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Abstract— This paper extends the scheduling methodology
for complex stochastic networks that is based on the solution
of a “fluid” relaxation at each decision point of the original
scheduling problem, to stochastic networks with blocking and
deadlocking effects. For a clearer and more concrete treatment,
the presented results are developed in the operational context of
a re-entrant line with finite buffering capacity at each worksta-
tion; these re-entrant lines are characterized as “capacitated re-
entrant lines (CRLs)”. From a methodological standpoint, the
paper results are enabled by a pre-established ability to control
the underlying resource allocation for deadlock freedom, and
by the further ability to express the corresponding deadlock
avoidance policy as a set of linear inequalities on the system
state. Also, the employed LP relaxation differs considerably
from similar past developments, since it must account for the
blocking effects that take place in the considered CRLs. A
small example provided at the last part of the paper highlights
all the aforementioned developments, and helps assessing their
efficacy.

Keywords – Stochastic scheduling, stochastic networks with
blocking and deadlocking effects, liveness-enforcing supervision,
fluid relaxation

I. INTRODUCTION

While the scheduling of complex stochastic networks is
a very thriving area in the context of the controls and
operations research (OR) literature [1], [2], [3], the partic-
ular problem of scheduling such stochastic networks with
extensive blocking and deadlocking effects has received
very limited attention. We believe that this reality is due
to the fact that the effective scheduling of this particular
class of stochastic networks requires the resolution of an
additional type of problem that concerns the establishment
of “liveness” for the underlying workflow, i.e., the ability
of all the activated jobs to proceed to their completion
securing successfully all the required resources for the ex-
ecution of their various processing stages, and avoiding the
formation of any deadlocks or livelocks. On the other hand,
this problem of liveness-enforcement has received extensive
attention within a certain part of the controls community
during the past decades, and the currently available results
provide a broad range of methods and policies able to support
the necessary supervision for the aforementioned class of
stochastic networks, in a way that is, both, operationally
and computationally efficient [4]. Hence, motivated by the
previous remarks, this work seeks to develop a methodology
for effective and computationally efficient scheduling of
stochastic networks with blocking and deadlocking effects,
combining the existing liveness-enforcing supervision theory
for this class of systems with some scheduling methodology
that has already been developed by the OR community for
some other classes of stochastic networks that do not present
any blocking in their workflow dynamics.

More specifically, the scheduling methodology pursued
in this work seeks to identify an optimized action at each
decision point by formulating and solving a linear program
(LP) that retains substantial information about the underlying
system dynamics and will be referred to as the corresponding
“LP relaxation”. As already mentioned, the idea of determin-
ing a scheduling policy through the formulation and solution
of pertinent LP relaxations has been pursued in the past in
the context of some other classes of stochastic networks;
the reader is referred to [5], [2], [6], [7], [8], [9], [10] for
specific examples. However, to the best of our knowledge,
this is the first work to extend the “LP relaxation”-based
scheduling methodology to workflows with blocking and
deadlocking effects. The extension is non-trivial since, as
explained above, the new models and formulations must
account for (i) the blocking effects that take place in these
stochastic networks, and (ii) the stipulations of the employed
liveness-enforcing supervisor (LES – also known as the
applied deadlock avoidance policy, or DAP, for short). We
address systematically all these issues in the later parts of the
paper. But for better clarity and specificity, our results are
presented in the particular operational context of re-entrant
lines with finite buffering capacity at each workstation; we
shall refer to these re-entrant lines as “capacitated re-entrant
lines (CRLs)”.1 Furthermore, the last part of the paper
provides a small example that demonstrates more vividly the
salient points of the underlying methodology, and reveals its
efficacy. On the other hand, the imposed space limitations do
not allow an expansive treatment of the presented material;
such a treatment can be found in [12], which also presents
a set of numerical experiments that assess more thoroughly
the efficacy and the computational efficiency of the presented
method.2

In view of the above positioning of the paper content
and its intended contributions, the rest of it is organized as
follows: Section II introduces the considered CRL model
and the corresponding throughput maximization problem.
This section also reviews the main results from the control
theory of liveness-enforcing supervision that are necessary
for the complete definition of the addressed CRL schedul-
ing problem, and expresses this scheduling problem as an
average-reward continuous-time MDP. Subsequently, Sec-
tion III presents the scheduling methodology that is pursued
in this work, and Section IV provides the highlighting

1The uncapacitated re-entrant line (RL) has received extensive attention
in the scheduling literature since it gives rise to challenging scheduling
problems while retaining some of the operational simplicity and analytical
tractability of a manufacturing flowline [11], [1].

2This manuscript is accessible through the personal website of the second
author.
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example. Finally, Section V concludes the paper and points
out some directions for future work.

II. THE CAPACITATED RE-ENTRANT LINE AND THE
CORRESPONDING THROUGHPUT MAXIMIZATION

PROBLEM

The considered CRL model: The capacitated re-entrant
line to be considered in this work consists of L single-
server workstations, W1,W2, . . . ,WL, each possessing finite
buffering capacity Bi, i = 1, . . . , L. The line supports a sin-
gle process plan with M processing stages, J1, J2, . . . , JM .
Each processing stage Jj is carried out at one of the line
workstations which will be denoted by W (Jj). We further
assume that L < M , an assumption that manifests the re-
entrant nature of the line.

