Requet: Real-Time QoE Detection for Encrypted YouTube Traffic

Craig Gutterman', Katherine Guo*, Sarthak Arora‘, Xiaoyang Wang?*,
Les Wu*, Ethan Katz-Bassett’, Gil Zussman'
TElectrical Engineering, Columbia University, *Nokia Bell Labs

ABSTRACT

As video traffic dominates the Internet, it is important for opera-
tors to detect video Quality of Experience (QoE) in order to ensure
adequate support for video traffic. With wide deployment of end-
to-end encryption, traditional deep packet inspection based traffic
monitoring approaches are becoming ineffective. This poses a chal-
lenge for network operators to monitor user QoE and improve upon
their experience. To resolve this issue, we develop and present a
system for REal-time QUality of experience metric detection for
Encrypted Traffic, Requet. Requet uses a detection algorithm we
develop to identify video and audio chunks from the IP headers of
encrypted traffic. Features extracted from the chunk statistics are
used as input to a Machine Learning (ML) algorithm to predict QoE
metrics, specifically, buffer warning (low buffer, high buffer), video
state (buffer increase, buffer decay, steady, stall), and video resolu-
tion. We collect a large YouTube dataset consisting of diverse video
assets delivered over various WiFi network conditions to evaluate
the performance. We compare Requet with a baseline system based
on previous work and show that Requet outperforms the baseline
system in accuracy of predicting buffer low warning, video state,
and video resolution by 1.12x, 1.53x, and 3.14X, respectively.

CCS CONCEPTS

« Information systems — Multimedia streaming; « Networks
— Network performance analysis; » Computing methodologies
— Classification and regression trees;

KEYWORDS
Machine Learning, HTTP Adaptive Streaming

ACM Reference Format:

Craig Gutterman, Katherine Guo, Sarthak Arora, Xiaoyang Wang, Les Wu,
Ethan Katz-Bassett, Gil Zussman. 2019. Requet: Real-Time QoE Detection
for Encrypted YouTube Traffic. In 10th ACM Multimedia Systems Conference
(MMSys ’'19), June 18-21, 2019, Amherst, MA, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3304109.3306226

1 INTRODUCTION

Video has monopolized Internet traffic in recent years. Specifically,
the portion of video over mobile data traffic is expected to increase
from 60% in 2016 to 78% by 2021 [2]. Content providers, Content

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MMSys "19, June 18-21, 2019, Amherst, MA, USA

@ 2019 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-6297-9/19/06...$15.00
hitps://doi.org/10.1145/3304109.3306226

mg“‘m mg"‘so I
EEES ﬂ”\(‘] |r| NERE | d A 1\
- LAl
g ., f i .., |M| " b_s\ 3 A AW DL] il
H e e
. P
g8 8589, I
= n
sl bt ol o drth Lt Hlmun oy f ..‘-\'|1 L,
S RN R R S TR T
Lﬁ._.as T 55" [T
E [— T ggmzo _ —d
i = T T 274 .
@ = ~—_|@ e
B R RL TR R N U R R

Time {seconds) Time {seconds)

(@ (b)
Figure 1: Amount of data received (KB), amount of data sent
(KB), and buffer level (sec) for two sessions over a 20sec win-
dow (100 ms granularity): (a) 720p, (b) 144p.

Delivery Networks (CDNs), and network operators are all stake-
holders in the Internet video sector. They want to monitor user
video QoE and improve upon it in order to ensure user engagement.
Content providers and CDNs can measure client QoE metrics, such
as video resolution by using server-side logs [8, 20]. Client-side
measurement applications can accurately report QoE metrics such
as player events and video quality levels [33, 44].

Traditionally, Deep Packet Inspection (DPI) enabled operators
to examine HTTP packet flows and extract video session infor-
mation to infer QoE metrics [7, 11]. However, to address security
and privacy concerns, content providers are increasingly adapting
end-to-end encryption. A majority of YouTube traffic has been en-
crypted since 2016 [4] with a combination of HTTPS [9, 17, 36]
and QUIC [14, 23]. Similarly, since 2015 Netflix has been deploying
HTTPS for video traffic [10]. In general, the share of encrypted
traffic is projected to grow to over 75% by 2019 [5].

Although the trend of end-to-end encryption does not affect
client-side or server-side QoE monitoring, it renders traditional DPI-
based video QoE monitoring ineffective for operators. Encrypted
traffic still allows for viewing packet headers in plain text. This
has led to recent efforts to use Machine Learning (ML) and statisti-
cal analysis to derive QoE metrics for operators. These works are
limited as they either provide offline analysis for the entire video
session [15, 34] or online analysis using both network and transport
layer information with separate models for HTTPS and QUIC [32].

Previous research developed methods to derive network layer
features from IP headers by capturing packet behavior in both di-
rections: uplink (from the client to the server) and downlink (from
the server to the client) [24, 32, 34]. However, determining QoE
purely based on IP header information is inaccurate. To illustrate,
Fig. 1 shows a 20-sec portion from two example sessions from our
YouTube dataset, described in §4, where each data point is over 100
ms. Both examples exhibit similar traffic patterns in both directions.
However, Fig. 1(a) shows a 720p resolution with the buffer decreas-
ing by 15 secs, whereas Fig 1(b) shows a 144p resolution with the
buffer increasing by 20 secs.

https://doi.org/10.1145/3304109.3306226
https://doi.org/10.1145/3304109.3306226

MMSys "19, June 18-21, 2019, Amherst, MA, USA

Given this challenge, our objective is to design features from IP
header information that utilize patterns in the video streaming al-
gorithm. In general, video clips stored on the server are divided into
a number of segments or chunks at multiple resolutions. The client
requests chunks from the server using HTTP GET requests. Exist-
ing work using chunks either infers QoE for the entire session [28]
rather than in real-time, or lacks insight on chunk detection mech-
anisms from network or transport layer data [15, 26, 38].

To improve on existing approaches that use chunks, we develop
Requet, a system for REal-time QUality of experience metric de-
tection for Encrypted Traffic designed for traffic monitoring in mid-
dleboxes by operators. Requet is designed to be memory efficient
for middleboxes, where memory requirement is a key consideration.
Fig. 2 depicts the system diagram for Requet and necessary compo-
nents to train the QoE models as well as evaluate its performance.
Requet consists of the ChunkDetection algorithm, chunk feature
extraction, and ML QoE prediction models. The data acquisition
process involves collecting YouTube traffic traces (Trace Collec-
tion) and generating ground truth QoE metrics as labels directly
from the player (Video Labeling). Packet traces are fed into Requet’s
ChunkDetection algorithm to determine audio and video chunks.
The chunks are then used during the Feature Extraction process to
obtain chunk-based features. The chunk based features from the
training data along with the corresponding QoE metrics are used
to generate QoE prediction models. For evaluation, traffic traces
from the testing dataset are fed into the trained QoE models to
generate predicted QoE metrics. Accuracy is measured comparing
the predicted QoE metrics and the ground truth labels.

Recent studies have shown that (i) stall events have the largest
negative impact on end user engagement and (ii) higher average
video playback bitrate improves user engagement [8, 16]. Motivated
by these findings, Requet aims to predict events that lead to QoE
impairment ahead of time and the current video resolution. This
allows operators to proactively provision resources [12, 35]. Re-
quet predicts low buffer level which allows operators to provision
network resources to avoid stall events [24]. Requet predicts four
video states: buffer increase, buffer decay, steady, and stall. Fur-
thermore, Requet predicts current video resolution during a video
session in real-time. Specifically, Requet predicts video resolution
on a more granular scale (144p, 240p,360p, 480p, 720p, 1080p), while
previous work predicts only two or three levels of video resolution
for the entire video session [15, 28, 32].

We make the following contributions:
o Collect packet traces of 60 diverse YouTube video clips result-

ing in a mixture of HTTP/TLS/TCP and HTTP/QUIC/UDP

traffic over WiFi networks from three operators, one in a

different country. This is in contrast to prior works which

rely on simulation or emulation [24, 32, 40] (see §4).

e Design Requet components

— Develop ChunkDetection heuristic algorithm to identify
video and audio chunks from IP headers (see §3).

— Analyze the correlation between audio and video chunk
metrics (e.g., chunk size, duration, and download time) to
various QoFE metrics, and determine fundamental chunk-
based features useful for QoE prediction. Specifically, de-
sign features based on our observation that audio chunk
arrival rate correlates with the video state (see §5).

C. Gutterman et al.

Figure 2: System Diagram: Data acquisition and Requet com-
ponents: ChunkDetection, feature extraction, and QoE pre-
diction models.

— Develop ML models to predict QoE in real-time: buffer

warning, video state, and video resolution (see §6).
e Evaluate Requet performance

— Demonstrate drastically improved prediction accuracy us-
ing chunk-based features versus baseline IP layer features
commonly used in prior work [24, 32, 34, 41]. For predict-
ing low buffer warning, video state, fine grained video
resolution, Requet achieves 92%, 84% and 66% accuracy,
representing an improvement of 1.12x, 1.53, and 3.14x
respectively, over existing baseline. Requet delivers a 91%
accuracy in predicting low (144p/240p/360p) or high reso-
lution (480p/720p/1080p) (see §6).

