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Abstract—Full-duplex (FD) wireless is an attractive commu-
nication paradigm with high potential for improving network
capacity and reducing delay in wireless networks. Despite sig-
nificant progress on the physical layer development, the chal-
lenges associated with developing medium access control (MAC)
protocols for heterogeneous networks composed of both legacy
half-duplex (HD) and emerging FD devices have not been fully
addressed. Therefore, we focus on the design and performance
evaluation of scheduling algorithms for infrastructure-based
heterogeneous HD-FD networks (composed of HD and FD users).
We first show that centralized Greedy Maximal Scheduling (GMS)
is throughput-optimal in heterogeneous HD-FD networks. We
propose the Hybrid-GMS (H-GMS) algorithm, a distributed
implementation of GMS that combines GMS and a queue-based
random-access mechanism. We prove that H-GMS is throughput-
optimal. Moreover, we analyze the delay performance of H-GMS
by deriving lower bounds on the average queue length. We
further demonstrate the benefits of upgrading HD nodes to FD
nodes in terms of throughput gains for individual nodes and
the whole network. Finally, we evaluate the performance of H-
GMS and its variants in terms of throughput, delay, and fairness
between FD and HD users via extensive simulations. We show
that in heterogeneous HD-FD networks, H-GMS achieves 16–30×
better delay performance and improves fairness between HD and
FD users by up to 50% compared with the fully decentralized
Q-CSMA algorithm.

Index Terms—Full-duplex wireless, scheduling, distributed
throughput maximization

I. INTRODUCTION

Full-duplex (FD) wireless – an emerging wireless commu-

nication paradigm in which nodes can simultaneously transmit

and receive on the same frequency – has attracted significant

attention [2]. Recent work has demonstrated physical layer

FD operation [3]–[6], and therefore, the technology has the

potential to increase network capacity and improve delay

compared to legacy half-duplex (HD) networks. Based on the

advances in integrated circuits-based implementations that can

be employed in mobile nodes (e.g., [5]–[8]), we envision a

gradual but steady replacement of existing HD nodes with the

more advanced FD nodes. During this gradual penetration of

FD technology, the medium access control (MAC) protocols

will need to be carefully redesigned to not only support a
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heterogeneous network of HD and FD nodes but also to

guarantee fairness to the different node types.

Therefore, we focus on the design and performance evalu-

ation of scheduling algorithms for heterogeneous HD-FD net-

works. In particular, we consider infrastructure-based random-

access networks (e.g., IEEE 802.11) consisting of an FD

access point (AP) and both HD and FD users in a single

collision domain. Further, we consider a single channel which

is shared by all the uplinks (ULs) and downlinks (DLs)

between the AP and the users. To focus on fundamental limits

due to the incorporation of FD nodes and to expose the main

features of our scheduling algorithms, we assume perfect self-

interference cancellation (SIC) at FD nodes. Yet, we expect

that the results can be extended to more realistic settings by

incorporating imperfect SIC.

Traditionally, three approaches have been used for the

design of wireless scheduling algorithms that can guarantee

maximum throughput:

Maximum Weight Scheduling (MWS) [9], which relies on

the queue length information and schedules non-conflicting

links with the maximum total queue length. In contrast to the

all-HD networks where only a single link can be scheduled at

a time, in the considered setting the UL and the DL of any

FD user can be scheduled simultaneously. Thus, to implement

MWS, queue length information needs to be shared between

each FD user and the AP, which requires significant overhead.

Greedy Maximal Scheduling (GMS) [10], which is a cen-

tralized policy that greedily selects the link with the longest

queue, disregards all conflicting links, and repeats the process.

Typically, GMS has better delay performance than MWS and

Q-CSMA. Although GMS is equivalent to MWS in an all-HD

network, in general, it is not equivalent to MWS and is not

throughput-optimal in general topologies.

Queue-Length-based Random-Access Algorithms (e.g., Q-

CSMA) [11], [12], which are fully distributed and do not

require sharing of the queue length information between the

users and the AP. These algorithms have been shown to

achieve throughput optimality. However, they generally suffer

from excessive queue lengths that lead to long delays.

In this paper, we show that a combination of the two latter

approaches guarantees maximum throughput and provides

good delay performance in heterogeneous HD-FD networks.

We first show by using the notion of Local Pooling [10],

[13] that GMS is throughput-optimal in the considered HD-FD

networks. However, since GMS is fully centralized, we lever-

age ideas from distributed Q-CSMA to develop the Hybrid-

GMS (H-GMS) algorithm that combines centralized GMS

with distributed Q-CSMA. The main feature of the proposed

http://arxiv.org/abs/1801.01108v2


2

H-GMS algorithm is that instead of approximating MWS (as

done in “traditional” Q-CSMA), it approximates GMS.

The design of H-GMS leverages the fact that in

infrastructure-based networks, the AP has access to all the

DL queues and can resolve the contention among the DL

queues (e.g., using longest-queue-first). In contrast, the users

do not have access to all DL queues or to other UL queues,

and therefore, must share the medium in a distributed manner,

while ensuring FD operation when possible.

We prove the throughput optimality of H-GMS (namely, it

can support any rate vector in the capacity region of heteroge-

neous HD-FD networks) by using the fluid limit technique. In

contrast to the classical Q-CSMA, the contention resolution of

DL queues at the AP under the H-GMS algorithm can force

a schedule that is not with maximum weight (i.e., not MWS).

Hence, we make a connection to GMS in fluid limits (which,

as mentioned above, is throughput-optimal in heterogeneous

HD-FD networks). We also present variants of H-GMS with

different degrees of centralization. To understand the delay

performance of H-GMS, in Section VI, we derive two lower

bounds on the average queue length: (i) a fundamental lower

bound that is independent of the scheduling algorithm, and

(ii) a stronger lower bound that takes into account the charac-

teristics of the developed H-GMS and applies to all its non-

adaptive variants. These lower bounds serve as benchmarks

when evaluating the delay performance of H-GMS.

Before thoroughly evaluating H-GMS and its variants, we

demonstrate the benefits of introducing FD-capable users into

an all-HD network in terms of both network and individual

throughput gains. Compared to the all-HD network, the con-

sidered heterogeneous HD-FD network can potentially double

the throughput for certain rate vectors within the capacity

region, while the network throughput gain generally depends

on both the number of FD users and the specific rate vector

in which the network operates. Using simple examples, we

show that when all links have equal rate, the throughput gain

of the HD-FD network over the all-HD network increases

with the number of FD users, and it reaches a gain of 2

when all users are FD-capable. We also demonstrate that it

is generally possible for all users to experience improved

individual throughput at the cost of lowering the priority of

FD users, revealing an interesting fairness-efficiency tradeoff.

Finally, we present extensive simulation results to evaluate

the different variants of the H-GMS algorithm and compare

them to the classical Q-CSMA algorithm. We primarily focus

on delay performance and fairness between FD and HD

users, but also illustrate throughput gains. We consider a

wide range of arrival rates and varying number of FD users.

The results show that in heterogeneous HD-FD networks, H-

GMS achieves 16–30× better delay performance and improves

fairness between HD and FD users by up to 50% compared

to the fully distributed Q-CSMA algorithm. This delay and

fairness improvement results from the different degrees of

centralization at the AP. Further, we discuss the different

variants and how different degrees of centralization at the AP

affect the delay performance, and show that a higher degree of

centralization at the AP (e.g., H-GMS-E) can result in better

fairness between the FD and HD users.

To summarize, the main contribution of this paper is the

design and evaluation of a distributed scheduling algorithm

for infrastructure-based heterogeneous HD-FD networks that

guarantees maximum throughput. The algorithm has a rela-

tively good delay performance and to the best of our knowl-

edge is the first such algorithm with rigorous performance

guarantees in heterogeneous HD-FD networks.

The rest of the paper is organized as follows. We discuss

related work in Section II and introduce the network model and

preliminaries in Section III. We describe the GMS algorithm

and develop our H-GMS algorithm in Section IV. The proof

of throughput optimality of H-GMS is presented in Section V.

The delay analysis of H-GMS and lower bounds on the average

queue length are presented in Section VI. We then illustrate

the benefits of introducing FD nodes into legacy HD networks

in Section VII. We evaluate the performance of different

scheduling algorithms via simulations in Section VIII and

conclude in Section IX.

II. RELATED WORK

There has been extensive work dedicated to physical layer

FD radio/system design and implementation [3], [4], [6], [8],

[14] (see also the review in [2] and references therein), and

open-access FD radio design based on [15] has been integrated

with the ORBIT wireless testbed [16]. Recent research also

focused on characterizing and quantifying achievable through-

put improvements and rate regions of FD networks in both

single-channel and multi-channel cases with realistic imperfect

SIC [17]–[19]. However, these papers consider only simple

network scenarios consisting of up to two links.

