
Maximal linear deadlock avoidance policies
for complex resource allocation systems

Michael Ibrahim and Spyros Reveliotis
School of Industrial & Systems Engineering

Georgia Institute of Technology
{mibrahim37@,spyros@isye}.gatech.edu

Abstract— The problem of maximally permissive deadlock
avoidance for complex resource allocation systems (RAS) is a
well-defined problem in the corresponding controls literature.
In some of the prevailing approaches to this problem, the
sought supervisor – also known as the maximally permissive
deadlock avoidance policy (DAP) – is perceived as a classifier,
and its design boils down to the development of an efficient
representation of the classification logic that it effects on the
underlying RAS states. A popular such representation is the
“linear classifier”, where the admissibility of any given RAS
state is resolved based on its ability to satisfy a given set of
linear inequalities. However, linear classifiers cannot provide
effective representation of the maximally permissive DAP for all
RAS instantiations. Hence, this paper provides a methodology
for synthesizing linear DAPs for any given RAS instance that
might not be maximally permissive in the original sense of this
term, but observe a more relaxed notion of “maximality”. The
presented developments formally define this new DAP class, and
provide effective computational algorithms for the synthesis of
a maximal linear DAP for any given RAS instance.

I. INTRODUCTION

Complex resource allocation systems (RAS) [1] is a class
of discrete event systems (DES) [2] that has received exten-
sive attention in the corresponding literature. The supervisory
control problem of deadlock avoidance that underlies the
operation of these systems, seeks to coordinate the sequential
allocation of a finite set of reusable resources to a set of con-
currently executing processes so that all these processes are
able to receive the requested resources with finite delays, and
eventually complete and exit the system [1]. Furthermore,
there is an additional request for maximal permissiveness
for the corresponding supervisory control policies; i.e., these
policies should ensure the aforementioned capability of all
activated processes to run successfully to their completion,
while imposing the minimum possible restriction to the orig-
inal behavior that is generated by the uncontrolled system.
Such a maximally permissive supervisor – also, known as a
maximally permissive deadlock avoidance policy (DAP) – is
well-defined and unique for the RAS instantiations studied
in [1]. But it is also true that computing the maximally
permissive DAP is an NP-hard problem for almost all RAS
classes of interest [3].

Nevertheless, recognizing that the sought DAPs act as clas-
sifiers that dichotomize the underlying RAS state space into
admissible and inadmissible subspaces, the corresponding
research community has developed methodology that enables
the off-line synthesis of representations for these policies that
are very parsimonious, and therefore amenable for real-time
control [1]. Among these DAP representations, one of the

most interesting and tractable, in terms of, both, analysis
and implementation, is that of a “linear” classifier [4], [5],
[6]. In this case, the policy admissibility of any given state is
resolved based on the ability of this state to satisfy a given
set of linear inequalities. In the following, we shall refer to
DAPs that admit such a linear representation of their state-
acceptance logic as “linear” DAPs.

But as established in [7], [8], linear representation of the
maximally permissive DAP is not a viable option for all
RAS instantiations of practical interest. To circumvent this
limitation, the works of [9], [10], [11], [12] have proposed
additional representations for the sought classifiers that either
employ nonlinear discriminant functions of the RAS state,
or they constitute “non-parametric” classification schemes
that rely on the efficient storage and processing of explicit
information about the structure of the underlying state space.
These alternative representations have been shown to be
complete, i.e., they will always provide an effective repre-
sentation of the target DAP.

Yet, in spite of the aforementioned developments, in many
application contexts, DAPs that admit linear representation
are still a most desirable solution, due to the analyzability
of these policies, and their easy integrability into broader
decision-making frameworks. And, in fact, the literature
avails of methodology that can synthesize correct linear (but
not necessarily maximally permissive) DAPs for a large spec-
trum of RAS classes of practical interest. Some characteristic
examples of this methodology can be found in [13], [14],
[15], [16], [17], [18], while a more comprehensive treatment
of these methods is provided in Chapter 6 of [1]. But the
existing theory does not allow for an explicit characterization
and/or control of the extent of the sub-optimality of the
DAPs that are derived by it with respect to the maximally
permissive DAP.

Motivated by the last remark in the previous paragraph,
in this work we seek to develop a method for the systematic
development of linear DAPs that are appropriate for the ma-
jor RAS classes defined in [1], and observe a “maximality”
requirement in terms of their permissiveness (even though
they might be less permissive than the maximally permissive
DAP). We proceed to these developments by providing a
complete characterization of the target RAS class, and of
the notion of “maximality” that is observed by our policy
design. We also detail all the necessary algorithms for the
computation of a maximal linear DAP for any given instance
from the considered RAS class. These algorithms build upon
and extend the corresponding algorithms that are provided

2018 IEEE Conference on Decision and Control (CDC)
Miami Beach, FL, USA, Dec. 17-19, 2018

978-1-5386-1395-5/18/$31.00 ©2018 IEEE 3968

in [4], [6] for the computation of a linear representation
of the maximally permissive DAP, whenever this last DAP
admits a linear representation. Furthermore, they will return
the maximally permissive DAP itself, whenever this policy
admits a linear representation. Finally, since these new algo-
ritrhms utilize techniques similar to those used in [4], [6] as
their building blocks, they inherit the applicability potential
that has already been established in the literature for those
previous methods.

