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ABSTRACT. We propose an a posteriori error estimator for an optimal control
problem with sparsity promoting cost: the control variable lies in the space of
regular Borel measures. We consider a solution technique that relies on the
discretization of the control variable as a linear combination of Dirac measures.
The proposed a posteriori error estimator can be decomposed into the sum of
two contributions: an error estimator in the maximum norm for the discretiza-
tion of the adjoint equation and an estimator in the L?-norm that accounts
for the approximation of the state equation. We prove that the designed error
estimator is locally efficient and we explore its reliability properties. The anal-
ysis is valid for two and three—dimensional domains. We illustrate the theory
with numerical examples.

1. INTRODUCTION

This work is dedicated to the design and analysis of an efficient a posteriori error
estimator for an elliptic optimal control problem with sparsity promoting cost: the
control variable is sought in the space of regular Borel measures. To make matters
precise, for d € {2,3}, we let Q C R? be an open, bounded and convex polytopal
domain; the boundary of  is denoted by 9. Given a desired state yq € L*(Q),
and a sparsity parameter a > 0, we introduce the cost functional

1
(1.1) Ty, w) = 51y = vall ) + allullme),

and thus define our optimal control problem with sparsity promoting cost as follows:
Find

(1.2) min J(y, u)
subject to the linear and elliptic PDE
(1.3) — Ay =uin Q, y =0 on 99N.
Notice that the control variable u lies in the space of regular Borel measures

The design and analysis of solution techniques for optimal control problems that
induce a sparse structure in the control variable have been widely studied in the lit-
erature over the last decade. The first work that provides an analysis for this class
of problems is [32]; the sparsity arises from the consideration of a L!(Q)-control
cost term in the quadratic cost functional. The author of [32] studied a regular-
ized problem, derived optimality conditions, proposed and analyzed a semismooth
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Newton method. Solution techniques based on finite element methods have been
proposed and analyzed in [37] when the state equation is linear and in [7, 9, 16]
when the state equation is a semilinear elliptic PDE. For an up—to—date overview
of the theory we refer the interested reader to [5]. The extension of the theory to
the evolutionary case has been recently explored in [6, 8, 12, 17].

Regarding the optimal control problem (1.2)—(1.3), and to the best of our knowl-
edge, the first work that provided an analysis was [18]. In this work, the authors
analyzed elliptic control problems with measures and functions of bounded varia-
tion as controls; existence and uniqueness of the corresponding predual problems
were discussed together with the solution of the optimality systems by a semis-
mooth Newton method. Subsequently, in [14], the authors address the feasibility of
optimal source placement by optimal control in measure spaces: they extend [18] by
including partial observation, control on subdomains and non—negativity properties
of the controls. A numerical scheme based on finite element techniques was later
proposed in [10]. The space M () was discretized by the set of linear combinations
of Dirac masses at interior mesh points. The authors proved convergence of the
scheme and provided error estimates. On the basis of this discretization scheme,
improved error estimates were obtained in [31]. However, these error estimates,
are not optimal in terms of approximation. This is due to the fact that the state
variable exhibits reduced regularity properties. It is thus just natural to propose
adaptive finite element methods (AFEMS) to efficiently resolve the optimal control
problem (1.2)—(1.3) and recover optimal rates of convergence for the state variable.

AFEMs are a fundamental numerical instrument in science and engineering that
allows for the resolution of PDEs with relatively modest computational resources.
They are known to outperform classical FEM in practice and deliver optimal con-
vergence rates when the latter cannot. To extract the local errors incurred by
FEM, and thus be able to equidistribute them, AFEMs rely on a posteriori error
estimators, which are computable quantities, that depend on the discrete solution
and data. In contrast to the well established theory for linear elliptic PDEs, the
design and analysis of a posteriori error estimators for optimal control problems are
being currently developed. In view of their inherent nonlinear feature the analysis
involves more arguments and technicalities. To the best of our knowledge, the only
work that provides an advance concerning the a posteriori error analysis for (1.2)—
(1.3) is [15]. In this reference, the authors propose a functional error estimator, and
prove that its square root yields an upper bound for the approximation error of the
state variable and the error between the discrete and continuous cost functionals
[15, Section 5]; an efficiency analysis, however, is not provided.

In light of the discussion given above, the main objective of this work is to pro-
pose and analyze an efficient a posteriori error estimator for the optimal control
problem (1.2)—(1.3). We consider a solution technique for (1.2)—(1.3) that relies
on the discretization of the state and adjoint variables with piecewise linear func-
tions, whereas the control variable is discretized using the framework presented in
[10, Section 3]. The proposed a posteriori error estimator only accounts for the
discretization of the state and adjoint variables. We measure the error of the state
variable in L?(Q)-norm and the error of the adjoint variable in L°(£2)-norm, and
we derive local efficiency results. We also explore the reliability properties of the de-
signed error estimator. On the basis of the constructed a posteriori error estimator,
we also design simple adaptive strategies that yield optimal rates of convergence for



ERROR ESTIMATES FOR AN OPTIMAL CONTROL PROBLEM IN MEASURE SPACE 3

the numerical examples that we perform. We would like to mention that our error
estimator is simpler than the one considered in [15, Section 5]. In addition, and
in contrast to [15, Section 5], the error indicator that we consider for the adjoint
variable in the L°°(2)-norm allows for unbounded forcing terms. This is of impor-
tance since, as it can be be observed from (2.3), the adjoint equation has § — yq as
a forcing term and, in general, § — yq ¢ L (). Additional assumptions must be
imposed on yg in order to have that § — yq € L°°(Q) [31, Theorem 2.5].

The outline of this manuscript is as follows. In Section 2 we present existence
and uniqueness results together with first—order optimality conditions. In Section
3 we present the finite element discretization of our optimal control problem; it
relies on the discretization of the state and adjoint equations by using piecewise
linear functions, whereas the control variable is approximated with Dirac deltas.
The a posteriori error analysis of elliptic problems with delta sources together with
maximum-norm a posteriori error estimation of elliptic problems are reviewed in
Section 4. The core of our work is Section 5, where we design an a posteriori error
estimator and study reliability and efficiency results. We conclude, in Section 6,
with a series of numerical examples that illustrate our theory.