Most of the existing MAC layer studies focused on homo-

geneous networks [20]–[25] considering signal-to-noise ratio

(SNR) or a specific standard (e.g., IEEE 802.11). For example,

[21] considered an IEEE 802.11 network with an FD-capable

AP and HD users, and proposed an SNR-based distributed

MAC protocol. As another example, [20] considered an all-

FD network and proposed a distributed MAC protocol based

on the 802.11 DCF. Most relevant to our work are [25]

and [26] in terms of the applied techniques and network

model, respectively. In particular, [25] proposed a Q-CSMA-

based throughput-optimal scheduling algorithm with FD cut-

through transmission in all-FD multi-hop networks, where

how different classes of users (HD and FD) are affected by

FD transmissions is not studied. On the other hand, [26]

proposed a MAC layer algorithm for a heterogeneous HD-

FD network and analyzed its throughput based on the IEEE

802.11 distributed coordination function (DCF) model [27].

To the best of our knowledge, the fairness between users that

have different HD/FD capabilities was not considered before.

III. MODEL AND PRELIMINARIES

A. Network Model

We consider a single-channel, heterogeneous wireless net-

work consisting of one AP and N users, with a UL and a DL

between each user and the AP. The set of users is denoted

by N . The AP is FD, while NF of the users are FD and

NH = N − NF are HD. Without loss of generality, we
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index the users by [N ] = {1, 2, · · · , N} where the first NF

indices correspond to FD users and the remaining NH indices

correspond to HD users. The sets of FD and HD users are de-

noted by NF and NH , respectively. We consider a collocated

network where the users are within the communication range

of each other and the AP. The network can be represented by

a directed star graph G = (V , E) with the AP at the center and

two links between AP and each user in both directions. Thus,

we have V = {AP} ∪ N (with |V| = 1 +N ) and |E| = 2N .

B. Traffic Model, Schedule, and Queues

We assume that time is slotted and packets arrive at all

UL and DL queues according to some independent stochastic

process. For brevity, we will use superscript j ∈ {u, d} to

denote the UL and DL of a user. Let lji denote link j (UL or

DL) of user i, each of which is associated with a queue Qj
i .

We use Aj
i (t) ≤ Amax < ∞ to denote the number of packets

arriving at link j (UL or DL) of user i in slot t. The arrival

process is assumed to have a well-defined long-term rate of

λj
i = limT→+∞

1
T

∑T
t=1 A

j
i (t). Let λ = [λu

i , λ
d
i ]
N
i=1 be the

arrival rate vector on the ULs and DLs.

All the links are assumed to have capacity of one packet per

time slot and the SIC at all the FD-capable nodes is perfect.1

A schedule at any time slot t is represented by a vector

X(t) = [Xu
1(t), X

d
1(t), · · · , Xu

N (t), Xd
N (t)] ∈ {0, 1}2N ,

where Xu
i (t) (resp. Xd

i (t)) is equal to 1 if the UL (resp. DL)

of user i is scheduled to transmit a packet in time slot t and

Xu
i = 0 (resp. Xd

i = 0), otherwise. We denote the set of all

feasible schedules by S. Let ei ∈ {0, 1}2N be the ith basis

vector (i.e., an all-zero vector except the ith element being

one). Since a pair of UL and DL of the same FD user can be

activated at the same time, we have:

S = {0} ∪ {e2i−1, e2i, ∀i ∈ N} ∪ {e2i−1 + e2i, ∀i ∈ NF } .
Choosing X(t) ∈ S, the queue dynamics are described by:

Qj
i (t) = [Qj

i (t− 1) +Aj
i (t)−Xj

i (t)]
+, ∀t ≥ 1,

where [·]+ = max(0, ·). Q(t) = [Qu
i(t), Q

d
i(t)]

N
i=1 denotes the

queue vector, and 1(·) denotes the indicator function.

C. Capacity Region and Throughput Optimality

The capacity region of the network is defined as the set

of all arrival rate vectors for which there exists a scheduling

algorithm that can stabilize the queues. It is known that,

in general, the capacity region is the convex hull of all

feasible schedules [9]. Therefore, the capacity region of the

heterogeneous HD-FD network is given by ΛHD-FD = Co(S),
where Co(·) is the convex hull operator. It is easy to see that

this capacity region can be equivalently characterized by the

following set of linear constraints2:

ΛHD-FD = {λ ∈ [0, 1]|E| :
∑

i∈NF
max{λu

i , λ
d
i}+

∑
i∈NH

(λu
i + λd

i ) ≤ 1}. (1)

1We remark that imperfect SIC can also be incorporated into the model

by letting the corresponding link capacity be c
j
i ∈ (0, 1). For simplicity and

analytical tractability, we assume c
j
i = 1, ∀i ∈ N , throughout this paper.

2It is straightforward to only use linear inequalities, by replacing
max{λu

i , λ
d
i} with λi and adding linear inequalities λu

i ≤ λi, λ
d
i ≤ λi.

Algorithm 1 GMS for HD-FD Networks (in slot t)

1. Initialize X(t) = 0.
2. Select link l⋆ ∈ E with the largest queue length (i.e., l⋆ =

argmaxi∈N , j∈{u,d}{Q
j
i (t)}). If the longest queue is not unique,

break ties uniformly at random.
3. • If l⋆ = lui or ldi for some i ∈ NF , set Xu

i (t) = Xd
i (t) = 1;

• If l⋆ = l
j
i for some i ∈ NH and j ∈ {u, d}, set X

j
i (t) = 1.

4. Use X(t) as the transmission schedule in slot t.

Let a network in which all the users and the AP are only HD-

capable be the benchmark all-HD network, whose capacity

region is given by ΛHD = Co(e1, · · · , e2N ), or equivalently

ΛHD = {λ ∈ [0, 1]|E| :
∑

i∈N (λu
i + λd

i ) ≤ 1}. (2)

A scheduling algorithm is called throughput-optimal if it

can keep the network queues stable for all arrival rate vectors

λ ∈ int(Λ), where int(Λ) denotes the interior of Λ.

To compare ΛHD-FD with ΛHD and quantify the network

throughput gain when a certain number of HD users become

FD-capable, similar to [17], we define the capacity region

expansion function γ(·) as follows. Given λ0 on the Pareto

boundary of ΛHD, the capacity region expansion function at

point λ0, denoted by γ(λ0), is defined as

γ(λ0) = sup{ζ > 0 : ζ · λ0 ∈ ΛHD-FD}. (3)

γ(·) can be interpreted as a function that scales an arrival rate

vector on the Pareto boundary of ΛHD to a vector on the Pareto

boundary of ΛHD-FD, as NF users become FD-capable. It is

not hard to see that γ : ΛHD → [1, 2].

IV. SCHEDULING ALGORITHMS AND MAIN RESULT

In this section, we develop a hybrid scheduling algorithm

tailored for heterogeneous HD-FD networks. We first use

Local Pooling [10], [13] to prove that GMS is throughput-

optimal in the considered networks, and therefore, MWS [9]

is unneeded. Based on that, we present the H-GMS algorithm –

a decentralized version of GMS that leverages ideas from dis-

tributed Q-CSMA [11], [12]. H-GMS uses information about

the DL queues that is available at the AP, but does not require

global information about the UL queues. We state the main

result (Theorem 4.1) about the throughput optimality of H-

GMS and describe its various implementations with different

levels of centralization. We later show (in Section VIII) that

these variants of H-GMS have different delay performance.

A. Centralized Greedy Maximal Scheduling (GMS)

We first show that a (centralized) GMS, as described in

Algorithm 1, is throughput-optimal in any collocated hetero-

geneous HD-FD network, independent of the values of NF

and NH . In this algorithm, a pair of FD UL and DL is always

scheduled at the same time, as such a schedule yields a higher

throughput than scheduling only the UL or only the DL.

Proposition 4.1. The Greedy Maximal Scheduling (GMS) al-

gorithm is throughput-optimal in any collocated heterogeneous

HD-FD network.

The proof (see Appendix A) is based on [10, Theorem 1],

[13], and the fact that the interference graph of any collocated
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Algorithm 2 H-GMS Algorithm (in slot t)

– If X(t− 1) = 0:

1. In the initiation mini-slot, the AP computes i⋆ =
argmaxi∈N Qd

i(t). If multiple DL queues have the same
length, break ties according to some deterministic rule.
The AP chooses an initiator link IL(t) from L(t) =
{lu1, · · · , l

u
N , ldi⋆} according to an access probability distribution

α = [α1, · · · , αN , αAP].
2. If IL(t) = ldi⋆ , the AP sets:

• Xd
i⋆ (t) = 1 with probability pd

i⋆(t), or Xd
i⋆ (t) = 0 with

probability pd
i⋆(t) = 1− pd

i⋆(t);
• In the coordination mini-slot, AP broadcasts a control packet

containing the information of IL(t) and user i⋆ sets Xu
i⋆ (t) =

Xd
i⋆ (t) · 1(i

⋆ ∈ NF );

3. If IL(t) = lui for some i ∈ N , in the coordination mini-slot, the
AP broadcasts the information of IL(t) and user i sets:

• Xu
i (t) = 1 with probability pu

i(t), or Xu
i (t) = 0 with

probability pu
i(t) = 1− pu

i(t);
• In the same coordination mini-slot, user i sends a control

packet containing this information to the AP if i ∈ NF , and
AP sets Xd

i (t) = Xu
i (t);

4. At the beginning of the data slot,

• AP activates DL i if Xd
i (t) = 1;

• User i activates it UL if Xu
i (t) = 1;

– If X(t− 1) 6= 0, set IL(t) = IL(t− 1). Repeat Steps 2–4.

heterogeneous HD-FD network satisfies the Overall Local

Pooling (OLoP) conditions, which guarantee that GMS is

throughput-optimal.