In view of the above positioning of the paper content and
its intended contribution, the rest of it is organized as follows:
The next section provides a formal characterization of the
RAS class of interest in this work, and of the corresponding
supervisory control problem of deadlock avoidance. This
section also overviews the existing results on the computation
of a parsimonious linear representation of the maximally
permissive DAP, and the conditions for the existence of such
a linear representation. Subsequently, Section III introduces
the new class of the maximal linear DAPs, motivating the
rationale for the definition of these policies and establishing
their well-posedness for any given instance from the consid-
ered RAS class. On the other hand, Section IV addresses the
more practical issue of computing the maximal linear DAPs
for any given RAS instance. Finally, Section V concludes
the paper and provides some directions for potential future
work.

II. THE CONSIDERED RAS CLASS AND THE
CORRESPONDING PROBLEM OF DEADLOCK AVOIDANCE

Disjunctive-Conjunctive RAS: The main ideas that define
the methodology to be presented in this work, are applicable
to the entire spectrum of RAS classes that are defined in [1].
But for better clarity and specificity, in the rest of this paper
we focus primarily on the class of Disjunctive-Conjunctive
(D/C-) RAS. This is a pretty broad RAS class that allows
for (i) an arbitrary structure of the resource requests that are
posed by the different processing stages, and also for (ii) the
presence of routing flexibility in the supported process plans.
A formal definition of the D/C-RAS class is as follows:

Definition 1: A Disjunctive-Conjunctive (D/C-) Resource
Allocation System (RAS) is a 4-tuple Φ = 〈R, C,P, D〉,
where:

1) R = {R1, . . . , Rm} is the set of the system resource
types.

2) C : R → Z+ – the set of strictly positive integers
– is the system capacity function, characterizing the
number of identical units from each resource type
available in the system. Resources are assumed to be
reusable, i.e., each allocation cycle does not affect
their functional status or subsequent availability, and
therefore, C(Ri) ≡ Ci constitutes a system invariant
for each i.

3) P = {Π1, . . . ,Πn} denotes the set of the system
process types supported by the considered system
configuration. Each process type Πj is a composite
element itself, in particular, Πj =< Θj ,Gj >, where:
(a) Θj = {θj1, . . . , θj,lj} denotes the set of processing
stages involved in the definition of process type Πj ,
and (b) Gj is an acyclic digraph with its node set, Qj ,

being bijectively related to the set Θj . Denoting by
Q↗j (resp., Q↘j) the set of source (resp., sink) nodes
of Gj , the available process plans for process type Πj

are represented by the paths leading from some node
qs ∈ Q↗j to some node qf ∈ Q↘j in digraph Gj .
Also, in the following, we shall set Θ ≡

⋃n
j=1 Θj

and ξ ≡ |Θ|.
4) D : Θ→

∏m
i=1{0, . . . , Ci} is the resource allocation

function associating every processing stage θjk with
the resource allocation vector D(θij) required for
its execution; it is further assumed that D(θij) 6=
0, ∀, i, j. At any point in time, the system contains
a certain number of (possibly zero) instances of each
process type that execute one of the corresponding
processing stages. A process instance executing a non-
terminal stage θij ∈ Qi\Q↘i , must first be allo-
cated the resource differential (D(θi,j+1)−D(θij))

+

in order to advance to (some of) its next stage(s)
θi,j+1, and only then will it release the resource units
|(D(θi,j+1)−D(θij))

−|, that are not needed anymore.
The considered resource allocation protocol further
requires that no resource type Ri ∈ R be over-
allocated with respect to its capacity Ci at any point
in time.

Finally, for purposes of complexity considerations, we
define the size |Φ| of RAS Φ by |Φ| ≡ |R|+ ξ +

∑m
i=1 Ci.

Modeling the D/C-RAS dynamics as a Finite State Au-
tomaton: The dynamics of the RAS Φ = 〈R, C,P, D〉 that
was described in the previous paragraph, can be further for-
malized by a Deterministic Finite State Automaton (DFSA)
G(Φ) = 〈S,E, f, s0 , SM 〉, that is defined as follows:

1) The state set S consists of ξ-dimensional vectors s. The
components s[l], l = 1, . . . , ξ, of s are in one-to-one
correspondence with the RAS processing stages, and
they indicate the number of process instances executing
the corresponding stage in the considered RAS state.
Hence, S consists of all the vectors s ∈ (Z+

0)ξ that
further satisfy

∀i = 1, . . . ,m,

ξ∑
l=1

s[l] ·D(θl)[i] ≤ Ci (1)

where, according to the adopted notation, D(θl)[i]
denotes the allocation request for resource Ri that is
posed by stage θl.1

2) The event set E is the union of the disjoint event sets
E↗, Ē and E↘, where:

a) E↗ = {erp : r = 0, θp ∈
⋃n
j=1Q

↗
j }, i.e.,

event erp represents the loading of a new process
instance that starts from stage θp.

b) Ē = {erp : ∃j ∈ 1, . . . , n s.t.
θp is a successor of θr in graph Gj}, i.e.,
erp represents the advancement of a process
instance executing stage θr to a successor stage

1Following standard practice in DES literature (cf., for instance, the
relevant definition in page 8 of [2]), in the rest of this document we will
frequently use the terms “space” and “subspace” in order to refer to the
state set S and its various subsets considered in this work.