Some additional assumptions regarding the structure and
the operation of the considered CRL, that will facilitate the
exposition of the developments that are presented in this
work, are as follows: The buffering capacity Bi of each
workstation Wi is provided as Bi buffer slots, with each slot
being able to hold a single part. Furthermore, parts visiting
the workstation are processed within their allocated buffer
slot, with the workstation server visiting this buffer slot.
Hence, any part visiting this workstation will remain in its
allocated slot during its entire sojourn at this station, and
at any time point during this sojourn, the part will either
be waiting for processing, be in processing, or will have
completed processing and it will be waiting for transfer to
the next required workstation. Furthermore, completed parts
can move to the next required workstation only when there
is available capacity at this workstation.3

Processing times for each processing stage Jj are assumed
to be exponentially distributed with mean processing time
τj . And we shall also set µj ≡ 1/τj , ∀j.4 Furthermore, part
loading and transfer times between the line workstations are
assumed to be negligible with respect to (w.r.t.) processing
times.5

Finally, since in the following developments our primary
objective is the throughput maximization of the line, we also
assume the existence of an “infinite backlog” of parts waiting
for processing in front of the line; hence, the line never
starves for work.

Abstracting the CRL “untimed” dynamics through a finite
state automaton: Following the relevant theory presented in
[4], we model the basic structure of the workflow dynam-
ics of the introduced CRL model, and the corresponding
resource allocation function, by means of a finite state
automaton (FSA) Φ [14]. A pertinent definition of a notion
of state for this automaton can be based on the number of
the parts waiting for processing, being processed or having

3This statement will be further qualified in the later parts of this section
in order to account for the need for deadlock avoidance and the additional
restrictions that are enforced by the adopted DAP.

4While the assumption of exponential processing times is meant to
simplify the exposition of the theory that is developed in this paper, more
generally distributed processing times can be handled by approximating
them by phase-type distributions to any desired degree of accuracy; please,
c.f. to [13] for an introduction to phase-type distributions, and to [14] for a
brief introduction on the modeling of non-Markovian dynamics by phase-
type distributions.

5Non-zero loading and transfer times can be easily included in the
considered model through the addition of further stages in the underlying
process plan.

completed processing of the different processing stages, Jj ,
of the supported process plan. More specifically:

Definition 2.1: The state s of the CRL model considered
in this work is a 3M -dimensional vector with component
3j + k, j = 0, . . . ,M − 1, k = 1, 2, 3, denoting respec-
tively the number of parts that are waiting for processing,
executing, or having completed processing stage Jj .

In the following, we shall denote the resulting state space
by S. The set of events, E, that advance state s, consists
of (i) the event el that loads a new part on the line; (ii)
the events eaj , j = 1, . . . ,M − 1, that advance a part
from workstation W (Jj) to the next requested workstation,
W (Jj+1), allocating to this part a free buffer slot of the new
workstation; (iii) the events epj , j = 1, . . . ,M , that initiate
the processing a part at workstation W (Jj) by allocating
to it the corresponding server; (iv) the events edj , j =
1, . . . ,M , that de-allocate the server upon completion of
the part processing; and (v) the event eu that unloads a
completed part from the line. Events of type (i), (ii), (iii)
and (v) can be executed in zero time w.r.t. their activation,
and their execution is controllable by the line supervisor. On
the other hand, events of type (iv) occur spontaneously upon
the completion of the processing of the corresponding part,
and therefore, they will be treated as uncontrollable events.
Furthermore, there is a nonzero lag between a type (iii)
event and the execution of the corresponding type (iv) event
that represents the necessary processing time. Finally, since,
in the considered CRL model, part loading and unloading
require zero time, and there is an infinite backlog of jobs
waiting for processing, it is possible to simplify the state
concept introduced in Definition 2.1 by dropping the first and
the last component of the state vector s; i.e., parts seeking to
execute their first processing stage can be loaded into the line
only when the corresponding server is available, and parts
having completed processing of the last processing stage can
be unloaded immediately. In the following, we shall adopt
this simplified state model, with the necessary adjustments
in the corresponding notation.

The initial and also the only marked state of the abstracted
FSA Φ is state s0 = 0, i.e., the state where the line is
empty of any parts. However, as remarked in the introductory
section, the ability of the considered CRL to reach its marked
state s0 can be compromised by the formation of deadlock.
In the considered operational context, deadlock results when
a set of workstations have their buffer slots fully allocated
to parts requesting a workstation in this same set for their
advancement to their next processing stage. CRL states
containing such deadlocks must be actively identified and
blocked during the line operation. This task necessitates the
deployment of a pertinent deadlock avoidance policy (DAP),
and the effective development of such a DAP for any given
CRL configuration is supported by the relevant supervisory
control theory presented in [4]. Next, we overview some
basic developments in [4] that are particularly relevant to
the needs of this work.

Establishing deadlock freedom for the considered CRL
model: Since, in the considered CRL context, deadlock is due
only to the allocation of the workstation buffering capacity
(and not to the allocation of the processing capacity of
the line servers), the corresponding problem of deadlock
avoidance can be focused on this particular allocation. This
can be achieved by considering the further abstraction of the
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FSA Φ, that was introduced in the previous subsection, to
the FSA Φ̂ with a (vector) state ŝ that considers collectively
all the parts located at workstation W (Jj), j = 1, . . . ,M ,
for the execution of the corresponding processing stage Jj
(i.e., state ŝ will not discriminate whether these parts are
waiting for processing, are in processing, or have completed
processing and are waiting for transfer to the next required
workstation). Also, we shall let Ŝ denote the entire state
space of FSA Φ̂. Similarly, the event set Ê of Φ̂ will consist
only of the type (i), type (ii) and type (v) events of the
original FSA Φ. Finally, the initial and also unique marked
state of Φ̂ will be state ŝ0 = 0, representing the empty state
of the underlying CRL.