B. Hybrid-GMS (H-GMS) Algorithm

We now present a hybrid scheduling algorithm, H-GMS,

which combines the concepts of GMS and Q-CSMA [11],

[12]. Instead of approximating MWS [9] in a decentralized

manner (as in traditional Q-CSMA), H-GMS approximates

GMS, which is easier to decentralize in the considered HD-

FD networks. H-GMS leverages the existence of an AP to

resolve the contention among the DL queues, since the AP

has explicit information about these queues and can select

one of them (e.g., the longest queue). Thus, effectively at

most one DL queue needs to perform Q-CSMA in each time

slot. On the other hand, since users are unaware of the UL

and DL queue states of other users and at the AP, every

user needs to perform Q-CSMA in order to share the channel

distributedly. Therefore, the number of possible participants

under H-GMS in each slot is at most (N + 1). This hybrid

approach yields much better delay performance than Q-CSMA

while still achieving throughput optimality, whose proof is

vastly different than that of the pure Q-CSMA.

Algorithm 2 presents the pseudocode for H-GMS, which

operates as follows. Each slot t is divided into a short control

slot and a data slot. The control slot contains only two

control mini-slots (independent of the number of users, N ).

We refer to the first mini-slot as the initiation mini-slot and

to the second one as the coordination mini-slot. H-GMS has

three steps: (1) Initiation, (2) Coordination, and (3) Data

transmission, as explained below.

(1) Initiation. By the end of slot (t − 1), the AP knows

X(t − 1) since every packet transmission has to be sent

from or received by the AP. If X(t − 1) = 0 (i.e., idle

channel), then the AP starts an initiation in slot t using the

initiation mini-slot as follows. First, the AP centrally finds

the index of the user with the longest DL queue, i.e., i⋆(t) =
argmaxi∈N Qd

i(t). If multiple DLs have equal (largest) queue

length, it breaks ties according to some deterministic rule.

Then, the AP randomly selects an initiator link IL(t) from

the set L(t) = {lu1, · · · , luN , ldi⋆} according to an access

probability distribution α = [α1, · · · , αN , αAP] satisfying: (i)

αi > 0, ∀i ∈ N , and αAP > 0, and (ii) αAP = 1 −∑N

i=1 αi.

We refer to αi and αAP as the access probability for user i
and the AP, respectively. Therefore,

IL(t) =

{
lui , with probability αi, ∀i ∈ N ,

ldi⋆ , with probability αAP,
(4)

i.e., IL(t) is either a UL or the DL with the longest queue. If

X(t− 1) 6= 0, set IL(t) = IL(t− 1).
(2) Coordination. In the coordination mini-slot, if the DL of

user i⋆ is selected as the initiator link (IL(t) = ldi⋆ ), the AP

sets Xd
i⋆(t) = 1 with probability pd

i⋆(t). Otherwise, it remains

silent. If the AP decides to transmit on DL ldi⋆ (i.e., Xd
i⋆(t) =

1), it broadcasts a control packet containing the information

of IL(t) and user i⋆ sets Xu
i⋆(t) = 1 if and only if i⋆ ∈ NF .

If the UL of user i is selected as the initiator link (IL(t) = lui
for some i ∈ N ), the AP broadcasts the information of IL(t)
and user i sets Xu

i (t) = 1 with probability pu
i(t). Otherwise,

user i remains silent. If user i is FD-capable and decides to

transmit (i.e., Xu
i (t) = 1), it sends a control packet containing

this information to the AP and the AP sets Xd
i (t) = 1.3

The transmission probability of the link is selected de-

pending on its queue size Qj
i (t) at the beginning of slot t.

Specifically, similar to [11], [12], link lji chooses logistic form

pji (t) =
exp (f(Qj

i (t)))

1 + exp (f(Qj
i (t)))

, ∀i ∈ N , ∀j ∈ {u, d}, (5)

where f(·) is a positive increasing function (to be specified

later), called the weight function. Further, if an FD initiator UL

(or DL) decides to stop transmitting (after packet transmission

in the last slot), it again sends a short coordination message

which stops further packet transmissions at the DL (or UL) or

the same FD user.

(3) Data transmission. After steps (1)–(2), if either a pair of

FD UL and DL or an HD link (UL or DL) is activated, a packet

is sent on the links in the data slot. The initiator link then starts

a new coordination in the subsequent control slot which either

leads to more packet transmissions or stops further packet

transmissions at the links involved in the schedule.

Remark 4.1. The initiation step in H-GMS is described as

a polling mechanism where the AP draws a link IL(t) from

L(t) according to the access probability distribution α. Alter-

natively, the initiation step can be described in a distributed

fashion using an extra mini-slot as follows: user i sends a

short initiation message with probability αi. If AP receives

the message, it sends back a clear-to-initiate message and sets

IL(t) = lui , otherwise (i.e., in case of collision or idleness)

3Note that this operation can be done in the same coordination mini-slot
since FD user i can simultaneously receive the control packet (IL(t) = lui )
from the AP and send its control packet (Xu

i (t) = 1) back to the AP.
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ldi⋆ is selected as the initiator link by the AP. This effectively

emulates polling user i with probability α̃i = αi

∏
i′ 6=i(1−αi′)

and AP with probability α̃AP = 1−∑N
i=1 α̃i.

C. Main Result: Throughput Optimality of H-GMS

The system state under H-GMS evolves as a Markov

chain (X(t),Q(t)). The following theorem states our main

result regarding the positive recurrence of this Markov chain

(throughput optimality of H-GMS).

Theorem 4.1. For any arrival rate vector λ ∈ int(ΛHD-FD),
the system Markov chain (X(t),Q(t)) is positive recurrent

under H-GMS (Algorithm 2). The weight function f(·) in

(5) can be any nonnegative increasing function such that

limx→∞ f(x)/ log x < 1, or limx→∞ f(x)/ log x > 1 (in-

cluding f(x) = xβ , β > 0).

Establishing Theorem 4.1 is not trivial due to the coupling

between X(t) and Q(t): The dynamics of the schedule process

X(t) is governed by the queue process Q(t), while at the

same time, the dynamics of Q(t) depends on X(t). Depending

on the functional shape of the weight function f(·), this

coupling gives rise to vastly different behaviors for the Markov

chain (X(t),Q(t)). For functions f(·) that grow slower than

log (·), the convergence of the schedule process X(t) occurs

on a much faster time-scale (“fast mixing”) compared to the

time-scale of changes in the queue process Q(t). For more

aggressive functions f(·), the convergence of X(t) occurs on a

much slower time-scale (“slow mixing”) compared to the time-

scale of changes in Q(t). Nevertheless, Theorem 4.1 states

that the system Markov chain is stable (positive recurrent)

for a wide range of weight functions. We provide a proof of

Theorem 4.1 in Section V based on the analysis of the fluid

limits of the system under the H-GMS algorithm.

D. Variants of the H-GMS Algorithm

In this subsection, we introduce three variants of the H-GMS

algorithm, which differ only in Step 1 of Algorithm 2.

• H-GMS (Algorithm 2): The AP selects the longest DL.

• H-GMS-R: The AP selects a DL uniformly at random, i.e.,

i⋆ ∼ Unif(1, · · · , N) (in step 1 of Algorithm 2).

• H-GMS-E: Exactly the same as H-GMS except for the

access probability being set according to:

α̃i ∝ max{Q̃u
i/(

∑N

i′=1 Q̃
u
i′ +Qd

i⋆), αth}, ∀i ∈ N ,

α̃AP ∝ max{Qd
i⋆/(

∑N

i′=1 Q̃
u
i′ +Qd

i⋆), αth},
where Q̃u

i an estimate of UL queue length of user i.
Specifically, when a user transmits on the UL, it includes its

queue length in the packets and the AP updates Q̃u
i using the

most recently received UL queue length from user i. Then,

α = [α1, · · · , αN , αAP] is obtained after normalization, i.e.,

αi =
α̃i∑N

i′=1 α̃i′ + α̃AP

, ∀i ∈ N , αAP =
α̃AP∑N

i′=1 α̃i′ + α̃AP

.

A minimum access probability αth > 0 has been introduced

to ensure that each link is selected with a non-zero probabil-

ity. Otherwise, an HD UL lui (∀i ∈ NH ) with a zero queue-

length estimate would never be selected by the AP (i.e.,

Q̃u
i = 0 and thus α̃i = 0), and the AP would never receive

any updated information of Q̃u
i since α̃i would remain zero.

The access probability distribution α is non-adaptive in H-

GMS and H-GMS-R, and is adaptive in H-GMS-E. As we will

see in Section VIII, the adaptive choice of α helps balance the

queue lengths between FD and HD users.