3969

θp.
c) E↘ = {erp : θr ∈

⋃n
j=1Q

↘
j , p = 0}, i.e,

erp represents the unloading of a finished process
instance after executing its last stage θr.

3) The state transition function f : S×E → S is defined
by s′ = f(s, erp), where the components s′[l] of the
resulting state s′ are given by:

s′[l] =

 s[l]− 1 if l = r
s[l] + 1 if l = p
s[l] otherwise

We also notice that f(s, erp) is a partial function,
defined only if the resulting state s′ ∈ S. For any state
s ∈ S, the event set Γ(s) ⊆ E for which f(s, e) is
defined, constitutes the set of feasible events at s.

4) The initial state s0 = 0, i.e., the state vector with all its
components equal to zero. This initial state represents
the situation where the system is empty of any process
instances.

5) The set of marked states SM is the singleton {s0}.
This specification of SM expresses the requirement for
complete process runs.

Letting f̂ denote the natural extension of the state transi-
tion function f to S×E∗, the behavior of RAS Φ is modeled
by the language L(G) generated by DFSA G(Φ), i.e., by all
strings σ ∈ E∗ such that f̂(s0, σ) is defined. Furthermore,
we define the reachable subspace Sr of G(Φ) by

Sr ≡ {s ∈ S : ∃σ ∈ L(G) s.t. f̂(s0, σ) = s} (2)

and its safe subspace Ss by

Ss ≡ {s ∈ S : ∃σ ∈ E∗ s.t. f̂(s, σ) = s0} (3)

Also, in the following, we shall denote the complements of
Sr and Ss with respect to S by Sr̄ and Ss̄, and we shall refer
to them as the unreachable and unsafe subspaces. Finally,
Sxy , x ∈ {r, r̄}, y ∈ {s, s̄}, will denote the intersection of
the corresponding sets Sx and Sy .

The target behavior of G(Φ) and the maximally permissive
DAP: The desired – or “target” – behavior of RAS Φ is
expressed by the marked language Lm(G), which is defined
by means of the set of marked states SM , as follows:

Lm(G) ≡ {σ ∈ L(G) : f̂(s0, σ) ∈ SM}
= {σ ∈ L(G) : f̂(s0, σ) = s0} (4)

Equation 4, when combined with all the previous defini-
tions, further implies that the set of states that are accessible
under Lm(G) is exactly equal to Srs. Hence, we have the
following definition of the maximally permissive deadlock
avoidance policy (DAP) ∆∗ for the considered RAS:

Definition 2: The maximally permissive deadlock avoid-
ance policy (DAP) ∆∗ for any instantiation Φ from the
RAS class of Definition 1 is a supervisory control policy
that, at every state s ∈ Srs, admits a feasible transition
s′ = f(s, erp) of the underlying DFSA G(Φ) if and only
if s′ ∈ Ss. �

The reader should also notice that the above characteri-
zation of the policy ∆∗ further implies that, for any given

RAS instance Φ, this policy is unique.

The maximally permissive DAP as a classifier: According
to Definition 2, the maximally permissive DAP ∆∗ can
be effectively implemented through any mechanism that
recognizes and rejects the unsafe states that are accessible
through one-step transitions from Srs. In the following, we
shall refer to these particular unsafe states as “boundary”
unsafe states, and we shall perceive the policy ∆∗ as a
classifier that distinguishes effectively between reachable
safe states and boundary unsafe states.

As discussed in the introductory section, methodology for
the effective development of such a classifier is provided in
[4], [9], [10], [11], [12], [8], [6]. A result that has proven
very useful in the development of the corresponding theory,
is the following “monotonicity” property that is exhibited by
the RAS state safety:

Proposition 1: Consider the partial order “≤” that is de-
fined on the state space S of any given RAS Φ through the
following comparison of the state components:

∀s, s′ ∈ S, s ≤ s′ ⇐⇒ (∀l = 1, . . . ξ, s[l] ≤ s′[l]) (5)

Then,

1) s ∈ Ss ∧ s′ ≤ s =⇒ s′ ∈ Ss
2) s ∈ Ss̄ ∧ s ≤ s′ =⇒ s′ ∈ Ss̄

�
In [4] it is shown that, thanks to Proposition 1, it is possible

to develop a classifier that will distinguish correctly between
(a) the states of the reachable and safe subspace Srs, and (b)
the boundary unsafe states, by focusing only on the correct
classification of the maximal elements of the set Srs and
the minimal boundary unsafe states. Furthermore, additional
efficiencies in this endeavor, and in the on-line computational
complexity of the developed classifier, can be obtained by
identifying and removing from the classified vectors any
components corresponding to processing stages that do not
impact the safety of the system state (e.g., like the terminal
processing stages of any process type Πj). The reader is
referred to Chapter 4 of [1] for a concise and comprehensive
exposition of the corresponding theory on the effective and
efficient synthesis of the sought classifiers.