Throughout this work d € {2,3}. If X and ) are normed vector spaces, we write
X < Y to denote that X is continuously embedded in )). We denote by X’ and
|l - |+ the dual and the norm of X, respectively. If X is a function space over the
domain G' C R?, we denote by (-,-)¢ the duality pairing between X’ and X. The
relation a < b indicates that a < Cb, with a nonessential constant C' that might
change at each occurrence.

2. THE OPTIMAL CONTROL PROBLEM IN MEASURE SPACE

In this section we review some of the main results related to the existence and
uniqueness of solutions for problem (1.2)—(1.3). In addition, we present first—order
necessary and sufficient optimality conditions.

We recall that the space of regular Borel measures M(2) can be identified, by the
Riesz Theorem, with the dual of the space of continuous functions that vanish on
the boundary 0€2, which from now on we shall denote by Cy(£2). Given a measure
uw € M(R), we have that

(2.1) lullmy = sup  (w,p)o = sup /cpdu-
p€eCp(2) peCp(Q2) (9]
\W\lco(n)ﬁl ”‘PHCO(Q)SI

Given u € M(Q), we define the weak solution of problem (1.3) as follows:
(2.2) yeWw, () (Vy, V)2 ) = (u,v)a Yo e Wy (),

where 1 < r < d/(d—1) and r’ denotes the conjugate exponent of r. Problem (2.2)
has a unique solution y € W, "(Q) that satisfies [11, Theorem 4], [33, Théoreme
9.1]
Hvy”m(sz) < ||U||M(Q)-
We notice that, in view of the fact that W, " (Q) < L2(2) for 2d/(d +2) < r <
d/(d — 1), the cost functional J, which is defined by (1.2), is well-defined.
The following existence result follows from [18, Proposition 2.2].

Theorem 2.1 (existence and uniqueness). The sparse optimal control problem
(1.2)(1.3) has a unique solution (§,@) € Wy () x M(Q) for 1 <r < d/(d—1).
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The next result establishes optimality conditions for problem (1.2)—(1.3); see [10,
Theorem 2.1] and [31, Theorem 2.2].

Theorem 2.2 (optimality conditions). Let (7, @) € Wy () x M(Q) be the (unique)
solution of (1.2)—(1.3). Then, there exists a unique element p € H?(2) N HI(Q)
satisfying

(2.3) (VYw,VD)r2) = (§ — Ya, w)r2()  Yw € HY(Q),
such that, for all u € M(Q),
(2.4) — (u—u,p)a + al|lpm) < allullrm)-

In addition,
(2.5) [pllco(e) = a if u # 0, [9llco(e) < a if u=0.

As a conclusion, the pair (7,a) € Wy (Q) x M() is optimal for (1.2)-(1.3) if
and only if the triplet (7,7, @) € W, () x HL(Q) x M(R) satisfies the following
optimality system:

(V5, V) 120) = (@ V)0 o e Wy (),
(2.6) (Vw,Vp)r2 (o) = (U — Yd, w) L2 () Yw € Hg (%),
—(u—1u,p)o + alu m@) < allullpme) Yu e M(Q).

3. FINITE ELEMENT DISCRETIZATION

We recall the finite element approximation of the sparse optimal control problem
(1.2)—(1.3) developed in [10, Section 3]. In addition, we present convergence rates
for such a discretization [31].

We begin by introducing some ingredients of standard finite element approxima-
tion [13, 24]. Let 7 = {T'} be a conforming partition of  into simplices T with
size hp := diam(T"), and set hz := maxpe s hr. Let us denote by T the collection
of conforming and shape regular meshes that are refinements of %, where 9 rep-
resents an initial mesh. Given 7 € T, we denote by Nz the number of interior
nodes of 7 and by {z;}X7 the set of interior nodes of .7.

Given a mesh 7 € T, we define the finite element space of continuous piecewise
polynomials of degree one as

(3.1) V(T) ={vg € Co(Q) : va|r € PL(T)VT € T}.

Given a node x; in the mesh 7, we introduce the function ¢; € V(), which is such
that ¢;(z;) = d6;; for all j =1,..., No. The set {(bz}fvjl is the so—called Courant
basis of the space V(7).

With this setting at hand, we define the following discrete version of the optimal
control problem (1.2)—(1.3): Find (yo,u) € V() x M(Q) that minimizes

(3.2) J(yz,u)
subject to the discrete state equation
(3.3) (Vyz, V’l)y)Lz(Q) = (u,v7)q Yvg € V().

Notice that, since the control variable is not discretized, the solution technique
(3.2)-(3.3) corresponds to an instance of the so—called variational discretization
approach [26].
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The discrete optimal control problem (3.2)—(3.3) has a solution. In contrast to
the continuous case, the discrete version of the control-to-state map Sz : M(Q2) >
u ' yg € V() is not injective [10, 31]. This and the fact that the norm || - || s
is not strictly convex imply that J is not strictly convex. As a consequence, the
uniqueness of the control variable cannot be guaranteed. However, among all the
possible optimal controls, a special solution can be explicitly characterized using a
particular discrete space [10, Section 3]:

Ng
(34) UWT):= {ug EMQ) :ugy =) uiby, weR, 1<i< Ng} .
i=1
Notice that this discrete space consists of linear combinations of Dirac measures
associated to the interior nodes of the mesh 7. Finally, we introduce the following
operator [10, Section 3]:
Ng
(3.5) Az i MQ) = U(T),  Ag(w) = (u,¢)ads,.
i=1
With the previous definitions at hand, we are in position to present the following

results related to the convergence of the discrete solutions; see [10, Theorems 3.2
and 3.5] and [31, Theorem 3.1].

Theorem 3.1 (convergence). Among all the optimal controls of problem (3.2)-

(3.3), there exists a unique g € U(T). Any other optimal control iz € M(QY) of

(3.2)—(3.3) satisfies that Aztgy = dg. In addition, we have the following conver-

gence properties as hgy — 0:

(3.6) ug —uin M(Q), a7l ame) = lallme)s 18— 572 — 0.
The following results present optimality conditions for the discrete optimal con-

trol problem (3.2)—(3.3); see [31, Theorem 3.2].

