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Abstract

We propose a posteriori error estimators for classical low-order inf-sup stable and stabilized finite element approximations of
the Stokes problem with singular sources in two and three dimensional Lipschitz, but not necessarily convex, polytopal domains.
The designed error estimators are proven to be reliable and locally efficient. On the basis of these estimators we design a simple
adaptive strategy that yields optimal rates of convergence for the numerical examples that we perform.
© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

The purpose of this work is the design and analysis of a posteriori error estimates for low-order inf-sup stable and
stabilized finite element approximations of the Stokes problem

—Au+ Vp =F§, in{2,
divu =0, in £2, (1)
]_l:o7 on 89,

where, for d € {2, 3}, 12 denotes a bounded polytope of R? with Lipschitz boundary, 8, corresponds to the Dirac delta
supported at the interior point z € 2 and F € R?.

As it is well known, system (1) is one of the simplest systems of equations that describes the motion of an
incompressible fluid. Here u represents the velocity of the fluid, p the pressure, and F§, is an externally applied
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force. Notice that, for simplicity, we have taken the viscosity to be equal to one. The first equation represents the
conservation of momentum and the second one (incompressibility) the conservation of mass.

While it is fair to say that the study of approximation techniques for (1) and related models in a standard setting
is matured and well understood [1,2], recent applications and models have emerged where the motion of a fluid is
described by (1) or a small variation of it, but due to the material properties (encoded by the viscosity) or, as is our
interest here, the singularity of forces Fé,, the problem must be understood in a completely different setting and
rigorous approximation techniques are nonexistent. For instance, [3] models the motion of active thin structures by
using a generalization of (1), where the right hand side is a linear combination of the terms we have there. The author
of this work proposes a numerical scheme but its stability and convergence properties are not investigated. Another
instance where a singular force like that of (1) may occur, see [4] and [5,6], is in a PDE constrained optimization
problem where the state is governed by a standard Stokes problem, but the objective contains a point value of u. The
idea in this problem is that one tries to optimize the flow profile so as to match the velocity at a certain point. If one
were to write the optimality conditions for this problem the so-called adjoint variable will be governed by a slight
modification of (1) where z is the observation point. Finally, [7] studies a class of asymptotically Newtonian fluids
(Newtonian under large shear rates) under singular forcing. The authors show existence and uniqueness as well as
some regularity results. In this respect, our work can be understood as an initial step towards the a posteriori error
estimation of such fluids.

The examples presented above justify the need to develop robust solution techniques for the numerical approx-
imation of solutions to (1), and this is the purpose of this work. The key observation that will allow us to handle
the singularity in this problem is that there is a Muckenhoupt weight w, related to the distance to z, such that
8. € H Y(w, ). In light of this, we propose to study numerical methods in Muckenhoupt weighted Sobolev spaces,
in particular, we shall be concerned with the design and analysis of a posteriori error estimates for problem (1) on
such spaces. The analysis relies on the following ingredients that are available in the literature: Muckenhoupt weights
and weighted norm inequalities [8—11], stability and approximation properties of the quasi-interpolation operator
of [10,12] on weighted Sobolev spaces, and stability properties for bubble functions in weighted norms [13]. These
ingredients allow us to conclude that the error estimators defined below in (37) and (71), for inf—sup stable and
stabilized finite element approximations, respectively, are reliable and locally efficient.

We finally comment that, since §, is very singular, it is not expected for the pair (u, p) to have any regularity
properties beyond those merely needed for the problem to be well-posed. For this reason a priori error estimates in
their natural norms might not carry much value in this setting: a quasi-best approximation result a la Céa could be
derived, but rates of convergence will not follow from this. On the other hand, using duality techniques, it might be
possible to obtain error estimates in lower order norms. In either of these two cases, the analysis will rely, in particular,
on a discrete inf—sup condition for the bilinear form of the Dirichlet Laplace operator over a discrete space of functions
with vanishing divergence. This is nontrival and will be deferred to a future study.

1.1. Structure of the paper

Our presentation is organized as follows. We set notation in Section 2, where we also recall basic facts about
weights and introduce the weighted spaces we shall work with. In Section 3, we introduce a saddle point formulation
of the Stokes problem (1) and review well-posedness results. Section 4 is one of the highlights of our work. There
we propose an a posteriori error estimator for inf-sup stable finite element approximations of the Stokes problem
(1); the devised error estimator is proven to be locally efficient and globally reliable. In Section 5 we extend the
results obtained in Section 4 to the case when stabilized finite element approximations are considered. We conclude,
in Section 6, with a series of numerical experiments that illustrate our theory.

2. Notation and preliminaries

Let us fix the notation and conventions in which we will operate. Throughout this work d € {2, 3} and 2 C R is
an open and bounded polytopal domain with Lipschitz boundary 9 (2. Notice that we do not assume that {2 is convex.
If W and Z are Banach function spaces, we write YW <— Z to denote that ¥ is continuously embedded in Z. We
denote by W and || - |lyy the dual and the norm of W, respectively.
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For E C 12 of finite Hausdorff i-dimension, i € {1,...,d}, we denote its measure by |E|. If E is such a set and
f : E — R we denote its mean value by

fr=m)

The relation a < b indicates that @ < Cb, with a constant C that depends neither on a, b nor the discretization
parameters. The value of C might change at each occurrence.

2.1. Weights and weighted spaces

By a weight, we shall mean a locally integrable function @ on R? such that w(x) > 0 a.e. x € R?. A particular
class of weights, that will be of importance in our work, is the so-called Muckenhoupt class A, [14]: If w is a weight,
we say that w € A; if

[w]a, = SL;p (7{9 w) (]i w") < 00, 2)

where the supremum is taken over all balls B in R?. In what follows, for @ € A,, we call [w] A, the Muckenhoupt
characteristic of w.

We refer the reader to [8—11] for the basic facts about Muckenhoupt classes and the ensuing weighted spaces. Here
we only mention an example of an A, weight which will be essential in the analysis presented below. Let z € {2 be
an interior point of {2 and, for « € R, define

d?(x) = |x — z|* 3)

We then have that d? € A, provided that « € (—d, d).

It is also important to notice that, in the previous example, since z € {2 there is a neighborhood of 92 where the
weight d? has no degeneracies or singularities. In fact, it is continuous and strictly positive. Consequently, we have
that the weight d‘;‘ belongs to the class A,({2), introduced in [15, Definition 2.5], and which we define as follows.

Definition 1 (Class A,(12)). Let £2 C R¢ be a Lipschitz domain. We say that @ € A, belongs to A,({2) if there is an
open set G C {2, and positive constants € > 0 and w; > 0 such that:

I {x e 2:dist(x,902) < e} C G,
2. w|g € C(G), and .
3. w; < wx)forallx € G.

