 9 4 5 6 7 8 9
Number of bits used for error reduction Number of bits used for error reduction
(© (d)
o AM1 --A--AM2 --0- Wallace o AMI --4-AM2 --0- Wallace
560 2000
) [-S— PR P LY S °
510 6 o PR— I P — P—— 180.0 1
460 160.0 o
~410 140.0 P
E e 5
£ 360 Ty Z 1200 °
5310 s el & 100.0 & .4
< I =
260 & 80.0 &
Py -
210 60.0 L
160 400 g
110 200
4 5 6 7 8 9 4 5 6 7 8 9
Number of bits used for error reduction Number of bits used for error reduction

Fig. 9. Delay, power and area comparisons of proposed 8 x 8 approximate and Wallace multipliers. “Wallace” indicates the accurate 8 x 8§ Wallace multiplier,
and the X-axis is not applicable for it. (a) Delay (optimized for area). (b) Power (optimized for area). (c) Area (optimized for area). (d) PDP (optimized for
area). (e) Delay (optimized for delay). (f) Power (optimized for delay). (g) Area (optimized for delay). (h) PDP (optimized for delay).

Wallace multiplier when the number of error reduction bits
is larger than 8. Figs. 9(d) and (h) show that the PDPs of
AMI1 and AM2 are smaller than the Wallace multiplier by
38% to 81% and 27% to 81%, respectively, with 4 to 8-bit
error reduction.

2) 16 x 16 Multipliers: Similarly, designs for 16 x 16
AMI1, AM2, TAM1 and TAM?2 are implemented in VHDL
and synthesized by using the Synopsys DC tool with the same
technique and configurations as the 8 x 8 designs. Different
from the 8 x 8 designs, the power for the 16 x 16 designs is
evaluated under a clock period of 4 ns. Also, the optimized
16 x 16 Wallace multiplier [27] is synthesized. The reported
results of the critical path delay, power consumption and area
utilization are shown in Fig. 10, where the number of bits used
for error reduction for the proposed designs is from 10 to 16,
and these numbers are not applicable for the accurate Wallace
multiplier.

Fig. 10 shows that the delays of AM1, AM2, TAMI and
TAM?2 are shorter than the Wallace multiplier by approx-
imately 24% to 50% when optimized for area. However,
AM?2 and TAM?2 are slower than the Wallace multiplier when
the designs are synthesized for the minimal delay, while
TAMI1 is faster by more than 25%. The power dissipations
of 16 x 16 AM1 and AM?2 are very close for the same
number of bits used for error reduction (Figs. 10(b) and (f)).
They save from 18% to 35% in power compared with
the Wallace multiplier when optimized for area, while this
value is from 20% to 60% for the delay-optimized circuits.
Similarly, TAM1 and TAM2 consume a lower power by
50% to 66% (for optimized area) and by 40% to 66%
(for optimized delay). The results for area show a similar trend.
Compared to the Wallace multiplier, TAM1 and TAM?2 save
from 38% to 62% area when area is optimized, while the area
is reduced by 32% to 60% when delay is optimized. For the

area-optimized circuits, the area reduction is between 5% and
30% for AMI1 and AM2; it decreases with the increase of
the number of MSBs used for error reduction. The results in
Figs. 10(d) and (h) show that TAMI1 incurs a smaller PDP
by 61% to 83% than the Wallace multiplier, and this value is
between 32% and 79% for TAM?2.

VI. COMPARISON WITH EXISTING
APPROXIMATE MULTIPLIERS

Next, 8 x 8 AM1 and AM2 are compared with three other
approximate multipliers of the same size: the ETM [16],
the UDM [14] and the SSM [17], as illustrated in Fig. 11.
The accuracy characteristics are obtained by Monte Carlo
simulation with 10% random input combinations. The circuit
characteristics are obtained by synthesizing all approximate
designs using the same tool, process, temperature and supply
voltage with the same input combinations and clock period
as detailed in the previous section. Moreover, the PDP and
area-delay product (ADP) are calculated to better assess per-
formance at the circuit level. In this comparison, ETM and
SSM with 4, 5 and 6 MSBs as the accurate multiplication
part are considered and they are referred to as ETMk and
SSMk (k < 8 is the width of the accurate part). The results
are shown in Fig. 11 for each of the metrics. There is only
one configuration for UDM, so the values for it are constant
for each metric.