Theorem 3.2 (discrete optimality conditions). Let (§z,tuz) € V(T) x U(T) be
the discrete solution, as in Theorem 3.1. Then there exists a unique discrete adjoint
state pz € V(.T) such that

(3.7) (Vwz,Vp7)r2) = (J7 —ya, wa)r2) Ywg € V(T),

and that satisfies

(3.8) —(u—uz,p7)o+allizlme) < ofullme) Yue M)

Consequently, the discrete pair (§o,u7) € V(7) x U(.7) is optimal for (3.2)—

(3.3) if and only if the triplet (§7,pz,u7) € V(T) x V(F) x U(F) solves
(Viz,Vuz)r2 ) = (tg,v7) Yog € V(T),

(3.9) (Vwz, V7)) = U7 —ya,ws)r2  Vwg € V(T),

—(u—tg,pr)a+allig|me) < allullpm@  Yue M(Q).

To conclude this section, we present a priori error estimates for the approximation
of the optimal state variable. To state it, we will need an extra assumption on the
desired state yq; see [31, Section 4]. Let us assume that

(3.10) ya € L°(Q) for d =2, yq € L3(Q) for d = 3.
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Theorem 3.3 (a priori error estimates). Let yq satisfy (3.10). Let (§,a) € Wy (Q)x
M(Q) be the solution of problem (1.2)—(1.3), and let (§z,uz7) € V(T) xU(T) the
solution of problem (3.2)—(3.3), given as in Theorem 8.1. Then there holds

(3.11) 17— Gzl S By bz |2,
(3.12) @ — gl g2 S b |3,
with”y:%fordzl and v =1 ford=3.

Proof. We refer the reader to [31, Theorem 4.4] for a proof of (3.11) and [31,
Corollary 4.5] for (3.12). O

Theorem 3.4 (a priori error estimates). Let yq € L°°(Q2), which implies that
the solution (§,7) € Wy () x M(Q) of problem (1.2)~(1.3) satisfies that § €
HYQ) N L>®(Q). If (Jo,uz) € V(T) x U(F) denote the solution of problem
(3.2)—(3.3), given as in Theorem 3.1, then

(3.13) 17 =57l 2(0) S ha|lnha|?,
with p =2 ford =2 and p=11/4 for d = 3.
Proof. We refer the reader to [31, Theorem 5.1]. O

4. A POSTERIORI ERROR ANALYSIS FOR THE LAPLACIAN

In the next section we will construct an a posteriori error estimator for the
optimal control problem with sparsity promoting cost (1.2)—(1.3) that will be based
on two error contributions: one associated to the discretization of the state equation
(2.2) and another one related to the discretization of the adjoint equation (2.3). In
order to design these contributions, and in an effort to make the presentation of
the material as clear as possible, in this section we briefly review a posteriori error
estimates for Poisson problems. We first review the L? a posteriori error estimator,
developed in [3], for a Poisson problem that involves a Dirac measure as a source
term, and then the pointwise a posteriori error estimator of [2] for a Poisson problem
involving an unbounded forcing term. The latter is needed because the adjoint
problem (2.3) has the function § — y,4 as a forcing term, which in general does not
belong to L>°(£2). In order to have that § — yqs € L>(Q2), an additional assumption
must be imposed: yq € L*>(Q); see [31, Theorem 2.5].

4.1. A posteriori error estimates for the Laplacian with Dirac sources.
Let £ be an interior point of 2 and consider the following elliptic boundary value
problem: Find z such that

(4.1) —Az=0inQ, z=0onaN.
Consider the following weak formulation of problem (4.1):
(4.2) ZEeWIT(Q): (Vz2, Vo)) = 8e(v) Yo e W (9),

where 1 < r < d/(d —1) and ' denotes its conjugate exponent. We immediately
notice that, since ' > d, we have that Wi’ () < C(Q) and, consequently, the
term on the right-hand side of (4.2) is well-defined.

We now define the Galerkin approximation to (4.2) as the following problem:

(4.3) z7 €V(T): (Vzg,Vog)rzg) =d(vy) Yoz € V(T),
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where the space V(.7) is defined in (3.1).

In order to present the error estimator developed in [3], we introduce standard
notation in a posteriori error analysis [36]. We define . as the set of internal
(d — 1)—dimensional interelement boundaries S of 7. For T € 7, let 1 denote
the subset of . that contains the sides in . which are sides of 7. We also denote
by Ns the subset of 7 that contains the two elements that have S as a side. In
addition, we define the following patches associated with an element T' € 7

(44) NT = U 11/7
T'€ T:TNT'#0
and
(4.5) N = U T
T’GrginﬁyT/ #@

Given a discrete function zo € V(.7), we define, for any internal side S € .7,
the jump or interelement residual [Vzz - ] by

(4.6) [Vzg -v] =vt - Veg|ps +v7 - Veg|p-,
where Ng = {T", T~} and v*,v~ denote the unit normals to S pointing towards
T+, T~ € 7, respectively.

With these ingredients at hand, we define the following a posteriori error indi-
cators. If € ¢ {x;} Y7 but £ € T, then

(4.7) 63 (273 T) = h X(T) + W |[[Vzg - V72000,
otherwise,
(4.8) & (275 T) == h3[[[Vzz - VIl 320m00)-

With these indicators at hand, we thus define the global a posteriori error estimator

E(z7; T ) = <Z 552(2,9;T)> :

TeT
The following result states the reliability and local efficiency of the global error
estimator &5. For a proof, we refer the reader to [3, Theorem 4.1].

Theorem 4.1. Let z € Wy (Q) and 27 € V(.7) be the solutions to problems (4.1)
and (4.3), respectively. We thus have that

(4.9) ||Z — 29||L2(Q) S (%(Zy; ﬂ),
and
(4.10) &s5(27,T) S Iz — 272w )

where the hidden constants are independent of z, zo, T and the cardinality of 7.

Remark 4.2 (convexity of ). Assuming convexity is customary when performing an
a posteriori error analysis based on duality. Indeed, the convexity of the domain €2 is
imposed so that the associated dual problem exhibits suitable regularity properties
which are used to show the reliability of & in the L?-norm; see the proof of [3,
Theorem 4.1] and [22].
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We conclude this section by commenting on the alternative a posteriori error
analyses developed in [1] and [25]. In [1], the authors introduce an a posteriori
error estimator in weighted Sobolev spaces for an elliptic PDE with a Dirac delta
as a forcing term. The authors prove reliability and locally efficiency results in two—
and three—dimensional domains. A different approach is considered in [25], where
the authors explore the use of fractional Sobolev spaces. The authors design an a
posteriori error estimator and derive reliability and locally efficiency properties on
polygonal domains.