The fact that d‘; belongs to the restricted class A,({2) has been shown to be crucial in the analysis of [16] that
guarantees the well-posedness of problem (1) in weighted Sobolev spaces. We will recall these facts in Section 3.
For @ € (—d, d) and an open set E C {2, we define

1
2
L*(d*, E) = {v € Lig(E) : IVl 2ge gy = </ d?“|v|2) < oo}
z E “
and
H'(dX*, E) := {v € L*(dF*, E) : |Vv| € L*(dF*, E)}

with norm

(ST

. 2 2
lolize ) = (101220 5, + 1900 gt ) @

We also define HO1 (df"‘, E) as the closure of Ci°(E) in Hl(dgt"‘, E). In view of the fact that, for ¢ € (—d, d), the
weight dzi"‘ belongs to A,, we conclude that the spaces Lz(df"‘, E)and H! (df"‘, E) are Hilbert [1 1, Proposition 2.1.2]
and that smooth functions are dense [11, Corollary 2.1.6]; see also [9, Theorem 1]. In addition, [17, Theorem 1.3]
guarantees the existence of a weighted Poincaré inequality which, in turn, implies that over Ho1 (dff"‘, {2) the seminorm
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Vvl 2w g is an equivalent norm to the one defined in (4) for E = 2. We also introduce the weighted space of
vector-valued functions and the norm

d 2
Hy(d%, E) = [Hy (A7, )Y, IVVlzgte g = (Z lleilliz(dga,EJ ,

i=1
where v = (v, ..., vy)T7.
For o € (—d, d) we also introduce the product spaces
X(E) = Hy(d?, E) x L*(d%, E)/R, Y(E)=H\d;* E) x L*d;*, E)/R, 5)
which we endow with the norms
1

2

I Dl = (1912 gy + 1712 ) ©)
and

1
2

10 Dl = (19912 g gy + 1912 e ) )

respectively. When E = (2, and in order to simplify the presentation of the material, we write X = X({2) and
Y =Y().

The following continuous embedding results will be instrumental in the analysis that follows.

Proposition 2 (Continuous Embeddings I). Let E be an open subset of 2 C RY and a € (—d, d). Then, we have the
following continuous embeddings

L*(d;*, E) < Li(E), L*(d?, E) < L, .(E). (8)

Proof. Letv e Lz(dg‘, E)and B C E be aball. A trivial application of the Cauchy—Schwarz inequality reveals that

3 3 }
/|v| =/d2|v|d7 < (/ d§‘|v|2> (/ d;‘) < (/ d?|v|2> :
B B B B B

where, to obtain the last inequality, we have used that, since o € (—d, d), dz_"‘ is a weight, i.e., a nonnegative and
locally integrable function. This yields the continuous embedding Lz(dg, E) < L] (E). The proof of the continuous
embedding L*(d;*, E) < L} (E) is similar. [

loc

Proposition 3 (Continuous Embeddings II). Let E be an open subset of 2 C R%. If a € (0,d), then we have the
following continuous embeddings

Hy(d;*, E) — H)(E) — Hj(d%, E). )

Proof. The proof follows from the fact that, since & € (0, d), then max,cg dg‘ (x) is uniformly bounded. In fact, for
v € C3°(E), we have that

/|Vv|2 gmaxd‘;(x)/d;ﬂvwz, /d‘i‘|vV|2 gmaxd‘;(x)/ |Vv|2.
E xekE E E N xekE E

The embeddings described in (9) now follow from a density argument. This concludes the proof. [

3. The Stokes problem with Dirac sources

Having set up the needed functional setting, we now begin with the systematic study of problem (1). First, we
provide a motivation for the use of weights.
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3.1. Motivation

Let us assume that (1) is posed over the whole space R?. If that is the case, the results of [18, Section IV.2] provide
the following asymptotic behavior of the solution (u, p) to problem (1) near the point z:

IVu@o)| ~ [x —z|'™ and  |p(0)] & |x — 2|7 (10)
On the basis of these asymptotic estimates, basic computations reveal that

o ed—2 00 — /d§|Vu|2<oo, /d§|p|2<oo.
(7 2

This heuristic suggests to seek solutions to problem (1) in weighted Sobolev spaces [7,16]. In what follows we will
make these considerations rigorous.

3.2. Saddle point formulation

The motivation of the previous paragraph suggests that we seek for solutions of (1) in the weighted spaces defined
in Section 2. To accomplish this task, we define the bilinear forms

a : Hy(d*, 2) x Hy(d;*, 2) - R,

d (11)
a(w,v) :=/ VW:VV:Z/ Vw; - Vy;
Q =0

and
b Hy(d¥*, ) x L2(dF*, 2) - R,

b(v,q) = —/ g divv.
Q

The weak formulation of problem (1) that we shall consider is: Find (u, p) € H(l)(d‘j, 2) x Lz(d‘z", £2)/R such that

12)

13)

a(u,v) + b(v, p) = (F§,,v), V¥ve Hid %, ),
b(u, q) =0, Vg € L*(d;*, 2)/R,

where (-, -) denotes the duality pairing between H(l)(dz’"‘, £2) and H(l)(dz’"‘, 2). We must immediately comment that,
in order to guarantee that §, € HO1 (dZ%, £2)', and thus that (F§_, v) is well-defined for v € H(l)(dz“)‘, {2), the parameter
« should be restricted to belong to the interval (d — 2, d) [19, Lemma 7.1.3].

We now present a trivial reformulation of problem (1). To accomplish this task, we define the bilinear form
c: X xY — Rby

c((w,r), (v, q)) == a(w,v) + b(v,r) — b(w, q) (14)

with norm

c((w,r), (v, q))
lcll = sup , (15)
©,0£w.NeX 0.0£v.gey (W, DIV, ¢)lly

where the product spaces X and ) were defined in (5).
The aforementioned reformulation of problem (1) thus reads as follows: Find (u, p) € & such that

c((u, p), (v,q)) = (Fé.,v) V(v,q) €. (16)

It has been recently proved in [16] that, since d? € A,({2), problem (16) admits a unique solution (u, p) € X =
H(l)(d‘;, 2) x Lz(d‘;, 2)/R fora € (d —2, d). In addition, the following a priori error estimate was also derived in [16,
Theorem 14]:

||Vu||L2(df3_‘,Q) + ||p||L2(df3‘,Q)/R S |F|”8Z|IH(1)(d‘g!Q)/' (17)
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With such a well-posedness result at hand, we can thus invoke a result by Necas, see [20, Théoreme 6.3.1],
[21, Théoremes 3.1 et 3.2], and [22, Theorem 2.2 and Corollary 2.1], to conclude the existence of a constant § > 0
such that

inf c((w,r), (v,q))
0.0£W.NEX 9 0)£v.q)ey |(W, DIlx IV, ¢)lly
) c((w,r), (v, q))
inf S =
0.0£V.9eY ©,00£w.rex |(W, DIx v, Plly

= (18)

4. Inf-sup stable finite element spaces

Having shown the well-posedness of (13), we can now begin with its numerical approximation and the analysis of
the ensuing methods. We first introduce some terminology and a few basic ingredients that will be common to all our
methods.

4.1. Triangulation

We consider .7 = {T'} to be a conforming partition of 2 into closed simplices T with size hy = diam(7") and
define h 7 = maxrc o hr. We denote by T the collection of conforming and shape regular meshes that are refinements
of an initial mesh .7 [1,23].

We denote by .7 the set of internal (d — 1)-dimensional interelement boundaries S of .7. For S € ., we indicate
by hg the diameter of S. If T € .7, we define .7 as the subset of . that contains the sides of T'. For S € ., we set
Ns =TT, T}, where T, T~ € 7 are such that § = T N T, in other words, Ny denotes the subset of .7 that
contains the two elements of .7 that have S as a side. For T € .7, we define the following stars or patches associated
with the element T

NT:={T’G<7:5’TOYT/;&VJ}. (19)
and
S= |J T (20)
T'e T :TNT'#60

Having defined our mesh we introduce two classes of finite element approximations, the ensuing finite element
schemes, and provide an analysis for them.