V. PROOF OF THEOREM 4.1 VIA FLUID LIMITS

We prove Theorem 4.1 based on the analysis of the fluid

limits of the system under H-GMS (Algorithm 2). The proof

has three parts: (i) existence of the fluid limits (Lemma 5.1),

(ii) deriving the fluid limit equations for the various choices

of f(·) (Lemma 5.3), and (iii) proving the stability of the

queues in the fluid limit using a Lyapunov method, which

implies the stability of the original stochastic process. The

analysis and derivations are similar to the fluid limits of

CSMA algorithms [28]–[30] but specialized to the considered

heterogeneous HD-FD networks. The specialization allows us

to prove throughput optimality for any nonnegative increasing

weight function f(·) satisfying the conditions in Theorem 4.1.

Part (i): Definition and Existence of Fluid Limits.

Consider a scaled process Q(r)(t) where Q(r)(t) =
Q(rt)/r. Note that the queue process Q is scaled in both time

and space by a factor r > 0. To avoid technical difficulties,

we can simply work with a continuous process by linear

interpolation among the values at integer time points. Suppose

the scaled process, with r > 0, starts from an initial state

Q(r)(0). Any (possibly random) limit q(t) of the scaled

process Q(r)(t) as r → ∞ is called a fluid limit. The process

Q(r)(t) can be constructed as follows. At any time t ≥ 0,

Q(r)(t) = Q(r)(0) +A
(r)

(t)− S
(r)

(t), (6)

where for any user i ∈ N with UL or DL j ∈ {u, d},

A
j

i

(r)
(t) =

1

r

rt∑
τ=1

Aj
i (τ),

S
j

i

(r)
(t) =

1

r

rt∑
τ=1

Xj
i (τ)1(Q

j
i (τ) > 0).

Similarly, we denote by a(t) and s(t) the limits of the scaled

processes A
(r)

(t) and S
(r)

(t) as r → ∞, respectively. The

following lemma shows that the scaled process converges to

the fluid limit in a weak convergence sense, in the metric

of uniform norm on compact time intervals. It is possible

to show a stronger convergence (i.e., almost sure conver-

gence uniformly over compact time intervals) in the case of

limx→∞ f(x)/ log x < 1; nevertheless, the weak convergence

is sufficient for our proofs.

Lemma 5.1 (Existence of Fluid Limits). Suppose Q(r)(0) →
q(0). Then any sequence r has a subsequence such that

(Q(r)(t),A
(r)

(t),S
(r)

(t)) ⇒ (q(t), a(t), s(t)) along the sub-

sequence. The sample paths (q(t), a(t), s(t)) are Lipschitz

continuous and thus differentiable almost everywhere with

probability one.

Proof: The proof is standard and follows from Lipschitz

continuity of the scaled process, see, e.g., [31].

Part (ii): Fluid Limit Equations under H-GMS.
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Recall that the schedule X(t) at time t is determined after

the Initiation and Coordination steps of Algorithm 2. Let Y (t)
indicate the initiator link which is activated in slot t. Let i⋆ =
argmaxi∈N Qd

i(t), then the state space of Y (t) can be labeled

as SY = {0, 1, · · · , N, i⋆}, where Y (t) = 0 means no link

is active, Y (t) = i⋆ means DL ldi⋆ is active, and Y (t) =
i, for i ∈ {1, · · · , N}, means UL lui is active. We further

use {Y Q(t)}t≥t0 to denote the dynamics of Y (t), assuming

a fixed queue length vector Q(t) = Q(t0) = Q for all times

t ≥ t0. Under the H-GMS algorithm, {Y Q(t)}t≥t0 evolves as

an irreducible and aperiodic Markov chain over the state space

SY . If Y Q(t) = i for an i which is an initiator UL or DL of an

FD user i ∈ NF , then the other link of the same FD user will

follow the initiator link and become active as well under H-

GMS. Due to the activation/deactivation coordination among

the initiator link and the follower link, adding the possible

follower link does not change the subsequent dynamics of the

Markov chain Y Q(t) under fixed Q.

Let PQ = [P (s, s′)] be the transition probability matrix of

Y Q(t), where P (s, s′) is the transition probability from state

s ∈ SY to s′ ∈ SY . Then, under Algorithm 2, we have

P (0, i) = αip
u
i , P (i, i) = pu

i , P (i, 0) = pu
i , ∀i ∈ N

P (0, i⋆) = αAPp
d
i⋆ , P (i⋆, i⋆) = pd

i⋆ , P (i⋆, 0) = pd
i⋆ ,

P (0, 0) = 1−∑N

i=1 P (0, i)− P (0, i⋆).

(7)

Lemma 5.2. The steady-state distribution of Markov chain

Y Q(t) is given by

πQ(i) = αi exp(f(Q
u
i))/Z, i ∈ SY \ {0, i⋆};

πQ(i⋆) = αAP exp(f(Q
d
i⋆))/Z, πQ(0) = 1/Z,

(8)

where Z is the normalizing constant and f(·) is the weight

function from (5).

The proof of Lemma 5.2 is in Appendix B. The following

corollary is immediate as the result of Lemma 5.2 and the fact

that Y (t) uniquely determines X(t) by (possible) activation of

both the UL and DL of an FD user in the coordination step.

Corollary 5.1. Let fi = e2i−1 + e2i, i ∈ NF , be an FD bi-

directional transmission schedule, and hu
i = e2i−1 (hd

i = e2i),

i ∈ NH , be an HD UL (DL) transmission schedule. Given a

fixed queue vector Q(t) = Q, in steady state, if i⋆ ∈ NF ,

P {X = fi⋆} = [αAP exp(f(Q
d
i⋆)) + αi⋆ exp(f(Q

u
i⋆))]/Z,

P {X = fi} = αi exp(f(Q
u
i))/Z, ∀i ∈ NF , i 6= i⋆,

P {X = hu
i} = αi exp(f(Q

u
i))/Z, ∀i ∈ NH .

Otherwise, if i⋆ ∈ NH ,

P {X = fi} = αi exp(f(Q
u
i))/Z, ∀i ∈ NF ,

P {X = hu
i} = αi exp(f(Q

u
i))/Z, ∀i ∈ NH ,

P
{
X = hd

i⋆

}
= αAP exp(f(Q

d
i⋆))/Z,

where Z and f(·) are as in Lemma 5.2.

Consider a fluid sample path under our H-GMS algorithm.

Suppose q(t) = q 6= 0 at a time t. This implies that for r
large enough, all the queues with non-zero fluid limit qji > 0
are of size Qj

i = O(qji r) in the original process, while all

the queues with zero fluid limit are of size Qj
i = o(r) in the

original process. Therefore, taking the limit r → ∞ in (8), and

noting that the weight function f(·) is a positive increasing

function of the queue size, it follows that

πQ(i) → 0 if qu
i = 0, i ∈ SY \ {0, i⋆},

πQ(i⋆) → 0 if qdi⋆ = 0, πQ(0) = 0.

This shows that a queue with a zero fluid limit cannot initiate

transmission in steady state. Consequently,

P {X = fi} → 0, if max{qu
i , q

d
i } = 0, i ∈ NF ,

P {X = hu
i} → 0, if qui = 0, i ∈ NH ,

P
{
X = hd

i

}
→ 0, if qdi = 0, i ∈ NH .

Hence, in steady state, with high probability, the Markov chain

X(t) never activates an HD link with empty fluid limit queue

or an FD link whose both UL and DL queues are empty,

i.e., it chooses a Maximal Schedule over the non-zero fluid

queues (note that the returned schedule might not be a MWS

schedule). However, as mentioned in Section IV-C, the Markov

chain X(t) might not always be at its steady state due to

coupling between X(t) and Q(t). This coupling gives rise to

qualitatively different fluid limits, depending on the time-scale

of convergence of the schedule process compared to the time-

scale of the changes in the queue process. For weight functions

f(·), such that limr→∞ f(r)/ log r < 1, the schedule process

X(t) is always close to its steady state at the fluid scale; while

for functions f(·) with limr→∞ f(r)/ log r > 1, this does

not happen. Nevertheless, in both cases, the following Lemma

establishes a set of equations that the fluid limit sample paths

under H-GMS algorithm must satisfy. The equations do not

uniquely describe the fluid limit process but are sufficient to

establish stability in our setting.

Lemma 5.3 (Fluid Limit Equations). Consider any non-

negative increasing weight function f(·) in (5), such that

limx→∞ f(x)/ log x < 1, or limx→∞ f(x)/ log x > 1 (in-

cluding f(x) = xβ , β > 0). Let q̂i(t) = max{qu
i (t), q

d
i (t)},

for i ∈ NF . At any regular point t (i.e., any point where the

derivatives of all the functions exist), for any j ∈ {u, d},

qji (t) = qji (0) + aji (t)− sji (t), i ∈ N (9)

aji (t) = λj
i t, sji (t) =

∫ t

0 µ
j
i (τ) dτ, µj

i (t) ∈ [0, 1], (10)

µj
i (t) · 1(qji (t) = 0,q(t) 6= 0) = 0, i ∈ NH , (11)

µj
i (t) · 1(q̂i(t) = 0,q(t) 6= 0) = 0, i ∈ NF , (12)

if qji (t) = q̂i(t), µj
i (t) = max{µu

i(t), µ
d
i (t)}, i ∈ NF , (13)

if q(t) 6= 0, then
∑

i∈NF

max{µu
i(t), µ

d
i (t)}+

∑
i∈NH

(µu
i (t) + µd

i(t)) = 1. (14)

The proof of Lemma 5.3 is provided Appendix C. Essen-

tially, (9)–(10) hold for any scheduling algorithm and their

proof is standard. µj
i (t) is the rate that queue qji (t) is served at

time t in the fluid limit. (11)–(14) imply that H-GMS chooses a

maximal schedule from the non-zero fluid queues at any time,

however the choice of maximal schedule could be random over

the space of such maximal schedules at any time.

