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ABSTRACT: A three-step preparation of a highly water-soluble
poly(p-phenylene ethynylene) (PPE) from commercially avail-
able starting materials is disclosed. The palladium/norbornene-
catalyzed AB—C-type polymerization has been developed, which
enables installation of two piperazine meta side chains
concurrently with the construction of the PPE backbone. The
capability for double protonation of the piperazine moiety
improves water solubility of this material. Compared to the PPE
containing para side chains, the meta side chains reduce
interchain aggregation and significantly enhance solubility and

fluorescent quantum yields of the polymer.

B INTRODUCTION

Poly(para-phenylene ethynylene)s (PPE)s feature their
remarkable fluorescence properties.'”’ Hence, many efforts
have been particularly made to synthesize water-soluble PPEs
for biological™® or sensory applications.””'" Unfortunately,
because of the rigid and hydrophobic nature of the conjugated
backbone, water-soluble PPEs have been restrained from broad
applications due to polymer aggregation in aqueous medium,
which results in fluorescence quenching and low solubility of
the material.''~** To date, numerous innovated approaches
have been demonstrated to circumvent the aggregation issue.”
For example, one approach was to simply bypass this issue by
changing the polymer main chains to less-crystalline back-
bones, such as poly(o-phenylethynylene)s,'”'® poly(m-
phenylethynylene)s,'”*" or bulky arene-containing PPEs.”"**
On the other hand, the majority of studies have been focused
on breaking interchain interactions via modifying side chains of
PPEs (Figure la). A number of elegant examples have
illustrated that side chains, typically with great bulkiness such
as ionic dendrimeric units,"* ionic/polar branched units,"® or
poly(ethylene glycol) units,'*"” can effectively break aggrega-
tion. However, from the synthetic viewpoint, it is not trivial to
prepare and introduce those sterically hindered and water-
soluble side chains. Hence, it could still be attractive to develop
a complementary approach that can alleviate the relatively
heavy synthetic demands for preparing water-soluble PPEs.
According to Carnelley’s rule, para-disubstituted benzenes
with D,, symmetry have higher melting points than their less
symmetrical meta analogues because the para isomers
intrinsically pack more tightly than the meta isomers.”*™>°
Thus, we became interested in the regiochemistry effect of side
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chains on PPE aggregation.”” The prior examples of preventing
aggregation commonly used side chains substituted at the 2,5-
positions of the phenylene units (para side chains) (Figure
la);l_23 in contrast, PPEs possessing meta side chains have
been unprecedented.”® We anticipated that placing side chains
at the 2,6-positions (meta side chains) could effectively break
aggregation due to their intrinsically less-ordered packing,
which may consequently allow much simpler side chains to be
used (Figure 1b). In particular, the piperazine moiety is
expected to serve as attractive side chains because, as a
common structural motif found in drugs”’~' and pH-
responsive acryloyl-type polymers,” piperazine features high
water solubility through double protonations of both nitrogen
sides (pK,, = 6.3, pK,, = 8.8)*° under acidic conditions.
Herein, we describe our development of a three-step synthesis
of a highly water-soluble PPE that contain piperazine meta side
chains through palladium/norbornene (Pd/NBE)-catalyzed
AB—C-type polymerization.

B RESULTS AND DISCUSSION

Pd/NBE cooperative catalysis, also known as the Catellani
reaction,” has emerged as a useful tool for rapid synthesis of
polysubstituted arenes.”*”> Through forming a unique aryl-
norbornyl palladacycle (ANP), an electrophile and a
nucleophile are site-selectively coupled at the ortho and ipso
positions, respectively (Figure 2a). In particular, when ortho-
unsubstituted aryl iodides were used, two new functional
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Figure 2. Brief illustration of (a) Pd/NBE cooperative catalysis and (b) AB—C-type polymerization.

groups can be introduced at the ortho positions simultaneously.
Recently, we described our initial efforts of employing the Pd/
NBE catalysis in streamlined synthesis of polyfunctionalized
aromatic polymers through an A,B,C-type (ortho-amination/
ipso-alkynylation) polymerization, in which bis-iodoarenes and
bis-acetylenes were used as the AA and BB monomers,
respectively.®” Given the challenge of preparing PPEs with
meta side chains in an efficient manner, we were motivated to
explore the use of p-iodophenylacetylene as a unique AB-type
monomer in the Pd/NBE-catalyzed polymerization (Figure
2b). In addition, N-benzoyloxy-4-Boc-piperazine will be used
as the C-type monomer for introducing piperazine meta side
chains.**~*