4.2. Pointwise a posteriori error estimation. Since the variational inequality
(2.4), that characterizes the optimal control, involves the duality pairing between
the spaces Cy(€2) and M(2), it is thus imperative to consider a pointwise error
estimator for the adjoint problem (2.3).

Pointwise a posteriori error estimates have been studied by several authors in
the literature. To the best of our knowledge, the earliest two works that study L
residual a posteriori error estimators for a Poisson problem with a bounded forcing
term are [23, 28]. The analysis of [28] was subsequently extended to d = 3 in [19] and
later improved in [20, 21]. The theory has also been extended to obstacle, monotone
semilinear, and geometric problems [4, 21, 29, 30]. A standard requirement, in most
of these works, is that the right hand side of the underlying PDE belongs to L>°((Q).
However, as it was previously mentioned, the adjoint equation (2.3), for the sparse
optimal control problem, has the function ¥ —y4 as a forcing term, which, in general
is not bounded. For this reason, in what follows we will present an a posteriori error
analysis in the maximum norm for a Poisson problem with an unbounded forcing
term [2, 4, 21].

Let f € L?(Q), and consider the following elliptic boundary value problem:
(4.11) z€Hy(Q): (Vz,Vu)rzi) = (f,v)r2@ Vv € Hi(Q).

Notice that, since we are in a convex polytope, we conclude that z € H?(Q2) and
that this in turn implies, via Sobolev embedding, that z € W(Q) N C%%(Q) for
some t > d and k > 0. In view of this, it is legitimate to study the a posteriori

error estimation in L>°(2) of problem (4.11).
We begin by defining the Galerkin approximation to problem (4.11) as

(4.12) zg EV(?) : (VZ%va)p(Q) = (f,Uy)L2(Q) Yvg EV(?)
We thus introduce the following a posteriori local error indicators
(413)  Ew(z:T) = by Pl fllez) + hrll[Vag - Ve omon),

and the error estimator &x(29; 7 ) := maxre g Eno(27;T).
In order to present the reliability of the global error estimator &, we define

lo a !
max — ||.

3 TeT hr

The proof of the next result can be found in [2, Lemma 4.2].

Lemma 4.3 (global reliability). Let z € H}(Q) N L>®(Q) and zo € V(T) be the
solutions of (4.11) and (4.12), respectively. Then

(4.15) |z = 27 llL=) Sla(27;T),

where the hidden constant is independent of f, z, zz, the size of the elements in

the mesh  and #7 .

(4.14) (o=
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To present the local efficiency of the indicators &, we define for any g € L2(f2),
and .4 C T,

2
(4.16) osco(g; M) = (Z h§<2‘d/2>||g—nyg|%zm> :
TeH

where I1# is the L2-projection operator onto piecewise linear functions over .7.
The local efficiency of the indicators (4.13) is as follows. For a proof we refer the
reader to [2, Lemma 4.3]

Lemma 4.4 (local efficiency). Let 2 € H}(Q) N L>(Q) and 25 € V() be the
solutions to problems (4.11) and (4.12), respectively. Then

(4.17) Eoo(27:T) S |2 = 27|l L) + 0sca (f; N7)

for all T € T, where Nij. is given by (4.5), and the hidden constant is independent
of f, z, z7, the size of the elements in the mesh F and #7 .

5. A POSTERIORI ERROR ANALYSIS FOR THE OPTIMAL CONTROL PROBLEM WITH
SPARSITY PROMOTING COST

On the basis of the error indicators and estimators presented in Sections 4.1 and
4.2, we proceed with the design of an a posteriori error estimator for the sparse
optimal control problem (1.2)—(1.3). The error estimator can be decomposed as
the sum of two contributions:

(5.1) &7, b iz T) = E Yo, uz7; T)+ E D7, h7; T),

where € T and §y7, ps and 45 denote the discrete optimal variables that solve
the discrete optimality system (3.9).

Let us now describe each contribution to (5.1) separately. First, on the basis of
the results presented in Section 4.1, we define, for T' € .77, the local error indicators

(5.2) &Yz, uz;T) = h7ll[Viz -Vl 0r00):

The global error estimator &, (jyz,%7;.7) is thus defined by

(5.3) &Yz, ug; T) = <Z 55(y9,U9;T)> :
TeT

We immediately notice that, since the optimal control % & is sought in the discrete

space U(.7), it can be thus written as a linear combination of Dirac measures
supported on {z;}¥7. As a consequence, the definition of the local indicators
&,(J7,u7;T) does not involve the additional term hi “x(T') that appears in (4.7);
see [3, Remark 4.1].

The second error contribution in (5.1) is based on the maximum-norm error
estimator that we presented in Section 4.2. Locally, it is defined by

o —d/2, - _
(54)  &B7,57T) = by 57 - yall2ry + hrll[VE7 - V]l L= (om00)-
The global error estimator &,(p7,y=; 7 ) is then defined by

(5.5) Pz, Y7, T) = Iax (D7, y7;T).
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Since, it will be useful in the analysis that we will perform, we introduce the
following auxiliary variables. First, let (§,p) € Wy (Q) x H () be such that

(Vi, V)2 = (iz,v)a Vo € Wy (Q),

5.6 . _
( ) (Vw, Vp)Lz(Q) = (yy — Yd, ’w)Lz(Q) Yw € H&(Q),

where 1 < r < d/(d — 1) and 7’ denotes its conjugate exponent. We also define
P € H}(Q) to be the solution of

(5.7) (Vw, VP)r2) = (§ — Ya, w)r2()  Yw € Hy ().

We notice that (y,ps) can be understood as a finite element approximation of
(g,p). Consequently, on the basis of the results presented in Sections 4.1 and 4.2,
the a posteriori error estimators defined in (5.3) and (5.5) satisfy the following
reliability properties:

(5.8) 11 =072 < &y(H7,u7; T), 1p—D7llLe) Slaép(Pa,ia; T).

We thus have all the ingredients at hand to develop our a posteriori error analysis
for the sparse optimal control problem (1.2)—(1.3).