— Demonstrate that Requet trained in a lab environment
works on unseen clips with varying lengths from different
operators in multiple countries. This evaluation is more
diverse than prior work [15, 24, 32, 40] (see §6).

2 BACKGROUND & PROBLEM STATEMENT

2.1 Adaptive BitRate Streaming Operation

A majority of video traffic over the Internet today is delivered
using Adaptive BitRate (ABR) streaming with its dominating format
being Dynamic Adaptive Streaming over HTTP (DASH) or MPEG-
DASH [39, 45]. In ABR, a video asset or clip is encoded in multiple
resolutions. A clip with a given resolution is then divided into a
number of segments or chunks of variable length, a few seconds in
playback time [30]. Typically video clips are encoded with Variable
Bitrate (VBR) encoding and are restricted by a maximum bitrate
for each resolution. An audio file or the audio track of a clip is
usually encoded with Constant Bitrate (CBR). For example some of
the YouTube audio bitrates are 64, 128, 192 Kbps [43].

At the start of the session, the client retrieves a manifest file
which describes the location of chunks within the file containing
the clip encoded with a given resolution. There are many ABR
variations across and even within video providers [30]. ABR is
delivered over HTTP(S) which requires either TCP or any other
reliable transport [18)]. The ABR algorithm can use concurrent TCP
or QUIC/UDP flows to deliver multiple chunks simultaneously. A
chunk can be either video or audio alone or a mixture of both.

2.2 Video States and Playback Regions

The client employs a playout buffer or client buffer, whose maxi-
mum value is buffer capacity, to temporarily store chunks to absorb
network variation. To ensure smooth playback and adequate buffer

Requet: Real-Time QoE Detection for Encrypted YouTube Traffic

T_08
2=
22 Zo4
Og=o2
£ o9
100 200 300 400 500
Time {seconds)
(a)
] 0.6 B
agz ¥ e,
g—gE;&‘n.d kY i
o 100 300 300 a0 500
Time {seconds)
(b)
_ 120 .
32 80
oo, — e oo,
e B N S
. gt . .
o P Ry L e L -]
100 200 300 00 500

Time {seconds)

(c)

Bufferingle 3 — -
] 100 200 300 400 500
Time {seconds)
(d)
g Buf. Inc - — —
n Steady — ——
g Buf. Decay
= Stalll L e, . — P L =
100 200 300 400 500

Time {seconds)

(e)

oo] 300 400 500
Time (seconds)

)

Figure 3: Behavior of a 10-min session in 100-ms windows:
(a) amount of data received (MB), (b) average download bi-
trate (Mbps) over the past 60 sec, (c) buffer level, (d) playback
region, (e) video state, (f) video resolution.

level the client requests a video clip chunk by chunk using HTTP
GET requests, and dynamically determines the resolution of the
next chunk based on network condition and buffer status.!

When buffer level is below a low threshold, the client requests
chunks as fast as the network can deliver them to increase buffer
level. We call this portion of ABR operation the buffer filling stage.
In this stage, buffer level can increase or decrease. Once buffer level
reaches a high threshold, the client aims to maintain buffer level in
the range between the threshold and buffer capacity. One example
of a client strategy is to request chunks as fast as they are consumed
by the playback process, which is indicated by the video playback
bitrate for the chunk [41]. We call this portion the steady state
stage. The playback stalls when the buffer is empty before the end
of the playback is reached. After all chunks have been downloaded
to the client buffer, there is no additional traffic and the buffer level
decreases. From the perspective of buffer level, an ABR session can
experience four exclusive video states: buffer increase, buffer decay,
steady state, and stall.

Orthogonally, from the perspective of YouTube video playback,
a session can contain three exclusive regions: buffering, playing, and
paused. Buffering region is defined as the period when the client
is receiving data in its buffer, but video playback has not started
or is stopped. Playing region is defined as the period when video
playback is advancing regardless of buffer status. Paused region is
defined as the period when the end user issues the command to

! The field of ABR client algorithm design is an active research area [22, 31].

MMSys "19, June 18-21, 2019, Amherst, MA, USA

pause video playback before the session ends. In playing region,
video state can be in either buffer increase, decay, or steady state.
Fig. 3 shows the behavior of a 10-min session from our dataset
in §4 in each 100-ms window with (a) the amount of data received
(MB), (b) download throughput (Mbps) for the past 60 sec, (c) buffer
level (sec), (d) occurrence of three playback regions, (e) occurrence
of four video states, and (f) video resolution. At the start of the
session and after each of the three stall events, notice that video
resolution slowly increases before settling at a maximum level.

2.3 QoE Metrics and Prediction Challenges

This subsection describes the QoE metrics that we reference and
the challenges in predicting these metrics. We focus on metrics that
the operator can use to infer user QoE impairments in real-time.
Specifically, we use three QoE metrics: buffer warning, video state
and video quality. We do not focus on start up delay prediction, as
it has been extensively studied in [24, 28, 32].

The first QoE metric we aim to predict is the current video state.
The four options for video state are: buffer increase, buffer decay,
stall, or steady state. This metric allows for determining when the
video level is in the ideal situation of steady state. It also recognizes
when the buffering is decreasing or stalling and the operator should
allocate more resources toward this user.

The buffer warning metric is a binary classifier for determining
if the buffer level is below a certain threshold Buf fW arningy ech
(e.g., under 20 sec). This enables operators to provision resources
in real-time to avoid potential stall events before they occur. For
example, at a base station or WiFi AP, ABR traffic with buffer
warning can be prioritized.

Another metric used is the current video resolution. Video en-
coders consider both resolution and target video bitrate. Therefore,
it is possible to associate a lower bitrate with a higher resolution.
One can argue bitrate is a more accurate indicator of video quality.
However, higher resolutions for a given clip often result in higher
bitrate values. YouTube client API reports in real-time resolution
rather than playback bitrate. Therefore, we use resolution as an
indicator of video quality.

ABR allows the client to dynamically change resolution during a
session. Frequent changes in resolution during a session tend to dis-
courage user engagement. Real-time resolution prediction enables
detection of resolution changes in a session. However, this predic-
tion is challenging as download bitrate to video resolution does not
follow a 1-to-1 mapping. In addition, a video chunk received by
the client can either replace a previous chunk or be played at any
point in the future. Under the assumption that playback typically
begins shortly (in the order of seconds) after the user requests a
clip, one can associate the average download bitrate with video
quality, since higher quality requires higher bitrate for the same
clip. However, this is not true in a small time scale necessary for
real-time prediction. Network traffic reveals the combined effect of
buffer trend (increase or decay) and video playback bitrate which
correlates to resolution. During steady state, video’s download bi-
trate is consistent with playback bitrate. However, when a client
is in non-steady state, one cannot easily differentiate between the
case in which a higher resolution portion is retrieved during buffer

MMSys "19, June 18-21, 2019, Amherst, MA, USA

Start Time Chunk Duration

¢ Get Request

S oee ee %

L 1 1 | @ Download Packet
T T Y
TTFB Download Time Slack Time
Time -

Figure 4: Definition of chunk metrics (video or audio)

decay state (Fig. 1(a)), and the case in which a lower resolution por-
tion is retrieved during buffer increase state (Fig. 1(b)). Both of these
examples exhibit similar traffic patterns, however the behavior of
QoE metrics is dramatically different.

3 CHUNK DETECTION

The fundamental delivery unit of ABR is a chunk [25]. Therefore,
identifying chunks instead of relying on individual packet data can
capture important player events. Specifically, the occurrence of a
chunk indicates that the client has received a complete segment of
video or audio, resulting in increased buffer level in playback time.
An essential component of Requet in Fig. 2 is its ChunkDetection
algorithm to identify chunks from encrypted traffic traces. Features
are extracted from the chunks and used as the input to the ML QoE
prediction models. Existing work using chunks either lacks insight
in chunk detection mechanisms [15, 26, 38] or studies per-session
QoE [28] instead of predicting QoF in real-time.

In this section, we first describe metrics capturing chunk behav-
ior. We then develop ChunkDetection, a heuristic algorithm using
chunk metrics to identify individual audio and video chunks from
IP level traces. Requet uses ChunkDetection to detect chunks from
multiple servers simultaneously regardless of the use of encryp-
tion or transport protocol. It relies purely on source/destination IP
address, port, protocol, and payload size from the IP header.

3.1 Chunk Metrics

We define the following metrics for a chunk based on the timestamp
of events recorded on the end device (as shown in Fig. 4).

e Start_Time - The timestamp of sending the HTTP GET
request for the chunk.

o TTFB - Time To First Byte, defined as the time duration
between sending an HTTP GET request and the first packet
received after the request.

e Download_Time - The time duration between the first re-
ceived packet and the last received packet prior to the next
HTTP GET request.

e Slack Time - The time duration between the last received
packet and the next HTTP GET request.

e Chunk Duration - The time duration between two con-
secutive HTTP GET requests. The end of the last chunk in a
flow is marked by the end of the flow. Note that a different
concept called “segment duration” is defined in standards
as playback duration of the segment [6]. For a given chunk,
Chunk_Duration equals “segment duration” only during
steady state.

e Chunk_Size - The amount of received data (sum of IP
packet payload size) during Download_Time from the IP
address that is the destination of the HTTP GET request
marking the start of the chunk.