Linear representation of the maximally permissive policy
∆∗: As remarked in the introductory section, a desirable
representation of the classification logic that is effected
by the maximally permissive DAP ∆∗ is that of a linear
classifier. This last concept has been formally defined in [4]
as follows:

Definition 3: Consider two vector sets G and H from a
ξ-dimensional vector space V .

1) We shall say that sets G and H are linearly separated
by a set of k linear inequalities {(ai, bi) : i =
1, · · · , k} if and only if (iff)

(∀g ∈ G : ∀i ∈ {1, · · · , k}, aTi · g ≤ bi) ∧
(∀h ∈ H : ∃i ∈ {1, · · · , k}, aTi · h > bi) (6)

2) A linear classifier – or separator – for vector sets G and
H is structurally minimal, iff it employs the minimum

3970

possible number of linear inequalities that can separate
these two sets.

�
In the case of the classification that is effected by the DAP

∆∗, the roles of the sets G and H in Definition 3 are played,
respectively, by the sets S̄rs and S̄brs̄ that contain the maximal
reachable safe states and the minimal boundary unsafe states.
In this case, Proposition 1 implies the following additional
result for the sought classifiers [4]:

Proposition 2: If the maximally permissive DAP ∆∗ of
a given D/C-RAS Φ admits a representation as a linear
classifier of Definition 3, then, there exists such a linear
classifier with nonnegative parameters (ai, bi) for all the
involved inequalities. �

The astute reader will also notice that Definition 3 implies
an asymmetry for the role of the sets S̄rs and S̄brs̄ in
the design of the sought (linear) classifier. This asymmetry
is dictated by the further implementation of the resulting
classifier through some popular modeling frameworks for
the (controlled) RAS dynamics, and especially, the modeling
framework of Petri nets (PNs) [19]. In the PN modeling
framework, each of the inequalities implementing a linear
classifier that (a) presents the structure described in Def-
inition 3, and (b) satisfies the additional “non-negativity”
condition of Proposition 2, can be enforced on the RAS-
modeling PN through the addition of a single place that is
known as the corresponding “monitor” place [20], [21]. More
importantly, the resulting PN, that represents the behavior of
the controlled RAS, belongs to the same class with the PNs
that model the uncontrolled RAS behavior, and therefore, it
is amenable to the same analysis and design methods that
are available for the “plant” (i.e., the RAS-modeling) PN.

On the other hand, it is also well known that ∆∗ might not
admit a linear representation along the lines of Definition 3
[7], [8].2 Such a case is provided in Figure 1, where it
can be seen that the lack of a linear representation for the
corresponding DAP ∆∗ is due to the inclusion of elements
of the set S̄brs̄ in the convex hull of Srs. As remarked in
the introductory section, this problem has been addressed
through the development of additional representations for
the classification logic that is effected by the target policy
∆∗. However, these representations are not amenable to
the PN-based implementation of ∆∗ that was discussed in
the previous paragraph, and to the various analytical and
computational possibilities and efficiencies that result from
such an implementation. One such possibility that is of
particular interest in an ongoing research program of ours
is the inclusion of the logic of the employed DAP into some
linear programming formulations that seek to complement
the preventive control of deadlock avoidance with scheduling
capability, and are known as “fluid relaxations” of the
underlying RAS dynamics.3

2Also, some interesting related work concerning the limitations of the
aforementioned structure of “monitor” places to provide effective represen-
tation of the maximally permissive supervisor that ensures deadlock-free
and/or live operation for various PN classes, can be found in [22], [23].

3Some representative works that employ LP-based “fluid relaxations” as
instruments for computing efficient scheduling policies for complex resource
allocation, can be found in [24], [25], [26], [27].

Fig. 1: Characterization of the safe and unsafe reachable states for
an example D/C-RAS with two resource types, R1 and R2, with
corresponding capacities C(R1) = C(R2) = 2, and two process
types, Π1 and Π2, with corresponding process plans R1 → 2.R2

and R2 → 2.R1. Recognizing that the terminal processing stages
of these two process types will never get involved in a deadlock,
the information that is provided by this figure is projected on the
sub-space that is defined by the state components s1 and s3, which
correspond to the first processing stage of each process plan. Safe
reachable states are depicted by rhombi and unsafe reachable states
by squares. The reader should notice that the convex hull of the
depicted safe states includes the unsafe state corresponding to point
(1, 1), and therefore, in this case, the reachable safe states and the
boundary unsafe states of the considered system are not linearly
separable.

Motivated by the above remarks and needs, in the rest
of this work, we define an approximation to the maximally
permissive DAP ∆∗ that (i) admits a linear representation
along the lines of Definition 3 and Proposition 2, and (ii) is
effectively computable for every instance Φ of the considered
class of D/C-RAS. Furthermore, the formal definition of
these policies employs a notion of “maximality” that intends
to keep their permissiveness as close as possible to the
permissiveness of ∆∗. We provide a formal characterization
of this “maximality” concept, and the necessary algorithms
for the effective computation of the corresponding policies,
for any given D/C-RAS Φ.