We shall further denote by Ŝr the set of reachable states
of Φ̂, i.e., the states ŝ ∈ Ŝ that are accessible from state
ŝ0 through some feasible event sequence σ ∈ Ê∗.6 On the
other hand, state set Ŝs will denote the set of co-reachable
– or “safe” – states of Φ̂, i.e., the states ŝ ∈ Ŝ from which
state ŝ0 is accessible through some feasible event sequence
σ′ ∈ Ê∗. We shall also set Ŝr̄ ≡ Ŝ \ Ŝr and Ŝs̄ ≡ Ŝ \ Ŝs,
and we shall refer to these two sets, respectively, as the sets
of the unreachable and the unsafe states. Finally, we shall
also use the notation Ŝxy ≡ Ŝx ∩ Ŝy , for x ∈ {r, r̄} and
y ∈ {s, s̄}.

In the state transition diagram (STD) Ĝ representing the
dynamics of FSA Φ̂, the subgraph that is induced by the
state set Ŝrs is the maximal strongly connected component
of Ĝ containing the empty state ŝ0. Hence, in order to avoid
deadlock while imposing the minimal possible restriction on
the CRL behavior that is represented by FSA Φ̂, we need to
identify and block transitions from subspace Ŝrs to subspace
Ŝrs̄. The resulting DAP will be characterized as maximally
permissive, it is uniquely defined, and it will be denoted by
∆∗.

The work of [4] provides a complete methodology for
the effective deployment of the optimal DAP ∆∗ for any
instantiation of the CRL model that is considered in this
work, as well as efficient approximations of this DAP that
are guaranteed to take the form of a small set of linear
inequalities imposed upon the FSA state ŝ. In the next
section, we exploit this linear representation of the applied
DAP ∆ in order to develop a scheduling method for the
considered CRLs through a pertinent “fluid relaxation” of
the underlying dynamics.

The problem of throughput maximization of the considered
CRL model: The application of the aforementioned DAPs, ∆,
on any given CRL configuration will restrict the line opera-
tion from the original subspace Ŝr to the policy-admissible
subspace Ŝa. Furthermore, for a correctly defined DAP ∆,
the state set Ŝa is a subset of Ŝrs, the set of reachable and
safe states, and it induces a strongly connected component,
Ĝa, of the STD Ĝ, that contains the empty state ŝ0. Policy
∆ can be “lifted” to the original FSA Φ that models more
completely the operation of the underlying CRL, through a
state admission rule that will admit a state s ∈ S if and only
if (iff ) the corresponding state ŝ belongs in Ŝa; the resulting
admissible subspace of S will be denoted by Sa, and the

6We remind the reader that in the relevant automata theory, E∗ denotes
the Kleene closure of the event set Ê; i.e., E∗ contains all the finite-length
sequences σ of the elements of E, including the empty sequence ε.

subgraph Ga induced by the state set Sa in the STD G of the
FSA Φ has similar connectivity properties to the connectivity
properties of the subgraph Ĝa w.r.t. the STD Ĝ. Finally,
the notions of “(state) reachability” and “co-reachability /
safety” are naturally extended to the CRL dynamics that are
described by the FSA Φ.

For the pursued formulation of the CRL throughput
maximization problem, it is pertinent to differentiate the
states s ∈ Sa into states where the only enabled events
are some uncontrollable events edj , and states that enable
controllable events as well.7 States belonging in the first
subclass of Sa essentially define an exponential race among
the enabled events edj , and therefore, they will possess a non-
zero sojourn time. Hence, following standard terminology
in the corresponding literature [15], we characterize these
states as tangible, and the corresponding state set will be
denoted by ST

a . On the other hand, for those states that enable
controllable events, it is expected that the line supervisor
will select one of these events for immediate execution.
This assumption, combined with the aforestated assumptions
about the CRL operation in the earlier parts of this section,
imply that the states s belonging in this subclass of Sa will
have zero sojourn times. Therefore, these states are charac-
terized as vanishing, and the corresponding state set will be
denoted by SV

a . The enhanced permissiveness of the applied
DAP ∆ further implies that, for a large number of states
s ∈ SV

a , there will be more than one enabled controllable
event. Also, many of these events will be conflicting, in that
the execution of one of these events in state s will lead to
a state s′ where (some of) the remaining events will not
be enabled anymore. These conflicts must be managed by
the line controller, and the corresponding choices define the
applied scheduling policy.

The resulting problem of determining a pertinent schedul-
ing policy for the throughput maximization of any given CRL
configuration that is controlled by an applied DAP ∆, can
be formulated as an average-reward continuous-time MDP
(CT-MDP) [16]. The decision epochs of this CT-MDP are
the time points of the occurrence of an event edj at any of
the admissible tangible states s ∈ ST

a . Let s′ denote the
resulting state. At state s′, the line supervisor must select a
sequence of controllable events, σ, that will lead the line to
a new admissible tangible state s′′ ∈ ST

a . In the following,
we shall refer to the set of admissible tangible states s′′ that
are reachable from state s′ as the “tangible reach” of state
s′, and we shall denote this set by T R(s′). Then, it is clear
from the above discussion that, in the corresponding CT-
MDP terminology, T R(s′) denotes the set of “actions”, a,
that are feasible and admissible at the considered state s′.
Furthermore, for future reference, we shall characterize the
vanishing states s′′′ that are reachable from state s′ through
the controllable event sequences σ leading to some state
s′′ ∈ T R(s), as the “vanishing reach” of state s′; this set
of states will be denoted by VR(s′). 8

The transitional dynamics for the CT-MDP model that
result from the execution of an action a ∈ T R(s′) at some
decision state s′, are determined by the exponential race
that takes place in the tangible state s′′ that corresponds

7The application of the DAP ∆ ensures that every state s ∈ Sa will
possess at least one enabled event that is also admissible by the applied
DAP ∆.