Among these five multipliers, AM1 has the lowest PDP
and ADP when a similar MRED, NMED or ER is considered.
AM?2 also performs better than the other approximate multi-
pliers. ETM has the lowest accuracy in terms of MRED and
NMED, because ETM uses a simple partition scheme and as
reported in [16], it saves significant power. Likewise, SSM
shows very high values of MRED, NMED and ER. As ETM
and SSM utilize an accurate multiplier with size larger than

198 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 66, NO. 1, JANUARY 2019

o AMI --A--AM2 —+-TAMI —x- TAM2 --0 - Wallace

o+ AMI -4 AM2 —+—TAMI —x- TAM2 -0 - Wallace 0 AMI -4 AM2 —+—TAMI —%- TAM2 -0 - Wallace o AMI -&—AM2 —+—TAMI —%- TAM2 -0 - Wallace
24
450 850 980.0
22 @-----= @------ L D ©----- R © 400 - —d
Q----- O----- o ----- O------ 0= - - - Q----- ©°
2 350 -
7 B 1 3 ° 680.0
Z18 Z 300 e e pm— ° £550 ¢ 2 580.0
z [So— g - J— > + T e X = P -
216 Z 250 & S 450 ——— S 480.0 g — e > °
= —m X —p— ot 380.0 5o e K3 4
200 S 350 % = o e A
X T T o T 2800 © a4 o e
——— I - - - S =t -
- 150 0 — T X T T+ 250 1800 ¢ = Sl s s
100 150 80.0
1 s 4 s 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16
; ’ Number of bits used for error reduction Number of bits used for error reduction Number of bits used for error reduction
Number of bits used for error reduction
() (b) © (d
0 AMI &~ AM2 —+=TAMI —*- TAM2 -0~ Wallace 0 AMI ~#-AM2 —+=TAMI —x%- TAM2 --o - Wallace o AMI ~&—AM2 —+-TAMI —x- TAM2 - - Wallace O AMI e AM2 —$—TAMI —%— TAMZ -0 - Wallace
0.7 1150 2250

610.0

Power (uW)

10 1 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 1 12 3 “ 15 16
Number of bits used for error reduction Number of bits used for error reduction Number of bits used for error reduction Number of bits used for error reduction

(e) ® (2 (G))

Fig. 10. Delay, power and area comparisons of the proposed 16 x 16 approximate and the optimized Wallace multipliers. “Wallace” indicates the accurate
16 x 16 Wallace multiplier, and the X-axis is not applicable for it. (a) Delay (optimized for area). (b) Power (optimized for area). (c) Area (optimized for
area). (d) PDP (optimized for area). (e) Delay (optimized for delay). (f) Power (optimized for delay). (g) Area (optimized for delay). (h) PDP (optimized for
delay).

25 -5 N 0 2 >
=8 - =N -
VNN AETM PR AN AETM
- 02 25
35 N T T—o o o
6.5 3
4 > 04 AM
~ ~ N
2 s g7 = Z 35 N
- z 3 N
2 Z
= Z s £ .06 g, N
G s 3 g E] -y
El g k] £ 4 N
55 s 08 S
85 4 N
A3 CATE™ N
o 9 —G SsM N
-1 st| O ubm N
65 N
3 95 e AN
7 10 12 55 — A, B
20 40 60 80 100 120 140 160 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 40 60 80 100 120 140 160 180 200
PDP (f1) ADP (unns) PDP (1) ADP (unf'ns)
() (®) © (@
2 -5 0 -2
G- _
a® & e 0
. G sswt UbM . A ~<_ bs
S o hi ~<
a5 i s e ~<g Ooe—w_ o o o
a2 os
65
4 A
N
_ S N
8 s 8 _ 06 o s N
2 Z s g z N
z g 7 ~ 3 % ~
T - @ ~ g E N
3o A i 08 - w g
55 ~
' aff A SSTA T N
. , —G ssM o - B -ssm AN
Lo Jo oow N
65 95]~ am —7— M1 AN
—o-Am2 ——am A ~
a " 14 55
0 50 100 150 200 250 300 o 50 100 150 200 250 0 S0 100 150 200 250 300 o 50 100 150 200 250
PDP () ADP (un’ns) PDP (1) ADP (unins)
(e () (€9) ()