III. MAXIMAL LINEAR DAPS

The formal definition of the maximal linear DAPs and
its motivation: This section introduces the new concept
of the “maximal linear DAP”, as it materializes in the
considered class of D/C-RAS. We shall formally define this
new DAP class by providing a complete set of conditions
that must be satisfied by the admissible subspaces of its
constituent policies. Hence, let ∆ denote a tentative DAP
from the considered class for some given D/C-RAS Φ, and
let Sa(∆) ⊆ S denote the corresponding policy-admissible
subspace. We also define Sā(∆) ≡ S \ Sa(∆). For the
dynamics of the controlled system to be well-defined, clearly
we need

s0 ∈ Sa(∆) (7)

Then, we can also define Sr(∆), the reachable subspace of
Φ under policy ∆, as the limit set of the following recursion:

3971

Sr(∆)(0) := {s0} (8)
Sr(∆)(k+1) := Sr(∆)(k) ∪ {s′ ∈ Sa(∆) :

∃s ∈ Sr(∆)(k), e ∈ Γ(s) with f(s, e) = s′} (9)

A primary requirement in the specification of the sought
policy ∆ is that it does not induce any new deadlocks or
livelocks; such a DAP is characterized as “correct” in the
relevant literature [1]. The correctness of ∆ translates into
the following requirement for the corresponding set Sr(∆):

∀s ∈ Sr(∆), ∃e ∈ Γ(s) \ E↗, f(s, e) ∈ Sr(∆) (10)

In more natural terms, the condition of Equation 10 re-
quires that at every state s that is reachable in the considered
RAS under supervision by ∆, there is a policy-admissible
event e that concerns the stage advancement or the unloading
of an already initiated process instance. In Chapter 6 of
[1] it is shown that this condition further implies that the
subgraph Gr(∆) of the state transition diagram (STD) of the
FSA G(Φ) that is induced by the state set Sr(∆), contains
the initial state s0 and it is strongly connected. Hence, state
s0 is reachable from every state s ∈ Sr(∆), and therefore,
there will be no deadlocks or livelocks in the operation of
the controlled RAS.

Next we address the requirement that the sought policy
∆ will admit a representation through the linear classifiers
of Definition 3. Furthermore, for the reasons that were
explained in the previous section, we also want the linear
representations for our target policies ∆ to satisfy the “non-
negativity” property of Proposition 2.

To formally state the conditions that will help us meet
these two requirements, let us denote the convex hull of any
given vector set V by conv(V), and also define the set Sbr̄(∆)
as follows:

Sbr̄(∆) ≡ {s′ ∈ Sr \ Sa(∆) :

∃s ∈ Sr(∆), e ∈ Γ(s) with f(s, e) = s′} (11)

The set Sbr̄(∆) contains all the states s that are reachable
through a single transition from Sr(∆) but are blocked
by policy ∆. Hence, this set collects all the “boundary
inadmissible” states in the controlled dynamics of RAS Φ.

Then, in analogy to the corresponding results for the
maximally permissive DAP ∆∗, the aforestated requirement
for a representation of the policy ∆ through a linear classifier
of Definition 3 with non-negative coefficients can be met
by introducing the following two conditions to the policy
specification:

∀s, s′ ∈ Sa(∆), s′ ≤ s ∧ s ∈ Sa(∆) =⇒ s′ ∈ Sa(∆) (12)
conv(Sr(∆)) ∩ Sbr̄(∆) = ∅ (13)

Up to this point, we have articulated the requirements that
must be satisfied by the sought DAP ∆ for any given D/C-
RAS Φ so that (i) it is correct, and (ii) admits a desired linear
representation, as qualified by Definition 3 and the condition
of Proposition 2. Policy ∆ will also be a “maximal” (correct)
linear DAP for RAS Φ, if there is no other correct linear
DAP ∆′ for RAS Φ with an admissible reachable subspace
Sr(∆

′) such that Sr(∆′) ⊃ Sr(∆).

The following definition provides a more formal expres-
sion to all the previous discussion.

Definition 4: A policy ∆ is a linear DAP for some given
D/C-RAS Φ iff its admissible subspace Sa(∆) satisfies the
following conditions:

Correctness: (s0 ∈ Sa(∆)) ∧(
∀s ∈ Sr(∆), ∃e ∈ Γ(s) \ E↗, f(s, e) ∈ Sr(∆)

)
Monotonicity: ∀s, s′ ∈ Sa(∆),

s′ ≤ s ∧ s ∈ Sa(∆) =⇒ s′ ∈ Sa(∆)