A model study was first conducted using 1-iodo-4-(phenyl-
ethynyl)benzene (A), acetone-protected-phenylacetylene (B),
and N-benzoyloxy-4-Boc-piperazine (C) to assess the viability
of the AB—C-type Pd/NBE-catalyzed polymerization (Table 1
and Table S1). The major side products came from ortho-
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amination/ipso-reduction (la) and the direct Sonogashira
coupling (1b). The potential alkyne homocoupling product
(1c) was not observed in any cases, which was a common
undesired pathway to introduce defects in PPE prepara-
tions.”** After careful optimization, S mol % palladium acetate
and 12.5 mol % tri(p-methoxyphenyl)phosphine were found to
be the best precatalyst—ligand combination; ultimately, the
desired M,,,,, compound was afforded in 97% isolated yield
(entry 1). Reducing the NBE loading from 200 to S0 mol %
slightly decreased the yield of the desired product (entry 2).
Decreasing the amount of base or the reaction temperature
resulted in more Sonogashira product 1b, probably because of
the negative influence on the ortho-C—H activation step
(entries 3 and 7). The amount of the ipso reduction product 1a
increased at a higher reaction temperature (entry 6); it is likely
that the elimination of benzoate from C may be accelerated at
the higher temperature, which generated the corresponding
imine or enamine serving as the reductant.*® It is noteworthy
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Table 1. Selected Optimization of the Model Reaction

==

A (1.0 equiv) (12.5 mol%)
<\7/ _ o Cs,CO3 (8.0 equiv) (_J
NBE (2.0 equiv) N
B (1.0 equiv) toluene (50 mM) Bod M, 0ta Boc
90°C, 24 h (desired)
Boc—N  N-OBz "standard conditions"
C (2.2 equiv)

Pd(OAC), (5.0 mol%)
P(pOMe-CgHy)s

Boc,
N

C

2

Boc,
\

N

-
<)=L
()

1a

O—0—=0 O—0

entry change from the “standard conditions”
1 none
2 0.5 equiv NBE
3 4.0 equiv Cs,CO;3
4 10 mol % P(pOMe-C4H,),
S 15 mol % P(pOMe-C4H,);
6 100 °C
7 80 °C

1c

yield (%) (M, ":12%:1b":1c?)
>95 (97°):<5:0:0
95:<S:trace:0
90:<5:3:0
93:S:trace:0
85:5:6:0
93:S:trace:0
88:<5:3:0

“Determined by '"H NMR and GC with 1,3,5-trimethoxbenzene as the internal standard. YDetermined by GC with 1,3,5-trimethoxbenzene as the

internal standard. “Isolated yield.

Scheme 1. Synthesis of the Water-Soluble PPE PE, .
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that the reaction profile relied heavily on the ratio of the
palladium catalyst and the ligand (entries 4 and $).

With the optimal reaction conditions in hand, the AB—C
polymerization was investigated (Scheme 1). The AB
monomer was prepared directly through Sonogashira coupling
of commercially available 1,4-diiodobenzene and 2-methyl-3-
butyn-2-ol. The polymerization between AB and C monomers
proceeded smoothly to afford PE,,, in 95% yield with M, =
7500 and M,/M, = 2.4 (based on polystyrene standards in
chloroform SEC), which contains two piperazine meta side
chains in each repeating unit. The degree of polymerization
was 15 based upon the end-group analysis by '"H NMR (Figure
S1). The subsequent deprotection of the Boc group with
excess HCI provided conjugated polyelectrolyte PE,,, in
nearly a quantitative yield. Hence, this approach allows for a
three-step synthesis of a water-soluble PPE with meta side
chains in a 75% overall yield.

