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Abstract

We propose a posteriori error estimators for classical low-order inf–sup stable and stabilized finite element approximations of
the Stokes problem with singular sources in two and three dimensional Lipschitz, but not necessarily convex, polytopal domains.
The designed error estimators are proven to be reliable and locally efficient. On the basis of these estimators we design a simple
adaptive strategy that yields optimal rates of convergence for the numerical examples that we perform.
c© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

The purpose of this work is the design and analysis of a posteriori error estimates for low-order inf–sup stable and
stabilized finite element approximations of the Stokes problem











−∆u+∇ p = Fδz, in Ω ,

div u = 0, in Ω ,

u = 0, on ∂Ω ,

(1)

where, for d ∈ {2, 3}, Ω denotes a bounded polytope of Rd with Lipschitz boundary, δz corresponds to the Dirac delta
supported at the interior point z ∈ Ω and F ∈ R

d .
As it is well known, system (1) is one of the simplest systems of equations that describes the motion of an

incompressible fluid. Here u represents the velocity of the fluid, p the pressure, and Fδz is an externally applied
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force. Notice that, for simplicity, we have taken the viscosity to be equal to one. The first equation represents the
conservation of momentum and the second one (incompressibility) the conservation of mass.

While it is fair to say that the study of approximation techniques for (1) and related models in a standard setting
is matured and well understood [1,2], recent applications and models have emerged where the motion of a fluid is
described by (1) or a small variation of it, but due to the material properties (encoded by the viscosity) or, as is our
interest here, the singularity of forces Fδz , the problem must be understood in a completely different setting and
rigorous approximation techniques are nonexistent. For instance, [3] models the motion of active thin structures by
using a generalization of (1), where the right hand side is a linear combination of the terms we have there. The author
of this work proposes a numerical scheme but its stability and convergence properties are not investigated. Another
instance where a singular force like that of (1) may occur, see [4] and [5,6], is in a PDE constrained optimization
problem where the state is governed by a standard Stokes problem, but the objective contains a point value of u. The
idea in this problem is that one tries to optimize the flow profile so as to match the velocity at a certain point. If one
were to write the optimality conditions for this problem the so-called adjoint variable will be governed by a slight
modification of (1) where z is the observation point. Finally, [7] studies a class of asymptotically Newtonian fluids
(Newtonian under large shear rates) under singular forcing. The authors show existence and uniqueness as well as
some regularity results. In this respect, our work can be understood as an initial step towards the a posteriori error
estimation of such fluids.

The examples presented above justify the need to develop robust solution techniques for the numerical approx-
imation of solutions to (1), and this is the purpose of this work. The key observation that will allow us to handle
the singularity in this problem is that there is a Muckenhoupt weight ω, related to the distance to z, such that
δz ∈ H−1(ω,Ω ). In light of this, we propose to study numerical methods in Muckenhoupt weighted Sobolev spaces,
in particular, we shall be concerned with the design and analysis of a posteriori error estimates for problem (1) on
such spaces. The analysis relies on the following ingredients that are available in the literature: Muckenhoupt weights
and weighted norm inequalities [8–11], stability and approximation properties of the quasi-interpolation operator
of [10,12] on weighted Sobolev spaces, and stability properties for bubble functions in weighted norms [13]. These
ingredients allow us to conclude that the error estimators defined below in (37) and (71), for inf–sup stable and
stabilized finite element approximations, respectively, are reliable and locally efficient.

We finally comment that, since δz is very singular, it is not expected for the pair (u, p) to have any regularity
properties beyond those merely needed for the problem to be well-posed. For this reason a priori error estimates in
their natural norms might not carry much value in this setting: a quasi-best approximation result à la Céa could be
derived, but rates of convergence will not follow from this. On the other hand, using duality techniques, it might be
possible to obtain error estimates in lower order norms. In either of these two cases, the analysis will rely, in particular,
on a discrete inf–sup condition for the bilinear form of the Dirichlet Laplace operator over a discrete space of functions
with vanishing divergence. This is nontrival and will be deferred to a future study.

1.1. Structure of the paper

Our presentation is organized as follows. We set notation in Section 2, where we also recall basic facts about
weights and introduce the weighted spaces we shall work with. In Section 3, we introduce a saddle point formulation
of the Stokes problem (1) and review well-posedness results. Section 4 is one of the highlights of our work. There
we propose an a posteriori error estimator for inf–sup stable finite element approximations of the Stokes problem
(1); the devised error estimator is proven to be locally efficient and globally reliable. In Section 5 we extend the
results obtained in Section 4 to the case when stabilized finite element approximations are considered. We conclude,
in Section 6, with a series of numerical experiments that illustrate our theory.

2. Notation and preliminaries

Let us fix the notation and conventions in which we will operate. Throughout this work d ∈ {2, 3} and Ω ⊂ R
d is

an open and bounded polytopal domain with Lipschitz boundary ∂Ω . Notice that we do not assume that Ω is convex.
If W and Z are Banach function spaces, we write W →֒ Z to denote that W is continuously embedded in Z . We
denote by W ′ and ‖ · ‖W the dual and the norm of W , respectively.
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For E ⊂ Ω̄ of finite Hausdorff i-dimension, i ∈ {1, . . . , d}, we denote its measure by |E |. If E is such a set and
f : E → R we denote its mean value by

 

E

f =
1

|E |

ˆ

E

f.

The relation a . b indicates that a ≤ Cb, with a constant C that depends neither on a, b nor the discretization
parameters. The value of C might change at each occurrence.

2.1. Weights and weighted spaces

By a weight, we shall mean a locally integrable function ω on R
d such that ω(x) > 0 a.e. x ∈ R

d . A particular
class of weights, that will be of importance in our work, is the so-called Muckenhoupt class A2 [14]: If ω is a weight,
we say that ω ∈ A2 if

[ω]A2 := sup
B

(
 

B

ω

)(
 

B

ω−1

)

<∞, (2)

where the supremum is taken over all balls B in R
d . In what follows, for ω ∈ A2, we call [ω]A2 the Muckenhoupt

characteristic of ω.
We refer the reader to [8–11] for the basic facts about Muckenhoupt classes and the ensuing weighted spaces. Here

we only mention an example of an A2 weight which will be essential in the analysis presented below. Let z ∈ Ω be
an interior point of Ω and, for α ∈ R, define

d
α
z (x) = |x − z|α. (3)

We then have that dα
z ∈ A2 provided that α ∈ (−d, d).

It is also important to notice that, in the previous example, since z ∈ Ω there is a neighborhood of ∂Ω where the
weight dα

z has no degeneracies or singularities. In fact, it is continuous and strictly positive. Consequently, we have
that the weight dα

z belongs to the class A2(Ω ), introduced in [15, Definition 2.5], and which we define as follows.

Definition 1 (Class A2(Ω )). Let Ω ⊂ R
d be a Lipschitz domain. We say that ω ∈ A2 belongs to A2(Ω ) if there is an

open set G ⊂ Ω , and positive constants ε > 0 and ωl > 0 such that:

1. {x ∈ Ω : dist(x, ∂Ω ) < ε} ⊂ G,
2. ω|Ḡ ∈ C(Ḡ), and
3. ωl ≤ ω(x) for all x ∈ Ḡ.

The fact that dα
z belongs to the restricted class A2(Ω ) has been shown to be crucial in the analysis of [16] that

guarantees the well-posedness of problem (1) in weighted Sobolev spaces. We will recall these facts in Section 3.
For α ∈ (−d, d) and an open set E ⊂ Ω , we define

L2(d±α
z , E) :=

{

v ∈ L1
loc(E) : ‖v‖L2(d±α

z ,E) :=
(
ˆ

E

d
±α
z |v|2

)
1
2

<∞
}

and

H 1(d±α
z , E) := {v ∈ L2(d±α

z , E) : |∇v| ∈ L2(d±α
z , E)}

with norm

‖v‖H1(d±α
z ,E) :=

(

‖v‖2
L2(d±α

z ,E)
+ ‖∇v‖2

L2(d±α
z ,E)

)
1
2
. (4)

We also define H 1
0 (d±α

z , E) as the closure of C∞0 (E) in H 1(d±α
z , E). In view of the fact that, for α ∈ (−d, d), the

weight d±α
z belongs to A2, we conclude that the spaces L2(d±α

z , E) and H 1(d±α
z , E) are Hilbert [11, Proposition 2.1.2]

and that smooth functions are dense [11, Corollary 2.1.6]; see also [9, Theorem 1]. In addition, [17, Theorem 1.3]
guarantees the existence of a weighted Poincaré inequality which, in turn, implies that over H 1