Linearity: conv(Sr(∆)) ∩ Sbr̄(∆) = ∅
Furthermore, a linear DAP ∆ for a given D/C-RAS Φ is

maximal iff there is no other linear DAP ∆′ for D/C-RAS
Φ with Sr(∆′) ⊃ Sr(∆). �

Example: Two maximal linear DAPs for the example D/C-
RAS of Figure 1, are the DAPs ∆1 and ∆2 that will admit
a state s ∈ S if its projection on the 2-dim space that
is defined by the state components s1 and s3, belongs,
respectively, in the sets S1

a ≡ {(0, 0), (1, 0), (2, 0), (0, 1)}
and S2

a ≡ {(0, 0), (1, 0), (0, 1), (0, 2)}.
Indeed, both of these policies admit the initial state s0

and it can be easily checked that they do not suffer from
any policy-induced deadlock or livelock. Furthermore, they
satisfy the “monotonicity” requirement of Definition 4, and
the corresponding state sets Sr(∆i), Sbr̄(∆

i), i = 1, 2, will
admit linear separation in the projected space that is defined
by the state coordinates s1 and s3. Finally, these two policies
are also maximal, since the only possible expansion of the
corresponding sets Sr(∆

i), i = 1, 2, is by re-admitting
the blocked pairs (0,2) and (2,0) in the corresponding sets
Sia, i = 1, 2; but the policy that will result from any of these
two augmentations is ∆∗, and we know that this policy is
not linear.

Finally, the reader should also notice that Sr(∆1) 6=
Sr(∆

2), and therefore, the two policies ∆1 and ∆2 are
essentially different.

Existence but non-uniqueness of maximal linear DAPs:
The closing remark in the previous example further implies
that, for any given D/C-RAS Φ, the maximal linear DAPs
of Definition 4 will not be unique, in general. Hence, for
further reference, we shall denote the set of linear DAPs for
any given D/C-RAS Φ by L(Φ), and its subset that contains
its maximal elements by L̄(Φ).

The next result is also important for the well-posedness of
the considered DAP class.

Proposition 3: For any given D/C-RAS Φ, L̄(Φ) 6= ∅.
Proof: For any given D/C-RAS Φ, consider the policy ∆̂

that admits a state s ∈ S iff (a) either it is the initial state
s0, or (b) it contains only one active process instance. Then,
it is easy to see that the policy ∆̂ is correct, and satisfies the
“monotonicity” requirement of Definition 4. It is also clear
that the admissibility logic of this policy can be expressed
by the linear inequality

ξ∑
i=1

s[i] ≤ 1

3972

Algorithm 1 The main algortihm for computing L̄(Φ)

Input: DFSA G(Φ)
Output: L̄(Φ)

/* INITIALIZE */
1: STORE := NILL; EXPLORE := 〈S̄rs〉;

/* MAIN ITERATION */
2: while EXPLORE 6= NILL do
3: S̄r := POP(EXPLORE); Compute S̄br̄ ;
4: if ((S̄r, S̄br̄) linearly separable) AND

(6 ∃ S̄′r ∈ STORE : S̄′r ⊇ S̄r) then
5: Remove from STORE any element sets S̄′′r s.t.

S̄′′r ⊂ S̄r;
6: Enter S̄r in STORE;
7: else
8: for all s ∈ S̄r do
9: S̃r := PRUNE(S̄r, s, G(Φ));

10: if (6 ∃ S̄′r ∈ STORE : S̄′r ⊇ S̃r) then
11: PUSH(S̃r;EXPLORE);
12: end if
13: end for
14: end if
15: end while

/* TERMINATE */
16: return STORE;

Algorithm 2 Function PRUNE(S̄, s̃, G(Φ))

Input: DFSA G(Φ), maximal-state set S̄, pruned state s̃
Output: PRUNE(S,G(Φ))

1: Ŝr := {s0};
2: while Ŝ := {s ∈ S \ (Ŝr ∪ {s̃}) : (∃s′ ∈ Ŝr, e ∈

Γ(s′) with f(s′, e) = s) AND (∃s′′ ∈ S̄ s.t. s ≤ s′′)} 6=
∅ do

3: Ŝr := Ŝr ∪ Ŝ;
4: end while
5: while Ŝ := {s ∈ Ŝr : ∀e ∈ Γ(s)\E↗, f(s, e) 6∈ Ŝr} 6=
∅ do

6: Ŝr := Ŝr \ Ŝ;
7: end while
8: S̄r := {s ∈ Ŝr : 6 ∃s′ s.t. s′ > s};
9: return S̄r;

Hence, the set of linear DAPs for any given D/C-RAS
Φ, L(Φ), is non-empty. Since this set is also finite, it will
possess well-defined maximal elements, and therefore, the
set L̄(Φ) is also non-empty. �

With the notion of the maximal linear DAP well-defined,
next we turn to the development of the necessary algorithms
that will provide a maximal linear DAP for any given D/C-
RAS Φ.

IV. COMPUTING THE MAXIMAL LINEAR DAPS

In this section, we present a complete algorithm that will
generate all the maximal linear DAPs ∆ for any given D/C-
RAS Φ. This algorithm essentially starts with the set of
reachable and safe states, Srs, that defines the reachable

subspace under the maximally permissive DAP ∆∗, and
seeks to detect all the maximal subsets of this set that
will define correct linear DAPs. Each subset of Srs that is
considered by this process, is obtained from a “parent” subset
by removing (i) a single maximal element of the “parent” set,
and (ii) any additional states that need to be removed in order
to restore the correctness of the induced DAP. The induced
DAP itself is tested for membership in L(Φ), through the
corresponding algorithms that are available in [4], [6]. Fi-
nally, another salient point of the presented algorithm is that
the aforementioned subsets of Srs that are generated during
the search process, are primarily represented by means of
their maximal elements; in the presented pseudo-code, this
fact is indicated by “barring” or “tilding” the corresponding
sets.