Part (iii): Stability of the Queues in the Fluid Limit.

The following proposition proves the stability of the queues

in the fluid limit, which completes the proof of Theorem 4.1.

Proposition 5.2. Starting from an initial queue size q(0), there
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is a deterministic finite time T by which all the queues at the

fluid limit will reach zero.

Proof: Let q̂i(t) = max{qu
i (t), q

d
i (t)}, i ∈ NF . Consider

the Lyapunov function

V (q(t)) =
∑

i∈NF
q̂i(t) +

∑
i∈NH

(qu
i (t) + qd

i (t)).

Let Uj
H(t) := {i ∈ NH : qji (t) > 0}, j ∈ {u, d}, and UF (t) :=

{i ∈ NF : q̂i(t) > 0}. Suppose V (q(t)) > 0 (i.e., q(t) 6= 0).

Then based on the fluid limit equations (11)–(14):

(i) The network is draining some subsets Pu
H(t) ⊆ Uu

H(t),
Pd
H(t) ⊆ Ud

H(t), and PF (t) ⊆ UF (t) of non-zero queues,

(ii) q̂i(t) for user i ∈ PF (t) is always drained at rate

max{µu
i(t), µ

d
i (t)},

(iii)
∑

i∈PF (t) max{µu
i(t), µ

d
i(t)} +

∑
i∈Pu

H
(t) µ

u
i(t) +∑

i∈Pd
H
(t) µ

d
i(t) = 1.

Hence, using (9)–(10) and properties (i)–(iii) above,

dV (q(t))/dt ≤ ∑
i∈NF

max{λu
i , λ

d
i}+

∑
i∈NH

(λu
i + λd

i )

−∑
i∈PF (t) max{µu

i(t), µ
d
i (t)} −

∑
i∈Pu

H
(t) µ

u
i(t)

−∑
i∈Pd

H
(t) µ

d
i(t)

=
∑

i∈NF
max{λu

i , λ
d
i}+

∑
i∈NH

(λu
i + λd

i )− 1 ≤ −δ,

where the last inequality is due to the fact that λ ∈
int(ΛHD-FD), by the assumption of Theorem 4.1. Thus, there

must exist a small δ > 0 such that λ/(1 − δ) ∈ ΛHD-FD.

Therefore, V (q(t)) will hit zero in finite time T = V (q(0))/δ,

and in fact remains zero afterwards.

Proposition 5.2 implies the stability (positive recurrence) of

the original Markov chain (X(t),Q(t)) in a similar fashion

as [32] (note that the component X(t) lives in a finite state

space). This completes the proof of Theorem 4.1.

Remark 5.2. We emphasize that, unlike the classical Q-CSMA

that approximates MWS in a distributed manner, the proposed

H-GMS algorithm approximates GMS in a distributed manner.

Further, we are able to establish throughput optimality for

(almost) any increasing weight function f(·).

VI. LOWER BOUNDS ON THE AVERAGE QUEUE LENGTH

In this section, we analyze the delay performance of H-

GMS in terms of the average queue length in order to provide

a benchmark for the performance evaluation in Section VIII.

In particular, we derive two lower bounds: (i) a fundamental

lower bound that is independent of the scheduling algorithms,

and (ii) an improved lower bound tailored for the developed

H-GMS and H-GMS-R.4 In Section VIII-B, we numerically

evaluate these lower bounds and compare them to the average

queue length achieved by various scheduling algorithms.

We adopt the following notation. Given a set of links L,

we use λL =
∑

l∈L λl to denote the sum of arrival rates, and

use QL =
∑

l∈L E[Ql] to denote the expected sum of queue

lengths of L in steady state. The average queue length in a

given heterogeneous HD-FD network, (N , E), is defined by

Q =
∑

l∈E E[Ql]/|E| = QE/(2N). (15)

4The analysis can possibly be extended to H-GMS-E by incorporating its
time-varying and queue-dependent access probability. We leave this analysis
for future work.

Therefore, finding a lower bound on Q is equivalent to finding

a lower bound on QE .

A. A Fundamental Lower Bound

We first derive a fundamental lower bound on Q that is

independent of the chosen (possibly centralized) scheduling

algorithm, based on the following result.

Proposition 6.3 ([33, Proposition 4.1]). With independent

packet arrivals, the expected sum of queue lengths in a clique

C under any scheduling policy satisfies

QC =
∑
l∈C

E[Ql] ≥
∑
l∈C

λl +Var [Al]− λlλC

2 (1− λC)
:= QLB

C .

Note that QLB
C is equivalent to the sum of queue lengths in

a standard single-server GI/D/1 queue in clique C. In order to

obtain a tight fundamental lower bound in the heterogeneous

HD-FD networks, one needs to find the largest clique of links,

Emax, with the maximal sum of arrival rates. In particular, we

divide E into two disjoint sets E = Emax ∪ Emin:{
Emax = {lji : ∀i ∈ NF if λj

i ≥ λj
i} ∪ {lui , ldi : ∀i ∈ NH},

Emin = {lji : ∀i ∈ NF if λj
i < λj

i},
where {j} = {u, d} \ {j} and we break ties uniformly at

random if λu
i = λd

i for ∀i ∈ NF . Essentially, Emax includes the

UL and DL of each HD user, and the higher arrival rate link

(UL or DL) of each FD user. As a result, λEmax
approaches 1 as

λ approaches the boundary of ΛHD-FD (see (1)). The following

proposition gives the fundamental lower bound on the average

queue length in the heterogeneous HD-FD networks.

Proposition 6.4. A fundamental lower bound on the average

queue length in the considered heterogeneous HD-FD net-

works, denoted by Q
LB

Fund, is given by

Q ≥ Q
LB

Fund := QLB
Emax

/(2N), (16)

where Q is the average queue length defined in (15), and QLB
Emax

is given by Proposition 6.3 for clique Emax.

Proof: Since a pair of FD UL and DL will always

be activated at the same time, it holds that for ∀i ∈ NF ,

E[Qj
i ] ≥ E[Qj

i ] if λj
i ≥ λj

i . By assigning the FD UL/DL with

a higher arrival rate to Emax, we construct a maximal clique,

Emax, with the maximal possible sum or arrival rates. Although

it is possible that two queues from both Emin and Emax are

served simultaneously, it is still guaranteed that

QE ≥ QEmax
≥ QLB

Emax
, (17)

and Proposition 6.4 follows directly.

B. An Improved Lower Bound under H-GMS and H-GMS-R

We now derive an improved lower bound on Q for the con-

sidered heterogeneous HD-FD networks taking into account

the characteristics of the developed H-GMS and H-GMS-R

(e.g., the access probability α and the transmission probability

p(·)). The result is stated in the following proposition.

Proposition 6.5. Let p−1(·) be the inverse of the trans-

mission probability p(·) given by (5). Let λmin =
mini∈N {λu

i , λ
d
i} be the minimum link arrival rate and αmax =
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Fig. 1: Throughput gain of FD and HD users when the throughput
is compared to the individual throughput of an HD user in the all-
HD network under the static H-GMS-R algorithm, with N = 10,
NF ∈ {0, 2, · · · , 10}, and ph = 0.5.

max{α1, · · · , αN , αAP} be the maximum access probability.

The average queue length under H-GMS and H-GMS-R is

lower bounded by Q
LB

H-GMS given by

Q ≥ Q
LB

H-GMS := max
{
Q

LB

Fund,

(
1− NF

2N

)
· p−1

( λmin/αmax

1− λEmax
+ λmin/αmax

)}
, (18)

where Q
LB

Fund is given in Proposition 6.4.

Proof: The proof is based on the workload decomposition

rules [34] and can be found in Appendix D.

Remark 6.3. Note that (18) applies to any variant of H-

GMS with fixed access probability α. The lower bound Q
LB

H-GMS

depends on: (i) the ratio between the link arrival rate and

access probability λmin

αmax

, and (ii) the weight function f(·)
(through p(·)). A more aggressive f(·) results in a lower value

of Q
LB

H-GMS. The lower bound can be also applied to H-GMS-E

by setting αmax = 1; however, this will result in a loose lower

bound as it ignores the adaptive behavior of α.

VII. BENEFITS OF INTRODUCING FD-CAPABLE NODES

In this section, we illustrate the benefits of introducing FD-

capable nodes into all-HD networks, in terms of obtained

throughput gains. The throughput gains can be expressed

for individual users or the network (i.e., the sum rates). We

define the network (individual) throughput gain as the ratio

between the achievable network (individual) throughput in a

heterogeneous HD-FD network and that in an all-HD network

with the same total number of users.