5.1. A posteriori error estimator: reliability.

Theorem 5.1 (global reliability). Let (i, p,4) € Wy () x HL(Q) x M(), with
2d/(d+2) < r < d/(d—1), be the solution to (2.6), and let (§z,pz,uz) €
V(7) x V(T) x U(T) be its numerical approzimation obtained as the solution to
the discrete optimality system (3.9). Then

(5.9) 19— 9772 + 17— Pzlli () + 18— Gz llF-2q)
SEN Yz ug; T)+ 158D, Y7: T) + Loy (br. 07 T),

where Lz is defined in (4.14), and the hidden constant is independent of the con-
tinuous and discrete optimal variables, the size of the elements of the mesh 7 and
its cardinality #.7 .

Proof. We proceed in four steps.

Step 1. The objective of this step is to bound the error || — 77|/ 2(q). To accom-
plish this task, we invoke the auxiliary state variable g, defined as the solution to
(5.6), and apply the triangle inequality to arrive at the estimate

(5.10) Iy — 93”%2(9) Sy - ﬂ”%mz) +&j7,u7; T),

where we have also used (5.8). We now focus on controlling the term || — QH%Q(Q).
Set u =ty in (2.4) and v = @ in (3.8), and obtain that

—(ug —u,p)a + allul| pme) < alliz|lme)s
—(u -z, p7)o+alug|me) < allulrme)-
Adding the previous inequalities, we thus obtain that

where we have invoked the auxiliary adjoint state p, defined in (5.7).
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Let us concentrate now on the term (i — 4z, p — p)o. First, we notice that the
functions § — g and p — p satisfy
(5.12) G—H €Wy (Q): (VT —9), V)2 = (@ — Gz, v)o Yo W™ (Q),
(5.13) p—pe Hy(Q): (Vu,V(p D)2 = (1 — §w)r2@) Yw € Hy(),
where 2d/(d+2) < r < d/(d—1) and " > d is its conjugate exponent. Notice
now that, since § — § € L(Q), there exists ' > d for which p — p € WL (Q).
Consequently, we are able to set v = 5 — p in (5.12). This yields

(V@ —=19), V(B —D))r2) = (U —tg,p— pa-

Following a similar reasoning, we would like to set w = § — ¢ in (5.13). However,
7 —§ ¢ HAQ). Exploiting the fact that § — § € W, (Q) with 2d/(d+2) < r <
d/(d—1) and that there exits 7 > d such that p—p € W' (), a density argument
allows us to conclude that

(V@ —9),V@ D)2 = (T~ 9,7~ §)r2(2),
and thus that
(5.14) (W —tuz,p—pa=7— 1072

Replacing the previous term in (5.11), and inserting the auxiliary variable p defined
as the solution to (5.6), we obtain that

(5.15) 19 = 911720 < (tg —u,p = pa + (i7 — 6, - p7)o.

We now apply Theorem 3.1 to conclude that the norms ||@[| pq(o) and [|@7 || pmo)
are bounded. This, combined with the estimate (5.8), reveals that

(5.16) (vg —u,p—pr)o Slaé&p(Dr.97:T).

To estimate the first term on the right hand side of (5.15), we notice that § — g
and p — p satisfy

(5.17) §—ge W, (V) : (VG —7), VV)2() = (07 — G,0)a Vv € we (),
(518) p—pe Hy(Q): (Vw,V(P—p))r2) = (§ — J7,w)r2() Yw € Hy().

Similar density arguments to those used to obtain (5.14), allow us to set v =p —p
and w = g — y. This yields

Replacing (5.16) and the obtained result into (5.15) we thus obtain that
(5:20) 11§ = 9ll720) S 10— 97172000 + 0 = 97,97 =D 12(0) + L7 Ep(B7, 575 T ).

Now, on the basis of (5.8), an application of Young’s inequality allows us to arrive
at the estimate

o o o 1.
G21) 7= il3e ) S 62 ig; T) +Lab(pr G T) + LA 57720
Finally, replacing (5.21) into (5.10), we obtain the estimate
(5.22) 17— 971720 S 6 (07,107 T) +Lr6 (D7, G573 T).

Step 2. The goal of this step is to estimate the term |4 — .7 g2 (q). To accomplish
this task, we follow the arguments elaborated in [31, Corollary 4.5] that guarantee

(5.23) la— ﬂy”%{%(m Sy - §3||%2(Q) + 197 — 33”%2(52)7
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where ¢ is defined as the solution to (5.6). We now invoke, once again, the estimate
(5.8) together with (5.22) to conclude that

(5.24) @ =z |52 S & W7 09:T) +La& (b7, 473 T).

Step 3. In this step we bound the error ||p — p7|[z~(q). To accomplish this task,
we use the triangle inequality and then the estimate (5.8) to obtain that

(5.25) ||25—]59H%°°(Q) Slp —25”%00(9) +£,29<58p2(]5%ﬂ9; 7).

To estimate the term [[p—p|7 < ), we observe that p—p € H*(Q) — C(Q) so that
this, together with (5.22), gives

(5.26) [P — Bl =y SN0~ 97720 S (@7 07 T) + Lz (D7, 475 T).
Finally, inserting (5.26) into (5.25), we arrive at the estimate
(5:27) Ip= P71y S € .17 T)+ 58, (b7, G75 T ) +Lrbp(D7, G775 T ).

Step 4. The desired estimate (5.9) follows upon gathering the estimates (5.22),
(5.24) and (5.27). O

5.2. A posteriori error estimator: efficiency. In this section we analyze the
efficiency properties of the local a posteriori error indicator

(5.28) &z 7 iz T) =6 Y7, uz;T)+ E} D7, j7:;T).

To accomplish this task, we study each of its contributions separately. We start
with the indicator &, (y,uz;T) defined by (5.2). Before embarking ourselves with
the efficiency analysis of &,(§z,us;T), we introduce the following notation: for
an edge, triangle or tetrahedron G, let V(G) be the set of vertices of G.

Let T € 7 and S € .. Recall that Ns denotes the patch composed by the
two elements T' and 7" sharing S. We introduce the following edge bubble function

2

(5.29) Uslvs =d | T ofel |

veVv(S)

where, for v € V(S), ¢T and ¢I" denote the barycentric coordinates of T and 17,
respectively, which are understood as functions over Ng. The following properties
of the bubble function 15 follow immediately: s € Pya(Ns), s € C?*(Ns), and
s =0 on ONg. In addition, we have that

(5.30) Vips = 0 on ONg, [Vips-v]=0on S.

With all these ingredients at hand, we are ready to prove the local efficiency of
&Gz, uz;T).