C. Gutterman et al.

Al

gorithm 1 Audio Video Chunk Detection Algorithm

1

L e i =
ol B2

17:

18:
19:
20:

21:
22:

: procedure CHUNKDETECTION
Initialize Audio and Video for each IP flow I
for each uplink packet p with IP flow I do
if uplink(p) and (packetlength(p) > GETipyresh then)
¢ « [GetTimestamp,GetSize, DownStart,
DownEnd,GetProtocol]
AV flag « DetectAV(c)
if AV flag == 0 then
Append ¢ to Audio
else if AV flag == 1 then
Append ¢ to Video
else
Drop ¢
GetTimestamp « time(p)
GetSize «— packetlength(p)
DownFlag « 0
if downlink(p) and (packetlength(p) > Downyresh
then)
if DownFlag == 0 then
DownFlag =1
DownStart « time(p)
DownEnd « time(p)
DownSize+ = packetlength(p)

Table 1: Chunk Notation

| | Symbol

Semantics

GE Tthresh

pkt length threshold for request (300 B)

Downresh

pkt length threshold for downlink data (300 B)

GetTimestamp

timestamp of GET request

GetSize

pkt length of GET request

DownStart

timestamp of first downlink packet of a chunk

DownEnd

timestamp of last downlink packet of a chunk

GetProtocol

IP header protocol field

DetectAV

sorts chunk into audio chunk, video chunk or no
chunk based on GetSize, DownSize, GetProtocol

Audio

audio chunks for an IP flow

Video

video chunks for an IP flow

Note, for any chunk, the following equation holds true:

Chunk_Duration = sum(TTFB, Download_Time, Slack Time).

3.2 Chunk Detection Algorithm

We explore characteristics of YouTube audio and video chunks.
Using the web debugging proxy Fiddler [3], we discover that audio
and video are transmitted in separate chunks, and they do not
overlap in time for either HT'TPS or QUIC. For both protocols we
notice at most one video or audio chunk is being downloaded at any
given time. Each HTTP GET request is carried in one IP packet with
IP payload size above 300 B. Smaller uplink packets are HTTP POST
requests regarding YouTube log events, or TCP ACKs. Fig. 5 and
Fig. 6 plot the HTTP GET request size and subsequent audio/video
chunk size in a high (1080p) and a low (144p) resolution session,
respectively. It is evident that HTTP GET request size for audio
chunks is slightly smaller than that for video chunks (Fig. 5(b),

Requet: Real-Time QoE Detection for Encrypted YouTube Traffic

ol a0
m . a Chaml
2% S 10000 o bt o
g 8 : 1000} : s e ———_— ”Tm”""‘“"'- -.:_:.:‘ ._‘“__2
528 100l
- 0 100 200 300 400 500

Time (seconds)

(a)
@ = 1000 +es Videa Crumk
B 800 L.__fuﬂ
%‘HEBOOM xxxxxxx

0 100 200 300 400 500

Time (seconds)

Figure 5: Individual video/audio chunks in a 10-min session
with highest resolution (V:1080p, A:160kbps). (a) Chunk Size,
(b) Get Request Size.

Fig. 6(b)). This difference is due to the additional fields used in
HTTP GET requests for video content that do not exist for audio
content. Furthermore, at higher resolution levels, video chunk size
is consistently larger than audio chunk size (Fig. 5(a)). However, at
lower resolution levels, video chunk size can be similar to or even
smaller than audio chunk size (Fig. 6(a)). We can conservatively set
the low threshold for chunk size to be 80 KB for our dataset.

Based on the above observations, we propose a heuristic chunk
detection algorithm in Alg. 1 using notations in Table 1. ChunkDe-
tection begins by initializing each IP flow with empty arrays for
both audio and video chunks. This allows for the chunk detection
algorithm to collect chunks from more than one server at a time.

ChunkDetection initially recognizes any uplink packet with
a payload size above 300 B as an HTTP GET request (line 4).
This threshold may vary depending on the content provider. For
YouTube, we note that GET requests over TCP are roughly 1300
bytes, while GET requests over UDP are roughly 700 bytes. For each
new GET request the GetTimestamp, and GetSize, are recorded
(lines 14-16). After detecting a GET request in an IP flow, chunk
size is calculated by summing up payload size of all downlink pack-
ets in the flow until the next GET is detected (lines 17-22). The
last downlink packet in the group between two consecutive GET
requests marks the end of a chunk download. The chunk download
time then becomes the difference in timestamp between the last
and first downlink packet in the group. 2

Once the next GET is detected, ChunkDetection records
GetTimestamp, GetSize, download start time DownStart, down-
load end time DownEnd, the protocol used Get Protocol and the IP
flow I of the previous chunk (line 5). This allows for the calculation
of chunk duration and slack time using the timestamp of the next
GET. GET request size and chunk size are used in DetectAV (line 7)
to separate data chunks into audio chunks, video chunks, or back-
ground traffic (lines 8-11). DetectAV uses the heuristic that HTTP
GET request size for audio chunks is slightly smaller than request
size for video chunks consistently. Furthermore, if download size is
too small (< 80 KB), DetectAv recognizes that the data is neither
an audio or video chunk, and the data is dropped (lines 12-13). This
allows ChunkDetection to ignore background YouTube traffic.

2ChunkDetection does not flag TCP retransmission packets, therefore can overestimate
chunk size when retransmission happens. ChunkDetection also assumes chunks do
not overlap in time in a given IP flow. If it happens, the individual chunk size can be
inaccurate, but the average chunk size over the period with overlapping chunks is still
accurate.

MMSys "19, June 18-21, 2019, Amherst, MA, USA

_— 3
m . jea Chus
B0 10000 e e e e e
£y B I AL CIC
@™ a 100 160 200 300 400 500

Time (seconds)

(a)
—~ %1000
@ e. Vides Chunk
mEE 800 wrx Mdumunkl
§8° L e e R
a & - , . . ,

160 200 300 4060 500

(=¥

Time (seconds)
b)

Figure 6: Individual video/audio chunks in a 10-min session
with lowest resolution (V:144p, A:70kbps). (a) Chunk Size, (b)
Get Request Size.

4 DATA ACQUISITION

Requet , shown in Fig. 2, is designed to process traffic traces and
QoE metrics as ground truth labels for the traces. Data acquisition
provides data for training and evaluation for Requet QoE prediction
models. This includes traffic trace collection, and deriving QoE
metrics as ground truth labels associated with traffic traces.

4.1 Trace Collection

We design and implement a testbed (shown in Fig. 7) to capture a
diverse range of YouTube behavior over WiFi. We watch YouTube
video clips using the Google Chrome browser on a Macbook Air
laptop. We connect the laptop to the Internet via an Access Point
(AP) using IEEE 802.11n. A shell script simultaneously runs Wire-
shark’s Command Line Interface, Tshark [1], and a Javascript Node
server hosting the YouTube APL

The YouTube IFrame API environment collects information dis-
played in the “Stats for Nerds” window. From this API we monitor:
video playback region (‘Playing’, ‘Paused’, ‘Buffering’), playback
time since the beginning of the clip, amount of video that is loaded,
and current video resolution. From these values we determine the
time duration of the portion of the video clip remaining in the
buffer. We collect information once every 100 ms as well as during
any change event indicating changes in video playback region or
video resolution. This allows us to record any event as it occurs
and to keep detailed information about playback progress.

We have two options to collect network level packet traces in
our setup, on the end device or on the WiFi AP. Collecting traces
at the AP would limit the test environment only to a lab setup.
Therefore, we opt to collect traces via Wireshark residing on the end
device. This ensures that the YouTube client data is synchronized
with Wireshark traces and the data can be collected on public and
private WiFi networks. Our traces record packet timestamp, size, as
well as the 5-tuple for IP-header (source IP, destination IP, source
port, destination port, protocol). Our dataset contains delivery over
HTTPS (9% GET requests) and QUIC (91% GET requests). We do
not use any transport level information. In addition, we record all
data associated with a Google IP address. The IP header capture
allows us to calculate total number of packets and bytes sent and
received by the client in each IP flow during a given time window.

To generate traces under varying network conditions, we run
two categories of experiments: static and movement. For static cases,
we place the end device in a fixed location for the entire session.
However, the distance from the AP varies up to 70 feet or multiple

MMSys "19, June 18-21, 2019, Amherst, MA, USA

You(TR « ;
=1 (i Tube
= —

Figure 7: Experimental setup for our trace collection.

rooms away. For movement cases, we walk around the corridor (up
to 100 feet) in our office building with the end device, while its only
network connection is through the same AP.

We select 60 YouTube clips representing a wide variety of con-
tent types and clip lengths. Each clip is available in all 6 common
resolutions from YouTube, namely 144p, 240p, 360p, 480p, 720p and
1080p. We categorize them into four groups, where groups A and
B are medium length clips (8 to 12 min), C are short clips (3 to 5
min), and D are long clips (25-120 min). Table 2 lists the number of
unique clips in the group, along with the length of each clip and
the session length, that is, the duration for which we record the
clip from its start.

For group A, we collect 425 sessions in both static (over 300)
and movement cases (over 100) in a lab environment in our office
building. All remaining experiments are conducted in static cases.
For clips in group B, we collect traces in an apartment setting in the
US (set By with 60 sessions) and in India (set B, with 45 sessions)
reflecting different WiFi environments. We collect traces in set C
and D from the lab environment, where each set contains more
than 25 sessions. Overall, there are over 10 sessions for each clip in
group A and B and 6 sessions for each clip in group C and D.