0 (d±α
z ,Ω ) the seminorm
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‖∇v‖L2(d±α
z ,Ω) is an equivalent norm to the one defined in (4) for E = Ω . We also introduce the weighted space of

vector-valued functions and the norm

H1
0(d±α

z , E) = [H 1
0 (d±α

z , E)]d , ‖∇v‖L2(d±α
z ,E) :=

(

d
∑

i=1

‖∇vi‖2
L2(d±α

z ,E)

)

1
2

,

where v = (v1, . . . , vd )⊺.
For α ∈ (−d, d) we also introduce the product spaces

X (E) = H1
0(dα

z , E)× L2(dα
z , E)/R, Y(E) = H1

0(d−α
z , E)× L2(d−α

z , E)/R, (5)

which we endow with the norms

‖(w, r )‖X (E) =
(

‖∇w‖2
L2(dα

z ,E) + ‖r‖
2
L2(dα

z ,E)/R

)
1
2

(6)

and

‖(v, q)‖Y(E) =
(

‖∇v‖2
L2(d−α

z ,E)
+ ‖q‖2

L2(d−α
z ,E)/R

)
1
2
, (7)

respectively. When E = Ω , and in order to simplify the presentation of the material, we write X = X (Ω ) and
Y = Y(Ω ).

The following continuous embedding results will be instrumental in the analysis that follows.

Proposition 2 (Continuous Embeddings I). Let E be an open subset of Ω ⊂ R
d and α ∈ (−d, d). Then, we have the

following continuous embeddings

L2(d−α
z , E) →֒ L1

loc(E), L2(dα
z , E) →֒ L1

loc(E). (8)

Proof. Let v ∈ L2(dα
z , E) and B ⊂ E be a ball. A trivial application of the Cauchy–Schwarz inequality reveals that

ˆ

B

|v| =
ˆ

B

d
α
2
z |v|d

− α
2

z ≤
(
ˆ

B

d
α
z |v|2

)
1
2
(
ˆ

B

d
−α
z

)
1
2

.

(
ˆ

B

d
α
z |v|2

)
1
2

,

where, to obtain the last inequality, we have used that, since α ∈ (−d, d), d−α
z is a weight, i.e., a nonnegative and

locally integrable function. This yields the continuous embedding L2(dα
z , E) →֒ L1

loc(E). The proof of the continuous
embedding L2(d−α

z , E) →֒ L1
loc(E) is similar. �

Proposition 3 (Continuous Embeddings II). Let E be an open subset of Ω ⊂ R
d . If α ∈ (0, d), then we have the

following continuous embeddings

H1
0(d−α

z , E) →֒ H1
0(E) →֒ H1

0(dα
z , E). (9)

Proof. The proof follows from the fact that, since α ∈ (0, d), then maxx∈E dα
z (x) is uniformly bounded. In fact, for

v ∈ C∞0 (E), we have that
ˆ

E

|∇v|2 ≤ max
x∈E

d
α
z (x)

ˆ

E

d
−α
z |∇v|2,

ˆ

E

d
α
z |∇v|2 ≤ max

x∈E
d

α
z (x)

ˆ

E

|∇v|2.

The embeddings described in (9) now follow from a density argument. This concludes the proof. �

3. The Stokes problem with Dirac sources

Having set up the needed functional setting, we now begin with the systematic study of problem (1). First, we
provide a motivation for the use of weights.
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3.1. Motivation

Let us assume that (1) is posed over the whole space Rd . If that is the case, the results of [18, Section IV.2] provide
the following asymptotic behavior of the solution (u, p) to problem (1) near the point z:

|∇u(x)| ≈ |x − z|1−d and |p(x)| ≈ |x − z|1−d . (10)

On the basis of these asymptotic estimates, basic computations reveal that

α ∈ (d − 2,∞) H⇒
ˆ

Ω

d
α
z |∇u|2 <∞,

ˆ

Ω

d
α
z |p|2 <∞.

This heuristic suggests to seek solutions to problem (1) in weighted Sobolev spaces [7,16]. In what follows we will
make these considerations rigorous.

3.2. Saddle point formulation

The motivation of the previous paragraph suggests that we seek for solutions of (1) in the weighted spaces defined
in Section 2. To accomplish this task, we define the bilinear forms

a : H1
0(dα

z ,Ω )×H1
0(d−α

z ,Ω )→ R,

a(w, v) :=
ˆ

Ω

∇w : ∇v =
d
∑

i=1

ˆ

Ω

∇wi · ∇vi

(11)

and

b : H1
0(d±α

z ,Ω )× L2(d∓α
z ,Ω )→ R,

b(v, q) := −
ˆ

Ω

q div v.
(12)

The weak formulation of problem (1) that we shall consider is: Find (u, p) ∈ H1
0(dα

z ,Ω )× L2(dα
z ,Ω )/R such that

{

a(u, v)+ b(v, p) = 〈Fδz, v〉, ∀v ∈ H1
0(d−α

z ,Ω ),

b(u, q) = 0, ∀q ∈ L2(d−α
z ,Ω )/R,

(13)

where 〈·, ·〉 denotes the duality pairing between H1
0(d−α

z ,Ω )′ and H1
0(d−α

z ,Ω ). We must immediately comment that,
in order to guarantee that δz ∈ H 1

0 (d−α
z ,Ω )′, and thus that 〈Fδz, v〉 is well-defined for v ∈ H1

0(d−α
z ,Ω ), the parameter

α should be restricted to belong to the interval (d − 2, d) [19, Lemma 7.1.3].
We now present a trivial reformulation of problem (1). To accomplish this task, we define the bilinear form

c : X × Y → R by

c((w, r ), (v, q)) := a(w, v)+ b(v, r )− b(w, q) (14)

with norm

‖c‖ = sup
(0,0)6=(w,r )∈X

sup
(0,0)6=(v,q)∈Y

c((w, r ), (v, q))

‖(w, r )‖X ‖(v, q)‖Y
, (15)

where the product spaces X and Y were defined in (5).
The aforementioned reformulation of problem (1) thus reads as follows: Find (u, p) ∈ X such that

c((u, p), (v, q)) = 〈Fδz, v〉 ∀(v, q) ∈ Y . (16)

It has been recently proved in [16] that, since dα
z ∈ A2(Ω ), problem (16) admits a unique solution (u, p) ∈ X =

H1
0(dα

z ,Ω )× L2(dα
z ,Ω )/R for α ∈ (d−2, d). In addition, the following a priori error estimate was also derived in [16,

Theorem 14]:

‖∇u‖L2(dα
z ,Ω) + ‖p‖L2(dα

z ,Ω)/R . |F|‖δz‖H1
0(dα

z ,Ω)′ . (17)
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With such a well-posedness result at hand, we can thus invoke a result by Nečas, see [20, Théorème 6.3.1],
[21, Théorèmes 3.1 et 3.2], and [22, Theorem 2.2 and Corollary 2.1], to conclude the existence of a constant β > 0
such that

inf
(0,0)6=(w,r )∈X

sup
(0,0)6=(v,q)∈Y

c((w, r ), (v, q))

‖(w, r )‖X ‖(v, q)‖Y
= (18)

inf
(0,0)6=(v,q)∈Y

sup
(0,0)6=(w,r )∈X

c((w, r ), (v, q))

‖(w, r )‖X ‖(v, q)‖Y
= β.

4. Inf–sup stable finite element spaces

Having shown the well-posedness of (13), we can now begin with its numerical approximation and the analysis of
the ensuing methods. We first introduce some terminology and a few basic ingredients that will be common to all our
methods.

4.1. Triangulation

We consider T = {T } to be a conforming partition of Ω̄ into closed simplices T with size hT = diam(T ) and
define hT = maxT∈T hT . We denote by T the collection of conforming and shape regular meshes that are refinements
of an initial mesh T0 [1,23].

We denote by S the set of internal (d − 1)-dimensional interelement boundaries S of T . For S ∈ S , we indicate
by hS the diameter of S. If T ∈ T , we define ST as the subset of S that contains the sides of T . For S ∈ S , we set
NS = {T+, T−}, where T+, T− ∈ T are such that S = T+ ∩ T−, in other words, NS denotes the subset of T that
contains the two elements of T that have S as a side. For T ∈ T , we define the following stars or patches associated
with the element T

NT :=
{

T ′ ∈ T : ST ∩ST ′ 6= ∅
}

. (19)

and

ST :=
⋃

T ′∈T :T∩T ′ 6=∅

T ′. (20)

Having defined our mesh we introduce two classes of finite element approximations, the ensuing finite element
schemes, and provide an analysis for them.