4.2. Stable finite element approximations

In the literature, several finite element approximations have been proposed and analyzed to approximate the
solution to the Stokes problem (13) when the forcing term of the momentum equation is not singular; see, for
instance, [1, Section 4], [2, Chapter II], and references therein. If, given a mesh .7 € T, we denote by V(.77) and
P(T) the finite element spaces that approximate the velocity field and the pressure, respectively, then the following
elections are popular:

(a) The mini element [24], [1, Section 4.2.4]: in this case,
V(7)={vsy € CU2): VT € T, vzlr € [PI(T) ® B(T)I*} N H{(12), 1)
P(T)={q7 € LX(D/RNC2): VT € T, q7|r € PI(T)}. (22)

B(T') denotes the space spanned by local bubble functions.
(b) The classical Taylor—-Hood element [25,26], [1, Section 4.2.5]: in this scenario,

V(7)={vy € CU2): VYT € T, volr € Py(T)'} NHY(R2), (23)
P(T)={q7 € LX(D/RNC2): VT € T, q7|r € P(D)}. (24)
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The aforementioned pairs of finite element spaces (V(.7), P(7)) satisfy the following compatibility condition
[1, Proposition 4.13]: there exists a positive constant y such that, for all 7 € T,

. b(vz,qz7)
inf sup
0447 €P(T) 0y 5 V() IVVZ 2 ll9.7 | L2002y

=v. (25)

We refer the reader to [1, Lemma 4.20 and Lemma 4.24] for a proof.
We observe now that, since the d‘; is a weight, we thus have, for the elections given by (21)—(24), that

V(7)c Hy@d*, 2),  P(T)C LA™, 2)/R.

Consequently, we can consider the following finite element approximation of problem (13): Find (uz, pz) €

V() x P(T) such that

aug,v7)+b(vy, p7)=F -vz(2), Vvz e V(T),

26
bz, qz) =0, Vo € P(T). (26)

Notice that, since vy € C(fZ), (F6,,vey) = F - vz(2). In addition, since the bilinear form a is coercive
on H(l)(Q) D V() and the pairs (V(7), P(7)) satisfy (25), the system (26) has a unique solution for each
mesh 7.

The main issue, however, is not existence of discrete solutions, but the fact that the stability estimates that might
be obtained are not in norms that are compatible with those of (13). In what follows we will propose a posteriori error
estimators in these natural norms and show their reliability and efficiency.

4.3. A quasi-interpolation operator

As it is customary in a posteriori error analysis [27], in order to derive reliability properties for a proposed a
posteriori error estimator it is useful to have at hand a suitable quasi-interpolation operator with optimal approximation
properties. Since the interest is to approximate rough functions, namely those without point values, the classical
Lagrange interpolation operator cannot be applied. Instead, we consider the quasi-interpolation operator Il :
L'(2)) — V() analyzed in [10]. The construction of Il is inspired in the ideas developed by Clément [28],
Scott and Zhang [29], and Durdn and Lombardi [12]: it is built on local averages over stars and thus well-defined
for functions in L!(£2); it also exhibits optimal approximation properties. In what follows, we shall make use of the
following estimates of the local interpolation error. To present them, we first define, for T € .7,

Dy := max |x — z|. 27
xeT

Proposition 4 (Stability and Interpolation Estimates). Let a € (—d, d), and T € 7. Then, for every v € H(l)(dzc"‘, S7),
we have the local stability bound

”VH?V”LZ(df”,T) S ”VV”LZ(d;EO‘,sT) (28)
and the interpolation error estimate

IV = TVl 7 S hrl V¥ lags s, - (29)
In addition, ifa € (d — 2, d), then we have that

v — H(QV”LZ(T) s hTDTT ||VV||L2(d;°‘,3T)' (30)
The hidden constants, in the previous inequalities, are independent of v, the cell T, and the mesh 7.
Proof. First, notice that, since @ € (—d, d), we have that df"‘ € A,, which implies that, in view of Proposition 2,
Il 7 is well-defined for functions in H(l)(d;t"‘, Sr). In addition, the theory of [10] can be applied, and thus the local

stability bound (28) follows from [10, Lemma 5.1] by setting v = df"‘. The estimate (29) follows directly from
[10, Theorems 5.2 and 5.3] after setting w = df"‘.
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It remains then to prove (30). First, since @« € (d — 2,d) C (0,d) we have, according to Proposition 3, that
H(l)(dz‘“, Sr) — H(l)(ST). Thus, an application of [10, Theorem 5.2 and Theorem 5.3] with w = 1, gives
v — HWVHLZ(T) 5 hT||vv||L2(ST) 5 hTDT7 ||vv||L2(d;“_3T)»
where, in the last step, we used that ¢ > 0 and that, for all x € Sr, dg‘(x) < Df.

This concludes the proof. [

Proposition 5 (Trace Interpolation Estimate). Leta € (d —2,d), T € , S C S, and v € H(l)(dz_"‘, St). Then we
have the following interpolation error estimate for the trace
1
v — IV 20 < h%D% HVVHLZ(d;“,ST)’ (€2))

where the hidden constant is independent of v, T, and the mesh 7.

Proof. As a first step, we recall the scaled trace inequality of [22, Corollary 6.1]:

_l 1

||v||L2(S) S hS 2 ||v||L2(T) + h§ ||Vv||L2(T) VU € Hl(T),
where S € .#7. In view of the continuous embedding H(l)(dz‘“, Sr) — H(l)(ST) that was shown in Proposition 3, we
can apply the previous bound to the function v — IIzv € Hl(dz“", S7). This, combined with the interpolation error
estimate (30), reveals that

_1 a 1

IV — Vil 25y S hs*hr D7 IV agze sy T RS IV = V)i, (32)
To control the second term on the right-hand side of the previous expression, we invoke the stability of the quasi-
interpolation operator II in H' [10, Lemma 5.1] and, once again, the fact that & > 0 to obtain that

IV = V) laery S 19VIizisy) S DEIVYIag-o s, - (33)
Replacing the previous estimate into (32) combined with the fact that iy = |T|/|S| =~ hg yields (31) and concludes
the proof. [J

With the operator I/ at hand, and following [27, Section 4.10], we define the following restriction operator
Qg . y — V(y) X P(y)v (V’ 51) [ — (Hgvs 0)9 (34)

where IIov = (llzvy, ..., Hgv,)T.
4.4. A posteriori error estimators

We are now ready to introduce an a posteriori error estimator for the finite element approximation (26), on the basis
of the discrete pairs (V(.77), P(T)) given as in (21)—(22) or (23)—(24), of the Stokes problem (13). To accomplish this
task, we first recall the definition of the local distance Dy given as in (27). We thus define, for « € (d — 2, d) and
T € 7, the element error indicators