Lemma 5.2 (local efficiency of &,). Let (§,p,a) € Wy (Q) x HE () x M(Q),
with 2d/(d 4+ 2) < r < d/(d — 1), be the solution to (2.6), and let (§z,pz,07) €
V(7)) x V(T) x U(T) be its numerical approzimation obtained as the solution to
the discrete optimality system (3.9). Then, for T € 7, the local error indicator &,
defined as in (5.2), satisfies that

(5.31) & G707 T) ST — 971 Feg + Y 18— 0sllE-2(ny),
SeSr
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where Nj. is defined as in (4.5) and the hidden constant is independent of the
continuous and discrete optimal variables, the size of the elements in the mesh 7,

and #7 .

Proof. Let v € Wol’T/ (Q), with v’ > d, be such that v|y € C*(T) for all T € 7.
Consider v as a test function in the state equation (2.2) and apply integration by
parts to arrive at

(5.32) /QV(y—gjg)Vv: Z a,v)r + Z /[[Vyg v]v

TeT Ses

Since we have that v € C?(T) on each T € .7, we can integrate by parts, again, to
conclude that

(5.33) V(y—197) [Vo - v](
| V@-57 s;y/ —17) T;?/

As a conclusion, from (5.32) and (5.33), we arrive at the following identity:

(5.34) > (({w—ug,v)r+ (ig7,v Z/ Vi - v]v

TeT Ses

Z—Z/VUV]]y Y7) Z/
Ses TeT
which holds for every v € Wol’T (), with 7' > d, and is such that v|r € C*(T) for
all T € 7.
Let S € .7, and set v = g = [V§z - v]s in (5.34). As it is customary in
a posteriori error analysis, we extend the jump term defined on S to the patch
Ng following the arguments of [35, Section 3]. In what follows, we will make no
distinction between the jump term defined on S and its extension onto Ng. Now,
notice that we have that s € HZ(Ns) and, moreover, [VBs - v] = 0 on S. In
addition, since tg € U(.7), we can conclude for every T € Ng that

<’EL'9, 6S>T - Z uV<5Va 6S>T =0.
veV(T)
Consequently, a simple application of the Cauchy—Schwarz inequality reveals that

639 [Vor Pus=- % ([ @-57)805+ @ - a7, p0)r )

T'eNs
< 3 (1= ol 0l ) + 18- a7 Lo sl
T'eNs

Now, since [V§z - V] € R, we have that Afs = [Vys - v]Ays. Standard

arguments allow us to obtain the following bound
1885172y S [V - vIP 1 AYs]| T2y
SITISIT h V7 - Vllies) S he’IIVE - v]Zas)-

With these estimates at hand, we thus use standard bubble functions arguments,

the Poincaré inequality, and the shape regularity property of the family {7} to
arrive at
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(536)  WIVIr A S 3 {ny—ygn%w}+|u—ug~||H .
T'eNs

which concludes our proof. O

We now continue with the study of the local efficiency properties of the indicators
(P, yz;T) defined by (5.4).

Lemma 5.3 (local efficiency of &,). Let (§,p,a) € Wy (Q) x HE () x M(Q),
where 2d/(d +2) < r < d/(d — 1), be the solution to the optimality system (2.6),
and (§z,p7,07) € V(T)xV(T)xU(T) be its numerical approximation obtained
as the solution to the discrete optimality system (3.9). Then, for T € 7, the local
error indicator &,(pz,yo;T), defined in (5.4), satisfies that

_ _ _ _ —d _ — *
(5.37) &(p7,97;T) S ||p_p<7HL°°(/\/;)+h§“ /2||y_y9||L2(N7*.)+OS‘39(yd§NT)a

where N is defined in (4.5) and the hidden constant is independent of the optimal
variables, their approzimations, the size of the elements in the mesh 7, and its

cardinality #.7 .

Proof. We follow closely the arguments elaborated in [2, Lemma 5.4]. Let w €
H () be such that w|r € C?(Q) for T € 7. Consider w as a test function in the
adjoint equation (2.3). An argument based on integration by parts reveals that

(5.38) /VwVp p) Z/ y- ydw+2/[[vp9 v]w

TeT Ses

In view of the regularity properties of the function w, we can, again, integrate by
parts to obtain that

(5.39) / VuV(p—p)

Z/[[wappﬂ Z/

Ses TeT

As a conclusion, we have thus obtained the following identity

ea) ¥ [G-vw+ ¥ [ 1955 vlu

TeT Ses

g [ 5 f-

Ses TeT

that holds for every w € H}(Q2) such that w|y € C?(T) for all T € 7. With this
error equation at hand, we proceed to derive the local efficiency properties of the
error indicator &,(pz,y=;T): the analysis involves two steps.
Step 1. In this step we bound the term hfr_d/2||gg —Ydllz2(ry in (5.4) for T € 7.
We begin with a simple application of the triangle inequality:

2—d/2

2 d —d
Pz = yallpzery < b 157 = Nayallpeqy + ba P 1Maya — yall 2o

where II > denotes the L2-projection operator onto piecewise linear functions over
T. Now we set w = (1 = (§7 — llgyi)p> in (5.40), where pr is the standard
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bubble function over T' [34, 36]. This yields

(5.41) /T (57 — Moya)Cr = /T (7~ ya) — (7 — 5) + (94— TLoya)] Cr

= - / (p—p7)Alr — / (Y —y7)Cr + / (ya — Mzyq)¢r =: T+ T +1IL
T T T

To compute A{r on T, we first notice that A(jo — Hgys)lr = 0. A basic
computation thus reveals that

A¢r =4V (J7 —zya) - Vorer + 257 — Uaya)(erApr + Ver - Vor).

The control of the term I follows from the the previous identity, the properties
of the bubble function @7 and an inverse inequality. In fact, we have that

41 _ d2,
(5:42) 115 (b3 IV@7 — Woyalser + i~ 5 — Woyalzan )
NP = p7lle=cry S 05157 — Woyallzcry 16 = b7 |l e -

The terms IT and III in (5.41) are bounded in view of standard properties of the
bubble function ¢7: we have that

(5.43) | SNy = 97lle2)97 — Wayall L2y,
and that
(5.44) I S llya — Uzyall 2y 197 — Mz yall2or)-

Finally, since |57 — zyall72p) S J7(J7 — Lzya)(r, the identity (5.41), com-
bined with the estimates (5.42), (5.43) and (5.44), allow us to conclude that

24 o
(5.45) hy *|y7 —vallezry SIP— P llL=(r)

2—4 . _
+hiyp 2Y =97 L2y +oscr(ya; T),

where osc (yq; T') is defined by (4.16).