Efforts were next put forth to understand the properties of
this new material. First, to examine whether the phenyl-
acetylene moiety containing two piperazine units would follow
Carnelley’s rule, model substrates M, and M,,, were
synthesized (Figure 3a; see the Supporting Information for
their syntheses). The melting point of the less symmetrical
M,,.¢, was substantially lower than that of M,,,,, (105 °C vs 240
°C), indicating that the phenylacetylene possessing meta side
chains is indeed less packed. The loosely packed M,,,,,, isomer
relative to M,,,, was also supported by single crystal X-ray
diffraction (Figure S2). Coherently, M,,,, was found over 100
times more soluble than M,,, in ethyl acetate at room
temperature (Figure 3b and Figure S4).

In addition, the two regioisomers showed different
electronic properties. Two distinct transitions at 320 and 380
nm were displayed by the absorption spectrum of M,,,, in
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chloroform, and they red-shifted in more polar solvent such as
DMF (Figure 3c and Figure SS). This behavior indicated the
presence of intramolecular charge-transfer (ICT) character,
implying the sufficient electron-donating capability of the
electron-rich phenylenes containing the p-piperazine units to
form donor—acceptor pairs with the ethynylene moieties via
the ICT process."”* In contrast, M,,,, featured a single
transition, where the ICT process was hampered because the
oxidized form of M,,,, would form less stable quinoidal
resonance structures than the one of M,,,.***” Nevertheless,
M,,.;, exhibited a more red-shifted absorption than the
corresponding unsubstituted compound 1b, which is likely
caused by increased energy of the highest-occupied molecular
orbital in this conjugated system. Similar to the previous
reports,”* > the broad absorption spectra of both isomers
were attributed to twisting of the phenyl rings from the
coplanar geometry as shown in the crystal structures (Figure
$3). The fluorescence spectrum of M,,,,, compared to that of
M,,..,, was significantly broadened, accompanied by a larger
Stokes shift (Figure 3d). The radiative lifetime (7,,4) for M,
is significantly longer than the value for M,,.;, (7.oq = 29 ns for
M, and 7,,q = 3.2 ns for M,,..,), indicating a large long-lived
contribution from the ICT state (Table $2).>' These
fluorescence data suggested that the structural difference
between the ground and excited states were greater in the case
of M,,,, due to the more planar structure of M,,, at the
excited state through the ICT process and/or the correspond-
ing interchain interaction to form excimer-like excited
states.””>*~>* All these observations concluded that the simple
alteration of substitution positions dramatically influenced the
packing/aggregation pattern of the model compounds.

To investigate the regiochemistry effect of side chains on
polymer aggregations, the PPE that contains piperazine para
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side chains with a comparable molecular weight (P,,,,,) was
prepared by conventional Sonogashira polymerization of the
monomer with preinstalled side chains (Figure 4; see the
Supporting Information for its synthesis). Compared to P,
P, featured the relatively large discrepancy between M,s by
SEC and 'H NMR analyses (Figure 4a). This indicated the
relatively high hydrodynamic volume of P, inferring that
P, could be more rigid than P,,,,,. With regard to the optical
property (Figures 4d and 4e), P, exhibited a strong
absorption band in blue region (A, = 400 nm) along with
a strong blue fluorescence (A, = 467 nm) in chloroform. In
film, P,,,, displayed the absorption with the bathochromic
shift of 20 nm from the maximum absorption in solution. In
stark contrast to the emission of P, in solution, the broad
green fluorescence with a large Stokes shift of 170 nm was
observed from the sample in film state. This suggested that a
conformational change from the twisted absorbing ground
state to the planar emitting excited state facilitated an excimer-
like excited state arising from interchain 77—z stacking in the
aggregated state.”” > Nonetheless, the slight emission peak at
~470 nm coming from the nonaggregated form was still
observed in film.>> The absorption spectra of P, displayed
two distinct transitions similar to the one of M,,,,, which is
caused by the ICT (Figure SS). Note that P, showed a more
significant light-scattering tail in the longer wavelength than
P,.. even in solution, which is likely caused by a more
aggregated state.”® In addition, the fluorescence spectra of P,
in solution showed the broad emission with a large Stokes
shift; this implied that the interchain interaction of P, in
solution was as large as that of P, in the aggregated state,
which could be due to the packable nature of the more
symmetrical P,,,, as well as the more planar excited state via
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the ICT.>**%7 P, in film exhibited further red-shifted
emission, without a corresponding change in the absorption
spectrum compared to the one in solution. It is therefore
anticipated that P,,,, involved a larger structural change from
the ground to the excited states than P,,,,,,, which consequently
resulted in the longer fluorescence/radiative lifetime than P,
in solution (Table S2) due to the smaller overlap of the
vibronic wave functions of the ground and excited states.”*>"’
Overall, it can be inferred that the rigid P,,,,, was more likely to
aggregate. Correspondingly, P,., is over 30 times more
soluble than P, in chloroform (>12.0 mg/mL vs 0.4 mg/
mL) (Figure 4b). Less aggregated P, displayed a twice
higher fluorescence quantum yield than P,,,, (42.2% vs 19.5%)
in chloroform solution (Figure 4c). As expected, fluorescence
was quenched when aggregation was forced to take place by
adding poor solvents such as methanol (Figure S6).
Water-soluble PPEs, PE,,, and PE,,, showed the same
aggregation trend. The solubility of PE,,, in water was
significantly higher than that of PE,,,, (>80 mg/mL vs 7 mg/
mL in distilled water, Figure S4). Interestingly, the solubility of
PE,,, and PE,,, in water was higher than that of P,,,, and
P,.. in organic solvents, which indeed indicated high
solubilizing capability of doubly protonated piperazine groups.
Because the pK, value of the aniline nitrogen of phenyl-
piperazine moiety is 6.3,”” PE,,,, was more soluble in acidic
aqueous buffers than water and was less soluble in neutral/
basic buffers than water.”® The absorption spectra of PE,,,,,
and PE,,,, in pH = 4 acidic aqueous buffer showed transitions
similar to their precursors P, and P, respectively, except
that these peaks were blue-shifted (Figure 5¢)." PE,,, in
solution exhibited analogous fluorescence patterns to P, in