éaa(u.?? py’ T) = (h%"D(;'”Auy - Vp.?”iZ(T) + ” le ug”iZ(dg’T) (35)
1
2

+hr DEII(Vug — p7D - vlTagp 0 +hIFP XUz € T}))

where (uz, ps) denotes the solution to the discrete problem (26), I € R?*4 denotes the identity matrix, and the
function x({z € T'}) equals one if z € T and zero otherwise. Here we must recall that we consider our elements T to
be closed sets. For a discrete tensor valued function W &, we denote by [W & - v]] the jump or interelement residual,
which is defined, on the internal side S € .& shared by the distinct elements T+, T~ € N, by

Wz vl =Wgzlr+ v" +Wg|r- v (36)

Here v™, v~ are unit normals on S pointing towards T+, T, respectively. The error estimator is thus defined as

Sz, p7; T) = (Z &g, p; T)) : (37)

TeT
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4.5. Error and residual

An important ingredient in the analysis that we will provide below is the so-called residual. Let (u, p) € X and
(uz, p7) € V(Z) x P(Z) denote the unique solutions to problems (13) and (26), respectively. In order to obtain
information about the error (ey, ;) = (W —uz, p — py) € X, we define the residual R = R(uz, p7) € YV as
follows:

(R, (V’ C]))y’xy = <F8Z7 V) - C((ug’ Pﬂ)» (V, Q))a (38)

where (-, -) denotes the duality pairing between H(l)(d;"‘, £2) and H(l)(d;"‘, {2) and the bilinear form c is defined in
(14). Notice that the residual R depends only on the data and the approximate solution (u g, p ) and is related to the
error function by the relation

(R, (v, @)y .y =c((eu, €p), (V,q)) V(v,q) €. (39)

The following result shows that the )’-norm of R is equivalent to the error.

Lemma 6 (Abstract a Posteriori Error Bounds). If « € (d — 2, d), then

Bllteu, ep)llx < RIly = llclli(eu, ep)llxs (40)

where B and ||c|| are the inf-sup and continuity constants of the bilinear form c, which are defined in (15) and (18),
respectively, and verify 0 < B < ||c||.

Proof. An application of the inf—sup condition (18), combined with the definition of the residual R and the relation
(39), imply that

Bliew e)llx < sup c((eu; €p), (v, )

0,0)£(v, )€Y v, Dy
(R, (v, )y,
= sup Y Ry
0.0£v.pey 1V, Dlly
On the other hand,
c((eu, €p), (v, q))
IRy = sup ———L"—=2 < |cllll(eu. €))ll x- @1

0.0£v.gey IV, Dlly
Estimate (40) follows by collecting these two bounds. [

4.5.1. Reliability
In what follows we obtain a global reliability property for the a posteriori error estimator (37).

Theorem 7 (Reliability). Let (u, p) € X be the unique solution to problem (13) and (0o, p) € V(T) x P(T) its
finite element approximation given as the solution to (26). If o € (d — 2, d), then

IVeulliz@e. o) + lepll 2@ ) S éatuz. p7: T), (42)

where the hidden constant is independent of the continuous and discrete solutions, the size of the elements in the mesh

T and #7 .

Proof. In view of the first bound in (40), we conclude that, to bound the X’-norm of the error, it suffices to control the
dual norm ||R||y . To accomplish this task, we proceed as follows. Let (v, g) € Y be arbitrary. Applying a standard
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integration by parts argument to (38) yields

(R, (v. )y y = (Fé,,v) —c((uz, p7), (v, q)) = (F5, V) (43)
+ Z /(Auy—pr)-V— Z/[[(Vuy—pyl)~v]]-v— Z /qdiVU9-
Teg /T ser’S Teg’T

Next we observe that, since V(77) x P(Z) C ), we can invoke Galerkin orthogonality to conclude that, for all
(vz,q7) € V() x P(T),

O=clu—ug,p—p7),V7,97) ={Fs,,va) —c(uz, ps), Vz,q97)). (44)

We now invoke the restriction operator Q &, defined in (34), and set (v, 0) = Q4 (v, ¢) in (44). By replacing the
obtained relation into (43) we arrive at

(R.(v.q)yy = (F5,v=vz)+ Y [ (Aug —=Vps)-(v—vz) (45)
TeT T
— Z /[[(VUy —paDv]-(V=—vg)— Z /qdivug = I+1I—II—1V.
Se” S TeT T

In what follows we proceed to control each term separately.
To bound II, we invoke the interpolation error estimate (30) and conclude that

1S Y D Aug — Vpzlig I VViieg s (46)
TeT

We now proceed to control the term III. To accomplish this task, we apply the estimate (31) and arrive at
1«
S Y hiDEI(Vug — poD - vl | VVili2g, = sp)- (47
Ses

The control of the term IV follows from a simple application of the Cauchy—Schwarz inequality. In fact, we have
that

NS> Idivugllage gl g ) (48)
TeT
Sincev—vg € H(')(dz’“, 2), we control the term I by using the estimate of [13, Theorem 4.7] followed by the
interpolation error estimate (29) and the local stability bound (28). These arguments allow us to conclude that
a_d
(F8..v—vz) SIFIR; IV =Vl
E_;'_]_i
+ [Flhg IV = V)l (49)
< %Jrl*%
S |Flhy IVVIl2 gz sp)-

Finally, by gathering the estimates for the terms I, II, III, and IV, obtained in (46)—(49), and resorting to the finite
overlapping property of stars we arrive at the global upper bound (42) and conclude the proof. [J

4.5.2. Local efficiency

To derive efficiency properties of the local error indicator &, (u, po; T), defined in (35), we utilize the standard
residual estimation techniques developed in references [26,27] but on the basis of suitable bubble functions, whose
construction we owe to [13, Section 5.2] and proceed to describe in what follows.

Given T € 7, we first introduce a bubble function ¢y that satisfies the following properties: 0 < g7 < 1,

or(z) =0, IT| < / or, IVorliery S hy', (50)
T
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and there exists a simplex 7* C T such that Ry := supp(¢r) C T*. Notice that, since ¢ satisfies (50), we have that
1
101 12ry) S N7 0ll12Ryy VO € Pa(R7). (51)
Second, given S € ., we introduce a bubble function ¢y that satisfies the following properties: 0 < ¢g < 1,
ps@) =0, SIS /gos, IVesliLors < by 18I, (52)
s

and Rg = supp(gs) is such that, if Ng = {T,T’}, there are simplices T, C T and 7, C T’ such that
RSCT*UT*/CNs.

The following estimates that involve the bubble functions ¢ and ¢g are instrumental in the efficiency analysis that
we will perform.

Proposition 8 (Estimates for Bubble Functions). Let T € 7 and @1 be the bubble function that satisfies (50). If
o € (0,d), then

hellVOer) 2o 1y S Dr > 1012y VO € Po(T). (33)
Let S € . and @ be the bubble function that satisfies (52). If @ € (0, d), then
1 _a
hi VOl 29 ng) S D2 10125y VO € P3(S), (54)

where 0 is extended to N as a constant along the direction of one side of each element of  contained in Nf.

Proof. See[13, Lemma 5.2]. O

The following result provides a local estimate for the residual R.

Lemma 9 (Local Dual Norm). Let G be a subdomain of 2. If« € (d — 2, d), then

RNy ) S Ilew, ep)llx)s (59)

where the hidden constant is independent of (eq, €)).