8In general, VR(s′) can be empty for some states s′.
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to action a. Furthermore, the expected immediate reward,
r(s′, a), from executing action a at state s′ is equal to the
probability that the next decision epoch will be defined by the
occurrence of event edM , that corresponds to the completion
by a part of its last processing stage and its unloading from
the line. Hence, letting E(s′′) denote the set of the events
edj enabled in s′′, the expected immediate reward r(s′, a)
will be equal to µM/

∑
edj∈E(s′′) µj if edM ∈ E(s′′), and zero

otherwise. Finally, as already stated at the beginning of this
paragraph, with this definition of the expected immediate
rewards, the problem of maximizing the throughput of the
considered CRLs is reduced to the problem of maximizing
the (long-term) average reward of the corresponding CT-
MDP.9

Some further simplification of this CT-MDP formulation,
and some methodology for its solution through uniformiza-
tion [14], are presented in Appendix A of [19]. But, in most
practical cases, the solution of this CT-MDP model will be
intractable due to the very large size of the involved state
spaces. Hence, in the next section we present a heuristic
methodology that can lead to a good approximation of the
corresponding optimal scheduling policies; the quality of
this approximation is empirically demonstrated through the
example of Section IV, and it is further assessed in [12].

III. THE PROPOSED SCHEDULING METHOD

The CRL scheduling methodology considered in this sec-
tion is motivated by ideas similar to those pursued in [20],
[21], [8] for the scheduling of uncapacitated re-entrant lines
and more general multi-class queueing networks. In partic-
ular, similar to those earlier approaches, we consider the
material flowing through the underlying CRL as a continuous
quantity, and at every decision epoch, we formulate and
solve a linear program (LP) that maximizes the volume of
the material processed by this CRL over a sufficiently long
time horizon T , when the line is started at the state s that
corresponds to the current decision epoch. Subsequently, we
use the obtained LP solution in order to define an action-
selection criterion for the current decision epoch. But while
the above basic scheme of our method parallels the corre-
sponding schemes of [20], [21], [8], its implementational
details in the current work differ considerably from those ear-
lier implementations, since (i) we are addressing a different
scheduling objective, and more importantly, (ii) we need to
effectively address the blocking and deadlocking phenomena
that arise in the operational context of the considered CRL.

A primary differentiator of our fluid model that is mo-
tivated by the need to capture in it more effectively the
impact of the blocking that is caused by the finite buffers

9The specification of the set of actions at each decision state s′ of this
CT-MDP through the corresponding tangible reach T R(s′) implies a non-
idling scheduling policy for the underlying CRL; i.e., under such a policy,
no server that could be engaged in the processing of some available part
will remain idle. Due to the blocking experienced in the operation of the
considered CRLs, such a non-idling scheme might be suboptimal [17], [18].
We have opted to confine the presented developments within the class of
the non-idling scheduling policies, in an effort to attain some simplicity
for the presentation of the main concepts and ideas involved. But it is
possible to extend the presented methodology to deliberately idling schemes,
by introducing further actions at the states s′ that correspond to decision
epochs; these actions will correspond to controllable-event sequences σ
leading to some state s′′ in the vanishing reach VR(s′) of the considered
state s′, that contains some enabled events edj .

and the imposed DAP, is that it is formulated in discrete and
not in continuous time. In particular, assuming that the pro-
cessing times τj for the different processing stages Jj , j =
1, . . . ,M , are rationally valued, we set the discretizing time
interval ∆t equal to the greatest common divisor (GCD)
of τj . In this way, the mean processing time, τj , of any
processing stage Jj , corresponds to an integral multiple of
∆t, which will be denoted by τ̂j . In the following discussion,
we also scale time by further assuming that ∆t = 1.00, and
thus, τ̂j also denotes the mean processing time of processing
stage Jj in this new time scale. The rest of this section
discusses the details of the employed LP relaxation and of the
action selection scheme that is induced by the LP solution.

The employed LP relaxation: We proceed with the pre-
sentation of the employed LP relaxation, by first introducing
some supporting notation. Then, we proceed with the in-
troduction of the decision variables, the constraints and the
objective function.

Supporting notation:
• Jl, l = 1, ..., L: The set of all processing stages

executed on workstation WSl; i.e., Jl = {j : W (Jj) =
l, j = 1, . . . ,M}.

• T : The total time horizon over which we are maximiz-
ing the line throughput; as explained in the opening
part of this section, T is expressed in terms of the
discretizing time interval ∆t.

• sinit: The CRL vanishing state that corresponds to the
current decision epoch.

• v: A 2M -dim vector with its components v1+2j , j =
0, . . . ,M−1, representing the volume of “fluid” waiting
for the execution of processing stage Jj+1 at the cor-
responding workstation W (Jj+1), and the components
v2+2j , j = 0, . . . ,M − 1, representing the volume of
“fluid” that has completed the execution of processing
stage Jj+1 but it is still located at the corresponding
workstation W (Jj+1). We shall refer to the components
of vector v as the corresponding “fluid buffers”.