The complete pseudo-code of the aforementioned algo-
rithm is presented in Algorithm 1. The algorithm uses two
lists, STORE and EXPLORE, that hold, respectively,
(a) the subsets of Srs that correspond to linear DAPs and
are maximal among the currently detected such sets, and
(b) subsets of Srs that have been generated as potential
candidates for specifying maximal linear DAPs, but have not
been assessed and further processed yet.

As it can be seen in Lines 3–14 of Algorithm 1, the
processing of a set that has been extracted from the list
EXPLORE, consists of the following steps: First this set
is checked whether it defines a linear DAP.4 If this is the
case, and, furthermore, this set is not dominated by any
set already in STORE, the set is entered in STORE as
the reachable subspace of a tentative maximal linear DAP.
During this stage, STORE is also cleared by any already
stored sets that are dominated by the new entrance. If, on the
other hand, the considered set does not specify a linear DAP,
then it spawns a number of entries for the list EXPLORE.
Each of these entries is generated through (i) the removal of
a maximal element from the “parent” set, and (ii) the further
pruning of the resulting set in order to ensure that it specifies
a correct DAP. The function that performs this pruning is
listed in Algorithm 2, and it constitutes a “fixed point”
computation that seeks to establish the correctness condition
of Definition 4. An additional element that is important for
ensuring the correctness of the proposed algorithm, is that
the list EXPLORE is processed according to the First-In-
First-Out (FIFO) policy; in this way, all sets that are stored
in that list are processed after their “parent” sets.

The entire algorithm is initialized with list STORE empty
and list EXPLORE containing the set Srs (represented
by its maximal elements). Hence, the algorithm will assess
whether the maximally permissive DAP ∆∗ is a linear DAP,
and if this is the case, it will terminate without considering
any other policies. In the opposite case, it will run as
described in the previous paragraph, eventually returning the
contents of the list STORE as its output. The algorithm ter-
mination will take place when the list EXPLORE becomes
empty.

We also notice, for completeness, that the set dominance
that is tested in certain parts of the algorithm, can be resolved

4As already mentioned, this test can be performed through the procedures
that have been developed in [4], [6].

3973

by means of the maximal elements that are stored in the
employed representations of these sets, through the following
criterion:

S̄r ⊇ S̄′r ⇐⇒ ∀s′ ∈ S̄′r, ∃s ∈ S̄r : s ≥ s′ (14)

Finally, we conclude this section with the following the-
orem that formally states the correctness of the presented
algorithm.

Theorem 1: When applied on any given D/C-RAS Φ,
Algorithm 1 will terminate in a finite number of steps, and it
will return a nonempty output that is a correct enumeration
(under the adopted representation) of the set L̄(Φ).

The space limitations imposed for this document do not
allow the inclusion of the proof of the above theorem in the
document itself. However, a complete proof of the theorem
is contained in a technical report under the same title that
can be obtained from the second author upon request.

V. CONCLUSIONS

This paper has provided a complete algorithm for enumer-
ating all the correct DAPs of a D/C-RAS Φ that (i) admit
a representation as a linear classifier5, and (ii) are maximal
in terms of their admissible subspaces. A significant part of
the paper contribution is that it provided thorough definitions
of the concept of the “linear DAP” for the considered RAS,
and of the notion of “maximality” that can be pursued in this
policy space. As discussed in the main part of the paper, the
availability of these policies enables all the advantages of the
underlying linear representation of the policy logic, and at the
same time, it controls the sub-optimality that will result from
a potential departure from the maximally permissive DAP
∆∗ (in the case that the latter is not linearly representable).
The paper also outlines specific aspects in our ongoing work
on the real-time control of the considered RAS that have
motivated our practical interest in the considered class of
policies. Additional future work on the presented results can
also investigate the possibility for further enhancements in
the detailed implementation of the presented algorithm.

Acknowledgement

This work has been partially supported by NSF grant
ECCS-1707695.

REFERENCES

[1] S. Reveliotis, “Logical Control of Complex Resource Allocation
Systems,” NOW Series on Foundations and Trends in Systems and
Control, vol. 4, pp. 1–224, 2017.

[2] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems (2nd ed.). NY, NY: Springer, 2008.

[3] S. Reveliotis and E. Roszkowska, “On the complexity of maximally
permissive deadlock avoidance in multi-vehicle traffic systems,” IEEE
Trans. on Automatic Control, vol. 55, pp. 1646–1651, 2010.

[4] A. Nazeem, S. Reveliotis, Y. Wang, and S. Lafortune, “Optimal
deadlock avoidance for complex resource allocation systems through
classification theory,” in Proceedings of the 10th Intl. Workshop on
Discrete Event Systems. IFAC, 2010, pp. 277–284.