Fig. 11. Comparison of accuracy and hardware-efficiency among five approximate 8 x 8 multipliers. The number of MSBs used for error reduction for
AMI and AM2 ranges from 4 to 9 from left to right. The width of the accurate multiplier for ETM and SSM ranges from 4 to 6 from left to right.
(a) PDP (area-optimized) vs. MRED. (b) ADP (area-optimized) vs. NMED. (c) PDP (area-optimized) vs. ER. (d) ADP (area-optimized) vs. ME. (e) PDP
(delay-optimized) vs. MRED. (f) ADP (delay-optimized) vs. NMED. (g) PDP (delay-optimized) vs. ER. (h) ADP (delay-optimized) vs. ME.

half of the original design, they attain the smallest values the ME values for AM1 and AM2 are not as low as those
of ME (Figs. 11(d) and (h)). The ME for AM2 is higher of ETM and SSM, the small values of NMED and MRED
than AM1, ETM and SSM because of the approximate adders indicate that the probability of occurrence of a large ED is
used in the error accumulation tree (Fig. 4). Specifically, very low. UDM has the lowest ER but the largest ME with a
the approximate adders in stages 2 and 3 generate not only moderate PDP and ADP.

sums but also error vectors. As only the sums are used for Fig. 12 shows the comparison results of 16 x 16 approximate
the final error compensation, the omitted error vectors at the multipliers for accuracy and hardware-efficiency. In addition
higher bit positions can lead to very large errors. Although to ETM, SSM and UDM, another high-performance, area and

JIANG et al.: LOW-POWER APPROXIMATE UNSIGNED MULTIPLIERS WITH CONFIGURABLE ERROR RECOVERY 199
0 6 & 0.05 2 &
X_
0 -4
2 " X
: HRA RSB o—oc0
@4} i 005 o »
4 10 +H i 3
8 g @, g g s s i
2 ERRE) ~ ¥ 2 015 = Al i
T s ETM \ K A ET™ 2 ET™ i
g 2 O SsM \ 00 [l ssm —3- SSM i
3 14} © upm Y O ubM O uDM X
—%- AWTM % =% AWTM 12 L[AWT™M \
& TWM 0251 %% TWM X TWM \
-7~ AMI g AMI -7 AMI \
-0 16 16— am2 03 1l-6—am2 14 - AM2 1%
=% +- TAM1 % 4 TAM1 o +- TAMI ®
—<&-TAM2 —-TAM2 <t TAM2
-12 -18 0.35 -16
100 200 300 400 500 600 700 200 400 600 800 1000 1200 1400 100 200 300 400 500 600 700 200 400 600 800 1000 1200 1400
PDP () ADP (unfns) PDP () ADP (unfns)
(@) (b) © (@
0.05 2 <
0 4
* e S B0
0.05
. 6 .
_ _ 01 Ag. —— %
g g g g+ Bt
g = =, 015 < AT~ -=a
= z “ 1
% % @ A-ETM g ol A Em i
2 & T ol ssm = V|3 ssm i
3 B O ubm O ubm X
= AWTM 12 L AwTM /
025 X TWM I & WM /
-7~ AMI —7—AMI ;
o 03[~ Am2 14 }|—©—AM2 x’
« 030 FTAMl ¢ + TAMI %
—<&- TAM2 —&- TAM2
-12 - 035 -16
100150 200 250 300 350 400 450 500 300 400 500 600 700 800 900 1000 1100 100 150 200 250 300 350 400 450 500 300 400 500 600 700 800 900 1000 1100
PDP (£) ADP (unf-ns) PDP (1) ADP (unf-ns)
(O] ® (9] (h)

Fig. 12.