For simplicity and illustrative purposes, consider a static

version of H-GMS-R, with access probabilities α = 1
1+N

· 1
(see Algorithm 2 and Section IV-D), and fixed transmission

probabilities pu
f = pd

f = pf , pu
h = pd

h = ph ∈ (0, 1) for FD

and HD users in (5), respectively. By analyzing the Markov

chain (similar to Lemma 5.2) under fixed α, pf , and ph, the

network throughput (i.e., sum rates) of the heterogeneous HD-

FD network, SHD-FD, is given by

SHD-FD =

2NF

N

pf

1−pf
+ NH

N
ph

1−ph

1 + NF

N

pf

1−pf
+ NH

N
ph

1−ph

. (19)

Note that the throughput of the benchmark all-HD network

is simply SHD = ph. If pf = ph = p (i.e., FD and HD

users transmit with the same probability when they capture the
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Fig. 2: Sample path of average queue length per link under different
scheduling algorithms for a heterogeneous HD-FD network with
NF = NH = 5, and very high traffic intensity ρ = 0.95.

channel), (19) becomes SHD-FD = (1 + NF

N
) · p. This implies

that under the static H-GMS-R, the network throughput gain

achieved by the HD-FD network is (1 + NF

N
) ∈ [1, 2], which

increases with respect to NF .

Assigning equal transmission probabilities results in FD

users having 2× throughput compared to the HD users. We

can balance the throughput obtained by FD and HD users by

assigning different transmission probabilities. Let ph = p and

pf = χ · p for some transmission probability ratio χ. In order

to balance the individual throughput of FD and HD users, we

lower the priority of FD transmissions by choosing χ ∈ (0, 1].
We numerically evaluate the individual user throughput

gain. We consider both the benchmark all-HD network (with

transmission probability ph = p) and HD-FD networks with

N = 10 and vary NF ∈ {0, 2, · · · , 10} in the latter. We select

constant ph = 0.5 and pf = χ · ph with varying χ ∈ (0, 1].
Fig. 1 plots individual throughput gains of an FD or HD

user. As Fig. 1 suggests, if FD and HD users are assigned

equal transmission probabilities (χ = 1), an FD user gets

2× throughput compared to an HD user. If the transmission

probability of the FD users is lowered (by decreasing χ),

the throughput of FD and HD users is more balanced. For

example, with χ = 0.75, the individual throughput gains of

FD and HD users are 43% and 20%, respectively.

The results reveal an interesting phenomenon: when NF

is sufficiently large, at the cost of slightly lowering the

priority of FD users, even HD users can experience throughput

improvements. This opens up the possibility of designing

wireless protocols with different fairness-efficiency tradeoffs

by setting different priorities among FD and HD users.

VIII. SIMULATION RESULTS

In this section, we evaluate the performance of different

scheduling algorithms in heterogeneous HD-FD networks via

simulations. We focus on (i) network-level delay performance

(represented by the long-term average queue length per link),

and (ii) fairness between FD and HD users (represented by

the relative delay performance between FD and HD users).

A. Setup

Throughout this section, we consider heterogeneous HD-

FD networks with one FD AP and 10 users (N = 10), with

a varying number of FD users, NF .5 We choose a rate vector

5The results for heterogeneous HD-FD networks with a different number
of users, N , are similar, and thus, omitted.
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(b) NF = 5, NH = 5
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(c) NF = 10, NH = 0
Fig. 3: Long-term average queue length per link in a heterogeneous HD-FD network with N = 10 and equal arrival rates, under different
scheduling algorithms and varying number of FD users, NF : (a) NF = 0, (b) NF = 5, and (c) NF = 10. Both the fundamental and
improved lower bounds on the delay are also plotted according to (16) and (18). The capacity region boundary in each HD-FD network is
illustrated by the vertical dashed line.

v = [vu
i , v

d
i ]

N
i=1 on the boundary of the capacity region ΛHD-FD

(see Section III-C) and consider arrival rates of the form λ =
ρv, in which ρ ∈ (0, 1) is the traffic intensity. Note that as

ρ → 1, λ approaches the boundary of ΛHD-FD. Since we focus

on the fairness between FD and HD users, we assume equal

UL and DL arrival rates over all the users. Therefore, for j ∈
{u, d}, we use vf = vji , ∀i ∈ NF , and vh = vji , ∀i ∈ NH ,

to denote the equal UL and DL arrival rates assigned to FD

and HD users, respectively. For an equal arrival rate model,

we have vf = vh = 1/(NF + 2NH) computed using (1).

The packet arrivals at each link lji follow an independent

Bernoulli process with rate λj
i . For each algorithm under

a given traffic intensity, ρ, we take the average over 10
independent simulations, each of which lasts for 106 slots.

For simplicity, we refer to the “queue length of an FD (resp.

HD) user” as the sum of its UL and DL queue lengths, and

only compare the average queue length between FD and HD

users without distinguishing between individual UL and DL.

The considered algorithms include:

• MWS, GMS: The centralized MWS and GMS algorithms;

• H-GMS, H-GMS-R, and H-GMS-E: Three variants of the

H-GMS algorithm as described in Section IV-D;

• Q-CSMA: The standard distributed Q-CSMA algorithm

from [12], in which each link (UL or DL) performs channel

contention independently and the AP does not leverage the

central DL queue information.

In the last four distributed algorithms, the transmission prob-

ability of link l in slot t is selected as pl(t) =
exp (f(Ql(t)))

1+exp (f(Ql(t)))

where the weight function f(x) = log (1 + x) (i.e., pl(t) =
1+Ql(t)
2+Ql(t)

). We set α = 1
1+N

· 1 for H-GMS and H-GMS-R,

and αth = 0.01 for H-GMS-E (see Section IV-D). We will

show that different degrees of centralization at the AP result

in performance improvements of H-GMS over the classical Q-

CSMA in terms of both delay and fairness. We also consider

effects of different weight functions in Section VIII-D.

B. Delay Performance

We first consider the queue length dynamics under various

scheduling algorithms in an HD-FD network with NF =
NH = 5 and traffic intensity ρ = 0.95. This implies that

vf = vh = 1/15, corresponding to a capacity region expansion

value of γ = 4/3 (see Section III-C with vh = 1/20 in the

all-HD network). Fig. 2 plots the sample paths of the average

queue length of the network (i.e., averaged over all the ULs

and DLs) under different algorithms. The result for Q-CSMA

algorithm is omitted since, as we will see shortly, its average

queue length is at least one order of magnitude larger than

those achieved by other algorithms.

Fig. 3 plots the average queue length with varying traffic

intensities in HD-FD networks with N = 10 and NF ∈
{0, 5, 10}. Recall that in the equal arrival rate model, the

relationship between the link packet arrival rate and traffic

intensity is λj
i = ρ/(NF +2NH), ∀i ∈ N , ∀j ∈ {u, d}. Fig. 3

shows that the capacity region of the HD-FD networks ex-

pands with increased value of NF . Compared with Figs. 3(a),

Figs. 3(b) and 3(c) show a capacity region expansion value of

γ = 4/3 for NF = 5, and γ = 2 for NF = 10, respectively.

Figs. 2 and 3 show that, as expected from Theorem 4.1,

all the considered algorithms are throughput-optimal – they

stabilize all network queues. The fully-centralized MWS and

GMS have the best delay performance but require high-

complexity implementations. Among distributed algorithms,

Q-CSMA [12] has the worst delay performance due to the

high contention intensity introduced by a total of 2N con-

tending links. By “consolidating” the N DLs into one DL that

participates in channel contention, H-GMS-R, H-GMS, and H-

GMS-E achieve at least 9–16×, 16–30×, and 25–50× better

delay performance than Q-CSMA, respectively, under different

traffic intensities ρ. In particular, H-GMS and H-GMS-E have

similar delay performance which is better than for H-GMS-R,

since the AP leverages its central information to always select

the longest queue DL for channel contention. However, H-

GMS and H-GMS-E provide different fairness among FD and

HD users due to the choice of access probability distribution

α (that is constant for the former and depends on the queue-

length estimates for the latter), as we show below.

Fig. 3 also presents both the fundamental and improved

lower bounds on the delay, Q
LB

Fund and Q
LB

H-GMS, given by (16)

and (18), respectively. The turning point of Q
LB

H-GMS where it

starts to deviate from Q
LB

Fund is because of the max(·) operator

in (18). As Fig. 3 suggests, the fundamental lower bound,

Q
LB

Fund is very close to the average queue length obtained by

MWS and GMS (they indeed match perfectly in the all-HD

network with NH = N = 10). However, in heterogeneous

HD-FD networks, Q
LB

H-GMS provides a much tighter lower

bound on the average queue length achieved by H-GMS,

especially with high traffic intensities.
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Fig. 4: Long-term average queue length ratio between (a) FD and
HD users, and (b) ULs and DLs with varying traffic intensity, in an
HD-FD network with NF = NH = 5 and equal arrival rates.

C. Fairness

Our next focus is on the fairness performance of H-GMS.