Clips in both groups A and B range from 8 to 12 min in length.
In each session we play a clip and collect a 10-min trace from
the moment the client sends the initial request. We choose this
range of length in order for the client to experience buffer increase,
decay and steady state. Shorter clips with a length close to buffer
capacity (e.g., 2 min) can sometimes never enter steady state, even
when given abundant network bandwidth. In general, when there
is sufficient bandwidth to support the clip’s requirement, a clip can
be delivered in its entirety before the end of the playback happens.
On the contrary, when available network bandwidth is not enough
to support the clip’s requirement, a clip may experience delayed
startup and even stall events.

We collect traces over 6 months from Jan. through June 2018, with
video resolution selection set to “auto”. This means the YouTube
client is automatically selecting video resolution based on changes
in network condition. For each session, we set an initial resolution
to ensure that all resolution levels have enough data points.

Each group includes a diverse set of clips in terms of activity level.
It ranges from low activity types such as lectures to high activity
types such as action sequences. This fact can be seen in the wide
range of video bitrates for any given resolution. Fig. 8 shows the
average playback bitrate for each video resolution for each clip in
our dataset. All clips are shown in scatter plots, while clips in group
A are also shown with box plots.® One can see that the average
video playback bitrate spans overlapping regions. Therefore, this
cannot provide a perfect indication of the video resolution even if
the entire session is delivered with a fixed resolution.

*For all box plots in the paper, the middle line is the median value. The bottom and
top line of the box represents Q1 (25-percentile) and Q3 (75-percentile) of the dataset
respectively. The lower extended line represents Q1 — 1.5I QR, where IQR is the inner
quartile range (Q3-Q1). The higher extended line represents Q3 + 1.5IQR.

C. Gutterman et al.

Table 2: Clip distribution in our dataset.

Group Clip Session No. of Unique
Length Length Clips
A 8—12min 10 min 40
B 8—12min 10 min 10
C 3 — 5min 5 min 5
D 25—-120min 30min 5
3.0 u T . T T
B «. Group A 2+,
§5 10| Sows
‘E,E s+++ Group C @ ey
&g 0.5+~ GroupD ; T
=5 o % iz
[=] + . *
2 2] * 4{_; +
0-1—34p 240p 360p 480p 720p 1080p

Resolution

Figure 8: Average playback bitrate vs. video resolution for
clips in our dataset. Clips in all four groups are shown in
scatter plots, while clips in group A are also shown with box
plots.

In our dataset, we notice that YouTube buffer capacity varies
based on video resolution. For example, it is roughly 60, and 120
sec for 1080p and 144p, respectively.

We collect data for each YouTube video session in the Chrome
browser as the sole application on the end device. We record all
packets between the client and any Google servers. The client con-
tacts roughly 15 to 25 different Google servers per session. We
examine the download throughput (see Fig. 3(a) and 3(b) for exam-
ple) further by looking at the most commonly accessed server IP
addresses for each session sorted by the total bytes received. During
a session a majority of traffic volume comes from a single to a few
servers.

4.2 Video State Labeling

A goal for predicting video QoE in real-time inside the network
is to enable real-time resource provisioning to prevent stalls and
decreases in video resolution. To enable this prediction, accurate
labeling of video state is critical. The four exclusive video states
(buffer increase, decay, stall and steady state) accurately capture
the variations in buffer level. They can be used in combination with
actual buffer level to predict dangerous portions of ABR operation
that may lead to QoE degradation. For example, when the buffer
level is close to 0, a stall event is likely to happen in the near future.
Increasing network capacity for the session may prevent a stall.

As shown in §2, playback regions reported by the client ignore
buffer level changes, and cannot be used to generate video states.
Prior work uses manual examination which is time consuming and
can be inaccurate [41]. We opt to automate the process by devel-
oping the definition of video states based on buffer level variation
over time followed by our video state labeling algorithm. We define
the four video states as follows:

(1) Buffer Increase: Buffer level is increasing. It has a slope
greater than € per sec over time window Tyope.
(2) Steady State: Buffer level is relatively flat. The slope of

buffer level is between —e and +¢ % over time window

Requet: Real-Time QoE Detection for Encrypted YouTube Traffic

Algorithm 2 Video State Labeling Algorithm

1: procedure VIDEOSTATELABELING
2 Initialize &, €, TsmuothsTsIope

3 for every t do
4: Calculate By < median[B;_1___\--»BtiTois]
EHT —Er—T
5: Calculate m; « slope slope
erlnp:

6: if B < 6 then

7: Statey « Stall

8: else if —e < m; < € and B; > Buf fsg then
9: State; = Steady State

10: else if m; < 0 then

11: State; « Buffer Decay

12: else

13: State; « Buffer Increase

14: SmoothState(State)

Table 3: Notation Summary

|| Symbol Semantics Defaults ||

] Stall threshold 0.08 sec

€ Buffer slope boundary for 0.15 322
Steady State

Tsmooth Time window for smoothing buffer 15 sec

Tilope Time window to determine buffer 5 sec
slope

Buffss Minimum buffer level to be 10 sec
in steady state

Thrsg Minimum time window to 15 sec
stay in steady state

MinTimess Time window to look for quick 10 sec
changes out of steady state

MinTimeg,; Time window to look for quick 10 sec
changes out of stall state

Tglope- To be in steady state the slope needs to be in this
range for greater than Thrsg sec.

(3) Buffer Decay: Buffer level is decreasing with a slope less

than —e % over time window Tlope.

(4) Stall: Buffer level is less than or equal to &.

We execute our video state labeling algorithm in Alg. 2 for each
time instance t when buffer information is recorded (every 100 ms)
to determine video state for a session according to our definition.

As a chunk arrives at the client, buffer level increases by chunk
length in sec. During playback, buffer level decreases by 1 sec for
every sec of playback. Looking at short windows or the wrong point
of a window would incorrectly determine that buffer is decreasing.
We use a smoothing function to derive a more accurate buffer slope.
Specifically, we use a moving median filter over a window around
t defined by [t — Tymooothst + Tsmooth]- We examine the rate of
change of the buffer slope over a window around ¢ defined by
[t- Tslopwt + Tslope]-

In order to avoid rapid change of stall state, we set § to 0.08 sec.
This value ensures that small variations in and out of stall state
are consistently labeled as being in stall state. If the buffer level is

Sec

above Buf fsg and has a slope between —¢ and € $;, then we label

it as steady state. If these specifications are not met and the slope

MMSys *19, June 18-21, 2019, Amherst, MA, USA

Table 4: % of chunks in each state (Set A).

Resolution Video State

Stall Decay Steady Increase
Audio 1.2 2.8 40.9 35.1
Video 3.7 5.9 47.6 42.8

is negative, we set the state to buffer decay. If the slope is positive,
we set the state to buffer increase.

To ensure that video state does not change rapidly due to
small fluctuations of buffer level, we use an additional heuristic of
SmoothState: steady state has to last longer than Thrgg. This allows
chunks with playback time longer than this value to arrive at the
client. If there are changes out of and then back into stall state that
last less than MinTimeg,) we consider the entire period as stall.
Similarly, if there are changes out of and then back into steady state
that last less than MinTimeg,) we consider the entire period steady
state. For clarity, we list all symbols in Table 3, as well as the values
that we find to work the best empirically for our dataset.

5 REQUET ML FEATURE DESIGN

We develop the ML QoE prediction models for Requet by using packet
traces and associated ground truth labels (§4). As shown in Fig. 2,
the traces are converted into chunks by using ChunkDetection (§3),
and then the associated features are extracted.

We develop ML models using Random Forest (RF) to predict user
QoE metrics[21]. We build the RF classifier in Python using the
sklearn package. We choose RF for a number of reasons. (i) ML
classification algorithms based on decision trees have shown better
results in similar problems [15, 32, 34, 41] with RF showing the best
performance among the class [41]. (ii) On our dataset, Feedforward
Neural Network and RF result in roughly equal accuracy. (iii) RF
can be implemented with simple rules for classification in real-time,
well suited for real-time resource provisioning in middleboxes.

Each session in our dataset consists of (i) IP header trace and (ii)
QoE metric ground truth labels generated by our video labeling pro-
cess in data aqcuisition (§4). ChunkDetection (§3.2) of Requet trans-
forms the IP header trace into a sequence of chunks along with the
associated chunk metrics (§3.1). The goal of Requet QoE models
is to predict QoE metrics using chunk metrics. To train such ML
models, it is critical to capture chunk behavior associated with QoE
metrics using chunk-based features. We analyze chunk behavior in
our dataset (§5.1), explore how to capture such behavior in chunk-
based features (§5.2), and explain how to generate baseline features
used in prior work that are oblivious to chunk information (§5.3).