Comparison of accuracy and hardware-efficiency of approximate 16 x 16 multipliers. The width of the accurate multiplier for ETM and SSM

is from 8 to 10 from left to right. The parameter for AWTM is the mode number (1 to 4) from left to right. (a) PDP (area-optimized) vs. MRED.
(b) ADP (area-optimized) vs. NMED. (c) PDP (area-optimized) vs. ER. (d) ADP (area-optimized) vs. ME. (e) PDP (delay-optimized) vs. MRED.
(f) ADP (delay-optimized) vs. NMED. (g) PDP (delay-optimized) vs. ER. (h) ADP (delay-optimized) vs. ME.

25 5 0 = 2
At A & ---_g o
B o ssM ss S AATES
O ubm 0 N ~~ 5
s - AMI 6 S~ ey & o
3 #& AM2 5] ~a 3
—& AMI (5) 6.5 N
* G- AML(6) N 04 A
a a 7 ~ _ . N
D 45 g ~ & " N
s Z 15 AN £ 06 E RN
<L S ~ o5
N £ ?= X0
ACETM ACETM ACETM 8
55 08 ~
o 85 H—3 ssM —3 sSM 453 ssm \O\\@ AN
» o O ubm O ubm O ubm . AN
9 H -7 AMI g - AMI o] N
—O—-AM2 “Tr—e-Am2 -5 H—S-AM2 [J} S
6.5 9.5 H—C- AMI (5)) J —O- AML(5) o —O- AMI (5) >~ AN
—O- AMI (6) -0 AM2(6) - AMI (6)
- -10 12 5.5 a g° ‘
0 50 100 150 200 250 300 0 50 100 150 200 250 0 50 100 150 200 250 300 0 50 100 150 200 250
PDP () ADP (unfns) PDP (f]) ADP (unf'ns)
(@) (®) © (d)

Fig. 13.

Comparison of accuracy and hardware-efficiency (delay-optimized) of improved 8 x 8 AMI with other designs. The number of MSBs used

for error reduction for AM1 and AM?2 ranges from 4 to 9, and the width of the accurate multiplier for ETM and SSM is from 4 to 6, from left to right.
AMI1 (5) and AM1 (6) are AM1’s with 5 and 6 MSBs of errors that are correctly accumulated. Thus, the number of MSBs used for error reduction for AM1 (5)
is from 5 to 9, and it is from 6 to 9 for AM1 (6). (a) PDP vs. MRED. (b) ADP vs. NMED. (c) PDP vs. ER. (d) ADP vs. ME.

power efficient 16 x 16 approximate multiplier, AWTM [15],
is considered in this comparison. Also, the truncated Wallace
multiplier (referred to as TWM) that truncates half partial
products with data-dependent error compensation is com-
pared [31]. Fig. 12(c) shows that all the multipliers have close
to 100% ERs except for UDM that has a relatively lower ER.
Among the 16 x 16 approximate multipliers, TAM1 and TAM?2
perform very well in terms of MRED and NMED for a similar
PDP or ADP, while AM1, AM2 and UDM are useful when
most of the input operands are very small. AWTM mode 4 is
also a good design with small values of MRED and NMED,
as well as moderate PDP and ADP. TWM with low MRED,
NMED and ME has a very high accuracy, whereas its PDP
and ADP are relatively higher compared to TAM1. Fig. 12(d)
shows that TAM1 (TAM2) has a similar ME with AM1 (AM2),
which indicates that truncation does not significantly affect
the ME.

As per the comparison, the large MEs are the main draw-
backs of the proposed designs, as shown in Figs. 11(d) and (h)
and Figs. 12(d) and (h). This is because some errors at the
higher bit positions are not correctly accumulated by using
OR gates and the proposed approximate adders. Therefore,
to decrease the MEs of the proposed design, the errors at
the higher bit positions should be accumulated using accurate
full or half adders. The efficiency of this methodology is
evaluated by simulating the 8 x 8 AMI1 with 5 and 6 MSBs
of errors that are correctly accumulated (the other MSBs are
accumulated by using OR gates when the number of MSBs
used for error reduction is larger than 5 and 6, respectively);
they are referred to as AM1 (5) and AM1 (6). The comparison
results are shown in Fig. 13. Fig. 13(d) shows that the ME of
AM1 is significantly decreased by increasing the number of
accurately accumulated MSBs, with slightly increased ADP
and PDP. However, the MRED, NMED and ER of AMI1 are

200 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 66, NO. 1, JANUARY 2019

(d)

Fig. 14. Images sharpened using the proposed multipliers. (a) Blurred
input. (b) Accurate multiplier. (c) 8/4 AMI1. (d) 8/8 AMI1. (e) 8/4 AM2.
(f) 8/8 AM2.