4.2. Stable finite element approximations

In the literature, several finite element approximations have been proposed and analyzed to approximate the
solution to the Stokes problem (13) when the forcing term of the momentum equation is not singular; see, for
instance, [1, Section 4], [2, Chapter II], and references therein. If, given a mesh T ∈ T, we denote by V(T ) and
P(T ) the finite element spaces that approximate the velocity field and the pressure, respectively, then the following
elections are popular:

(a) The mini element [24], [1, Section 4.2.4]: in this case,

V(T ) =
{

vT ∈ C(Ω̄ ) : ∀T ∈ T , vT |T ∈ [P1(T )⊕ B(T )]d
}

∩H1
0(Ω ), (21)

P(T ) =
{

qT ∈ L2(Ω )/R ∩ C(Ω̄ ) : ∀T ∈ T , qT |T ∈ P1(T )
}

. (22)

B(T ) denotes the space spanned by local bubble functions.
(b) The classical Taylor–Hood element [25,26], [1, Section 4.2.5]: in this scenario,

V(T ) =
{

vT ∈ C(Ω̄ ) : ∀T ∈ T , vT |T ∈ P2(T )d
}

∩H1
0(Ω ), (23)

P(T ) =
{

qT ∈ L2(Ω )/R ∩ C(Ω̄ ) : ∀T ∈ T , qT |T ∈ P1(T )
}

. (24)
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The aforementioned pairs of finite element spaces (V(T ),P(T )) satisfy the following compatibility condition
[1, Proposition 4.13]: there exists a positive constant γ such that, for all T ∈ T,

inf
06=qT ∈P(T )

sup
06=vT ∈V(T )

b(vT , qT )

‖∇vT ‖L2(Ω)‖qT ‖L2(Ω)/R
≥ γ. (25)

We refer the reader to [1, Lemma 4.20 and Lemma 4.24] for a proof.
We observe now that, since the dα

z is a weight, we thus have, for the elections given by (21)–(24), that

V(T ) ⊂ H1
0(d±α

z ,Ω ), P(T ) ⊂ L2(d±α
z ,Ω )/R.

Consequently, we can consider the following finite element approximation of problem (13): Find (uT , pT ) ∈
V(T )× P(T ) such that

{

a(uT , vT )+ b(vT , pT ) = F · vT (z), ∀vT ∈ V(T ),

b(uT , qT ) = 0, ∀qT ∈ P(T ).
(26)

Notice that, since vT ∈ C(Ω̄ ), 〈Fδz, vT 〉 = F · vT (z). In addition, since the bilinear form a is coercive
on H1

0(Ω ) ⊃ V(T ) and the pairs (V(T ),P(T )) satisfy (25), the system (26) has a unique solution for each
mesh T .

The main issue, however, is not existence of discrete solutions, but the fact that the stability estimates that might
be obtained are not in norms that are compatible with those of (13). In what follows we will propose a posteriori error
estimators in these natural norms and show their reliability and efficiency.

4.3. A quasi-interpolation operator

As it is customary in a posteriori error analysis [27], in order to derive reliability properties for a proposed a
posteriori error estimator it is useful to have at hand a suitable quasi-interpolation operator with optimal approximation
properties. Since the interest is to approximate rough functions, namely those without point values, the classical
Lagrange interpolation operator cannot be applied. Instead, we consider the quasi-interpolation operator ΠT :
L1(Ω ) → V(T ) analyzed in [10]. The construction of ΠT is inspired in the ideas developed by Clément [28],
Scott and Zhang [29], and Durán and Lombardi [12]: it is built on local averages over stars and thus well-defined
for functions in L1(Ω ); it also exhibits optimal approximation properties. In what follows, we shall make use of the
following estimates of the local interpolation error. To present them, we first define, for T ∈ T ,

DT := max
x∈T
|x − z|. (27)

Proposition 4 (Stability and Interpolation Estimates). Let α ∈ (−d, d), and T ∈ T . Then, for every v ∈ H1
0(d±α

z ,ST ),
we have the local stability bound

‖∇ΠT v‖L2(d±α
z ,T ) . ‖∇v‖L2(d±α

z ,ST ) (28)

and the interpolation error estimate

‖v−ΠT v‖L2(d±α
z ,T ) . hT ‖∇v‖L2(d±α

z ,ST ), (29)

In addition, if α ∈ (d − 2, d), then we have that

‖v−ΠT v‖L2(T ) . hT D
α
2

T ‖∇v‖L2(d−α
z ,ST ). (30)

The hidden constants, in the previous inequalities, are independent of v, the cell T , and the mesh T .

Proof. First, notice that, since α ∈ (−d, d), we have that d±α
z ∈ A2, which implies that, in view of Proposition 2,

ΠT is well-defined for functions in H1
0(d±α

z ,ST ). In addition, the theory of [10] can be applied, and thus the local
stability bound (28) follows from [10, Lemma 5.1] by setting ω = d±α

z . The estimate (29) follows directly from
[10, Theorems 5.2 and 5.3] after setting ω = d±α

z .
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It remains then to prove (30). First, since α ∈ (d − 2, d) ⊂ (0, d) we have, according to Proposition 3, that
H1

0(d−α
z ,ST ) →֒ H1

0(ST ). Thus, an application of [10, Theorem 5.2 and Theorem 5.3] with ω = 1, gives

‖v−ΠT v‖L2(T ) . hT ‖∇v‖L2(ST ) . hT D
α
2

T ‖∇v‖L2(d−α
z ,ST ),

where, in the last step, we used that α > 0 and that, for all x ∈ ST , dα
z (x) ≤ Dα

T .
This concludes the proof. �

Proposition 5 (Trace Interpolation Estimate). Let α ∈ (d − 2, d), T ∈ T , S ⊂ ST , and v ∈ H1
0(d−α

z ,ST ). Then we

have the following interpolation error estimate for the trace

‖v−ΠT v‖L2(S) . h
1
2
T D

α
2

T ‖∇v‖L2(d−α
z ,ST ), (31)

where the hidden constant is independent of v, T , and the mesh T .

Proof. As a first step, we recall the scaled trace inequality of [22, Corollary 6.1]:

‖v‖L2(S) . h
− 1

2
S ‖v‖L2(T ) + h

1
2
S ‖∇v‖L2(T ) ∀v ∈ H 1(T ),

where S ∈ ST . In view of the continuous embedding H1
0(d−α

z ,ST ) →֒ H1
0(ST ) that was shown in Proposition 3, we

can apply the previous bound to the function v − ΠT v ∈ H1(d−α
z ,ST ). This, combined with the interpolation error

estimate (30), reveals that

‖v−ΠT v‖L2(S) . h
− 1

2
S hT D

α
2

T ‖∇v‖L2(d−α
z ,ST ) + h

1
2
S ‖∇(v−ΠT v)‖L2(T ). (32)

To control the second term on the right-hand side of the previous expression, we invoke the stability of the quasi-
interpolation operator ΠT in H 1 [10, Lemma 5.1] and, once again, the fact that α > 0 to obtain that

‖∇(v−ΠT v)‖L2(T ) . ‖∇v‖L2(ST ) . D
α
2

T ‖∇v‖L2(d−α
z ,ST ). (33)

Replacing the previous estimate into (32) combined with the fact that hT ≈ |T |/|S| ≈ hS yields (31) and concludes
the proof. �

With the operator ΠT at hand, and following [27, Section 4.10], we define the following restriction operator

QT : Y −→ V(T )× P(T ), (v, q) 7−→ (ΠT v, 0), (34)

where ΠT v = (ΠT v1, . . . ,ΠT vd )⊺.