5.1 Chunk Analysis

We apply the ChunkDetection algorithm (Alg. 1) of Requet to all
sessions from the 40 clips in set A in our dataset. We examine
the correlation between various chunk metrics (audio or video,
chunk size, chunk duration, effective rate which we define as chunk
size over chunk duration, TTFB, download time, and slack time)
to QoE metrics (buffer level, video state, and resolution). In most
cases of our dataset, for a given session, audio and video chunks
are transmitted from one server. However, in some cases audio
and video traffic comes from different servers. In other cases, the

MMSys 19, June 18-21, 2019, Amherst, MA, USA

1000 y g
€ a0 L 1
2 600 H T i
E LhIRET Bl
g 400 ol i t o
3 200 . ; H’ 11
2 8% | bii
o 29e8 5%
#8358 g38
ﬂ'm"g ﬂ'm"g

nCreaseqT—_t-----

—
oA

C. Gutterman et al.

Eis N

F - + . H H

B s ¢ o i

S1or fo o
E H;! H’ f
:%5 P . | ’H‘i
NI ol
=ae3 =283 =387 F388
az?g ﬁz?g ﬁz?g ﬁz?@
D{_,-.“E D}:.“E D{_,-.“E D{_,-.“E

.
=)

Figure 9: Chunk metrics for all audio chunks in set A. (a) chunk size, (b) chunk duration, (c) download time.

server switches during a session. These findings are consistent with
existing YouTube traffic studies [33].

We list the distribution of audio and video chunks along with
video state at the end of chunk download in Table 4. Most of the
chunks occur during steady or buffer increase states. An extremely
small fraction (4% audio and 9% video) are associated with stall or
buffer decay states. They represent two scenarios: (i) bandwidth is
limited and there are not enough chunks to increase buffer level
substantially or (ii) buffer is about to transition into increase state.

Fig. 9 and 10 show the box plots for chunk duration, size, and
download time for audio and video chunks respecitvely. Each plus
sign represents an outlier. TTFB reflects the round trip time from
the client to the server, and has a median value of 0.05 sec. This
accounts for a tiny portion of chunk duration (median value > 5
sec). We can safely simplify the relationship between various chunk
metrics to (slack time = chunk duration - download time). Notice
that slack time and effective rate are derivable from chunk duration,
size, and download time. The latter three are the key metrics used
in our feature selection for ML models.

Audio is encoded with CBR, however our examination of HTTP
requests using Fiddler [3] reveal that in the four video states (steady,
buffer increase, decay and stall), audio chunk size decreases in
the same order. This implies that audio chunk playback time also
decreases in the same order. This behavior is consistent across
all resolution levels (Fig. 9(a)) and indicates that audio chunk size
exhibits a strong correlation with video state. Across all resolution
levels, Fig. 9(b) shows median audio chunk duration in steady and
buffer increase state is roughly 30 and 10 sec respectively, but does
not exhibit a clear pattern in stall and buffer decay states. Fig. 9(c)
shows audio chunk download time in steady and buffer increase
states are similar in value, both smaller than that of stall state, which
is smaller than that of buffer decay state. The longer download time
is an indication that the network bandwidth is limited. This is
a useful insight that current bandwidth alone can not reveal. For
example, a specific throughput can be associated to a low resolution
with the buffer increasing or a higher resolution with the buffer
decreasing. All three audio chunk metrics are clearly correlated
with video state.

Fig. 10 shows video chunk statistics. There is a large overlap
across different resolutions and video states in chunk size (Fig. 10(a))
and chunk duration (Fig. 10(b)). It reveals that without knowing
video state, it would be difficult to determine video resolution,
chunk size, and chunk duration. For example, these statistics are
very similar for a 240p chunk in buffer increase state and a 720p
chunk in buffer decay. Using audio chunk statistics to identify video

state is critical in separating these two cases.

For video chunks, our examination of HTTP requests using
Fiddler also shows that for a clip with a given resolution, steady
state chunk size is larger than that in the remaining three states.
Fig. 10(a) further shows that median video chunk size increases as
resolution increases from 144p to 480p and stays roughly the same
around 2 MB from 480p to 1080p. Fig. 10(b) shows median chunk
duration in steady state is similar for 144p, 240p, and 360p, in the
range of 35 — 45 sec, and decreases from 25 sec for 480p to 5 sec for
1080p. To obtain a higher effective rate for higher resolutions the
chunk size levels off, but to compensate chunk duration decreases.
Fig. 10(c) shows median chunk download time exhibit smaller values
in stall or buffer decay state, higher and similar values in steady or
buffer increase state. This is expected as with limited bandwidth, a
session may deplete its buffer or even stall. During buffer increase,
retrieving smaller chunks faster than steady state results in similar
download time as steady state. During steady and buffer increase
state, chunk size and duration combined provide some indication
of resolution levels. However, during stall and buffer decay state,
no indication can be easily seen from the three metrics.

To summarize, our key observations are as follows: (i) Without
knowing video state it would be difficult to differentiate between
the two cases: (a) Higher resolution clip in buffer decay and (b)
Lower resolution clip in buffer increase. (ii) Audio chunk statistics
exhibit strong association with video state. (iii) Video chunk size
increases and eventually levels off as resolution increases. At the
same time, video chunk duration is higher for lower resolution
levels and decreases as resolution level increases.

5.2 Chunk-based Features in Requet

Requet identifies chunks using Alg. 1 executed over all flows during
a YouTube session. For each audio or video chunk, it records the fol-
lowing seven chunk metrics: protocol used to send the GET request,
start time, TTFB, download time, slack time, chunk duration, and
chunk size. Furthermore, it does not record the server IP address
from which the chunk is delivered to the end device as it has no
relationship with our QoE metrics.

Results from §5.1 show that the most important metrics for
both audio and video are chunk size, duration, and download time.
Chunk arrival is not a uniform process in time and therefore, the
number of chunks in a time window vary. This would require a
variable number of features. Instead, Requet uses statistics of chunk
metrics in different time windows. Specifically, for the 20 windows
representing the immediate past 10, 20, ..., 200 sec, it records total
number of chunks, average chunk size and download time for each
time window, resulting in 60 features each for audio and video, and

Requet: Real-Time QoE Detection for Encrypted YouTube Traffic

la4

.
=

MMSys "19, June 18-21, 2019, Amherst, MA, USA

T

.
Tt
[

Decay| —4:{:;----- -

:
P
i
"
@

. [&

i bnEn il

QB?E Tal ia ! a0 -BW

;ﬂ%)-dl ;ﬂ%)-dl ;ﬂ = ;ﬂ%)-dl ;ﬂ%)-dl

7338 7538 A538 533 #3358

fhg Chg Shg fhg Sag
©

Figure 10: Chunk metrics for all video chunks in set A. (a) chunk size, (b) chunk duration, (¢) download time.

a total of 120 features.* Regarding video resolution, Requet only
makes predictions upon receiving a video chunk. Therefore, beyond
the 120 features, it further includes the seven features associated
with the video chunk. The sliding window based features in Re-
quet make it ideal for middleboxes with a memory requirement of
1016 bytes for the 127 features (assuming each feature requires a
maximum of 8 bytes).

5.3 Baseline Features

For the baseline system, we remove Requet’s ChunkDetection al-
gorithm in Fig. 2 and the associated features and instead design
baseline features commonly used in prior work [24, 32, 34, 41].
We select features that are used in more than one of these prior
works, and feasible to use in network middleboxes where mem-
ory is constrained. We collect basic IP level features in terms of
flow duration, direction, volume (total bytes), burstiness, as well as
transport protocol. For each 100-ms window, we calculate the total
number of uplink and downlink packets and bytes, and include a
one-hot vector representation of the transport protocols used for
each IP address.” The five features for transport protocol are QUIC,
TCP with TLS, TCP without TLS, no packets in that interval, or
other. After examining the total downlink bytes of the top 20 flows
in a session in our dataset, we decide to include traffic from the top
3 servers in our feature set. The remaining flows have significantly
smaller traffic volume and therefore represent background traffic in
a session and do not deliver video or audio traffic. By doing so, we
effectively eliminate the traffic that is unrelated to our QoE metrics.
In addition, we include the total number of uplink/downlink bytes
and packets from the top 20 servers for the session.

We calculate the average throughput and the total number of
packets in the uplink and downlink direction during a set of time
intervals to capture recent traffic behavior. Specifically, we use six
intervals immediately proceeding the current prediction window,
and they are of length 0.1, 1, 10, 60, 120, and 200 sec.

Furthermore, during these six windows, we record the percent-
age of 100-ms slots with any traffic in uplink and downlink sepa-
rately. These two features are added to determine how bursty the
traffic is during the given time window. In addition to the four
features for the total network traffic for all servers contacted during
the session, the features for each of the top three servers are:

¢ total bytes in past 100 ms in uplink/downlink

“We use the past 200sec history as YouTube buffer rarely increases beyond 3 min.
5In natural language processing, a one-hot vector is a 1x N matrix (vector) used to
distinguish each word in a vocabulary from every other word in the vocabulary. The
vector consists of 0s in all cells with the exception of a single 1 in a cell used uniquely
to identify the word. In our case, each IP address is treated as a word.

¢ total number of packets in past 100 ms in uplink/downlink
® transport protocol (5 features)
o for each of the windows of length 1, 10, 60, 120, and 200 sec:
- average throughput in uplink/downlink
— total number of packets in uplink/downlink
- % of 100-ms slots without any traffic in uplink/downlink

To summarize, for each time window, there areup to4 +3x (4 +
5+ 5 x 6) = 121 features for the baseline system.