TABLE IV
PSNR OF IMAGE PROCESSING APPLICATIONS FOR AM1 AND AM?2 (dB)

Image Processing Image Sharpening Image Smoothing

Configuration 8/4 8/6 8/8 8/4 8/6 8/8
AM1 18.45 2580 39.89 30.64 33.44 46.70
AM2 18.45 2580 40.18 30.64 33.44 46.70

only slightly lowered, as shown in Figs. 13(a) (b) and (c).
Thus, some MSBs should be accumulated using accurate
adders when the ME is critical for an application; otherwise,
OR gates or approximate adders with lower hardware overhead
are preferred.

VII. IMAGE PROCESSING APPLICATIONS
A. Image Processing With Proposed Multipliers

Approximate circuits can be wused in error-tolerant
applications such as image processing; image sharpening and
smoothing applications are studied next. Since multiplication
is the arithmetic operation under investigation, accurate
multipliers are replaced by the proposed approximate
multipliers (i.e., AM1 and AM?2). All other processing steps
(such as addition) are kept accurate.

The sharpening algorithm of [32] is simulated using both
exact and approximate multipliers (i.e., AM1 and AM?2).
In the results shown in Fig. 14, approximate multipliers with
different numbers of MSBs for error reduction are evaluated
and an improvement in performance is achieved when the
number of MSBs is increased for further error reduction. The
degradation in image quality is evident when 4 MSBs are used
for error reduction for both AM1 and AM2. However, for an
8-bit error reduction in AM1 and AM2, there is no visually
distinguishable difference with the exact sharpening result.

The image smoothing algorithm is given by [33]:

2 2
Y(x,y)= 6_10 z z X(x —m,y—n)Mask(m,n), (19)

m=—2n=-2

(2 ()

Fig. 15. Images multiplied by different multipliers. (a) Original image 1.
(b) Original image 2. (c) Accurate multiplier. (d) 8/6 AMI1. (e) 8/5 AM2.
(f) UDM. (g) ETMS5. (h) SSM5.

TABLE V

PSNR OF IMAGE MULTIPLICATION OF FIVE DIFFERENT
APPROXIMATE MULTIPLIERS (dB)

Multiplier UDM ETM5 SSM5

PSNR

8/6 AMI1
39.21

8/5 AM2
37.60

34.56 37.53 37.40

where X is the input image, Y is the output smoothed image,
and Mask is a 5 x 5 matrix given by:

11111
14441
141241
14441
147 41

Mask =

The peak signal-to-noise ratio (PSNR) is used for com-
parison of the difference between the images obtained by
the accurate and approximate multiplications. Table IV shows
the PSNR values with respect to different numbers of MSBs
for error reduction in the proposed approximate multiplier.
For example, the resulting image by an 8/8 AMI has a
PSNR of 39.89 dB for image sharpening and 46.70 dB for
image smoothing; this is generally considered to be a good
match with the accurately processed image. Since the result
of an approximate multiplication is processed by an accurate
division for both image sharpening and smoothing applica-
tions, the error in the approximate multiplication is attenuated.
Therefore, the differences in the PSNRs for AM1 and AM?2 are
very small and, thus, difficult to be observed by a 2-digit
precision. However, there is a 0.3 dB difference between the

JIANG et al.: LOW-POWER APPROXIMATE UNSIGNED MULTIPLIERS WITH CONFIGURABLE ERROR RECOVERY 201

PSNRs for AM1 and AM2 with 8-bit error reductions for the
image sharpening application.