Step 2. Let T € . and S € Sr. The objective of this step is control the term
hr||[[VDz - V]l L (9100 in (5.4). To accomplish this task, we invoke the standard
bubble function over S which we denote ¢g. Recall that, according to [34, 36] this
function satisfies

Vsl = hg', 1=0,1,2,  [S||[[VDs - V]llLee(s) S '/S[[Vﬁﬂ V]ps
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To bound the term on the right-hand side of the previous inequality, we set w = ¢g
n (5.40) and obtain that

’/ Vpr - vles| < Y / 17— valos + > / P — D7l Aps]

T'eNs T'eNs

Y Y /|p P |[Vs -

T'eéNs S'e S

< ST I7 - G llcean + 157 — vall 2 )

T'eNs
- (h;2|T’|+hgl ) |s’|)||p—py|mm.
T'eNs S'eFp

Upon multiplying this inequality by hr|S|~!, using the shape regularity of the mesh
7, in addition with (5.45), yields

(5.46)  hr|[[Vpz - VlliLes) S P — Do llLews)
+h 25— Gl L2 ve) + 0scz (yas Ns).
Combining (5.45) and (5.46), we arrive at (5.37). O

The results of Lemmas 5.2 and 5.3 immediately yield the following result.

Theorem 5.4 (local efficiency of &,.p). Let (7,p,1) € Wy (Q) x HL(Q) x M(Q),
with 2d/(d+2) <r < d/(d—1), be the solution to the optimality system (2.6), and
(Jz,p7,07) € V(T)xV(T) xU(T) be its numerical approximation obtained as
the solution to the discrete optimality system (3.9). Then, for T € , it holds

&N iz T) + & (7,975 T) S P = D7 llFengy + L+ hp VNG = 7172000

+ Y la— a2 + 05 (Yas N7,
SeSr
where N7 is defined in (4.5) and the hidden constant is independent of the optimal

variables, their approximations, the size of the elements in the mesh 7, and its
cardinality #.7 .

6. NUMERICAL EXAMPLES

In this section we conduct a series of numerical examples that illustrate the per-
formance of the error estimator that we designed and analyzed in Section 5. In
Section 6.3 below, we go beyond the presented analysis and perform a numerical
experiment where the assumption that our domain is convex is violated. The pre-
sented numerical examples have been carried out with the help of a code that we
implemented using MATLAB® (R2017a). When assembling all system matrices we
have used exact integration. The right hand sides as well as the approximation
errors are computed by a quadrature formula which is exact for polynomials of
degree 19.

For a given partition 7, we seek (§o,p7,u7) € V(T) x V() x U(J) that
solves the discrete optimality system (3.9). We solve such a nonlinear system of
equations by using the solution technique that was devised in [10, Section 6]. Such a
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Algorithm 1: Adaptive semismooth Newton algorithm.

Input: Initial mesh 9, desired state y4 and sparsity parameter a.
Set: i = 0.
Active set strategy:
1 Compute [ggi,ﬁgi,ﬁgi} = Newton method[.7;, a, y4], which implements the semismooth
Newton method of [10, Section 6].
A posteriori error estimation:

2 For each T' € J; compute the local error indicator ézf

p,7 glven in (6.1).

. 2 2

3 Mark an element T for refinement if éaocp,T > 3 Tr/ng% éz’ocp’T,.

4 From step 3, construct a new mesh, using a longest edge bisection algorithm. Set 7 < i+ 1,
and go to step 1.

FIGURE 1. The initial meshes used when the domain Q is a circle (Example 1), a
square (Example 2) and a L-shaped domain (Example 3).

numerical scheme is based on an equivalent formulation of the optimality conditions
(2.4) and (2.5):

(U,p=p) <0 V[plcye) < a.
In the discrete setting of Section 3 this variational inequality can be reformulated
using a complementarity function as

g + max{0, -tz + p7 — a} + min{0, -tz + ps + a} =0,

which should be understood pointwise. Since the underlying map is locally Lips-
chitz, the reformulated discrete optimality system can be solved by a locally super-
linearly convergent semismooth Newton method [27]. We refer the reader to [10,
Section 6] for details. Once a discrete solution is obtained, on the basis of (5.9), we
compute the error indicator

N[

(61) gOCP-,T = gocp(gﬂ,ﬁﬂ,ﬂg, T) = (é();(g97ﬂ9’ T) + éa[?(l_)ga g97 T)) ’

which is defined in terms of the local indicators given by (5.2) and (5.4), to drive
the adaptive procedure described in Algorithm 1 and the global a posteriori er-
ror estimator &, in order to assess the accuracy of the approximation. For
the numerical results, we define the total number of degrees of freedom Ndof =
2dim(V(.7)) + dim(U(.7)), and the errors e, := § — o and e, :== p — p. Since
|t — 7|2 is not computable, we measure experimental rates of convergence
for the error in the norm

1
2
ey el = (lle ey + leplmiey) -

The initial meshes for our numerical examples are shown in Figure 1.

We now provide three numerical experiments. First we consider a problem where
an exact solution can be obtained: it is based on the solution constructed in [31,
Section 8.1]. In the second example the exact solution is not known. Finally, in
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the third example, we go beyond the presented analysis and perform a numerical
experiment where we violate the assumption of the convexity of the domain.

Estimator and its contributions Approximation errors Adaptive vs uniform refinement
107

1074
&y 105 lleyll 22 :8: fu Lzm)
&p llepllzos () e G
—Z-Ndof ! - - =Ndof ! — - —Ndof %

10 10
10! 10° 10° 10’ 10° 10° 10’ 10° 108

Ndof
()

V22

=5
S

WRardl)

X

SETSN /SE7
Lol
B VA

L NNA
N
RS

Bt
(e)

FIGURE 2. An example with known exact solution; see Section 6.1. (a) Experimental
rates of convergence for &ocp(§7, Do, U7; 7 ), and each of his contributions. (b)
Experimental rates of convergence for the errors e, and e,. (c) Experimental rates
of convergence for e, on uniform and adaptive refinement. (d) The 30th adaptively
refined mesh. (e) The approximate discrete solution 4.