Proof. Let (v, g) € Y(G). The extension of v and g by zero to {2 \ G yields functions (v, g) € ). We thus have that
(R, (v, @)yy = c((eu, €p), (v, 7)) S lI(ew, ep)ll )1V, D ly6)-
Consequently (55) follows. This concludes the proof. [
With all these ingredients at hand, we are ready to derive the local efficiency properties of the local error indicator

&g, pr;T).

Theorem 10 (Local Efficiency). Let (u, p) € X be the unique solution to problem (13) and (0o, p7) € V(T)XP(T)
its finite element approximation given as the solution to (26). If « € (d — 2, d), then

2 . 2 2
éaa (u9a P?v T) S ”Vell”LZ(dgt’NT) + ”ep”LZ(dgt,NT)a (56)

where the hidden constant is independent of the continuous and discrete solutions, the size of the elements in the mesh

T and #7 .

Proof. We estimate each contribution in (35) separately.
We begin the proof by bounding, for T € .7, the term 7% D% || Aug —V p ||i2(T). Define ¢ := ¢r(Auy —Vpg)
and invoke (51) to conclude that

1Aug = Vpzilsg < / |Adug — Vpolor < / (Aug = Vpgz)- 7. (57)
Rt T



1018 A. Allendes, E. Otdrola and A.J. Salgado / Computer Methods in Applied Mechanics and Engineering 345 (2019) 1007-1032

We now consider the relation (43) with (v, g) = (¢, 0) and observe that ¢;(z) = ¢7(2)(Augy — Vpz)(z) = 0. This
allows us to conclude that

/T(Alm —Vp7)-or = (R, (¢, 0)y .y = c((eu, ¢p), (¢7.0))

1 (58)
2
S (Ve e 1y + lenl 2 1)) 1997 liaze
We now recall that ¢, = ¢r(Augy — Vp o) and utilize (53) to conclude that
IV ll2-e 1) S h7' Dr 1 Aug = Vo7l
Replacing this estimate into (58), and the obtained one in (57), allows us to write
h%'D?‘ ”Aug - Vpﬂ ”iZ(T) S ”Vell”iZ(d?’T) + ”e]) ”iZ(dg,T)' (59)
Let T € 7 and S be a side of 7. In what follows we control the jump term iz D% |[(Vug — p7I) - v]]||i2(3T\3Q)

in (35). To accomplish this task, we proceed by using similar arguments to the ones that lead to (59) but now utilizing
the bubble function ¢g. In fact, the use of properties (52) yields

[(Vug — pzlD)- V]]||iz(5) S / I[(Vuz — pzD) - vlPes = /[[(Vlly —pzD vl ¢s,
N N

where ¢¢ = ¢s[(Vugz — pzI) - v]. Now, set (v,q) = (¢g,0) in (43), and use that ¢s(z) = 0 and that
Rs = supp(¢s) C T U T, C N, to conclude that

J1Fur = pD b = 3 [ Bus = Vpo) by - (R 5.0y
S TeNy r

3 /T (Auy = Vpr)- b5 — c((ew €y, (5. 0)

TeNy
< Y 1dug = Vpzlim sl
TeNg
1
2 2 2
+ 3 (IVeulFage )+ lepl2age ) 19sliagre
TeNs

The control of the first term on the right-hand side of the previous expression follows from the fact that [|@slly27) ~
|T| > [S| -3 l#sllL2s) While the bound of the second term follows from (54). These arguments reveal that

L1
/ [(Vuz —psD) - vl-¢5 < > [Auz = VpalimITI2ISI 2 sl (60)
s TeNyg
1 o 1
;e 1
+ 3 (IVeulEage )+ lepl2age )" D72 hr* I95lliacs)
TeNy
which, in view of (59), |T|/|S| &~ hr, and ¢ = ¢s[(Vuz — pzI) - v] imply that
hr DYINL(Vuz — poD) - villfag S D (||Veu||iz(dg,m - ||ep||§2(dw,)) : (61)
T'cNg
The control of the term || divu s ||i2 AT follows easily from the mass conservation equation, that reads divu = 0.
In fact, for T € .7, we have that )
I divas |2, ge ) = divealZs g ) S Vel 7 (62)

Finally, we control the term h‘;”*d|F|2)(({z € T}). Let T € 7, and notice first that, if T N {z} = @,
then the estimate (56) follows from (59), (61), and (62). If, on the other hand, T N {z} = {z}, then the element
indicator &, contains the term h”T‘+2_d|F|2. To control this term we follow the arguments developed in the proof of



A. Allendes, E. Otdrola and A.J. Salgado / Computer Methods in Applied Mechanics and Engineering 345 (2019) 1007-1032 1019
[13, Theorem 5.3] that yield the existence of a smooth function n such that
1@ =1, Inlwew =1, [Vnllzew =hy',  supp(n) C N. (63)
With the function 5 at hand, we define v, :=Fn € H(l)(dz“)‘, {2) and notice that

[F|> = (F5.,v,) = c((u, p), (v, 0)) = c((eu, €), (Vy, 0)) + c((u7, p7), (vy, 0)) (64)

1
2 2 2
S (Ve e py + lep e n)) 1%l nr)
+ Z Auz = Vpal2ay vyl
T'eT:T'CNr
+ 0y Y. IVug = prD vl vl

T'eT:T'CNT SEyT/:SgiaNT

We now use the estimates
d—1
||’7||L2(S) N hTZ ) ||’7||L2(NT) Sh

d=2 _

o IVl gz ngy She” 7

IR

d
2
T

to conclude that
1

5 2 2 2

1P (1V€ul22 g0 vy, + NenlZaae n) (65)
d=2_a a

+hy? |F|( > kDAl Aug — Vpalliag,

T'eT:T'CNr

a 1
+ Y > DTZ,h%,n[[Wuy—pyI)-vﬂan@),

T’EgiT’C/\/’T/ SE.yT/ngzﬁNT

[FI” < hy

where we have also used that, since z € T, hr =~ Dr. Use the estimates (59) and (61) and conclude. [J

5. Low order stabilized schemes

In the previous section we have provided an a posteriori error analysis for the discrete scheme (26) that is based
on the finite element pairs (21)—(22) and (23)—(24). We recall that both of these pairs are compatible, i.e., they satisfy
the discrete inf—sup condition (25), and that this feature does come at a cost. Namely, this condition requires to
increase the polynomial degree of the discrete spaces beyond what is required for conformity: it is not possible
to approximate the velocity field with piecewise linears, while the pressure space is approximated by piecewise
constants or linears; see [I, Section 4.2.3]. If lowest order possible is desired, it is thus necessary to modify the
discrete problem to circumvent the need of satisfying condition (25) [30]: this gives rise to the so-called stabilized
methods. In the literature several stabilized techniques can be found: the residual-free-bubbles method, variational
multiscale formulations, enriched Petrov—Galerkin methods, pressure projection methods, local projection techniques
and Galerkin/least-squares formulations. For an extensive review of different stabilized finite element methods we
refer the reader to [31, Part IV, Section 3], [32, Chapter 7], and [33, Chapter 4].