B. Comparison With Existing Approximate Multipliers

To evaluate the performance of each approximate multiplier,
image multiplication is selected because it directly employs
multiplication without any other operations. As AM1, AM2,
ETM and SSM have different configurations, configurations
with similar PDP values are selected for image multiplication,
ie., 8/6 AMI, 8/5 AM2, SSM5 and ETMS, are considered
(Fig. 11). The resulting images by UDM (Fig. 15) show a
reduction in quality, while there are few visible flaws for the
image processed by the other approximate multipliers. In terms
of PSNR, 8/6 AMI1 achieves the highest value (Table V),
while UDM has the lowest. The values of PSNR for ETM5
and SSMS5 are the second lowest. These results are consistent
with the NMED trend of the approximate multipliers. It also
indicates that an approximate multiplier with a high ME
does not necessarily result in a poor image quality in image
multiplication as long as its NMED is low.

VIII. CONCLUSION

This paper proposes a high-performance and low-power
approximate partial product accumulation tree for a multiplier
using a newly designed approximate adder. The proposed
approximate adder ignores the carry propagation by generating
both an approximate sum and an error signal. OR gate and
approximate adder based error reduction schemes are utilized,
yielding two different approximate 8 x 8 multiplier designs:
AM1 and AM2. Moreover, modifications are made on the
error reduction schemes for 16 x 16 multiplier designs, such
that TAM1 and TAM2 are obtained by truncating 16 LSBs
of the partial products. The proposed approximate multipliers
have been shown to have a lower power dissipation than
an exact Wallace multiplier optimized for speed. Functional
analysis has shown that on a statistical basis, the proposed
multipliers have very small error distances and thus, they
achieve a high accuracy. Simulation has also shown that
AM2 has a higher accuracy than AM1 at the cost of a longer
delay and a higher power consumption. Truncation-based
designs (TAM1 and TAM?2) achieve a significant improvement
in power and area with a small degradation in NMED.
The proposed approximate multipliers improve over previous
approximate designs especially in accuracy. While previous
designs focus on reducing both delay and power with often
unsatisfying accuracy, the proposed designs achieve excel-
lent delay and power reductions with a high accuracy. The
application of the proposed multipliers to image sharpening
and smoothing has shown that the proposed designs are very
competitive in performance with their accurate counterpart.

REFERENCES

[1] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in Proc. 18th IEEE Eur. Test
Symp., May 2013, pp. 1-6.

[2] S.-L. Lu, “Speeding up processing with approximation circuits,” Com-
puter, vol. 37, no. 3, pp. 67-73, Mar. 2004.

[3] A. K. Verma, P. Brisk, and P. Ienne, “Variable latency speculative
addition: A new paradigm for arithmetic circuit design,” in Proc. Design,
Automat. Test Eur., Mar. 2008, pp. 1250-1255.

[4] N. Zhu, W. L. Goh, and K. S. Yeo, “An enhanced low-power high-speed
adder for error-tolerant application,” in Proc. 12th Int. Symp. Integr.
Circuits, Dec. 2009, pp. 69-72.

[5] H.R.Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-inspired
imprecise computational blocks for efficient VLSI implementation of
soft-computing applications,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 57, no. 4, pp. 850-862, Apr. 2010.

[6] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy,
“IMPACT: IMPrecise adders for low-power approximate computing,” in
Proc. IEEE/ACM Int. Symp. Low Power Electron. Design, Aug. 2011,
pp. 409-414.

[7] A. B. Kahng and S. Kang, “Accuracy-configurable adder for approxi-
mate arithmetic designs,” in Proc. Design Automat. Conf., Jun. 2012,
pp. 820-825.

[8] K. Du, P. Varman, and K. Mohanram, “High performance reliable
variable latency carry select addition,” in Proc. Design, Automat. Test
Eur. Conf. Exhib., Mar. 2012, pp. 1257-1262.

[9] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability of
approximate and probabilistic adders,” IEEE Trans. Comput., vol. 62,
no. 9, pp. 1760-1771, Jun. 2012.

[10] J. Huang, J. Lach, and G. Robins, “A methodology for energy-quality
tradeoff using imprecise hardware,” in Proc. Design Automat. Conf.,
Jun. 2012, pp. 504-509.