• vinit: The initial value for the “buffer fluid” vector v as
defined by the state vector sinit. Due to the presumed
exponential nature for the distribution of the various
processing times, components v1+2j , j = 0, . . . ,M−1,
will aggregate all the parts that either wait for the initi-
ation of the execution of the corresponding processing
stage Jj+1 or have already initiated the execution of
this processing stage.

• f : A fictitious “fluid feeder” at the beginning of the line
representing an “infinite backlog”.

• d: A fictitious “fluid buffer” at the end of the CRL, of
unlimited capacity, that collects all the “fluid” that is
output by this line over the considered time horizon T .

Decision Variables:
• xj,t, j = 1, . . . , 2M, t = 1, . . . , T : The “fluid” volume

in “fluid buffer” vj at the end of period t.
• uj,t, j = 1, . . . , 2M + 1, t = 1, . . . , T : The amount of

the “fluid” that is added, during period t, to the “fluid”
buffer vj or, in the case of j = 2M +1, to the “output
fluid buffer” d. More specifically:

– u1,t represents the amount of “fluid” that is added
to the “fluid buffer” v1 at period t. This “fluid” is
drawn from the external “fluid feeder” f , during
the same period, and its addition to the “fluid
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buffer” v1 is equivalent to the action of loading
new material to the CRL.

– u2+2i,t, i = 0, ...,M − 1, represent the amount of
“fluid” that is added to the corresponding “fluid
buffer” v2+2i at period t. This “fluid” corresponds
to material completing the processing of processing
stage Ji+1, and it was drawn from “fluid buffer”
v1+2i at period t− τ̂i+1 + 1.

– u1+2i,t, i = 1, . . . ,M − 1, represent the amount
of “fluid” that is added to the corresponding “fluid
buffer” v1+2i at period t. This “fluid” corresponds
to material transferred to this “fluid buffer” from
“fluid buffer” v2i−1 during this period.

– u2M+1,t represents the amount of “fluid” that is
transferred from the “fluid buffer” v2M to the
“output fluid buffer” d during period t.

Constraints:

1) The first set of constraints expresses the limited
processing capacity at each workstation; namely, the
server at each workstation cannot process more than
a unit amount of work during a single time unit.

∑
j∈Sl

min{t+τ̂j−1,T}∑
q=t

u2j,q ≤ 1, l = 1, ..., L, t = 1, ..., T

2) The second set of constraints expresses the material
flow conservation; these constraints break down into
the following two parts:

a) Material flow conservation constraints for period
t = 1:
x1+2i,1 = vinit

1+2i+u1+2i,1−u2+2i,τ̂i+1
1{τ̂i+1≤T},

i = 0 . . . ,M − 1
x2i,1 = vinit

2i + u2i,1 − u1+2i,1, i = 1 . . . ,M

b) Material flow conservation constraints for periods
t = 2, . . . , T :
x1+2i,t = x1+2i,t−1 + u1+2i,t −
u2+2i,t+τ̂i+1−11{t+τ̂i+1−1≤T}, i = 0 . . . ,M − 1
x2i,t = x2i,t−1 + u2i,t − u1+2i,t, i = 1 . . . ,M

3) This set of constraints expresses the fact that a server
cannot work on an empty buffer, while also acknowl-
edging the availability of the “infinite backlog” that
provides the input material for processing stage J1;
similar to the second set of constraints, we express
these constraints separately for period 1 and for the
remaining periods:

a) For period t = 1:
vinit
1+2i + vinit

2i − u2+2i,τ̂i+11{τ̂i+1≤T} ≥ 0,
i = 1 . . . ,M − 1

b) For periods t = 2, . . . , T :
x1+2i,t−1 − u2+2i,t+τ̂i+1−11{t+τ̂i+1−1≤T} ≥ 0,
i = 1 . . . ,M − 1

4) These constraints express the finite buffering capacity
of the line workstations.∑

j∈Sl
x2j−1,t+x2j,t+

∑min{t+τ̂j−1,T}
q=t+1 u2j,q ≤ Bl,

l = 1, ..., L, t = 1, ..., T
5) These constraints account for the imposed deadlock

avoidance policy ∆. For the purposes of the presented
LP relaxation, we assume that the applied DAP ∆ can

be expressed as a set of K inequalities having the form

A · ŝ ≤ b (1)

where ŝ is the condensed state of the considered CRL,
A is a K × M matrix, and b is a K-dim positive
vector. The constraints of Eq. 1 can be introduced
in the considered LP relaxation by substituting each
component ŝj , j = 1, . . . ,M , of the state vector ŝ by
the quantity

x2j−1,t + x2j,t +

min{t+τ̂j−1,T}∑
q=t+1

u2j,q

6) We also want to prevent activity that will not
contribute to the total output volume by the end of
the time horizon T . For this, we enforce the condition
that the total outflow from the network equals the
total inflow to it plus the initial “fluid buffer” contents
as defined by the vector vinit.