4.4. A posteriori error estimators

We are now ready to introduce an a posteriori error estimator for the finite element approximation (26), on the basis
of the discrete pairs (V(T ),P(T )) given as in (21)–(22) or (23)–(24), of the Stokes problem (13). To accomplish this
task, we first recall the definition of the local distance DT given as in (27). We thus define, for α ∈ (d − 2, d) and
T ∈ T , the element error indicators

Eα(uT , pT ; T ) :=
(

h2
T Dα

T ‖∆uT −∇ pT ‖2
L2(T ) + ‖ div uT ‖2

L2(dα
z ,T ) (35)

+hT Dα
T ‖[[(∇uT − pT I) · ν]]‖2

L2(∂T \∂Ω) + hα+2−d
T |F|2χ ({z ∈ T })

)
1
2
,

where (uT , pT ) denotes the solution to the discrete problem (26), I ∈ R
d×d denotes the identity matrix, and the

function χ ({z ∈ T }) equals one if z ∈ T and zero otherwise. Here we must recall that we consider our elements T to
be closed sets. For a discrete tensor valued function WT , we denote by [[WT · ν]] the jump or interelement residual,
which is defined, on the internal side S ∈ S shared by the distinct elements T+, T− ∈ NS , by

[[WT · ν]] =WT |T+ · ν+ +WT |T− · ν−. (36)

Here ν+, ν− are unit normals on S pointing towards T+, T−, respectively. The error estimator is thus defined as

Eα(uT , pT ;T ) :=
(

∑

T∈T
E

2
α (uT , pT ; T )

)
1
2

. (37)
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4.5. Error and residual

An important ingredient in the analysis that we will provide below is the so-called residual. Let (u, p) ∈ X and
(uT , pT ) ∈ V(T ) × P(T ) denote the unique solutions to problems (13) and (26), respectively. In order to obtain
information about the error (eu, ep) = (u − uT , p − pT ) ∈ X , we define the residual R = R(uT , pT ) ∈ Y ′ as
follows:

〈R, (v, q)〉Y ′×Y = 〈Fδz, v〉 − c((uT , pT ), (v, q)), (38)

where 〈·, ·〉 denotes the duality pairing between H1
0(d−α

z ,Ω )′ and H1
0(d−α

z ,Ω ) and the bilinear form c is defined in
(14). Notice that the residual R depends only on the data and the approximate solution (uT , pT ) and is related to the
error function by the relation

〈R, (v, q)〉Y ′,Y = c((eu, ep), (v, q)) ∀(v, q) ∈ Y. (39)

The following result shows that the Y ′-norm of R is equivalent to the error.

Lemma 6 (Abstract a Posteriori Error Bounds). If α ∈ (d − 2, d), then

β‖(eu, ep)‖X ≤ ‖R‖Y ′ ≤ ‖c‖‖(eu, ep)‖X , (40)

where β and ‖c‖ are the inf–sup and continuity constants of the bilinear form c, which are defined in (15) and (18),
respectively, and verify 0 < β ≤ ‖c‖.

Proof. An application of the inf–sup condition (18), combined with the definition of the residual R and the relation
(39), imply that

β‖(eu, ep)‖X ≤ sup
(0,0)6=(v,q)∈Y

c((eu, ep), (v, q))

‖(v, q)‖Y

= sup
(0,0)6=(v,q)∈Y

〈R, (v, q)〉Y ′,Y
‖(v, q)‖Y

= ‖R‖Y ′ .

On the other hand,

‖R‖Y ′ = sup
(0,0)6=(v,q)∈Y

c((eu, ep), (v, q))

‖(v, q)‖Y
≤ ‖c‖‖(eu, ep)‖X . (41)

Estimate (40) follows by collecting these two bounds. �

4.5.1. Reliability

In what follows we obtain a global reliability property for the a posteriori error estimator (37).

Theorem 7 (Reliability). Let (u, p) ∈ X be the unique solution to problem (13) and (uT , pT ) ∈ V(T ) × P(T ) its

finite element approximation given as the solution to (26). If α ∈ (d − 2, d), then

‖∇eu‖L2(dα
z ,Ω) + ‖ep‖L2(dα

z ,Ω) . Eα(uT , pT ;T ), (42)

where the hidden constant is independent of the continuous and discrete solutions, the size of the elements in the mesh

T and #T .

Proof. In view of the first bound in (40), we conclude that, to bound the X -norm of the error, it suffices to control the
dual norm ‖R‖Y ′ . To accomplish this task, we proceed as follows. Let (v, q) ∈ Y be arbitrary. Applying a standard
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integration by parts argument to (38) yields

〈R, (v, q)〉Y ′,Y = 〈Fδz, v〉 − c((uT , pT ), (v, q)) = 〈Fδz, v〉 (43)

+
∑

T∈T

ˆ

T

(∆uT −∇ pT ) · v−
∑

S∈S

ˆ

S

[[(∇uT − pT I) · ν]] · v−
∑

T∈T

ˆ

T

q div uT .

Next we observe that, since V(T ) × P(T ) ⊂ Y , we can invoke Galerkin orthogonality to conclude that, for all
(vT , qT ) ∈ V(T )× P(T ),

0 = c((u− uT , p − pT ), (vT , qT )) = 〈Fδz, vT 〉 − c((uT , pT ), (vT , qT )). (44)

We now invoke the restriction operator QT , defined in (34), and set (vT , 0) = QT (v, q) in (44). By replacing the
obtained relation into (43) we arrive at

〈R, (v, q)〉Y ′,Y = 〈Fδz, v− vT 〉 +
∑

T∈T

ˆ

T

(∆uT −∇ pT ) · (v− vT ) (45)

−
∑

S∈S

ˆ

S

[[(∇uT − pT I) · ν]] · (v− vT )−
∑

T∈T

ˆ

T

q div uT =: I+ II− III− IV.

In what follows we proceed to control each term separately.
To bound II, we invoke the interpolation error estimate (30) and conclude that

II .
∑

T∈T
hT D

α
2

T ‖∆uT −∇ pT ‖L2(T )‖∇v‖L2(dz
−α ,ST ). (46)

We now proceed to control the term III. To accomplish this task, we apply the estimate (31) and arrive at

III .
∑

S∈S
h

1
2
T D

α
2

T ‖[[(∇uT − pT I) · ν]]‖L2(S)‖∇v‖L2(dz
−α ,ST ). (47)

The control of the term IV follows from a simple application of the Cauchy–Schwarz inequality. In fact, we have
that

II .
∑

T∈T
‖ div uT ‖L2(dα

z ,T )‖q‖L2(d−α
z ,T ). (48)

Since v − vT ∈ H1
0(d−α

z ,Ω ), we control the term I by using the estimate of [13, Theorem 4.7] followed by the
interpolation error estimate (29) and the local stability bound (28). These arguments allow us to conclude that

〈Fδz, v− vT 〉 . |F|h
α
2−

d
2

T ‖v− vT ‖L2(d−α
z ,T )

+ |F|h
α
2+1− d

2
T ‖∇(v− vT )‖L2(d−α

z ,T )

. |F|h
α
2+1− d

2
T ‖∇v‖L2(d−α

z ,ST ).

(49)

Finally, by gathering the estimates for the terms I, II, III, and IV, obtained in (46)–(49), and resorting to the finite
overlapping property of stars we arrive at the global upper bound (42) and conclude the proof. �

4.5.2. Local efficiency

To derive efficiency properties of the local error indicator Eα(uT , pT ; T ), defined in (35), we utilize the standard
residual estimation techniques developed in references [26,27] but on the basis of suitable bubble functions, whose
construction we owe to [13, Section 5.2] and proceed to describe in what follows.

Given T ∈ T , we first introduce a bubble function ϕT that satisfies the following properties: 0 ≤ ϕT ≤ 1,

ϕT (z) = 0, |T | .
ˆ

T

ϕT , ‖∇ϕT ‖L∞(RT ) . h−1
T , (50)
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and there exists a simplex T ∗ ⊂ T such that RT := supp(ϕT ) ⊂ T ∗. Notice that, since ϕT satisfies (50), we have that

‖θ‖L2(RT ) . ‖ϕ
1
2
T θ‖L2(RT ) ∀θ ∈ P2(RT ). (51)

Second, given S ∈ S , we introduce a bubble function ϕS that satisfies the following properties: 0 ≤ ϕS ≤ 1,

ϕS(z) = 0, |S| .
ˆ

S

ϕS, ‖∇ϕS‖L∞(RS ) . h
−1/2
T |S|1/2, (52)

and RS := supp(ϕS) is such that, if NS = {T, T ′}, there are simplices T∗ ⊂ T and T ′∗ ⊂ T ′ such that
RS ⊂ T∗ ∪ T ′∗ ⊂ NS .

The following estimates that involve the bubble functions ϕT and ϕS are instrumental in the efficiency analysis that
we will perform.