Let us now describe the low-order stabilized schemes that we shall consider. First we introduce the following finite
element spaces

Vaa(T) = vz € C(2): VT € T, vzlr € PIT)'} NHy(2), (66)
Prsar(T) = {q7 € L’(D)/R: VT € T, q7|r € Pu(T)}, (67)
where £ € {0, 1}. The approximation to problem (13) seeks then a pair (0z, ps) in Vyup(F) X Ppsan(7) such that

auz,v7)+b(vz, p7)+sz,vy)=F -vz(2), Yvg € Vyu(T),

(68)
—b(ug,q7)+m(ps,qz) =0, Vg7 € Pesan(T),
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where the bilinear forms s : Vi, (F) X V(7)) — R and m @ Py an(T) X Prsun(-Z) — R are chosen as in
[31, Part IV, Section 3.1], and are meant to stabilize the scheme:

sz ve) = Y Ty / divu divy,
TeT T
69)

m(pr,q7) =y rr/pr TS rshs/[[py]][[qy]],
T N

TeT Se”

where tgy > 0, 77 > 0 and tgy > 0 denote the so-called stabilization parameters, and [¢ = ]| has a similar meaning

as in the tensor valued case described in (36). It follows from [31, Lemma 3.4, Section 3.1] (when 77 > 0) and
[34, Section 2.1] (when t7 = 0 and £ = 0) that problem (68) is well-posed.

We immediately notice that, due to the presence of the stabilization terms s and m in the discrete problem (68), the
Galerkin orthogonality property (44) is no longer valid. Instead, we have the relation

(R.(vz,q7))y.y =5z, Vvz)+m(ps.q7) YV7.97) € Vaar(T) X Pesan(F),
where R is defined in (38). The previous relation can be rewritten, for (v, ¢7) € Vab(7) X Prsan(T), as
0=(Fs;,vy) —c((uz, p7),Vz,97)) —s(ug,vz) —m(pz,q7). (70)
For the discrete scheme (68), we define the local error indicators

5a,stab(u.9’ pyv T) = (h%‘D?’”Aug - Vpﬂ”iZ(T) + (1 + szw)” divuﬂ“iZ(d?’T)

Bl—=

+hr DY II(VUg = prD - vl a0+ 15 PP X (2 € T})) :

and the global error estimator

1
2
Easan(W7, p7; T) = <Z Ea b7 DT T)) . (71)
TeT

It is now our intention to show the reliability and efficiency of this estimator.

Theorem 11 (Reliability and Local Efficiency). Let the pair (u, p) € H(l)(d?, 2) x Lz(d?, {2)/R be the solution to
problem (13) and 0z, p7) € Vsun(T) X Posab(T) its stabilized finite element approximation given as the solution
to (68). Ifa € (d — 2, d), then

IVeullfage o)+ leplioge o) S Easan@z, pi T, (72)

and

2 2 2
ga,stab(u<7f p77 T) S ”Vell”]_}(dg"/\[r) + ||ep||L2(dgyNT)v (73)

where the hidden constants in both inequalities are independent of the continuous and discrete solutions, the size of
the elements in the mesh & and #7 .

Proof. Let (v, q) € ). We invoke the restriction operator Q &, defined in (34), and set (v, 0) = Q (v, ¢) in (70),
to conclude that

(R, (V. @)y y = (FS,v=vo)+ Y /(Allﬂ —Vpz) - (V=vz)
ez ’T

=Y [1Vur = poh vl =) - 3 gdivus + st v
ses?S TeT

Notice that the first four terms on the right-hand side of the previous expression have been previously controlled;
see the estimates (46)—(49). It is thus sufficient to control the last term. To bound it we invoke the local stability
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Fig. 1. The initial meshes % used in the adaptive Algorithm | when (2 is a square (left) and a two-dimensional L-shaped domain (right).

property (28) of the quasi-interpolation operator I/ to conclude that

sur M9l = Yt [ |divas div oy
TeT r
S Y wanldivagllge VY2 s, -
TeT
Consequently, invoking the finite overlapping property of stars, we arrive at
1

2
sz, v < 1YVl 2.0 (Z | divugniz(dg,m) :
TeT

Finally, by gathering the estimates (46)—(49) with the previous one, and resorting to the finite overlapping property
of stars, again, we arrive at the global upper bound (72).

The local efficiency (73) follows as a direct consequence of the estimate in Theorem 10 since, as it is usual in
residual error estimation, the lower bound does not contain any consistency terms, even when stabilized schemes are
considered; see [26]. [

6. Numerical experiments

In this section we present a series of numerical examples that illustrate the performance of the devised error
estimators &, and &, gab. To explore the performance of &, defined in (37), we consider the discrete problem (26)
with the discrete spaces (23)—(24). This setting will be referred to as Taylor—Hood approximation. The performance
of the estimator &, yab, defined in (71), will be explored with the following finite element setting: the discrete spaces
are (66) and (67), with £ = 0, and the stabilization parameters are 74y = 0, 77 = 0, and tg = 1/12. This setting will
be referred to as low-order stabilized approximation.

The numerical experiments that will be presented have been carried out with the help of a code that we implemented
using C++. All matrices have been assembled exactly and the global linear systems were solved using the multifrontal
massively parallel sparse direct solver (MUMPS) [35,36]. The right hand sides and terms involving the weight,
and the approximation errors, are computed by a quadrature formula which is exact for polynomials of degree
19. After obtaining the approximate solution of (26) or (68), we calculate the local indicators &,(uz, ps; T) or
Eusab(Wg, pa; T) to drive the adaptive mesh refinement procedures described in Algorithm 1 and the global a
posteriori error estimator & or &, sap in order to assess the accuracy of the approximation. In this way, a sequence of
adaptively refined meshes was generated from the initial meshes shown in Fig. 1. Notice that three different marking
strategies are considered in Algorithm 1: the maximum, Dorfler [37], and average strategies.

We define the total number of degrees of freedom as Ndof := dim 20 + dim 3, where (20, B) = (V(F), P(T))
for the Taylor—Hood approximation, and (20, B) = (Vgup(7), Prsan(:7)) in the low-order stabilized setting. We
measure experimental rates of convergence for the error in the X'-norm, that is

1

2
Iew eplx = (IVQ@ = ur)Eage o + 17 = P Iage o) (74)
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Algorithm 1 Adaptive Algorithm.

Input: Initial mesh %, interior point z € {2, «, and stabilization parameters;

1: Solve the discrete problem (26) ((68));

2: For each T € .7 compute the local error indicator &, (07, p7; T) (Exsab(Uz, p7; T)) given as in (37) ((71));
3: Mark an element 7' € 7 for refinement using either a:

e Maximum strategy: &,(uz, p7; T)* > max &g, pa: T
e Dorfler strategy: see [37].
e Average strategy: &,(uz, p7; T) > 75 Z &g, pa; T
T'eT
Similar strategies are considered for &, sun(07, p7; T);
4: From step 3, construct a new mesh, using a longest edge bisection algorithm. Set i <— i + 1, and go to step 1.

6.1. Standard a posteriori error estimator based on regularization

Before we even begin to illustrate the performance of our estimators, it is instructive to pause and ponder whether
the development of a new error estimator is really warranted. To explore this we consider a few examples. We consider
a discretization of problem (1) via the Taylor—Hood pair (23)—(24). This gives rise to problem (26). While this problem
can be implemented without issues, if we wish to consider its a posteriori error estimation using, for instance, the
residual based techniques of [26], we immediately face an issue. Namely, the right hand side is not in L?({2), it is
not even an element of H™'(£2). A suitable proxy for F§, must be constructed, or the estimator must be modified.
If we follow the first route, suitable regularizations of the Dirac mass centered at z € 2 need to be considered.
Following [38, Section 4.4.2], we consider

212
! 67%, 82, (x) = _am ,
ay/m R

Notice that for, i = 1,2, and any continuous function f it holds that

lim/(S;’a(x)f(x) = f(2).
al0 Jr

Similarly, from [39, Section 3.3.1] we will also consider the following polynomial regularization, for a € R.:

1 Ix —z|\ Ix — z| Ix — z| N\
5 60 —136 6) ), iflx—zl<a,
5 (1) = a( < P ) + ( p p + iflx—z|<a (76)

0, otherwise.