Here, we define fairness between FD and HD users as the ratio

between the average queue length of FD and HD users. We

use this notion since, intuitively, if an FD user experiences

lower average delay (i.e., queue length) than an HD user,

then introducing FD capability to the network will imbalance

the service rate both users get. Ideally, we would like the

proposed algorithms to achieve good fairness performance in

the considered HD-FD networks. Similarly, we define fairness

between ULs and DLs as the ratio between the average UL

and DL queue lengths to evaluate the effects of different levels

of centralization at the AP when operating H-GMS.

1) Equal Arrival Rates: We first evaluate the fairness under

different distributed algorithms with equal arrival rates at each

link. We focus on traffic intensity regime of ρ ∈ [0.5, 1) since,

as shown in Fig. 3, all links have very small queue lengths

with low traffic intensities (e.g., the average queue length is

less the 10 packets with ρ = 0.5).

Fig. 4(a) plots the fairness between FD and HD users in

an HD-FD network with NF = NH = 5 and varying traffic

intensity, ρ. It can be observed that H-GMS-R has the worst

fairness performance since the DL participating in the channel

contention is selected uniformly at random by the AP. When

the traffic intensity is low or moderate, Q-CSMA and H-GMS

achieve similar fairness of about 0.5. This is because under

equal arrival rates, FD queues are about half the length of

the HD queues due to the fact that they are being served

about twice as often (i.e., an FD bi-directional transmission

can be either activated by the FD UL or DL due to the

FD PHY capability). When the traffic intensity is high, both

H-GMS and H-GMS-E have increased fairness performance

since the longest DL queue will be served more often due

to the central DL queue information at the AP. Furthermore,

H-GMS-E outperforms H-GMS since, under H-GMS-E, the

AP not only has explicit information of all the DL queues,

but also has estimated UL queue lengths that can be used to

better assign the access probability distribution α.

Fig. 4(b) presents the fairness between ULs and DLs with

the same network setting. It can be seen that Q-CSMA has

the best fairness performance of around 1 since all the 2N
link have equal access probability. The fairness by H-GMS-

R between FD and HD users, and between ULs and DLs,

are almost identical, and are always the worst among all

variants of H-GMS. On the other hand, H-GMS-E still has

the best fairness performance among all variants of H-GMS
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(b) Traffic intensity ρ = 0.95
Fig. 5: Long-term average queue length ratio between FD and HD
users in a heterogeneous HD-FD network with NF = NH = 5 and
varying ratio between FD and HD arrival rates, with (a) moderate
(ρ = 0.8), and (b) high (ρ = 0.95) traffic intensities.
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(b) Traffic intensity ρ = 0.95
Fig. 6: Long-term average queue length ratio between FD and HD
users in a heterogeneous HD-FD network with NF = NH = 5 and
varying NF ∈ {1, 2, · · · , N − 1}, with (left) moderate (ρ = 0.8),
and (right) high (ρ = 0.95) traffic intensities.

by leveraging the information on estimated UL queue lengths.

2) Different Arrival Rates: We also evaluate the fairness

under different arrival rates between FD and HD users. Let

σ be the ratio between the arrival rates on FD and HD links.

It is easy to see that if we assign vf = σ/(σNF + 2NH)
and vh = 1/(σNF + 2NH), then v is on the boundary of

ΛHD−FD. In this case, we have a capacity region expansion

value of γ = 1+σNF /(σNF +2NH), which depends on both

NF and σ (see Section III-C).

Fig. 5 plots the fairness between FD and HD users with

varying σ under moderate (ρ = 0.8) and high (ρ = 0.95)

traffic intensities on the x-axis. It can be observed that as

the packet arrival rate at FD users increases, the FD and HD

queue lengths are better balanced. When σ = 2, FD and

HD users have almost the same average queue length since

the FD queues are served twice as often as the HD queues

under Q-CSMA, H-GMS, and H-GMS-E. It is interesting to

note that the fairness under Q-CSMA and H-GMS is almost

a linear function with respect to the arrival rate ratio, σ. This

is intuitive since, as the FD queues are served about twice as

often as the HD queues, increased arrival rates will result in

longer queue lengths at the FD users. Moreover, since the FD

and HD queues have about the same queue length when σ
approaches 2, H-GMS-E does not further improve the fairness

since it generates an access probability distribution that is

approximately a uniform distribution.

3) Impact of the Number of FD Users, NF : We now

evaluate the fairness between FD and HD users with varied

number of FD (or equivalently, HD) users under the equal

arrival rate model. We vary NF ∈ {1, 2, · · · , 9}. Fig. 6

plots the fairness between FD and HD users under moderate

(ρ = 0.8) and high (ρ = 0.95) traffic intensities.

As Fig. 6 suggests, the fairness depends on the number of

FD users, NF , only under H-GMS. This is because under

equal arrival rate, FD users have about half the queue lengths
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Fig. 7: Long-term average queue length in a heterogeneous HD-FD
network with NF = NH = 5 and equal arrival rates, with different

weight functions and pl(t) =
exp (f(Ql(t))

1+exp (f(Ql(t))
. The results in the case

with f(x) = log (1 + x) are shown in Fig. 3(b).

compared with HD users. As NF increases, the number of

HD DLs at the AP (those with relatively larger queue length)

decreases and as a result, the AP is very likely to select

an HD DL or UL under the H-GMS algorithm, resulting in

larger average queue length at the FD users. In addition, H-

GMS-E resolves this issue by taking into account the UL

queue length estimates. Therefore, the FD users that have

smaller queues will be selected with a lower probability so

that the longer HD queues will be served at a higher rate.

In addition, as NF increases, H-GMS achieves better fairness

than that of the classical Q-CSMA by approximating the GMS

(instead of MWS as Q-CSMA does) in a distributed manner.

Moreover, H-GMS-E has the best fairness performance which

is independent of the value of NF .

D. Impact of the Weight Function, f(x)

We now evaluate the delay performance of H-GMS under

different weight functions and compare it to Q-CSMA. Recall

from Theorem 4.1 that H-GMS is throughput-optimal for a

broad family of weight functions, f(x), and the relationship

between f(·) and the transmission probability p(·) is given by

(5). In particular, we consider the following weight functions:

• f(x) = 1
2 log (1 + x): limx→∞

f(x)
log x

= 1
2 < 1;

• f(x) = log (1 + x): limx→∞
f(x)
log x

= 1;

• f(x) =
√
x: limx→∞

f(x)
log x

= ∞ (β = 1
2 );

• f(x) = x: limx→∞
f(x)
log x

= ∞ (β = 1).

Fig. 7 plots the average queue length with varying traffic

intensity in an HD-FD network with NF = NH = 5
and equal arrival rates, and with different weight functions,

f(x), as listed above. For each considered f(·), we consider

all four distributed algorithms listed in Section VIII-A. The

results in the case with f(x) = log (1 + x) are shown in

Fig. 3(b). Table I summarizes the improvements in the delay

performance achieved by variants of H-GMS compared to Q-

CSMA, with the considered weight functions and moderate

(ρ = 0.8) and extremely high (ρ = 0.98) traffic intensities.6

The results show that all the scheduling algorithms are

throughput-optimal under different choices of f(x) that satisfy

the conditions in Theorem 4.1. Overall, the delay performance

of Q-CSMA in HD-FD networks has less dependency on f(x)

6The results in the cases with f(x) =
√
x and f(x) = x are almost

identical (see Fig. 7) and thus omitted in Table I.

TABLE I: Improvements in the delay performance achieved by H-
GMS compared with Q-CSMA under three different weight functions
with different aggressiveness and, with moderate (ρ = 0.8) and
extremely high (ρ = 0.98) traffic intensities.

Weight Function, f(x) 1

2
log (1 + x) log (1 + x) x

Traffic Intensity, ρ 0.8 0.98 0.8 0.98 0.8 0.98
QQ-CSMA

QH-GMS-R

1.2 0.7 14.4 8.5 22.3 9.8

QQ-CSMA

QH-GMS

4.2 1.1 28.4 16.2 46.2 20.4

QQ-CSMA

QH-GMS-E

15.8 1.7 52.8 25.4 79.2 31.8

than H-GMS, and variants of H-GMS (especially H-GMS and

H-GMS-E) achieve significantly improved delay performance.

Moreover, the delay improvement achieved by H-GMS over

the classical Q-CSMA becomes more significant with a “more

aggressive” weight function. For example, H-GMS with a

sublinear/linear weight function (f(x) = xβ with β ∈ { 1
2 , 1})

achieves 10–20× better delay than with a logarithmic weight

function f(x) = 1
2 log (1 + x). This highlights the importance

of the selection of f(x) in the design of H-GMS.