6 EVALUATION

We evaluate the performance of Requet by comparing its accuracy
for each QoE metric versus the baseline system. Both systems pre-
dict the current QoE metrics every 5 sec, except for Requet which
predicts resolution every chunk. Since transport payload of net-
work traffic we collect is encrypted, we are unable to evaluate
Requet against previous works that use deep packet inspection.
Data collected as described in §4 is used for training, validation,
and testing. Out of the four sets of traces in our dataset (§4.1), we
use group A, the largest one to train both systems to predict each
QoE metric in real-time. We then test Requet on smaller groups
B, C, and D. Subsequently, to determine how training in the lab
environment works on clips with similar length but in different
environments we use groups By and B;. We also use group A as the
training set for evaluating shorter clips (group C) and longer clips
(group D) in the same lab environment as group A.

For group A, we conduct 4-fold cross validation on the 40 clips.
Specifically, we divide the 40 clips into four exclusive sets each with
ten unique clips. In each fold, we first train a model for each QoE
metric using RF with features from 30 clips (three of the four sets).
We then test the model on the ten clips from the remaining set. We
report each model’s average performance over the four folds.

The buffer warning model produces two prediction possibili-
ties. It indicates whether the buffer level is below the threshold
Buf fW arningy s, or not. The video state model produces four
states and the resolution model produces six resolution levels.

We report accuracy of each model as the ratio of the number of
correct predictions over total number of predictions. For each label
a model predicts, we further report: (i) precision defined as the ratio
of true positives to total positives, that is, the percentage of correct
predictions out of all positive predictions of a label, and (ii) recall
defined as the ratio of correct predictions to total true occurrences
of a label, that is, the percentage of a label correctly predicted.

MMSys 19, June 18-21, 2019, Amherst, MA, USA

Table 5: Buffer warning performance with data in group A.

Tvpe Baseline Requet

yP Precision Recall Precision Recall
BfW 51.0 111 79.0 68.7
NBfW 86.0 98.1 94.1 96.5
Accuracy 84.9 92.0

Table 6: Video state performance with data in group A.

Tvpe Baseline Requet

P Precision Recall Precision Recall
Stall 311 7.6 70.4 51.9
Buf. Decay 32.0 16.3 78.0 78.7
Buf. Increase 64.1 57.6 80.2 84.2
Steady 57.6 80.2 90.7 92.2
Accuracy 55.4 84.2

6.1 Buffer Warning Prediction

The first metric we examine is buffer warning. We set the threshold
for buffer level warning, Bu f fWarning esn. to be 20 secs. This
provides ample time to provision enough bandwidth before an
actual stall occurs.

For this metric, each time window in our dataset is labeled with
either “no buffer warning” (NBfW) or “buffer warning” (BfW). In
group A, significantly more chunks are labeled with NBfW (84%)
than BfW (16%). The results in Table 5 show that both baseline and
Requet perform well for this task, with accuracy reaching 85% and
92%, respectively. We see that precision and recall for NBfW are
higher than those for BEW in both baseline and Requet. Given the
current label is BEW, Requet provides significantly higher probabil-
ity of predicting BfW correctly with recall of 68% over 11% for the
baseline. This is because Requet uses chunk features to detect the
case when no chunks have recently arrived. However, it is difficult
for the baseline system to identify such cases due to the lack of
chunk detection. For example, baseline can not differentiate packets
as being part of a chunk or background traffic.

6.2 Video State Prediction

The results of video state prediction are shown in Table 6. Re-
quet achieves overall accuracy of 84%, compared to 55% for baseline,
representing a 53% improvement. Requet also outperforms baseline
in precision and recall for each state.

Stall, buffer decay, buffer increase and steady state appear in 3.7%,
5.9%, 42.8% and 47.6% of chunks in group A respectively (Table 4).
The precision and recall for both systems increase in the same order
of stall, buffer decay, buffer increase and steady.

However, baseline achieves below 40% in precision and recall
for both the stall and buffer decay states. This implies that during
these two states, network traffic does not have a significant pattern
for baseline to discover. Furthermore, during steady state there can
be gaps of 30 sec or longer. A long gap also occurs when butfer is
in decay state. Baseline features cannot separate buffer decay from
steady state.

Examination of the Requet model reveals that audio chunk count
for each 20 sec window is an important feature to predict video

C. Gutterman et al.

Table 7: Video resolution performance with data in group A.

T Baseline Requet
ype Precision Recall Precision Recall

144p 13.0 7.6 80.6 79.9
240p 14.6 10.1 68.7 64.3
360p 141 9.9 49.2 64.4
480p 247 33.3 64.9 63.83
720p 245 30.3 60.6 54.5
1080p 22.2 20.1 75.0 76.9
Accuracy 21.8 66.9

state. For example, if there are a few audio chunks in the past 20 sec
it is likely that buffer is increasing, and if there are no audio chunks
in the past 120 sec it is likely to be in stall state. This explains the
relatively high performance of Requet .

6.3 Video Resolution Prediction

It is extremely challenging for baseline to predict video resolution
even with history of up to 200 sec. Overall accuracy is only 22%,
slightly better than randomly picking one out of six choices.

As seen in Fig. 8, there is a large overlap of average playback
bitrates of video clips of different resolutions due to varying activity
levels in the video content. Without any knowledge about the
content of the video or the video state, it is extremely difficult if
not impossible to associate a chunk given its playback bitrate with
the resolution it is encoded with. Furthermore, without knowing
video state there is a large overlap in video chunk size and chunk
duration across resolutions as seen in Fig. 10.

Requet utilizes chunk-based features. It uses the frequency of
audio chunks to indicate the video state. The state information
allows Requet to determine the resolution of the most recent video
chunk with greater accuracy. By using both audio and video chunks,
Requet achieves a 66% accuracy for predicting resolution (six lev-
els). This result demonstrates that Requet is able to use audio
chunk features to enhance video resolution prediction. By nar-
rowing down the options in resolution to three: small(144p/240p),
medium (360p/480p), and large (720p/1080p), Requet achieves an
accuracy of 87%. If the number of options is reduced to two:
small(144p/240p/360p) and large (480p/720p/1080p) the accuracy
improves to 91%.

6.4 Extended Test

Up to this point we have reported results from our systems trained
with part of group A and tested on different clips in group A. Next,
we use group A as the training data for Requet and evaluate with
groups By, By, C, and D. We test Requet on 10 clips from groups B,
and B; for residential WiFi settings in US and India respectively,
to see how they perform on unseen clips of similar length and
unseen WiFi environments. In addition, we use the same lab WiFi
environment in group A, to test Requet on 5 clips of shorter length
of 5 min in group C and longer length of 25 min in group D. Fig. 11
reports the average precision and recall of these four tests along
with the 4-fold cross validation results from group A.

Depending on the environment and QoE metric, performance
of these extended sets of tests either improves or deteriorates com-
pared with results from group A reported earlier in this section. For

Requet: Real-Time QoE Detection for Encrypted YouTube Traffic

MMSys "19, June 18-21, 2019, Amherst, MA, USA

Precision %
Precision %

Precision %
& @
2

M

BN . ENs EEs: ODc BEEO

Buffer Warning Buffer Waming

(©

Recall %

L L o © L]
=
Sta Decay Steady Increase

(d)

s Ema DDc EEo

No Buffer Warning Buffer Warning

®

Figure 11: Accuracy of Requet models trained with group A. (a) Precision of video state, (b) Precision of video resolution, (c)
Precision of stall warning, (d) Recall of video state, (e) Recall of video resolution, (f) Recall of stall warning.

example, groups By, B2, and C have improved precision and recall
in predicting stall and buffer decay states. Group D shows lower
precision in predicting buffer decay, but higher recall for both stall
and buffer decay. Improved precision and recall results appear for
predicting buffer threshold warning.

Accuracy for video resolution varies from experiment to exper-
iment. Surprisingly, group B; has the highest overall accuracy of
70% when training with group A. This is in part due to that there
were zero 480p events collected in group B;. This resolution level
has lower precision than 144p, 240p, and 1080p (see Table 7), and is
extremely difficult for the other test sets to predict as well.

Most precision and recall results for other sets are better than
group A with a few exceptions. This could be due to the fact that
group A includes movement experiments, while the other groups
only contain static ones. A video session naturally exhibits different
behavior in different types of environments. In addition, we plan
to improve our prediction models by studying how the imbalance
in data samples impacts the precision and recall of each model.

7 RELATED WORK

Traditional traffic monitoring systems rely on DPI to understand
HTTP request and reply messages. The systems use meta-data to
understand ABR and infer video QoE. The MIMIC system estimates
average bitrate, re-buffering ratio and bitrate switches for a session
by examining HTTP logs [29]. Comparatively, BUFFEST builds ML
classifiers to estimate buffer level based either on the content of
HTTP requests in the clear or on unencrypted HTTPS requests
by a trusted proxy [24]. HighSee identifies HTTP GET requests
and builds a linear Support Vector Machine (SVM) [13] model to
identify audio, video, and control chunks to separate audio, video
and control flows [19].

For encrypted traffic, proposals fall in two categories. The first
category builds session models offline by detecting HT TP requests
as in eMIMIC [28], while the second category builds ML models to
predict QoE either offline or online.