2M∑
j=1

vinit
j +

T∑
t=1

u1,t −
T∑

t=1

u2M+1,t = 0

7) “Fluid buffer” contents cannot be negative.

xj,t ≥ 0, j = 1, ..., 2M, t = 1, ..., T

8) Also, the “material flows” uj,t cannot be negative
either.

uj,t ≥ 0, j = 1, ..., 2M + 1, t = 1, ..., T

9) Finally, the next constraint accounts for the non-
preemptive nature of our scheduling policies; the non-
preemptive character of our policies is implied by the
structure of the state space S and the dynamics that are
induced by this structure for the corresponding MDP
formulation.

u2j,τ̂j = 1, j ∈ {1, . . . ,M : sinit1+3(j−1) = 1}

Objective Function:
As already stated, we want to maximize the total outflow

of the considered CRL over the employed time horizon T ,
assuming that the line is operated under the relaxed modeling
assumptions that are expressed by the constraints of the
considered LP, and its initial “fluid buffer” contents are set
to the levels that are defined by the state sinit of the original
CRL model. Hence, the objective function takes the form:

max
T∑

t=1

u2M+1,t

The induced scheduling policy: After we have solved the
LP relaxation, the next step is to interpret the solution of
the linear program to a scheduling policy for the underlying
CRL. In particular, we want to use the solution of this LP as
a “guide” in the selection of the next tangible state s among
the set of tangible states that is defined by the tangible reach,
T R(sinit), of the state sinit that constitutes the current
decision point.

To effect this selection, let us denote by u∗
1 the vector that

is defined by the obtained optimal values for the variables
u1,1, u2,τ1 , u3,1, u4,τ2 . . . , u2M,1, and by v the “fluid buffer”
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vector that corresponds to any state s ∈ T R(sinit). Then,
the proposed scheduling policy will select the next tangible
state, s̃, through the following rule:

s̃ ∈ arg min
s∈T R(sinit)

M−1∑
j=0

|s1+3j − u∗
1,2+2j | (2)

In more natural terms, the criterion of Eq. 2 seeks to select
a tangible state s ∈ T R(sinit) that has a server allocation
w.r.t. the various processing stages Jj , j = 1, . . . ,M , that
is most similar to the server allocation that is implied by the
vector u∗

1.
Furthermore, a secondary criterion that we have used to

break any ties that are generated through the criterion of
Eq. 2, is as follows:

s̃ ∈ arg min
s∈T R(sinit)

|v − vinit − u∗
1|1 (3)

This new criterion perturbs the initial “buffer fluid” vector
vinit by the “flow” vector u∗

1, and eventually selects a
tangible state s ∈ T R(sinit) with a “fluid buffer” vector
v that has the smallest l1-distance from the aforementioned
perturbation vinit + u∗

1; hence, this secondary criterion
considers also state similarity in terms of buffer occupancy.

Selecting an appropriate time-horizon length T : One
parameter that needs to be further specified for the complete
definition of the “fluid” relaxation that was presented in the
previous parts of this section, is the value of the parameter
T , i.e., the time-horizon over which the line output will be
maximized. This selection is driven by the realization that the
optimal solution of the considered LP will essentially lead the
system to an operational regime that provides the maximal
possible output of the system as defined by the bottleneck
stations of the line, and it will divert from this operational
regime only towards the end of the operational horizon, in
an effort to satisfy the termination condition of Constraint
#6 above. Furthermore, some numerical experimentation re-
ported in [12] has shown that as long as the selected T value
is adequately large to let the line reach the aforementioned
operational regime, the returned vector u∗

1 will be quite
insensitive to the exact T value. So, with these insights and
findings, we propose to set T = (

∑L
i=1 Bi)(

∑M
j=1 τ̂j), since

this is an upper bound of the time that is necessary to empty
the line from the entire workload that is defined by the state
sinit under any globally nonidling policy.

IV. EXAMPLE

WS 1 WS 2

I/O Port

Process route:
WS1 -> WS2 -> WS1

Fig. 1: An example CRL.

The CRL considered in this
example is depicted in Figure 1.
It consists of two workstations,
WS1 and WS2, and an I/O port
that interfaces the CRL with its
operational environment. Each
workstation has a single server,
depicted as a grey ellipse in
Figure 1, and two buffer slots,
depicted by the corresponding
rectangles. Parts visiting each of
the two workstations are accom-
modated at one of the available
buffer slots, and they are processed by the workstation
server by having the server visiting the corresponding slot. A

robotic manipulator supports the necessary material handling
functions, and integrates the entire facility to a fully auto-
mated cell. Figure 1 also provides the process route for the
parts that are processed through this CRL; since workstation
WS1 is visited twice by each part, the considered layout
constitutes a re-entrant line. Furthermore, letting Jj , j =
1, 2, 3, denote the three processing stages of this CRL, under
the notation that was introduced in the earlier parts of this
section we also have that W (J1) = W (J3) = WS1 and
W (J2) = WS2. Finally, we assume that the processing times
for each of the three processing stages are exponentially
distributed with corresponding instantaneous rates µj and
corresponding expected values τj = 1/µj , j = 1, 2, 3.

The state s of this CRL is a 7-dim integer vector. The first
two components of vector s, s1 and s2, report, respectively,
the numbers of parts at workstation WS1 executing process-
ing stage J1 and having completed the processing of this
stage; components s3, s4 and s5 report the number of parts
in workstation WS2 respectively waiting for the execution
of stage J2, executing this stage, and having completed
execution of this stage; finally, components s6 and s7 of state
s report the number of parts at workstation WS1 respectively
waiting for the execution of stage J3 and executing this stage.

On the other hand, the state ŝ of the FSA Φ̂ that charac-
terizes the untimed dynamics of the considered CRLs w.r.t.
deadlock and the defining logic of the necessary DAPs, is
a 3-dim vector with: ŝ1 ≡ s1 + s2; ŝ2 ≡ s3 + s4 + s5;
and ŝ3 ≡ s6 + s7. Furthermore, it is easy to check that,
in the condensed state space Ŝ of the considered CRL,
the only reachable unsafe state is the state ŝd = (2, 2, 0),
i.e., the state where workstation WS1 is fully loaded with
parts executing or having completed processing stage J1, and
workstation WS2 is also fully loaded. Obviously, state ŝd is
also a deadlock state, since none of the loaded parts can
advance to its next requested workstation. This deadlock can
be avoided, in a maximally permissive manner, by enforcing
the constraint

ŝ1 + ŝ2 ≤ 3 (4)

which constitutes a representation of the maximally permis-
sive DAP ∆∗ for the considered CRL.