8! () = aeR;. (75)

We can thus consider the following residual-type a posteriori error estimator [40]:

Erg,i(u,gv PT; <?)2 - Z 5rg,i(u97 P, T)z’
TeT

based on the local indicators
i 2 .
Egiuz, p7s T = hi [FS, .+ Aug — V|, +Ildivas (], o
+ hrll(Vuz = p7D - V1400

In Fig. 2 we present the experimental rates of convergence that we obtained when the adaptive procedure of
Algorithm | is driven by the residual-type a posteriori error indicators defined in (77). We consider 8’ as the
regularizations given in (75) and (76) with different values of the constant a: a € {1072, 1073, 1074, 107> 10‘6}.
From Fig. 2, it can be observed that for all the regularization techniques and the dlfferent Values of a that we have
considered, optimal convergence is not achieved.

Notice that, albeit suboptimally, the estimator seems to converge to zero. However, we believe this to be a
preasymptotic phenomenon. As the estimator decreases to the scale of the parameter a, we expect one of either
two things to happen. The estimator will either stagnate, as we are measuring the error in a space that does not contain



A. Allendes, E. Otdrola and A.J. Salgado / Computer Methods in Applied Mechanics and Engineering 345 (2019) 1007-1032 1023

&ig,1 varying the constant a

2 u
10 208600747 o gse g6y’
1e-7
100 1
0.000e+00
=
102
10° 10°
&g 2 varying the constant a
5 Crg,
10 7.686e-04 [ug| 2.430e-02 |

0.0004.

‘ -9.8336-06"

Eg,3 varying the constant a

2
1 uz
0 1.000e-16 ‘ | 1.000e-16 |P9 ‘
6e-17 6e-171
10° : :
0.000e+00- 0.000e+00-
1072

Fig. 2. Experimental rates of convergence for the residual-type error estimators £ ; (maximum strategy) for i € {1, 2, 3} and different values of
the constant a: a € {1072, 1073, 1074, 1075, 10~°}. We also present the finite element solutions |u | and p & obtained for the value a = 1074,

after six adaptive refinements, when the regularization le,a (top), 312# (middle), and 513,44 (bottom), respectively, is used.

the exact solution, or the estimator will converge to zero, but our numerical solution will not converge to the exact one.
This seems consistent with the plots of the finite element solutions shown in Fig. 2. See also the experiment presented
in Section 6.4 for an illustration further supporting this claim.

In conclusion, a naive a posteriori error estimator does not achieve its goal in this class of problems and,
consequently, all our developments are indeed necessary.

6.2. Convex and non-convex domains with homogeneous boundary conditions

We now explore the performance of our devised a posteriori error estimators in problems where no analytical
solution is available: convex and non-convex domains {2 are considered.
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6.2.1. Example I: Convex domain

We consider the square domain {2 = (0, 12, F = (1, DT, and z = (0.5, 0.5)T. We explore the performance of &,
(Taylor-Hood approximation) and &, . (low-order stabilized approximation) when driving the adaptive procedures
of Algorithm 1. We first investigate the effect of varying the exponent « in the Muckenhoupt weight d?, defined in
(3), and explore the three marking strategies introduced in Algorithm 1. We consider

a € {0.25,0.5,0.75, 1.25, 1.5, 1.75}.

Second, for o = 1.0, we compare the performance of our adaptive algorithm with standard uniform refinement. We
notice that the computation of the local error indicators and error estimators requires the use of a suitable integration
rule. We explore the effect of quadrature by comparing the performance of the underlying AFEM with a quadrature
formula that is exact for polynomials of degree 19 and another one that is based on composite integration: we subdivide
each triangle into four by joining its midpoints.

In Fig. 3 we present the experimental rates of convergence for the error estimators &, and &, s,. We observe
that the three marking strategies of Algorithm 1 yield optimal experimental rates of convergence for all the values
of the parameter o that we considered. In Fig. 4 we observe, as expected, that the adaptive loop of Algorithm 1,
when the maximum strategy is considered, outperforms standard uniform refinement. In Fig. 5 we show that optimal
experimental rates of convergence for the error estimators are attained for both of the quadrature formulas previously
mentioned. In Fig. 6, we present the results obtained by Algorithm 1 when is driven by the local indicators &, and
Eu.stab and the maximum strategy is considered. We show the finite element approximations of [uz| and pz and the
final meshes obtained by the aforementioned schemes. We observe that most of the adaptive refinement is concentrated
around the delta source.

6.2.2. Example 2: L-shaped domain

Welet 2 = (=1, )?\[0, 1)x[—1, 0), an L-shaped domain, setin (26) the datatobe F = (1, 1)T and z = (0.5, 0.5)7,
and fix the exponent of the Muckenhoupt weight d? in (3) as @ = 1.5. In Figs. 7 and 8, we present the results
obtained by Algorithm 1 when driven by the local indicators &1 5 (Taylor—-Hood approximation) and & 5 sp (low-
order stabilized approximation). For mesh refinement, we have considered the maximum strategy. We show, in Fig. 8,
the finite element approximations of |uz| and p & and the final meshes obtained by the aforementioned schemes. We
also present the experimental rates of convergence rate for the estimators &} s and & 5 gap. We observe that optimal
experimental rates of convergence are attained, and that most of the adaptive refinement is concentrated around the
delta source. In Fig. 7, we present the experimental rate of convergence for the total error estimators &, and &y siap
when « € {0.5,0.75, 1, 1.25, 1.5}. It can be observed that, for all the cases that we have considered, optimal rates of
convergence are attained.

6.3. Example 3: A series of Dirac sources

We now go beyond the presented theory and include a series of Dirac delta sources on the right-hand side of the
momentum equation. To be precise, we will replace the momentum equation in (1) by

—Au+Vp= Zanz in 2, (78)
7€Z

where Z C {2 denotes a finite set with cardinality #2Z which is such that 1 < #Z < oo and {F.}.cz C R¢. Based on
the results of [4, Section 5], we introduce the weight

d
d, dzeZ:ix—zl< =

plx) = dz 2 (79
1, |x_Z|27’VZ€Za

where dz = min {dist(Z, 1), min{lz —7:z,7 € 2,2 # z’}} and modify the definition (5), of the spaces X and
Y, as follows:
X =Hy(p, 2) x L*(p, Q)/R, Y =Hy(p~', 2) x L*(p~", Q)/R, (80)

It can be proved that p belongs to the Muckenhoupt class A, [41] and to the restricted class A,({2).
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Fig. 3. Example 1: Experimental rates of convergence for the error estimators &, and &y b considering o € {0.25, 0.5, 0.75, 1.25, 1.5, 1.75} and
three different marking strategies.