Proposition 8 (Estimates for Bubble Functions). Let T ∈ T and ϕT be the bubble function that satisfies (50). If

α ∈ (0, d), then

hT ‖∇(θϕT )‖L2(d−α
z ,T ) . D

− α
2

T ‖θ‖L2(T ) ∀θ ∈ P2(T ). (53)

Let S ∈ S and ϕS be the bubble function that satisfies (52). If α ∈ (0, d), then

h
1
2
T ‖∇(θϕS)‖L2(d−α

z ,NS ) . D
− α

2
T ‖θ‖L2(S) ∀θ ∈ P3(S), (54)

where θ is extended to NS as a constant along the direction of one side of each element of T contained in NS .

Proof. See [13, Lemma 5.2]. �

The following result provides a local estimate for the residual R.

Lemma 9 (Local Dual Norm). Let G be a subdomain of Ω . If α ∈ (d − 2, d), then

‖R‖Y ′(G) . ‖(eu, ep)‖X (G), (55)

where the hidden constant is independent of (eu, ep).

Proof. Let (v, q) ∈ Y(G). The extension of v and q by zero to Ω \ G yields functions (ṽ, q̃) ∈ Y . We thus have that

〈R, (ṽ, q̃)〉Y ′,Y = c((eu, ep), (ṽ, q̃)) . ‖(eu, ep)‖X (G)‖(v, q)‖Y(G).

Consequently (55) follows. This concludes the proof. �

With all these ingredients at hand, we are ready to derive the local efficiency properties of the local error indicator
Eα(uT , pT ; T ).

Theorem 10 (Local Efficiency). Let (u, p) ∈ X be the unique solution to problem (13) and (uT , pT ) ∈ V(T )×P(T )
its finite element approximation given as the solution to (26). If α ∈ (d − 2, d), then

E
2
α (uT , pT ; T ) . ‖∇eu‖2

L2(dα
z ,NT ) + ‖ep‖2

L2(dα
z ,NT ), (56)

where the hidden constant is independent of the continuous and discrete solutions, the size of the elements in the mesh

T and #T .

Proof. We estimate each contribution in (35) separately.
We begin the proof by bounding, for T ∈ T , the term h2

T Dα
T ‖∆uT −∇ pT ‖2

L2(T )
. Define φT := ϕT (∆uT −∇ pT )

and invoke (51) to conclude that

‖∆uT −∇ pT ‖2
L2(T ) .

ˆ

RT

|∆uT −∇ pT |2ϕT ≤
ˆ

T

(∆uT −∇ pT ) · φT . (57)
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We now consider the relation (43) with (v, q) = (φT , 0) and observe that φT (z) = ϕT (z)(∆uT −∇ pT )(z) = 0. This
allows us to conclude that

ˆ

T

(∆uT −∇ pT ) · φT = 〈R, (φT , 0)〉Y ′,Y = c((eu, ep), (φT , 0))

.
(

‖∇eu‖2
L2(dα

z ,T ) + ‖ep‖2
L2(dα

z ,T )

)
1
2 ‖∇φT ‖L2(d−α

z ,T ).

(58)

We now recall that φT = ϕT (∆uT −∇ pT ) and utilize (53) to conclude that

‖∇φT ‖L2(d−α
z ,T ) . h−1

T D
− α

2
T ‖∆uT −∇ pT ‖L2(T ).

Replacing this estimate into (58), and the obtained one in (57), allows us to write

h2
T Dα

T ‖∆uT −∇ pT ‖2
L2(T ) . ‖∇eu‖2

L2(dα
z ,T ) + ‖ep‖2

L2(dα
z ,T ). (59)

Let T ∈ T and S be a side of T . In what follows we control the jump term hT Dα
T ‖[[(∇uT − pT I) · ν]]‖2

L2(∂T \∂Ω)
in (35). To accomplish this task, we proceed by using similar arguments to the ones that lead to (59) but now utilizing
the bubble function ϕS . In fact, the use of properties (52) yields

‖[[(∇uT − pT I) · ν]]‖2
L2(S) .

ˆ

S

|[[(∇uT − pT I) · ν]]|2ϕS =
ˆ

S

[[(∇uT − pT I) · ν]] · φS,

where φS := ϕS[[(∇uT − pT I) · ν]]. Now, set (v, q) = (φS, 0) in (43), and use that φS(z) = 0 and that
RS = supp(φS) ⊂ T∗ ∪ T ′∗ ⊂ NS , to conclude that

ˆ

S

[[(∇uT − pT I) · ν]] · φS =
∑

T∈NS

ˆ

T

(∆uT −∇ pT ) · φS − 〈R, (φS, 0)〉Y ′,Y

=
∑

T∈NS

ˆ

T

(∆uT −∇ pT ) · φS − c((eu, ep), (φS, 0))

≤
∑

T∈NS

‖∆uT −∇ pT ‖L2(T )‖φS‖L2(T )

+
∑

T∈NS

(

‖∇eu‖2
L2(dα

z ,T ) + ‖ep‖2
L2(dα

z ,T )

)
1
2 ‖∇φS‖L2(d−α

z ,T ).

The control of the first term on the right-hand side of the previous expression follows from the fact that ‖φS‖L2(T ) ≈
|T | 12 |S|− 1

2 ‖φS‖L2(S) while the bound of the second term follows from (54). These arguments reveal that
ˆ

S

[[(∇uT − pT I) · ν]] · φS .
∑

T∈NS

‖∆uT −∇ pT ‖L2(T )|T |
1
2 |S|− 1

2 ‖φS‖L2(S) (60)

+
∑

T∈NS

(

‖∇eu‖2
L2(dα

z ,T ) + ‖ep‖2
L2(dα

z ,T )

)
1
2

D
− α

2
T h

− 1
2

T ‖φS‖L2(S),

which, in view of (59), |T |/|S| ≈ hT , and φS = ϕS[[(∇uT − pT I) · ν]] imply that

hT Dα
T ‖[[(∇uT − pT I) · ν]]‖2

L2(S) .
∑

T ′⊂NS

(

‖∇eu‖2
L2(dα

z ,T ′) + ‖ep‖2
L2(dα

z ,T ′)

)

. (61)

The control of the term ‖ div uT ‖2
L2(dα

z ,T )
follows easily from the mass conservation equation, that reads div u = 0.

In fact, for T ∈ T , we have that

‖ div uT ‖2
L2(dα

z ,T ) = ‖ div eu‖2
L2(dα

z ,T ) . ‖∇eu‖2
L2(dα

z ,T ). (62)

Finally, we control the term hα+2−d
T |F|2χ ({z ∈ T }). Let T ∈ T , and notice first that, if T ∩ {z} = ∅,

then the estimate (56) follows from (59), (61), and (62). If, on the other hand, T ∩ {z} = {z}, then the element
indicator Eα contains the term hα+2−d

T |F|2. To control this term we follow the arguments developed in the proof of
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[13, Theorem 5.3] that yield the existence of a smooth function η such that

η(z) = 1, ‖η‖L∞(Ω) = 1, ‖∇η‖L∞(Ω) = h−1
T , supp(η) ⊂ NT . (63)

With the function η at hand, we define vη := Fη ∈ H1
0(d−α

z ,Ω ) and notice that

|F|2 = 〈Fδz, vη〉 = c((u, p), (vη, 0)) = c((eu, ep), (vη, 0))+ c((uT , pT ), (vη, 0)) (64)

.
(

‖∇eu‖2
L2(dα

z ,NT ) + ‖ep‖2
L2(dα

z ,NT )

)
1
2 ‖∇vη‖L2(d−α

z ,NT )

+
∑

T ′∈T :T ′⊂NT

‖∆uT −∇ pT ‖L2(T ′)‖vη‖L2(T ′)

+
∑

T ′∈T :T ′⊂NT

∑

S∈ST ′ :S 6⊂∂NT

‖[[(∇uT − pT I) · ν]]‖L2(S)‖vη‖L2(S).