[11] J. Miao, K. He, A. Gerstlauer, and M. Orshansky, “Modeling and synthe-
sis of quality-energy optimal approximate adders,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design, Nov. 2012, pp. 728-735.

[12] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, “MACACO:
Modeling and analysis of circuits for approximate computing,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, Nov. 2011,
pp. 667-673.

[13] H. Jiang, C. Liu, L. Liu, F. Lombardi, and J. Han, “A review, classifi-
cation, and comparative evaluation of approximate arithmetic circuits,”
ACM J. Emerg. Technol. Comput. Syst., vol. 13, no. 4, 2017, Art. no. 60.

[14] P. Kulkarni, P. Gupta, and M. D. Ercegovac, “Trading accuracy for
power in a multiplier architecture,” J. Low Power Electron., vol. 7, no. 4,
pp. 490-501, 2011.

[15] K. Bhardwaj, P. S. Mane, and J. Henkel, “Power- and area-efficient
approximate wallace tree multiplier for error-resilient systems,” in Proc.
15th Int. Symp. Qual. Electron. Design, Mar. 2014, pp. 263-269.

[16] K. Y. Kyaw, W. L. Goh, and K. S. Yeo, “Low-power high-speed mul-
tiplier for error-tolerant application,” in Proc. IEEE Int. Conf. Electron
Devices Solid-State Circuits, Dec. 2010, pp. 1-4.

[17] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park, and N. S. Kim,
“Energy-efficient approximate multiplication for digital signal process-
ing and classification applications,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 23, no. 6, pp. 1180-1184, Jun. 2015.

[18] Y.-H. Chen and T.-Y. Chang, “A high-accuracy adaptive conditional-
probability estimator for fixed-width booth multipliers,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 59, no. 3, pp. 594-603,
Mar. 2012.

[19] B. Shao and P. Li, “Array-based approximate arithmetic computing:
A general model and applications to multiplier and squarer design,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 4, pp. 1081-1090,
Apr. 2015.

[20] H. Jiang, J. Han, F. Qiao, and F. Lombardi, “Approximate radix-8 booth
multipliers for low-power and high-performance operation,” IEEE Trans.
Comput., vol. 65, no. 8, pp. 2638-2644, Aug. 2016.

[21] K. Nepal, Y. Li, R. I. Bahar, and S. Reda, “ABACUS: A technique for
automated behavioral synthesis of approximate computing circuits,” in
Proc. Design, Automat. Test Eur. Conf. Exhib., Mar. 2014, pp. 1-6.

[22] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghunathan,
“ASLAN: Synthesis of approximate sequential circuits,” in Proc. Design,
Automat. Test Eur. Conf. Exhib., Mar. 2014, pp. 1-6.

[23] C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance
approximate multiplier with configurable partial error recovery,” in Proc.
Design, Automat. Test Eur. Conf. Exhib., Mar. 2014, pp. 1-4.

[24] B. Parhami, Computer Arithmetic. London, U.K.: Oxford Univ. Press,
2000.

[25] M. A. Breuer, “Intelligible test techniques to support error-tolerance,”
in Proc. 13th Asian Test Symp., Nov. 2004, pp. 386-393.

[26] N. Weste and H. David, CMOS VLSI Design: A Circuits and Systems
Perspective, 3rd ed. London, U.K.: Pearson, 2005.

202

[27]

[28]

[29]

[30]

[31]

[32]

[33]

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 66, NO. 1, JANUARY 2019

V. G. Oklobdzija, D. Villeger, and S. S. Liu, “A method for speed opti-
mized partial product reduction and generation of fast parallel multipliers
using an algorithmic approach,” IEEE Trans. Comput., vol. 45, no. 3,
pp- 294-306, Mar. 1996.

K. C. Bickerstaff, E. E. Swartzlander, and M. J. Schulte, “Analysis of
column compression multipliers,” in Proc. 15th IEEE Symp. Comput.
Arithmetic, Jun. 2001, pp. 33-39.

K. C. Bickerstaff, M. J. Schulte, and E. E. Swartzlander, Jr., “Parallel
reduced area multipliers,” J. VLSI Signal Process. Syst. Signal, Image
Video Technol., vol. 9, no. 3, pp. 181-191, 1995.