para
film, which illustrated that PE,,, was situated in aqueous

'meta
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medium closer to the aggregated state (Figure 5d and Figure
S7). The aggregating nature of water-soluble PPEs relative to
their precursors in solution was expected due to the
hydrophobic conjugated backbone in water. It is also likely
that the flattened backbone of PE,,, promoted by the
enhanced ICT in the polar medium facilitated aggregation.
In contrast, introducing meta side chains to the conjugated
main chain attenuated the polymer aggregation, and thus
PE, .., in solution showed the major emission peak at 560 nm
corresponding to the aggregated state, concurrently with a
prominent shoulder at 455 nm corresponding to the
nonaggregated state.”> As a control experiment, the emission
peak at 455 nm disappeared in pH = 8 aqueous buffer in
addition to the red-shifted absorption with light-scattering tails
(Figure S8), further implying that the presence of the
protonated aniline moieties might be crucial to break the
;1gg1‘egation.56’58 Accordingly, the fluorescence quantum yield
of PE,,., was significantly decreased from 5.0% to <1.0% at pH
higher than 7 likely due to aggregation-caused fluorescence
quenching (Figure Sb). Interestingly, the fluorescence of
PE, ., was found significantly enhanced upon addition of 70
vol % methanol to pH = 4 aqueous buffer, which enhanced the
fluorescence quantum yield from 5.0% to 18.3% (Figure S9).
One explanation is that the aggregation was broken in such a
cosolvent system, as the greenish emission of PE,,,, was blue-
shifted after addition of methanol, accompanied by a clear
strength enhancement of the nonaggregated emission peak at
4SS nm. The exact reaction for the deaggregation of polymers
remains unclear and is currently under investigation.

B CONCLUSION

In summary, we disclosed a simple three-step preparation of a
highly water-soluble PPE from commercially available starting
materials. Through developing a Pd/NBE-catalyzed AB—C-
type polymerization, piperazine meta side chains were installed
concurrently with the construction of the PPE backbone. The
capability for double protonation of the piperazine moiety was
one key factor for high water solubility of this material. On the
other hand, compared to the corresponding PPE containing
piperazine para side chains, the one possessing meta side
chains was less aggregated, was much more soluble, and gave a
higher fluorescent quantum yield. This observation suggests
that the substitution pattern of side chains alone can
significantly affect polymer properties, which should have a
broad implication beyond this work. Efforts in exploring the
utility of this densely charged PPE material are ongoing.
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