Figure 2 depicts the reachable and safe state space of the
considered CRL, Srs, under the maximally permissive DAP
of Eq. 4. A complete characterization of the depicted states
is provided in Table I. It can be checked through Table I that
the double-circled states in Figure 2 enable only events in
the set {edj : j = 1, 2, 3, }, and therefore, they constitute the
tangible states of the depicted STD. Figure 2 also provides
the transition probabilities out of these tangible states, as
defined by the exponential races that take place in each of
these states. On the other hand, the single-circled states in
Figure 2 enable some resource allocation event of type elj ,
eaj or epj , j = 1, 2, 3, and they are the vanishing states of
the corresponding STD. Transitions out of these states must
be arbitrated by the adopted scheduling policy. However, the
specification of this scheduling policy can be simplified by
the fact that the timed performance of the considered CRL
is determined by the sojourn times spent by this line at the
tangible states only. This realization enables a “thinning”
of the depicted STD by removing the vanishing states and
their interconnected transitions depicted by dashed lines, on
the basis that the remaining STD structure does not alter
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Fig. 2: The reachable and safe state space Srs for the CRL
of Figure 1, and some further structure that defines the MDP
characterizing the corresponding throughput-maximization
problem.

the reachability between the various tangible states and the
vanishing states that result from the execution of an edj type
of event.10 The vanishing states that enable choice in the
remaining STD structure are the seven states colored in grey
in Figure 2. More specifically, in the remaining STD, each
of these seven states possesses two enabled transitions, and
the effected choice between these two transitions can be
represented by setting the corresponding variable ξk, k =
1, . . . , 7, either to the value of 0 or 1. These settings of the
variables ξk define completely the next tangible marking s′′

to be reached from state s′, and at the same time, they do not
introduce any “coupling” in the corresponding transitioning
logic that is effected at any pair of markings s′1 and s′2 that
constitute decision points for the underlying MDP. Hence,
each possible binary pricing of the variables ξk depicted in
Figure 2 defines a complete deterministic stationary policy
for the considered MDP. In order to fully specify this MPD,
we must also specify the immediate-reward function. Under
the previously introduced notation, this function is defined
by associating with every pair (s′, s′′) an immediate reward
equal to the occurrence probability of event ed3(≡ eu) in state
s′′.

The application of the scheduling methodology of Sec-
tion III to the considered CRL requires the solution of the
following LP formulation at each of the seven vanishing
states sl, l ∈ {12, 18, 21, 26, 33, 47, 57}:

max
x,u

T∑
t=1

u7,t

10A complete methodology that formalizes and supports computationally
this “thinning” process, is presented in [22].

TABLE I: The state description for the STD of Figure 2.

s s1s2 s3s4s5 s6s7 s s1s2 s3s4s5 s6s7
0 0 0 0 0 0 0 0 33 0 0 0 0 1 1 0
1 1 0 0 0 0 0 0 34 0 0 0 0 0 2 0
2 0 1 0 0 0 0 0 35 1 0 1 0 1 1 0
3 1 1 0 0 0 0 0 36 0 0 0 1 1 1 0
4 0 0 1 0 0 0 0 37 0 0 1 0 0 2 0
5 1 0 1 0 0 0 0 38 0 0 0 1 0 2 0
6 0 0 0 1 0 0 0 39 1 0 0 1 1 1 0
7 1 0 0 1 0 0 0 40 0 1 0 1 1 1 0
8 0 1 0 1 0 0 0 41 1 0 0 0 2 1 0
9 1 0 0 0 1 0 0 42 0 1 0 0 2 1 0

10 1 0 0 0 0 1 0 43 0 1 0 0 2 0 1
11 0 1 0 0 0 1 0 44 0 1 0 0 2 0 0
12 0 0 1 0 0 1 0 45 0 1 0 1 1 0 1
13 0 1 0 0 0 0 1 46 0 1 0 1 1 0 0
14 0 0 1 0 0 0 1 47 0 0 1 1 0 1 0
15 0 0 0 1 0 0 1 48 0 1 0 1 0 0 1
16 0 0 0 0 1 0 1 49 0 0 1 1 0 0 1
17 0 0 0 0 0 1 1 50 0 0 1 1 0 0 0
18 0 0 0 0 0 1 0 51 1 0 1 1 0 0 0
19 0 0 0 0 0 0 1 52 0 1 1 1 0 0 0
20 1 0 1 0 0 1 0 53 1 0 1 0 1 0 0
21 0 0 0 1 0 1 0 54 1 0 0 1 1 0 0
22 1 0 0 1 0 1 0 55 0 1 1 0 1 0 0
23 0 1 0 1 0 1 0 56 0 1 1 0 0 1 0
24 1 0 0 0 1 1 0 57 0 0 2 0 0 1 0
25 0 1 0 0 1 1 0 58 0 1 1 0 0 0 1
26 0 0 1 0 1 1 0 59 0 0 2 0 0 0 1
27 0 1 0 0 1 0 1 60 1 0 2 0 0 1 0
28 0 0 1 0 1 0 1 61 1 0 1 1 0 1 0
29 0 0 0 1 1 0 1 62 0 1 1 1 0 1 0
30 0 0 1 0 0 1 1 63 0 1 1 1 0 0 1
31 0 0 0 1 0 1 1 64 0 1 1 0 1 0 1
32 0 0 0 0 1 1 1 65 1 1 0 1 0 0 0