[5] Y. F. Chen and Z. W. Li, “Design of a maximally permissive liveness-
enforcing supervisor with a compressed supervisory structure for
flexible manufacturing systems,” Automatica, vol. 47, pp. 1028–1034,
2011.

5according to the definition and the usage of this concept in the past
literature [4]

[6] R. Cordone and L. Piroddi, “Parsimonious monitor control of petri
net models of flexible manufacturing systems,” IEEE Trans. on SMC:
Systems, vol. 43, pp. 215–221, 2013.

[7] S. Reveliotis and A. Nazeem, “Optimal linear separation of the safe
and unsafe subspaces of sequential RAS as a set-covering problem:
algorithmic procedures and geometric insights,” SIAM Journal on
Control and Optimization, vol. 51, pp. 1707–1726, 2013.

[8] R. Cordone, A. Nazeem, L. Piroddi, and S. Reveliotis, “Designing
optimal deadlock avoidance policies for sequential resource allocation
systems through classification theory: existence results and customized
algorithms,” IEEE Trans. Autom. Control, vol. 58, pp. 2772–2787,
2013.

[9] A. Nazeem and S. Reveliotis, “Designing maximally permissive dead-
lock avoidance policies for sequential resource allocation systems
through classification theory: the non-linear case,” IEEE Trans. on
Automatic Control, vol. 57, pp. 1670–1684, 2012.

[10] ——, “A practical approach for maximally permissive liveness-
enforcing supervision of complex resource allocation systems,” IEEE
Trans. on Automation Science and Engineering, vol. 8, pp. 766–779,
2011.

[11] ——, “Efficient enumeration of minimal unsafe states in complex
resource allocation systems,” IEEE Trans. on Automation Science &
Engineering, vol. 11, pp. 111–124, 2014.

[12] Z. Fei, S. Reveliotis, S. Miremadi, and K. Akesson, “A BDD-based
approach for designing maximally permissive deadlock avoidance
policies for complex resource allocation systems,” IEEE Trans. on
Automation Science and Engineering, vol. 12, pp. 990–1006, 2015.

[13] J. Ezpeleta, J. M. Colom, and J. Martinez, “A Petri net based deadlock
prevention policy for flexible manufacturing systems,” IEEE Trans. on
R&A, vol. 11, pp. 173–184, 1995.

[14] S. A. Reveliotis and P. M. Ferreira, “Deadlock avoidance policies
for automated manufacturing cells,” IEEE Trans. on Robotics &
Automation, vol. 12, pp. 845–857, 1996.

[15] M. Lawley, S. Reveliotis, and P. Ferreira, “A correct and scalable
deadlock avoidance policy for flexible manufacturing systems,” IEEE
Trans. on Robotics & Automation, vol. 14, pp. 796–809, 1998.

[16] J. Park and S. A. Reveliotis, “Deadlock avoidance in sequential
resource allocation systems with multiple resource acquisitions and
flexible routings,” IEEE Trans. on Automatic Control, vol. 46, pp.
1572–1583, 2001.

[17] Z. Li and M. Zhou, “Elementary siphons of Petri nets and their
application to deadlock prevention in flexible manufacturing systems,”
IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems
and Humans, vol. 34, no. 1, pp. 38–51, 2004.

[18] F. Tricas, F. Garcia-Valles, J. M. Colom, and J. Ezpeleta, “A Petri net
structure-based deadlock prevention solution for sequential resource
allocation systems,” in Proceedings of the ICRA 2005. IEEE, 2005,
pp. 271–277.

[19] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, pp. 541–580, 1989.

[20] A. Giua, F. DiCesare, and M. Silva, “Generalized mutual exclusion
constraints on nets with uncontrollable transitions,” in Proceedings of
the 1992 IEEE Intl. Conference on Systems, Man and Cybernetics.
IEEE, 1992, pp. 974–979.

[21] M. V. Iordache and P. J. Antsaklis, Supervisory Control of Concurrent
Systems: A Petri net structural approach. Boston, MA: Birkhäuser,
2006.

[22] M. V. Iordache, M. J. O., and P. J. Antsaklis, “Synthesis of deadlock
prevention supervisors using Petri nets,” IEEE Trans. on Robotics and
Automation, vol. 18, pp. 59–68, 2002.

[23] M. V. Iordache and P. J. Antsaklis, “Design of t-liveness enforcing
supervisors in petri nets,” IEEE Trans. on Automatic Control, vol. 48,
pp. 1962–1974, 2003.

[24] G. Weiss, “On the optimal draining of re-entrant fluid lines,” Georgia
Tech and Technion, Tech. Rep., 1994.

[25] J. G. Dai and G. Weiss, “Stability and instability of fluid models for
certain re-entrant lines,” Math. of Op. Res., vol. 21, pp. 115–134, 1996.

[26] S. Meyn, Control Techniques for Complex Networks. Cambridge,
UK: Cambridge University Press, 2008.

[27] M. Ibrahim and S. Reveliotis, “Throughput maximization of capaci-
tated re-entrant lines through fluid relaxation,” in Proc. of ACC’18.
APS, 2018, pp. –.

3974