Y.-K. Cheng, C.-H. Tsai, C.-C. Teng, and S.-M. Kang, Electrothermal
Analysis of VLSI Systems. New York, NY, USA: Springer, 2002.

E. J. King and E. E. Swartzlander, “Data-dependent truncation scheme
for parallel multipliers,” in Proc. 31st Conf. Rec. Asilomar Conf. Signals,
Syst. Comput., vol. 2, Nov. 1997, pp. 1178-1182.

M. S. K. Lau, K.-V. Ling, and Y.-C. Chu, “Energy-aware probabilistic
multiplier: Design and analysis,” in Proc. Int. Conf. Compil., Archit.,
Synthesis Embedded Syst., 2009, pp. 281-290.

H. R. Myler and A. R. Weeks, The Pocket Handbook of Image Process-
ing Algorithms in C. Englewood Cliffs, NJ, USA: Prentice-Hall, 1993.

Honglan Jiang (S’14) received the B.Sc. and mas-
ter’s degrees in instrument science and technology
from the Harbin Institute of Technology, Harbin,
Heilongjiang, China, in 2011 and 2013, respectively.
She is currently pursuing the Ph.D. degree with the
Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, AB, Canada. Her
current research interests are approximate computing
and stochastic computing.

Cong Liu received the B.Sc. degree in automation
from Tsinghua University, Beijing, China, in 2012,
and the master’s degree in integrated circuits and
systems from the University of Alberta, Edmonton,
AB, Canada, in 2014. He is currently a Software
Development Engineer with Amazon.

Fabrizio Lombardi (M’81-SM’02-F’09) received
the B.Sc. degree (Hons.) in electronic engineering
from the University of Essex, U.K., in 1977,
the master’s degree in microwaves and modern
optics and the Diploma degree in microwave
engineering from the Microwave Research Unit,
University College London, in 1978, and the Ph.D.
degree from the University of London in 1982. He
is currently the International Test Conference (ITC)
Endowed Chair Professorship with Northeastern
University, Boston, USA. His research interests are
bio-inspired and nano manufacturing/computing, VLSI design, testing, and
fault/defect tolerance of digital systems. He has extensively published in
these areas and coauthored/edited seven books. He was the Editor-In-Chief
of the IEEE TRANSACTIONS ON COMPUTERS from 2007 to 2010 and
the inaugural Editor-in-Chief of the IEEE TRANSACTIONS ON EMERGING
Topics IN COMPUTING from 2013 to 2017. He is the Editor-in-Chief of the
IEEE TRANSACTIONS ON NANOTECHNOLOGY.

Jie Han (S’02-M’05-SM’16) received the B.Sc.
degree in electronic engineering from Tsinghua Uni-
versity, Beijing, China, in 1999, and the Ph.D.
degree from the Delft University of Technology,
The Netherlands, in 2004. He is currently an Asso-
ciate Professor with the Department of Electrical
and Computer Engineering, University of Alberta,
Edmonton, AB, Canada. His research interests
include approximate computing, stochastic compu-
tation, reliability and fault tolerance, nanoelectronic
circuits and systems, and novel computational mod-
els for nanoscale and biological applications. He and his co-authors received
the Best Paper Award at the International Symposium on Nanoscale Archi-
tectures (NanoArch 2015) and the Best Paper Nominations at the 25th Great
Lakes Symposium on VLSI (GLSVLSI 2015), the NanoArch 2016, and the
19th International Symposium on Quality Electronic Design (ISQED 2018).
He was nominated for the 2006 Christiaan Huygens Prize of Science by the
Royal Dutch Academy of Science. His work was recognized by Science, for
developing a theory of fault-tolerant nanocircuits in 2005. He is currently
an Associate Editor of the IEEE TRANSACTIONS ON EMERGING TOPICS
IN COMPUTING, the IEEE TRANSACTIONS ON NANOTECHNOLOGY, and
Microelectronics Reliability. He served as the General Chair for GLSVLSI
2017 and the IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT 2013), and the Technical
Program Committee Chair for GLSVLSI 2016 and DFT 2012.