s.t.
u2,t + u6,t ≤ 1, t = 1, . . . , T

u4,t ≤ 1, t = 1, . . . , T

x1+2i,1 − u1+2i,1 + u2+2i,τ̂i+1
= vinit

1+2i, i = 0, . . . , 2

x2i,1 − u2i,1 + u1+2i,1 = vinit
2i , i = 1, . . . , 3

x1+2i,t − x1+2i,t−1 − u1+2i,t + u2+2i,t+τ̂i+1−1 = 0,

i = 0, . . . , 2; t = 2, . . . , T

x2i,t−x2i,t−1−u2i,t+u1+2i,t = 0, i = 1, . . . , 3; t = 2, . . . , T

u2+2i,1 ≤ vinit
1+2i + vinit

2+2i, i = 1, 2

u2+2i,t − x1+2i,t−1 ≤ 0, i = 1, 2; t = 2, . . . , T

x1,t + x2,t + x5,t + x6,t ≤ 2, t = 1, . . . , T

x3,t + x4,t ≤ 2, t = 1, . . . , T

x1,t + x2,t + x3,t + x4,t ≤ 3, t = 1, . . . , T

T∑
t=1

u7,t −
T∑

t=1

u1,t =
6∑

j=1

vinit
j

xi,t ≥ 0, i = 1, . . . , 6; t = 1, . . . , T

ui,t ≥ 0, i = 1, . . . , 7; t = 1, . . . , T

u2j,τ̂j = 1, j ∈ {1, . . . , 3 : sinit1+3(j−1) = 1}
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TABLE II: Comparing the policy specified for the example
CRL of Figure 1 by the methodology that is presented in
this work, to the optimal policy for this line.

s Vanishing State Tangible Reach Opti- Sel. Crit.
s1s2 s3s4s5 s6s7 s1s2 s3s4s5 s6s7 mal of Eq. 2

12 00 100 10 10 010 10 YES 1.0626
00 010 01 NO 1.4439

18 00 000 10 10 000 10 YES 0.7693
00 000 01 NO 2.3220

21 00 010 10 10 010 10 YES 0.7285
00 010 01 NO 1.2715

26 00 101 10 10 011 10 NO 1.7492
00 010 11 YES 1.2365

33 00 001 10 10 001 10 YES 0.8282
00 000 11 NO 1.7219

47 00 110 10 00 110 01 YES 0.6529
10 110 10 NO 1.3471

57 00 200 10 00 110 01 YES 0.6826
10 110 10 NO 1.5370

The parameters sinit· and vinit
· that appear in the right-

hand-side of the above formulation, are determined by the
considered vanishing state sl according to the defining logic
of these parameters that was discussed during their introduc-
tion in Section III.

Table II presents the obtained scheduling policy for this
example CRL when τj = 1.0, ∀j. Each primary row in
Table II corresponds to one of the considered vanishing
states sl, and the first two parts of the row provide a
complete characterization of state sl and its tangible reach,
T R(sl). On the other hand, the row entry in the column
entitled “Optimal” provides the choice for the next tangible
state s′l ∈ T R(sl) specified by the optimal policy that is
obtained through the solution of the throughput-maximizing
MDP formulation for this CRL. Finally, the last column
of Table II provides the values for the “action”-selection
criterion of Equation 2 that are obtained from the solution of
the corresponding LP relaxations. It can be checked that, for
each state sl, l ∈ {12, 18, 21, 26, 33, 47, 57}, the minimum
value for this criterion corresponds to the tangible state
s′l ∈ T R(sl) that is the optimal choice according to column
“Optimal”. Hence, for this example CRL, our scheduling
methodology returns an optimal policy.11

V. CONCLUSIONS

This paper has extended the scheduling methodology for
complex stochastic networks that is based on the solution
of a pertinent “fluid” relaxation of the addressed scheduling
problem, to the class of stochastic networks that model re-
source allocation with blocking and deadlocking effects. For
better specificity, the results were detailed in the operational
context of a re-entrant line with finite buffering capacity
at each workstation, and the particular scheduling problem
addressed was the maximization of the long-term throughput.
The presented methodology was substantially enabled by
a pre-established ability to control the underlying resource
allocation for deadlock freedom, and by the expression of
the corresponding DAP as a set of linear inequalities on the
system state. At the same time, the developed LP relaxation
differs considerably from similar past developments, since it
must account for the applied DAP and the blocking effects
that take place in the considered CRLs.

11Additional investigations and results regarding the application of the
presented scheduling methodology to the example CRL of Fig. 1 can
be found in [12]. That paper also reports additional results regarding (i)
the performance of the presented method when applied to larger CRL
configurations, and (ii) the computational times required for the solution
of the employed LP formulations.

Our future work will seek to provide a more structured
characterization of the dynamics that are encoded in the
proposed “fluid” relaxation by means of some formal, DES-
theoretic modeling frameworks, and it will employ this
characterization in order to further analyze the structure of
the optimal solutions of the corresponding LP. We shall also
try to bring into this analysis the notion of “robustness”
that has been pursued w.r.t. some other “fluid” relaxations
in [8]. Finally, from a more application-oriented standpoint,
we shall address the necessary details for extending the
scheduling methodology presented in this work to the more
general RAS classes that are studied in [4].
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