We now use the estimates

‖η‖L2(S) . h
d−1

2
T , ‖η‖L2(NT ) . h

d
2
T , ‖∇η‖L2(d−α

z ,NT ) . h
d−2

2 −
α
2

T ,

to conclude that

|F|2 . h
d−2

2 −
α
2

T |F|
(

‖∇eu‖2
L2(dα

z ,NT ) + ‖ep‖2
L2(dα

z ,NT )

)
1
2

(65)

+ h
d−2

2 −
α
2

T |F|
(

∑

T ′∈T :T ′⊂NT

hT ′D
α
2

T ′‖∆uT −∇ pT ‖L2(T ′)

+
∑

T ′∈T :T ′⊂NT ′

∑

S∈ST ′ :S 6⊂∂NT

D
α
2

T ′h
1
2
T ′‖[[(∇uT − pT I) · ν]]‖L2(S)

)

,

where we have also used that, since z ∈ T , hT ≈ DT . Use the estimates (59) and (61) and conclude. �

5. Low order stabilized schemes

In the previous section we have provided an a posteriori error analysis for the discrete scheme (26) that is based
on the finite element pairs (21)–(22) and (23)–(24). We recall that both of these pairs are compatible, i.e., they satisfy
the discrete inf–sup condition (25), and that this feature does come at a cost. Namely, this condition requires to
increase the polynomial degree of the discrete spaces beyond what is required for conformity: it is not possible
to approximate the velocity field with piecewise linears, while the pressure space is approximated by piecewise
constants or linears; see [1, Section 4.2.3]. If lowest order possible is desired, it is thus necessary to modify the
discrete problem to circumvent the need of satisfying condition (25) [30]: this gives rise to the so-called stabilized

methods. In the literature several stabilized techniques can be found: the residual-free-bubbles method, variational
multiscale formulations, enriched Petrov–Galerkin methods, pressure projection methods, local projection techniques
and Galerkin/least-squares formulations. For an extensive review of different stabilized finite element methods we
refer the reader to [31, Part IV, Section 3], [32, Chapter 7], and [33, Chapter 4].

Let us now describe the low-order stabilized schemes that we shall consider. First we introduce the following finite
element spaces

Vstab(T ) =
{

vT ∈ C(Ω̄ ) : ∀T ∈ T , vT |T ∈ P1(T )d
}

∩H1
0(Ω ), (66)

Pℓ,stab(T ) =
{

qT ∈ L2(Ω )/R : ∀T ∈ T , qT |T ∈ Pℓ(T )
}

, (67)

where ℓ ∈ {0, 1}. The approximation to problem (13) seeks then a pair (uT , pT ) in Vstab(T )× Pℓ,stab(T ) such that
{

a(uT , vT )+ b(vT , pT )+ s(uT , vT ) = F · vT (z), ∀vT ∈ Vstab(T ),

−b(uT , qT )+ m(pT , qT ) = 0, ∀qT ∈ Pℓ,stab(T ),
(68)
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where the bilinear forms s : Vstab(T ) × Vstab(T ) → R and m : Pℓ,stab(T ) × Pℓ,stab(T ) → R are chosen as in
[31, Part IV, Section 3.1], and are meant to stabilize the scheme:

s(uT , vT ) :=
∑

T∈T
τdiv

ˆ

T

div uT div vT ,

m(pT , qT ) :=
∑

T∈T
τT

ˆ

T

∇ pT · ∇qT +
∑

S∈S
τShS

ˆ

S

[[pT ]][[qT ]],
(69)

where τdiv ≥ 0, τT ≥ 0 and τS > 0 denote the so-called stabilization parameters, and [[qT ]] has a similar meaning
as in the tensor valued case described in (36). It follows from [31, Lemma 3.4, Section 3.1] (when τT > 0) and
[34, Section 2.1] (when τT = 0 and ℓ = 0) that problem (68) is well-posed.

We immediately notice that, due to the presence of the stabilization terms s and m in the discrete problem (68), the
Galerkin orthogonality property (44) is no longer valid. Instead, we have the relation

〈R, (vT , qT )〉Y ′,Y = s(uT , vT )+ m(pT , qT ) ∀(vT , qT ) ∈ Vstab(T )× Pℓ,stab(T ),

where R is defined in (38). The previous relation can be rewritten, for (vT , qT ) ∈ Vstab(T )× Pℓ,stab(T ), as

0 = 〈Fδz, vT 〉 − c((uT , pT ), (vT , qT ))− s(uT , vT )− m(pT , qT ). (70)

For the discrete scheme (68), we define the local error indicators

Eα,stab(uT , pT ; T ) :=
(

h2
T Dα

T ‖∆uT −∇ pT ‖2
L2(T ) + (1+ τ 2

div)‖ div uT ‖2
L2(dα

z ,T )

+ hT Dα
T ‖[[(∇uT − pT I) · ν]]‖2

L2(∂T \∂Ω) + hα+2−d
T |F|2χ ({z ∈ T })

)
1
2
,

and the global error estimator

Eα,stab(uT , pT ;T ) :=
(

∑

T∈T
E2

α,stab(uT , pT ; T )

)
1
2

. (71)

It is now our intention to show the reliability and efficiency of this estimator.

Theorem 11 (Reliability and Local Efficiency). Let the pair (u, p) ∈ H1
0(dα

z ,Ω ) × L2(dα
z ,Ω )/R be the solution to

problem (13) and (uT , pT ) ∈ Vstab(T )×Pℓ,stab(T ) its stabilized finite element approximation given as the solution

to (68). If α ∈ (d − 2, d), then

‖∇eu‖2
L2(dα

z ,Ω) + ‖ep‖2
L2(dα

z ,Ω) . E2
α,stab(uT , pT ;T ), (72)

and

E2
α,stab(uT , pT ; T ) . ‖∇eu‖2

L2(dα
z ,NT ) + ‖ep‖2

L2(dα
z ,NT ), (73)

where the hidden constants in both inequalities are independent of the continuous and discrete solutions, the size of

the elements in the mesh T and #T .

Proof. Let (v, q) ∈ Y . We invoke the restriction operator QT , defined in (34), and set (vT , 0) = QT (v, q) in (70),
to conclude that

〈R, (v, q)〉Y ′,Y = 〈Fδz, v− vT 〉 +
∑

T∈T

ˆ

T

(∆uT −∇ pT ) · (v− vT )

−
∑

S∈S

ˆ

S

[[(∇uT − pT I) · ν]] · (v− vT )−
∑

T∈T
q div uT + s(uT , vT ).

Notice that the first four terms on the right-hand side of the previous expression have been previously controlled;
see the estimates (46)–(49). It is thus sufficient to control the last term. To bound it we invoke the local stability
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Fig. 1. The initial meshes T0 used in the adaptive Algorithm 1 when Ω is a square (left) and a two-dimensional L-shaped domain (right).

property (28) of the quasi-interpolation operator ΠT to conclude that

|s(uT ,ΠT v)| ≤
∑

T∈T
τdiv

ˆ

T

| div uT divΠT v|

.
∑

T∈T
τdiv‖ div uT ‖L2(dα

z ,T )‖∇v‖L2(d−α
z ,ST ).

Consequently, invoking the finite overlapping property of stars, we arrive at

|s(uT , vT )| ≤ ‖∇v‖L2(d−α
z ,Ω)

(

∑

T∈T
τ 2

div‖ div uT ‖2
L2(dα

z ,T )

)
1
2

.

Finally, by gathering the estimates (46)–(49) with the previous one, and resorting to the finite overlapping property
of stars, again, we arrive at the global upper bound (72).

The local efficiency (73) follows as a direct consequence of the estimate in Theorem 10 since, as it is usual in
residual error estimation, the lower bound does not contain any consistency terms, even when stabilized schemes are
considered; see [26]. �

6. Numerical experiments

In this section we present a series of numerical examples that illustrate the performance of the devised error
estimators Eα and Eα,stab. To explore the performance of Eα , defined in (37), we consider the discrete problem (26)
with the discrete spaces (23)–(24). This setting will be referred to as Taylor–Hood approximation. The performance
of the estimator Eα,stab, defined in (71), will be explored with the following finite element setting: the discrete spaces
are (66) and (67), with ℓ = 0, and the stabilization parameters are τdiv = 0, τT = 0, and τS = 1/12. This setting will
be referred to as low-order stabilized approximation.

The numerical experiments that will be presented have been carried out with the help of a code that we implemented
using C++. All matrices have been assembled exactly and the global linear systems were solved using the multifrontal
massively parallel sparse direct solver (MUMPS) [35,36]. The right hand sides and terms involving the weight,
and the approximation errors, are computed by a quadrature formula which is exact for polynomials of degree
19. After obtaining the approximate solution of (26) or (68), we calculate the local indicators Eα(uT , pT ; T ) or
Eα,stab(uT , pT ; T ) to drive the adaptive mesh refinement procedures described in Algorithm 1 and the global a
posteriori error estimator Eα or Eα,stab in order to assess the accuracy of the approximation. In this way, a sequence of
adaptively refined meshes was generated from the initial meshes shown in Fig. 1. Notice that three different marking
strategies are considered in Algorithm 1: the maximum, Dörfler [37], and average strategies.