6.1. A problem with known exact solution. For this problem we set Q =
Bo(1) C R?, that is, the unit two dimensional ball, and a = 10~2. Following [31,
Section 8.1], the exact optimal state, adjoint state, and exact optimal control are
given by

1
j=—5-In (|z)),  p=—0.02]z]> +0.03|z|* — 0.01, @ = d,
™

where for a vector ¢ € R? we denote by |¢] its Euclidean norm. Note that the
optimal state y is simply a Green’s function. On the basis of the solution, we
compute the desired state via

6(3||* —202) 1

ya=Ap+j=—a — 5 In(je))

||
see [31, Section 8.1] for details. The results for this experiment are presented in
Figure 2 and Table 1. In Figure 2 we show the experimental rates of convergence
for the error estimator &,cp, as well as for each one of its contributions. Since, in
this case, we have access to the exact solution, we also compute the decay rates of
the errors |ley||z2(q) and [|ep|| o (n)- It can be observed that the AFEM described
Algorithm 1 outperforms the FEM of [10] since it delivers optimal experimental
rates of convergence when the latter cannot. We also present, in Figure 2, the
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mesh obtained after 30 iterations of the designed AFEM and the discrete optimal
variable obtained on such an adaptively refined mesh. We observe that most of the
refinement occurs near x = 0 which corresponds to the support of @ = ég. This
attests to the efficiency of the devised estimator.

Ndofs Eocp &y &p eyl L2(Q) llepll Q)
111 | 5.66984e-01 | 5.66737e-01 | 1.67262e-02 | 2.55767e-02 | 1.46470e-03
1077 | 4.37467e-02 | 4.37232e-02 | 1.43511e-03 | 1.75347e-03 | 3.40616e-04
12801 | 3.66509e-03 | 3.66419e-03 | 8.12535e-05 | 1.50904e-04 | 2.82187e-05
33792 | 1.43789¢-03 | 1.43769e-03 | 2.39289¢-05 | 6.18704e-05 | 8.89136e-06
63876 | 8.38781e-04 | 8.38713e-04 | 1.07119e-05 | 3.76121e-05 | 4.70434e-06
91896 | 5.99521e-04 | 5.99480e-04 | 7.01987e-06 | 2.66131e-05 | 2.96516e-06
137298 | 4.17480e-04 | 4.17457e-04 | 4.39216e-06 | 1.89848e-05 | 1.96305e-06

TABLE 1. The total error estimator &scp, its contributions &, and &), and the errors

lley HLQ(Q) and |lep|| ;00 (o) obtained when using the adaptive loop of Algorithm 1

to approximate the solution to the problem described in Section 6.1.

6.2. An example with no analytical solution. We now explore the perfor-
mance of our devised a posteriori error estimators in problems where no analytical
solution is available. Set Q = (—1,1)? and for (z1,z2) €

(6.2) ya=10(exp (—50{(z1 — 0.2)> + (22 + 0.1)*)}
— exp (—50{(z1 + 0.1)*> + (z2 — 0.2)*)}).

The purpose of this example is to investigate the effect of varying the sparsity
parameter . We consider

aec{1071,1072,1073,1074,107°,1075}.

The results of this experiment are presented in Figure 3. We observe, in subfigures
(a)—(f), that optimal experimental rates of convergence in terms of approximation
are obtained for the error estimator &, and its individual contributions &, and
&, for all the values of the parameter a that we considered. For a = 1074, we
display the adaptive mesh obtained after 25 iterations of the designed AFEM and
the obtained discrete optimal control variable.

6.3. An example on a nonconvex domain. In this section we go beyond the
presented analysis and perform a numerical experiment where the domain convexity
assumption is violated. We let Q = (—1,1)%\(—1,0]x[0, 1), i.e., a L shaped domain
and a = 5-1073. The desired state y4 is given by

ya = —log (v/(z1 — 0.2)2 + (22 + 0.2)2),

The results are shown in Figure 4 where we observe optimal experimental rates
of convergence for the proposed a posteriori error estimator &, and each one of its
contributions. We also observe that the refinement is being concentrated about the
singularity exhibited by the optimal control and to a lesser extent the re-entrant
corner. To appreciate the nature of the aforementioned singularity, we also display
the computed optimal control variable.

(acl R ,TQ) e 0.
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Estimator contributions for o = 107! , _Estimator contributions for o = 10 2
0

Estimator contributions for a = 107*

Ep £p
——=Ndof ™! ——=Ndof™!
10! 10° 10° 10’ 10° 108 10’ 10° 108
Ndof Ndof Ndof
. (@ ’ . o : : (. .
Estimator contributions for a = 10 , Estimator contributions for a =107" , _Estimator contributions for a = 10
10 10
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10
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— — —Ndof !

10
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102 10° 10’ 102
Ndof Ndof
(d) (e)

(8)

FIGURE 3. Results for the example of Section 6.2.
rates of convergence for &ocp(Yo,P7,0z;.J) and its contributions for o €

{1071,1072,1073,107%,107°,107 %}, respectively.
fined mesh for o = 1074,

refined mesh for a = 1074,

(a)-(f) Experimental

(g) The 25th adaptively re-
(h) The discrete control @z on the 25th adaptively

6.4. Conclusions. From the presented numerical examples several general conclu-

sions can be drawn:

e The error estimator &cp, as well as each of his contributions, exhibit optimal
experimental rates of convergence for the experiments that we perform.

e Most of the refinement occurs near the singularity points, which attests to the

efficiency of the devised a posteriori error estimator.

e The contribution &,(pz,y;7) to the error estimator is the dominating one.
We believe that this shows the very singular nature of the problem that defines
the state variable.

e The third example shows that, even in the presence of a nonconvex domain,
the error estimator &, exhibits optimal experimental rates of convergence with
respect to approximation.
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Estimator and its contributios

5,
— — —Ndof !

10!

‘Dl\aldof (b)
(a)

FIGURE 4. Results for the example of section 6.3. (a) Experimental rates of con-
vergence for Eocp (§7, D7, Uz; 7 ), and each of his contributions. (b) The 25th
adaptively refined mesh. (c) The discrete control @z on the 25th adaptively re-
fined mesh.

e In spite of the very singular nature of the solution to the state equation, our
proposed estimator is able to deliver optimal rates of convergence.
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