Define

max |x —z|¢ . 81

xeT

D7 z := min
€2

We thus propose the following error estimator when the Taylor—-Hood scheme is considered:
1

2

Doz, pr; T) =Y Dz, p7:T)|
TeT



1026

Error estimator &1.9

Error estimator &1.9,stab

A. Allendes, E. Otdrola and A.J. Salgado / Computer Methods in Applied Mechanics and Engineering 345 (2019) 1007-1032

10" 10"
-6~ Uniform -O-Uniform
o —)|&Maximu1m %l&MaximuOm4r
10 -==-Ndof ! _ —— Ndof 045
—— Ndof %% - - - -Ndof %5
1 10°
10° *
1072
107"
1078
1074 102
10° 102 104 108 100 102 104 106

Fig. 4. Example 1: Experimental rates of convergence for the error estimators &} ¢ and &7 0,swb for uniform and adaptive refinement with the

maximum strategy.
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Fig. 5. Example 1: Experimental rates of convergence for the error estimators &, and &y sap (maximum strategy), with o € {0.5, 1.0, 1.5}, based
on a quadrature rule exact for polynomials of degree 19, and its composite counterpart. For mesh refinement, we have considered the maximum

strategy.

where the local indicators are such that

-@a(uga pyv T) = <h%' ?"qZ”Aug - vpy“iZ(T) + ” dlvuy”iZ(p’T)

+hrD§ Zl(Vug — paDl-vliaors0 + O h57 L

zeZNT

(82)

1

)2.

Similarly, when the low-order stabilized approximation scheme is considered, we consider the error estimator

1

2

Doz, p7i T) = Y Dl iz, p7iT))

TeT
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Fig. 6. Example 1: Finite element approximations of [ug | and p & over the mesh obtained after 10 adaptive refinements, when a Taylor—Hood
approximation is used with &} 5 (maximum strategy (top)), and when the low-order stabilized approximation is considered with &7 5 b (Mmaximum
strategy (bottom)).
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Fig. 7. Example 2: For « = {0.5,0.75, 1, 1.25, 1.5}, we present the experimental rates of convergence for the error estimators &, (left) and
Eu,stab (right), which are based on Taylor-Hood approximation and low-order stabilized approximation, respectively. For mesh refinement, we have
considered the maximum strategy.

and the local error indicators

,Da,stab(uﬂa pﬂ’ T) = h%‘ ?‘,Z“Auy - Vpﬂ”il(]") + (1 + szw)” le u‘y”iz(p,T)

+hr D 2 II(Vug = prDI -0 + D A5 IFP
zeZNT
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lug| lpa| 13th adaptive refinement
Fig. 8. Example 2: Finite element approximations of [u & | and p &, the mesh obtained after M adaptive refinements, and the experimental rate of
convergence for the error estimator when Taylor—Hood approximation is used (top) and when the low-order stabilized approximation is considered

(bottom); M = 20 (top) and M = 13 (bottom). For mesh refinement, we have considered the maximum strategy.
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Fig. 9. Example 3: Finite element approximations of [u o | and p o, the meshes obtained after 10 adaptive refinements, and the experimental rates
of convergence when Taylor—-Hood approximation is used (top) and when the low-order stabilized approximation is considered (bottom). For mesh
refinement, we have considered the maximum strategy.

Having defined the problem and estimators we, in particular, set {2 = (0, 1)? and let
Z ={(0.25,0.25)T, (0.25, 0.75)7, (0.75,0.25)T, (0.75, 0.75)7}.

We consider F, = (1, 1)T for all z € Z and fix the exponent of the Muckenhoupt weight p, which is defined in (79),
asa = 1.5.

In Fig. 9, we present the results obtained by the Algorithm 1 when is driven by Z; 5 (Taylor—Hood approximation)
and D) 5 sp (low-order stabilized approximation) and the maximum strategy is considered. We present the finite
element approximations of |uz| and p and the final meshes obtained by the aforementioned schemes. It can be
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Fig. 10. Example 4: Finite element approximation of |u o | and p &, the mesh obtained after 10 adaptive refinements, and the experimental rate of
convergence for the error estimator when Taylor—Hood approximation is used (top) and when the low-order stabilized approximation is considered
(bottom) where o € {0.5, 0.75, 1, 1.25, 1.5}. For mesh refinement, we have considered the maximum strategy.

observed that the proposed error estimators attained optimal experimental rates of convergence, under the natural
proposed modification of the involved Muckenhoupt weight.

6.4. Example 4: The fundamental solution of a Stokes flow

In order to measure the experimental rates of convergence for the total error (74), we invoke the fundamental
solution of the Stokes problem; even when we violate the assumption of imposing homogeneous boundary conditions.

For a delta source §,, located at z = (xo, yo)T € {2, and a given constant vector F € R2, we recall the fundamental
solution for the Stokes problem (1) when d = 2:

u(x,y) =T -F, px,y)=T-F, (83)

where, if Xg = (x — x0, ¥y — yo)T, then

- 1 1 0 1 (x — x0)* (x — x0)(y — yo) })
T=—— |1 - —
e ("g"‘("[ 0 1 } e [ (=)0 —y) =) ’
X0

27ixo?

We consider £2 = (0, 1)%, z = (0.5,0.5)T and F = (1, 1)T in problem (1). We fix the exponent of the Muckenhoupt
weight in (3) as « = 1.5. The solution of this problem is thus given by (83).

In Fig. 10, we present the finite element approximations of |[uz| and ps which were obtained after 10 adaptive
refinements (maximum strategy), together with the final mesh. We also present the experimental rates of convergence
for the total error ||(eu, €,)||x and the error estimators &5 and &, ab. It can be observed that optimal experimental
rates of convergence are attained and that most of the adaptive refinement is concentrated around the delta source.
In Fig. 11, we present the experimental rate of convergence for the total error estimators &, and &, s.p When
o € {0.5,0.75, 1, 1.25, 1.5}. Tt can be observed that, for all the cases that we have considered, optimal rates of
convergence are attained.

Finally, in Fig. 12 we present the finite element approximations [u | and p > which were obtained after 15 adaptive
refinements when using the residual-type error indicators &, j(uwg, po; T) to drive the adaptive procedure, by fixing
the constant ¢ = 107® (maximum strategy). We also present the experimental rates of convergence for the velocity
error ||u — uz|l;2() and the error estimator &y ;. It can be observed that even when the adaptive refinement is
concentrated around the delta source, the velocity error does not converge at all and that the residual-type a posteriori
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Fig. 11. Example 4: Experimental rates of convergence for the total error ||(eu, ¢,)|| x and error estimators &, (Taylor—Hood approximation) and
Ea,stab (low-order stabilized approximation).
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Fig. 12. Example 4: Finite element approximation of |[ug | and p & over a mesh obtained after 4 adaptive refinements, and the experimental rate
of convergence for the residual-type error estimator &g 1 (0o, p or; .7) when a Taylor—Hood approximation is used and the adaptive procedure is
driven by the residual-type error indicators £ (W, por; K) where a = 1076, For mesh refinement, we have considered the maximum strategy.

error estimator does not present optimal convergence rate. This should come as no surprise, as we are trying to measure
the error in spaces that do not contain the exact solution. This further supplements the claim we made in Section 6.1:
the rates of convergence that we observed there are just a preasymptotic phenomenon.
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