We define the total number of degrees of freedom as Ndof := dimW + dimP, where (W,P) = (V(T ),P(T ))
for the Taylor–Hood approximation, and (W,P) = (Vstab(T ),Pℓ,stab(T )) in the low-order stabilized setting. We
measure experimental rates of convergence for the error in the X -norm, that is

‖(eu, ep)‖X :=
(

‖∇(u− uT )‖2
L2(dα

z ,Ω) + ‖p − pT ‖2
L2(dα

z ,Ω)

)
1
2
. (74)



1022 A. Allendes, E. Otárola and A.J. Salgado / Computer Methods in Applied Mechanics and Engineering 345 (2019) 1007–1032

Algorithm 1 Adaptive Algorithm.

Input: Initial mesh T0, interior point z ∈ Ω , α, and stabilization parameters;
1: Solve the discrete problem (26) ((68));
2: For each T ∈ T compute the local error indicator Eα(uT , pT ; T ) (Eα,stab(uT , pT ; T )) given as in (37) ((71));
3: Mark an element T ∈ T for refinement using either a:

• Maximum strategy: Eα(uT , pT ; T )2 ≥ 1
2 max

T ′∈T
Eα(uT , pT ; T ′)2.

• Dörfler strategy: see [37].
• Average strategy: Eα(uT , pT ; T )2 ≥ 1

#T

∑

T ′∈T

Eα(uT , pT ; T ′)2.

Similar strategies are considered for Eα,stab(uT , pT ; T );
4: From step 3, construct a new mesh, using a longest edge bisection algorithm. Set i ← i + 1, and go to step 1.

6.1. Standard a posteriori error estimator based on regularization

Before we even begin to illustrate the performance of our estimators, it is instructive to pause and ponder whether
the development of a new error estimator is really warranted. To explore this we consider a few examples. We consider
a discretization of problem (1) via the Taylor–Hood pair (23)–(24). This gives rise to problem (26). While this problem
can be implemented without issues, if we wish to consider its a posteriori error estimation using, for instance, the
residual based techniques of [26], we immediately face an issue. Namely, the right hand side is not in L2(Ω ), it is
not even an element of H−1(Ω ). A suitable proxy for Fδz must be constructed, or the estimator must be modified.
If we follow the first route, suitable regularizations of the Dirac mass centered at z ∈ Ω need to be considered.
Following [38, Section 4.4.2], we consider

δ1
z,a(x) =

1

a
√

π
e
− |x−z|2

a2 , δ2
z,a(x) =

a/π

a2 + |x − z|2
, a ∈ R+. (75)

Notice that for, i = 1,2, and any continuous function f it holds that

lim
a↓0

ˆ

R

δi
z,a(x) f (x) = f (z).

Similarly, from [39, Section 3.3.1] we will also consider the following polynomial regularization, for a ∈ R+:

δ3
z,a(x) =











1

a

(

−30

(

|x − z|
a

)3

+ 60

(

|x − z|
a
− 36
|x − z|

a
+ 6

)2
)

, if |x − z| ≤ a,

0, otherwise.

(76)

We can thus consider the following residual-type a posteriori error estimator [40]:

Erg,i(uT , pT ;T )2 =
∑

T∈T
Erg,i(uT , pT ; T )2,

based on the local indicators

Erg,i(uT , pT ; T )2 = h2
T

∥

∥Fδi
z,a +∆uT −∇ pT

∥

∥

2

L2(T )
+ ‖ div uT ‖2

L2(T )

+ hT ‖[[(∇uT − pT I) · ν]]‖2
L2(∂T \∂Ω).

(77)

In Fig. 2 we present the experimental rates of convergence that we obtained when the adaptive procedure of
Algorithm 1 is driven by the residual-type a posteriori error indicators defined in (77). We consider δi

z,a as the
regularizations given in (75) and (76) with different values of the constant a: a ∈ {10−2, 10−3, 10−4, 10−5, 10−6}.
From Fig. 2, it can be observed that for all the regularization techniques and the different values of a that we have
considered, optimal convergence is not achieved.

Notice that, albeit suboptimally, the estimator seems to converge to zero. However, we believe this to be a
preasymptotic phenomenon. As the estimator decreases to the scale of the parameter a, we expect one of either
two things to happen. The estimator will either stagnate, as we are measuring the error in a space that does not contain
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Fig. 2. Experimental rates of convergence for the residual-type error estimators Erg,i (maximum strategy) for i ∈ {1, 2, 3} and different values of
the constant a: a ∈ {10−2, 10−3, 10−4, 10−5, 10−6}. We also present the finite element solutions |uT | and pT obtained for the value a = 10−4,
after six adaptive refinements, when the regularization δ1

z,a (top), δ2
z,a (middle), and δ3

z,a (bottom), respectively, is used.

the exact solution, or the estimator will converge to zero, but our numerical solution will not converge to the exact one.
This seems consistent with the plots of the finite element solutions shown in Fig. 2. See also the experiment presented
in Section 6.4 for an illustration further supporting this claim.

In conclusion, a naı̈ve a posteriori error estimator does not achieve its goal in this class of problems and,
consequently, all our developments are indeed necessary.

6.2. Convex and non-convex domains with homogeneous boundary conditions

We now explore the performance of our devised a posteriori error estimators in problems where no analytical
solution is available: convex and non-convex domains Ω are considered.
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6.2.1. Example 1: Convex domain

We consider the square domain Ω = (0, 1)2, F = (1, 1)⊺, and z = (0.5, 0.5)⊺. We explore the performance of Eα

(Taylor–Hood approximation) and Eα,stab (low-order stabilized approximation) when driving the adaptive procedures
of Algorithm 1. We first investigate the effect of varying the exponent α in the Muckenhoupt weight dα

z , defined in
(3), and explore the three marking strategies introduced in Algorithm 1. We consider

α ∈ {0.25, 0.5, 0.75, 1.25, 1.5, 1.75}.

Second, for α = 1.0, we compare the performance of our adaptive algorithm with standard uniform refinement. We
notice that the computation of the local error indicators and error estimators requires the use of a suitable integration
rule. We explore the effect of quadrature by comparing the performance of the underlying AFEM with a quadrature
formula that is exact for polynomials of degree 19 and another one that is based on composite integration: we subdivide
each triangle into four by joining its midpoints.

In Fig. 3 we present the experimental rates of convergence for the error estimators Eα and Eα,stab. We observe
that the three marking strategies of Algorithm 1 yield optimal experimental rates of convergence for all the values
of the parameter α that we considered. In Fig. 4 we observe, as expected, that the adaptive loop of Algorithm 1,
when the maximum strategy is considered, outperforms standard uniform refinement. In Fig. 5 we show that optimal
experimental rates of convergence for the error estimators are attained for both of the quadrature formulas previously
mentioned. In Fig. 6, we present the results obtained by Algorithm 1 when is driven by the local indicators Eα and
Eα,stab and the maximum strategy is considered. We show the finite element approximations of |uT | and pT and the
final meshes obtained by the aforementioned schemes. We observe that most of the adaptive refinement is concentrated
around the delta source.

6.2.2. Example 2: L-shaped domain

We let Ω = (−1, 1)2\[0, 1)×[−1, 0), an L-shaped domain, set in (26) the data to be F = (1, 1)⊺ and z = (0.5, 0.5)⊺,
and fix the exponent of the Muckenhoupt weight dα

z in (3) as α = 1.5. In Figs. 7 and 8, we present the results
obtained by Algorithm 1 when driven by the local indicators E1.5 (Taylor–Hood approximation) and E1.5,stab (low-
order stabilized approximation). For mesh refinement, we have considered the maximum strategy. We show, in Fig. 8,
the finite element approximations of |uT | and pT and the final meshes obtained by the aforementioned schemes. We
also present the experimental rates of convergence rate for the estimators E1.5 and E1.5,stab. We observe that optimal
experimental rates of convergence are attained, and that most of the adaptive refinement is concentrated around the
delta source. In Fig. 7, we present the experimental rate of convergence for the total error estimators Eα and Eα,stab

when α ∈ {0.5, 0.75, 1, 1.25, 1.5}. It can be observed that, for all the cases that we have considered, optimal rates of
convergence are attained.