Offline Models: The offline approach uses entire video session
traffic to generate features to classify the session into classes. YouQ
classifies a session into two to three QoS classes [34]. The system
in [15] builds models to roughly put a session into three categories
in terms of stall events (“non-stall”, “0-1 stalls”, or “2-or-more stalls”),
or three classes based on average quality level. Using simulation,
[42] builds ML models to predict average bitrate, quality variation,

and three levels of stall ratio (no, mid, severe) for entire sessions
using post processing. Comparatively, [27] classifies a session in
two categories (with or without stall events) based on cell-related
information collected at the start of a video session.

Online Models: The online approach uses traffic from the past
time window in the session to generate features to predict QoE
metrics specific to that time window. The system in [32] develops
features based on both network and transport level information in a
10sec time window to build separate classifiers for HTTPS and QUIC
traffic to infer startup delay (below or above a given threshold),
stall event occurrence, and video quality level (“low” and “high”).
This system uses features including packet level statistics such as
standard deviation. This has a relatively large memory requirement
and makes it infeasible in middleboxes.

Flow Identification: Identifying video flows from encrypted
traffic is orthogonal to the QoE detection problem for given ABR
flows. It is an example of the broad encrypted traffic classification
problem. The Silhouette system [26] detects video chunks (also
named Application Data Units) from encrypted traffic in real-time
for ISP middleboxes using video chunk size, payload length, down-
load rate threshold values. The real-time system in [37] identifies
Netflix videos using TCP/IP header information including TCP se-
quence numbers. This approach relies on a “finger print” database
built from a large number of video clips hosted by Netflix. The fin-
ger print is unique for each video title, therefore it is ineffective in
classifying new video titles not previously seen. The system in [41]
classifies an encrypted Youtube flow every 1sec interval into HTTP
Adaptive Streaming (HAS) or non-HAS flows in real-time. For a
HAS flow, it further identifies the buffer states of the video session
into filling, steady, depleting and unclear. The high accuracy to
predict buffer state is partly due to the fact that the entire dataset
contains only 3 clips with multiple sessions for each clip. This sys-
tem also uses a feature based on the standard deviation of packet
size, which is not feasible for implementation in middleboxes due
to the memory requirement.

8 CONCLUSION AND FUTURE WORK

We present Requet, a system for REal-time QUality of experience
detection for Encrypted Traffic. We focus on three QoE metrics
(1) buffer warning, (2) video state, and (3) video quality, as they

MMSys 19, June 18-21, 2019, Amherst, MA, USA

are crucial in allowing network level resource provisioning in real-
time. We design a video state labeling algorithm to automatically
generate ground truth labels for ABR traffic data.

Requet consists of the ChunkDetection algorithm, chunk fea-
ture extraction, and ML QoE prediction models. Our evaluation
using YouTube traffic collected over WiFi networks demonstrates
Requet using chunk-based features exhibit significantly improved
prediction power over the baseline system using IP-layer features.

We demonstrate that the Requet QoE models trained on one set of
clips exhibit similar performance in different network environments
with a variety of previously unseen clips with various lengths.

A current limitation of Requet is that it is based on YouTube.
Therefore, one direction of our future work includes building a
generic model for a wide range of networks and client algorithms
for ABR. We plan to evaluate traffic over 3G and LTE cellular net-
works, and expand into additional services such as Netflix. Another
direction of our future work includes investigating resource sched-
uling in real-time to utilize the QoE predictions from Requet. We
aim to study the joint effect of operator optimization and content
provider video optimization mechanisms.

ACKNOWLEDGMENTS

We thank the Shepard, Wei Tsang Ooi, and the anonymous review-
ers for helpful comments and suggestions. This work was supported
in part by NSF grants CNS-1650685, CNS-1413978, and DGE 16-
44869.

REFERENCES

[1] About wireshark. https://www wireshark.org/about.html.

[2] Cisco visual networking index: Global mobile data traffic forecast update,
2016—2021. https://www.cisco.com/c/en/us/solutions/collateral/service- provider/
visual-networking- index-vni/mobile-white-paper-c11-520862.htmL

[3] Telerik fiddler, the free web debugging proxy. https://www.telerik.com/fiddler.

[4] How Google is making YouTube safer for its users, Fortune. http://fortune.com/
2016/08/02/google-youtube-encryption- https/, Aug. 2016.

[5] Encrypted traffic analytics, Cisco white paper. https://www.cisco.com/c/dam/
en/us/solutions/collateral/enterprise-networks/enterprise- network-security/
nb-09-encrytd- traf-anlytcs-wp-cte-en.pdf, 2018.

[6] 3GPP. Transparent end-to-end Packet-switched Streaming Service (P5S). TS
26.234, 3rd Generation Partnership Project (3GPP), 2010.

[7] V. Aggarwal, E. Halepovic,]. Pang, 5. Venkataraman, and H. Yan. Prometheus:
toward quality-of-experience estimation for mobile apps from passive network

ts. In Proc. HotMobile, Feb. 2014.

[8] A. Ahmed, Z. Shafig, H. Bedi, and A. R. Khakpour. Suffering from buffering?
detecting QoE impairments in live video streams. In Proc. IEEE ICNF, Oct. 2017.

[9] J. Amann, O. Gasser, Q. Scheitle, L. Brent, G. Carle, and R. Holz. Mission accom-
plished?: HTTPS security after diginotar. In Proc. ACM IMC, Nov. 2017.

[10] L. Armasu. Netflix adopts efficient HTTPS encryption for its video streams.
https://www.tomshardware.com/news/netflix-efficient-https-video-streams,
32420.html, Aug. 2016.

[11] P. Casas, M. Seufert, and R. Schatz. YOUQMON: a system for on-line monitoring
of YouTube QoE in operational 3G networks. SIGMETRICS Performance Evaluation
Review, 41(2):44-46, 2013.

[12] G. Cofano, L. De Cicco, T. Zinner, A. Nguyen-Ngoc, P. Tran-Gia, and S. Mas-
colo. Design and experimental evaluation of network-assisted strategies for http
adaptive streaming. In Proc. of MMSys. ACM, 2016.

[13] C.Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273—
297, 1995.

[14] Y. Cui, T. Li, C. Liu, X. Wang, and M. Kithlewind. Innovating transport with QUIC:
design approaches and research challenges. IEEE Internet Computing, 21(2):72-76,
2017.

[15] G. Dimopoulos, L. Leontiadis, P. Barlet-Ros, and K. Papagi ki. M ing
video QoE from encrypted traffic. In Proc. ACM IMC, Nov. 2016.

[16] E. Dobrian, V. Sekar, A. Awan, L Stoica, D. Joseph, A. Ganjam,]. Zhan, and
H. Zhang. Understanding the impact of video quality on user engagement. In
Froc. ACM SIGCOMM, Aug. 2011.

C. Gutterman et al.

[17] Z.Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sullivan, E. Bursztein, M. Bailey,
J. A. Halderman, and V. Paxson. The security impact of HTTPS interception. In
Proc. NDSS, Feb. 2017.

[18] R.T.Fielding and]. F. Reschke. Hypertext transfer protocol (HTTP/1.1): message
syntax and routing. RFC, 7230:1-89, 2014.

[19] S. Galetto, P. Bottaro, C. Carrara, F. Secco, A. Guidolin, E. Targa, C. Narduzzi, and
G. Giorgi. Detection of video/audio streaming packet flows for non-intrusive
QoS5/QoE monitoring. In IEEE Int. Workshop on Measurement and Networking,
Sept. 2017.

[20] T.A.Guarnieri, L. Drago, A. B. Vieira, I. Cunha, and]. M. Almeida. Characterizing
QoE in large-scale live streaming. In Proc. IEEE GLOBECOM, Dec. 2017.

[21] T. K. Ho. Random decision forests. In Proc. IEEE Conf. Document analysis and
recognition, 1995.

[22] T. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A buffer-based
approach to rate adaptation: evidence from a large video streaming service. In
Proc. ACM SIGCOMM, Aug. 2014,

[23] A.M. Kakhki, S. Jero, D. R. Choffnes, C. Nita-Rotaru, and A. Mislove. Taking
a long look at QUIC: an approach for rigorous evaluation of rapidly evolving
transport protocols. In Proc. ACM IMC, Nov. 2017.

[24] V.Krishnamoorthi, N. Carlsson, E. Halepovic, and E. Petajan. BUFFEST: predicting
buffer conditions and real-time requirements of HTTP(S) adaptive streaming
clients. In Proc. ACM MMSys, June 2017.

[25] W.Law. Ultra-Low-Latency STreaming Using Chunked-Encoded and Chunked-
Transferred CMAF. Technical report, Akamai, 2018.

[26] F.Li,].W. Chung, and M. Claypool. Silhouette: Identifying youtube video flows
from encrypted traffic. In Proc. NOSSDAV, June 2018.

[27] Y. Lin, E. M. R. Oliveira, S. B. Jemaa, and 5. Elayoubi. Machine learning for
predicting QoE of video streaming in mobile networks. In IEEE ICC, May 2017.

[28] T. Mangla, E. Halepovic, M. Ammar, and E. Zegura. eMIMIC: estimating http-
based video QoE metrics from encrypted network traffic. In Proc. IEEE TMA,
2018.

[29] T. Mangla, E. Halepovic, M. H. Ammar, and E. W. Zegura. MIMIC: using passive
network measurements to estimate http-based adaptive video QoE metrics. In
Proc. IEEE TMA, 2017.