6.3. Example 3: A series of Dirac sources

We now go beyond the presented theory and include a series of Dirac delta sources on the right-hand side of the
momentum equation. To be precise, we will replace the momentum equation in (1) by

−∆u+∇ p =
∑

z∈Z
Fzδz in Ω , (78)

where Z ⊂ Ω denotes a finite set with cardinality #Z which is such that 1 < #Z <∞ and {Fz}z∈Z ⊂ R
d . Based on

the results of [4, Section 5], we introduce the weight

ρ(x) =











d
α
z , ∃ z ∈ Z : |x − z| <

dZ

2
,

1, |x − z| ≥
dZ

2
, ∀ z ∈ Z,

(79)

where dZ = min
{

dist(Z, ∂Ω ), min
{

|z − z′| : z, z′ ∈ Z, z 6= z′
}}

and modify the definition (5), of the spaces X and
Y , as follows:

X = H1
0(ρ,Ω )× L2(ρ,Ω )/R, Y = H1

0(ρ−1,Ω )× L2(ρ−1,Ω )/R, (80)

It can be proved that ρ belongs to the Muckenhoupt class A2 [41] and to the restricted class A2(Ω ).
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Fig. 3. Example 1: Experimental rates of convergence for the error estimators Eα and Eα,stab considering α ∈ {0.25, 0.5, 0.75, 1.25, 1.5, 1.75} and
three different marking strategies.

Define

DT,Z := min
z∈Z

{

max
x∈T
|x − z|

}

. (81)

We thus propose the following error estimator when the Taylor–Hood scheme is considered:

Dα(uT , pT ;T ) :=
(

∑

T∈T
D

2
α(uT , pT ; T )

)
1
2

,
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Fig. 4. Example 1: Experimental rates of convergence for the error estimators E1.0 and E1.0,stab for uniform and adaptive refinement with the
maximum strategy.

Fig. 5. Example 1: Experimental rates of convergence for the error estimators Eα and Eα,stab (maximum strategy), with α ∈ {0.5, 1.0, 1.5}, based
on a quadrature rule exact for polynomials of degree 19, and its composite counterpart. For mesh refinement, we have considered the maximum
strategy.

where the local indicators are such that

Dα(uT , pT ; T ) :=
(

h2
T Dα

T,Z‖∆uT −∇ pT ‖2
L2(T ) + ‖ div uT ‖2

L2(ρ,T ) (82)

+ hT Dα
T,Z‖[[(∇uT − pT I)]] · ν‖2

L2(∂T \∂Ω) +
∑

z∈Z∩T

hα+2−d
T |Fz|2

)
1
2

.

Similarly, when the low-order stabilized approximation scheme is considered, we consider the error estimator

Dα,stab(uT , pT ;T ) :=
(

∑

T∈T
D2

α,stab(uT , pT ; T )

)
1
2

,
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Fig. 6. Example 1: Finite element approximations of |uT | and pT over the mesh obtained after 10 adaptive refinements, when a Taylor–Hood
approximation is used with E1.5 (maximum strategy (top)), and when the low-order stabilized approximation is considered with E1.5,stab (maximum
strategy (bottom)).

Fig. 7. Example 2: For α = {0.5, 0.75, 1, 1.25, 1.5}, we present the experimental rates of convergence for the error estimators Eα (left) and
Eα,stab (right), which are based on Taylor–Hood approximation and low-order stabilized approximation, respectively. For mesh refinement, we have
considered the maximum strategy.

and the local error indicators

Dα,stab(uT , pT ; T ) :=
(

h2
T Dα

T,Z‖∆uT −∇ pT ‖2
L2(T ) + (1+ τ 2

div)‖ div uT ‖2
L2(ρ,T )

+ hT Dα
T,Z‖[[(∇uT − pT I)]] · ν‖2

L2(∂T \∂Ω) +
∑

z∈Z∩T

hα+2−d
T |Fz|2

)
1
2

.
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Fig. 8. Example 2: Finite element approximations of |uT | and pT , the mesh obtained after M adaptive refinements, and the experimental rate of
convergence for the error estimator when Taylor–Hood approximation is used (top) and when the low-order stabilized approximation is considered
(bottom); M = 20 (top) and M = 13 (bottom). For mesh refinement, we have considered the maximum strategy.

Fig. 9. Example 3: Finite element approximations of |uT | and pT , the meshes obtained after 10 adaptive refinements, and the experimental rates
of convergence when Taylor–Hood approximation is used (top) and when the low-order stabilized approximation is considered (bottom). For mesh
refinement, we have considered the maximum strategy.

Having defined the problem and estimators we, in particular, set Ω = (0, 1)2 and let

Z = {(0.25, 0.25)⊺, (0.25, 0.75)⊺, (0.75, 0.25)⊺, (0.75, 0.75)⊺}.

We consider Fz = (1, 1)⊺ for all z ∈ Z and fix the exponent of the Muckenhoupt weight ρ, which is defined in (79),
as α = 1.5.

In Fig. 9, we present the results obtained by the Algorithm 1 when is driven by D1.5 (Taylor–Hood approximation)
and D1.5,stab (low-order stabilized approximation) and the maximum strategy is considered. We present the finite
element approximations of |uT | and pT and the final meshes obtained by the aforementioned schemes. It can be
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Fig. 10. Example 4: Finite element approximation of |uT | and pT , the mesh obtained after 10 adaptive refinements, and the experimental rate of
convergence for the error estimator when Taylor–Hood approximation is used (top) and when the low-order stabilized approximation is considered
(bottom) where α ∈ {0.5, 0.75, 1, 1.25, 1.5}. For mesh refinement, we have considered the maximum strategy.

observed that the proposed error estimators attained optimal experimental rates of convergence, under the natural
proposed modification of the involved Muckenhoupt weight.

6.4. Example 4: The fundamental solution of a Stokes flow

In order to measure the experimental rates of convergence for the total error (74), we invoke the fundamental
solution of the Stokes problem; even when we violate the assumption of imposing homogeneous boundary conditions.
For a delta source δz , located at z = (x0 , y0)⊺ ∈ Ω , and a given constant vector F ∈ R

2, we recall the fundamental
solution for the Stokes problem (1) when d = 2:

u(x, y) := T̃ · F, p(x, y) := T · F, (83)

where, if x0 = (x − x0, y − y0)⊺, then

T̃ = −
1

4π

(

log |x0|
[

1 0
0 1

]

−
1

|x0|2

[

(x − x0)2 (x − x0)(y − y0)
(x − x0)(y − y0) (y − y0)2

])

,

T =
x0

2π |x0|2
.

We consider Ω = (0, 1)2, z = (0.5, 0.5)⊺ and F = (1, 1)⊺ in problem (1). We fix the exponent of the Muckenhoupt
weight in (3) as α = 1.5. The solution of this problem is thus given by (83).

In Fig. 10, we present the finite element approximations of |uT | and pT which were obtained after 10 adaptive
refinements (maximum strategy), together with the final mesh. We also present the experimental rates of convergence
for the total error ‖(eu, ep)‖X and the error estimators E1.5 and Eα,stab. It can be observed that optimal experimental
rates of convergence are attained and that most of the adaptive refinement is concentrated around the delta source.
In Fig. 11, we present the experimental rate of convergence for the total error estimators Eα and Eα,stab when
α ∈ {0.5, 0.75, 1, 1.25, 1.5}. It can be observed that, for all the cases that we have considered, optimal rates of
convergence are attained.

Finally, in Fig. 12 we present the finite element approximations |uT | and pT which were obtained after 15 adaptive
refinements when using the residual-type error indicators Erg,1(uT , pT ; T ) to drive the adaptive procedure, by fixing
the constant a = 10−6 (maximum strategy). We also present the experimental rates of convergence for the velocity
error ‖u − uT ‖L2(Ω) and the error estimator Erg,1. It can be observed that even when the adaptive refinement is
concentrated around the delta source, the velocity error does not converge at all and that the residual-type a posteriori



1030 A. Allendes, E. Otárola and A.J. Salgado / Computer Methods in Applied Mechanics and Engineering 345 (2019) 1007–1032

Fig. 11. Example 4: Experimental rates of convergence for the total error ‖(eu, ep)‖X and error estimators Eα (Taylor–Hood approximation) and
Eα,stab (low-order stabilized approximation).

Fig. 12. Example 4: Finite element approximation of |uT | and pT over a mesh obtained after 4 adaptive refinements, and the experimental rate
of convergence for the residual-type error estimator Erg,1(uT , pT ;T ) when a Taylor–Hood approximation is used and the adaptive procedure is
driven by the residual-type error indicators Erg,1(uT , pT ; K ) where a = 10−6. For mesh refinement, we have considered the maximum strategy.

error estimator does not present optimal convergence rate. This should come as no surprise, as we are trying to measure
the error in spaces that do not contain the exact solution. This further supplements the claim we made in Section 6.1:
the rates of convergence that we observed there are just a preasymptotic phenomenon.
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