[30] A.Mansy, M. H. Ammar,]. Chandrashekar, and A. Sheth. Characterizing client
behavior of commercial mobile video streaming services. In Proc. ACM MoVid,
Mar. 2014.

[31] H. Map, R. Netravali, and M. Alizadeh. Neural adaptive video streaming with
pensieve. In Proc. ACM SIGCOMM, Aug. 2017.

[32] M.H. Mazhar and Z. Shafiq. Real-time video quality of experience monitoring
for HTTPS and QUIC. In Proc. IEEE INFOCOM, Apr. 2018.

[33] A.Mondal S. Sengupta, B. R. Reddy, M.]. V. Koundinya, C. Govindarajan, P. De,
N. Ganguly, and 5. Chakraborty. Candid with YouTube: adaptive streaming
behavior and implications on data consumption. In Proc. NOSSDAV, June 2017.

[34] L Orsolic, D. Pevec, M. Suznjevic, and L. Skorin-Kapov. YouTube QoE estimation
based on the analysis of encrypted network traffic using machine learning. In
Froc. IEEE Globecom Workshops, Dec. 2016.

[35] S.Petrangeli, T. Wu, T. Wauters, R. Huysegems, T. Bostoen, and F. De Turck. A
machine learning-based framework for preventing video freezes in http adaptive
streaming. Journal of Network and Computer Applications, 2017.

[36] A.Razaghpanah, A. A Niaki, N. Vallina-Rodriguez, 5. Sundaresan, J. Amann, and
P. Gill. Studying TLS usage in android apps. In Proc. ACM CoNEXT, Dec. 2017.

[37] A.Reed and M. Kranch. Identifying HTTPS-protected netflix videos in real-time.
In Proc. CODASPY, Mar. 2017.

[38] P.Schmitt, F. Bronzino, R. Teixeira, T. Chattopadhyay, and N. Feamster. Enhancing
transparency: Internet video quality inference from network traffic. In Proc.
TPRC46, 2018.

[39] T Stockhammer. Dynamic adaptive streaming over HTTP -: standards and design
principles. In Proc. ACM MMSys, Feb. 2011.

[40] D. Tsilimantos, T. Karagkioules, and S. Valentin. Classifying flows and buffer
state for YouTube’s HTTP adaptive streaming service in mobile networks. CoRR,
abs/1803.00303, June 2018.

[41] D. Tsilimantos, T. Karagkioules, and S. Valentin. Classifying flows and buffer
state for youtube's HTTP adaptive streaming service in mobile networks. In Proc.
ACM MMSys, June 2018.

[42] V. Vasilev, . Leguay, S. Paris, L. Maggi, and M. Debbah. Predicting QoE factors
with machine learning. In Proc. IEEE ICC, May 2018.

[43] N. Vogt. Youtube audio quality bitrate used for 360p, 480p, 720p,
1080p, 1440p, 2160p. https://www.h3xed.com/web-and-internet/
youtube-audio-quality-bitrate- 240p-360p-480p-720p-1080p, 2015.

[44] F. Wamser, M. Seufert, P. Casas, R. Irmer, P. Tran-Gia, and R. Schatz. YoMoApp: A
tool for analyzing QoE of YouTube HTTP adaptive streaming in mobile networks.
In Proc. European Conf. on Networks and Communications (EuCNC), June 2015.

[45] N. Weil. The state of MPEG-DASH 2016. hittp:/warw.
streamingmedia.com/Articles/Articles/Editorial/Featured- Articles/
The-State-of-MPEG-DASH-2016- 110099.aspx.

https://www.wireshark.org/about.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://www.telerik.com/fiddler
http://fortune.com/2016/08/02/google-youtube-encryption-https/
http://fortune.com/2016/08/02/google-youtube-encryption-https/
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf
https://www.tomshardware.com/news/netflix-efficient-https-video-streams,32420.html
https://www.tomshardware.com/news/netflix-efficient-https-video-streams,32420.html
https://www.h3xed.com/web-and-internet/youtube-audio-quality-bitrate-240p-360p-480p-720p-1080p
https://www.h3xed.com/web-and-internet/youtube-audio-quality-bitrate-240p-360p-480p-720p-1080p
http://www.streamingmedia.com/Articles/Articles/Editorial/Featured-Articles/The-State-of-MPEG-DASH-2016-110099.aspx
http://www.streamingmedia.com/Articles/Articles/Editorial/Featured-Articles/The-State-of-MPEG-DASH-2016-110099.aspx
http://www.streamingmedia.com/Articles/Articles/Editorial/Featured-Articles/The-State-of-MPEG-DASH-2016-110099.aspx

Requet: Real-Time QoE Detection for Encrypted YouTube Traffic

9 APPENDIX

This appendix provides a description of the dataset acquired
in §4, used for Requet chunk detection in §3, and for evalua-
tion in §6. The dataset can be found in a Github Repository
(https://github.com/Wimnet/RequetDataSet). The dataset is divided
into 5 group folders for data from groups A, B1, B2, C, D, along with
a summary file named 'ExperimentInfo.txt’ for the entire dataset.
Each line in the file describes an experiment using the following
four attributes: (a) experiment number, (b) video ID, (c) initial video
resolution, and (d) length of experiment in seconds.

A group folder is further divided into two subfolders, one for
PCAP files, and the other for txt files. Each experiment is described
by a PCAP file and a txt file. The PCAP file with name in the form of
(i) "baseline_{date}_exp_{num}.pcap’ is for an experiment where
the end device is static for the entire duration whereas a file with
name in the form of (ii) “movement _{date}_exp_{num).pcap’ is for
an experiment where the end device movement occurs during the
experiment. The txt file names end with 'merged.txt’. The txt file
contains data colletect from YouTube API and summary of PCAP
trace for the experiment.

In each 'merged.txt’ file, data is recorded for each 100ms interval.
Each interval is represented as: [Relative Time, # Packets Sent, #
Packets Received, # Bytes Sent, # Bytes Received, [Network Info 1],
[Network Info 2], [Network Info 3], [Network Info 4], [Network
Info 5], ..., [Network Info 25], [Playback Info]].

Relative Time marks the end of the interval. Relative Time is
defined as the time since the Javascript Node server hosting the
YouTube APT is started. Relative Time for the 0 interval is defined
as 0 sec. It is updated in intervals of 100ms. TShark is called prior
to the Javascript Node server. Therefore, the 0" interval contains
Wireshark data up to the start of the Javascript Node server.

Network Info i is represented as: [IP_Src, IP_Dst, Protocol, #
Packets Sent, # Packets Received, # Bytes Sent, # Bytes Received]
for each interval. IP_Src is the IP address of the end device. The top
25 destination IP addresses in terms of total bytes sent and received
for the entire session are recorded. For each i of the top 25 IP_Dst
addresses, the Protocol associated with the higher data volume
for the interval (in terms of total number of packets exchanged)
is selected, and data volume in terms of packets and bytes for
each interval is reported for the IP_Src, IP_Dst, Protocol tuple in
[Network Info i].

Playback Info is represented as: [Playback Event, Epoch Time,
Start Time, Playback Progress, Video Length, Playback Quality, Buffer
Health, Buffer Progress, Buffer Valid). From the perspective of video
playback, a YouTube session can contain three exclusive regions:
buffering, playing, and paused. YouTube IFrame API considers a
transition from one playback region into another as an event. It
also considers as an event any call to the API to collect data. The
API enables the recording of an event and of detailed information
about playback progress at the time the event occurs. Epoch Time
marks the time of the most recent collection of YouTube API data
in that interval. Playback Info records events occurred during the
100-ms interval.

Each field of Playback Info is defined as follows:

e Playback Event - This field is a binary array with four in-
dexes for the following states: ‘buffering’, ‘paused’, ‘playing’,

MMSys "19, June 18-21, 2019, Amherst, MA, USA

and ‘collect data’. The ‘collect data’ event occurs every 100ms
once the video starts playing. For example, an interval with
a Playback Event [1,0,0,1] indicates that playback region has
transitioned into ‘buffering’ during the 100ms interval and a
‘collect data’ event occurred.

Epoch Time - This field is the UNIX epoch time in millisec-
onds of the most recent YouTube API event in the 100ms
interval.

Start Time - This field is the UNIX epoch time in millisec-
onds of the beginning of the experiment.

Playback Progress - This field reports the number of sec-
onds the playback is at epoch time from the start of the video
playback.

Video Length - This field reports the length of the entire
video asset (in seconds).

Playback Quality - This field is a binary array of size 9
with indices for the following states: unlabelled, tiny (144p),
small (240p), medium (360p), large (480p), hd720, hd1080,
hd1440, and hd2160. The unlabeled state occurs when the
video is starting up, buffering, or paused. For example, a
Playback Quality [0, 1,1, 0, 0, 0, 0, 0, 0] indicates that during
the current interval, video playback experienced two quality
levels - tiny and small.

Buffer Health - This field is defined the amount of buffer
in seconds ahead of current video playback. It is calculated
as:

Buffer Health = Buffer Progress X Video Length—
Playback Progress

Buffer Progress - This field reports the fraction of video
asset that has been downloaded into the buffer.

Buffer Valid - This field has two possible values: True or
‘—1". True represents when data is being collected from the
YouTube IFrame APL ‘—1" indicates when data is not being
collected from the YouTube IFrame API during the current
interval.