IX. CONCLUSION

We presented a hybrid scheduling algorithm, H-GMS, for

heterogeneous HD-FD infrastructure-based networks. H-GMS

is distributed at the users and leverages different degrees of

centralization at the AP to achieve good delay performance

while being provably throughput-optimal. We also derived

lower bounds on the average queue length to evaluate the

delay performance of H-GMS. We further illustrated various

aspects of the performance of H-GMS and compared it to

the classical Q-CSMA through extensive simulations. We also

illustrated benefits and fairness-efficiency tradeoffs arising

from incorporating FD users into existing HD networks. There

are several important directions for future work. We plan to

expand the results to multi-channel networks with general

topologies and to study the impact of imperfect SIC on the

scheduling algorithms and their performance. In addition, an

experimental evaluation of H-GMS on a real wireless testbed

is an important step towards a provably-efficient and practical

MAC layer for HD-FD networks.
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[17] J. Marašević and G. Zussman, “On the capacity regions of single-channel

and multi-channel full-duplex links,” in Proc. ACM MobiHoc’16, 2016.
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APPENDIX A

PROOF OF PROPOSITION 4.1

The proof is based on the structural properties of the

interference graph of the heterogeneous HD-FD network. The

interference (or conflict) graph is defined as GI = (VI, EI),
where VI is the set of network links, and there is an edge

between link li and link lj if they interfere with each other.

Clearly, the interference graph of a collocated all-HD network

is a clique. For the collocated HD-FD network, VI = {vji , i ∈
V , j ∈ {u, d}}, where vji corresponds to link j (UL or DL) of

user i. Since a pair of FD UL and DL can be simultaneously

activated, GI is a complete graph with NF edges missing, each

of which has endpoints (vu
i , v

d
i ) for ∀i ∈ NF .

It has been shown in [10] that the Greedy Maximal Schedul-

ing (GMS) is throughput-optimal if the interference graph GI

satisfies the so called Overall Local Pooling (OLoP) condition.

We use the following definition and result from [13].

Definition 1.1 (Co-strongly perfect graph). A graph G is

co-strongly perfect, if and only if G contains a clique that

intersects every maximal independent set in G.

Proposition 1.6 ([13, Definitions 2.2, 2.3, and 5.1]). Every

graph that is co-strongly perfect satisfies OLoP.

We now prove Proposition 4.1. To show that GI is co-

strongly perfect, if suffices to find a clique contained in GI

that intersects every maximal independent set in GI. Recall

that GI is a complete graph with NF edges missing. Let K =
{vu

n, n ∈ N} ∪ {vd
m,m ∈ NH} ⊆ VI with |K| = NF + 2NH .

It is easy to see that the induced graph G(K) on K is a clique.

In addition, note that the maximal independent set in GI can

be (i) {vu
m} or {vd

m} for some m ∈ NH , or (ii) {vu
n, v

d
n}

for some n ∈ NF (there are a total number of (NF + 2NH)
such maximal independent sets). Thus, G(K) intersects with

every maximal independent set in GI, which implies that GI is

co-strongly perfect and satisfies OLoP. Hence, the centralized

GMS algorithm (described in Algorithm 1) is throughput-

optimal in any collocated heterogeneous HD-FD network.

APPENDIX B

PROOF OF LEMMA 5.2

Under fixed Q(t) = Q, (7) is the transition probability

matrix of the discrete time Markov chain Y Q. Recall that the

state space of Y (t) is SY = {0, 1, · · · , N, i⋆}, where i⋆ =
argmaxi∈N Qd

i . The detailed balance equations for Y Q are:

πQ(0) · P (0, i) = πQ(i) · P (i, 0), ∀i ∈ SY \ {0}. (20)
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Recall that the transmission probability is given by (5); from

(7) and (20), we have

πQ(i) = αi

pu
i

pu
i

· πQ(0)

= αi exp (f(Q
u
i)) · πQ(0), ∀i ∈ SY \ {0, i⋆},

πQ(i⋆) = αAP

pd
i⋆

pd
i⋆

· πQ(0) = αAP exp (f(Q
d
i⋆)) · πQ(0).

Normalizing
∑

s∈SY
πQ(s) = 1 yields the steady-state distri-

bution (8) in Lemma 5.2, in which

Z = 1 +
∑

i∈SY \{0,i⋆}

αi exp (f(Q
u
i)) + αAP exp (f(Q

d
i⋆)).

APPENDIX C

PROOF OF LEMMA 5.3: FLUID LIMIT EQUATIONS

Equations (9)–(10) hold for any scheduling algorithm and

their proof is standard. Equation (9) is obtained by taking the

limit in (6). Equation (10) is by applying the Strong Law of

Large Numbers to the arrival process. Further, by the Lipschitz

continuity of s, the derivative of sji (denoted by µj
i (t)) exists

at any regular point t (almost everywhere) and is bounded by

its Lipschitz constant (less than one). Equations (11)–(14) are

specific to H-GMS, and we prove them below. We consider

two cases depending on the choice of the weight function f(·).
Case 1: limx→∞ f(x)/ log x = b ∈ (0, 1).

Recall from Section V that Markov chain {Y Q(t)(s)}s≥t

denotes the dynamics of Y (s), assuming a fixed Q(s) = Q(t)
for all s ≥ t. Consider a fluid sample path under the H-GMS

algorithm. Suppose q(t) 6= 0 at a regular point t. By Lipschitz

continuity, we can find a short interval (t, t+ǫ), such that q(τ)
is approximately constant (≈ q) for ∀τ ∈ (t, t+ ǫ), its actual

change being of order ǫ for non-zero queues. This implies that

for r large enough, all the queues with non-zero fluid limit

qji > 0 are of size O(qji r) in the original process, while all

the queues with zero fluid limit are of size o(r) in the original

process. Therefore, taking the limit r → ∞ in (8), it follows

that for any Q(τ), τ ∈ (rt, rt + rǫ), πQ(τ) → π̃q, where

π̃q(i) = αi(q
u
i )

b/Z̃q, i ∈ SY \ {0, i⋆},
π̃q(i⋆) = αAP(q

d
i⋆)

b/Z̃q, π̃q(0) = 1/Z̃q,

Z̃q = 1+
∑N

i′=1 αi′(q
u
i′ )

b+αAP(q
d
i⋆)

b, and the probabilities are

zero for queues which are 0 at the fluid limit. This shows that,

with high probability, a queue with a zero fluid limit cannot

initiate transmission in steady-state. Hence, in equilibrium, the

Markov chain never activates an HD link with empty fluid limit

queue or an FD link with empty (both) UL and DL queues.

Next, we argue that at any τ ∈ (rt, rt+rǫ), the Markov chain

Y Q(τ) is at its equilibrium distribution πQ(τ) = π̃q as r → ∞.

Proposition 3.7 (Mixing time of Markov chain Y Q). Let

ντ and π denote the instantaneous and the equilibrium dis-

tribution of Markov chain {Y Q(τ)}τ≥1, respectively. Given

0 < ζ < 1, the mixing time is defined as

Tmix(ζ) := inf
{
τ ≥ 1 : sup

s∈SY

|ντ (s)− π(s)| ≤ ζ
}
.

Let αmin = mini{αi} and Qmax = maxi,j{Qj
i}. Then

Tmix(ζ) ≤
2 exp (f(Qmax))

αmin

·
[
log

( 2

ζαmin

)
+ f(Qmax)

]
.

Proof: The proof follows the application of Raleigh

Theorem to characterize the second largest eigenvalue modulus

(SLEM) of the transition probability matrix of the Markov

chain Y Q. The analysis is similar to [35, Lemma 5] with minor

modifications and is omitted.

Hence for the Markov chain Y Q(rt), the mixing time is

Tmix(1/r) = O(rb log r). This shows that for b < 1, the

mixing time is sub-linear in r which completely vanishes when

taking the average at the fluid scale, i.e.,

1

ǫ
(su

i (t+ ǫ)− su
i(t)) ≈

1

rǫ

rt+rǫ∑
τ=rt

1(Y Q(tr)(τ) = i)

→ π̃q(i), as r → ∞
where the second convergence is almost surely by the Ergodic

Theorem. This indicates that µu
i (t) = π̃q(i), ∀i ∈ N , and

similarly, µd
i⋆(t) = π̃q(i⋆). This implies that µj

i (t) = 0 for

i ∈ NH if qji (t) = 0, j ∈ {u, d}, which establishes (11).

Similarly, considering the coordination among the activation

of a pair of FD UL and DL, µj
i (t) = 0, j ∈ {u, d}, i ∈ NF ,

if max(qu
i (t), q

d
i (t)) = 0, giving (12). Also, once an FD UL

(or DL) queue initiates the transmission at rate µu
i (or µd

i ), the

corresponding DL (or UL), if nonzero, can follow the same

rate. This establishes (13). Finally, (14) comes from the fact

that if q(t) 6= 0, no queue that is empty in the fluid limit can

initiate transmission at a positive rate and thus the non-empty

queues transmit at the maximum sum rate of 1.

Case 2: limx→∞ f(x)/ log x = b > 1.

The analysis in this case is similar to the analysis of

aggressive CSMA algorithms in [29], [30]. Suppose that

µj
i (t) > 0 and qji (t) > 0 for some initiator queue. This

implies that for some ǫ, Xj
i (τ) = 1 for ∀τ ∈ (rt, r(t + ǫ)),

and Qj
i (τ) ≥ (qji (t) − ǫ)r. The probability that this queue

releases the channel after one packet transmission is less than

(Qj
i (τ))

−b which is O(r−b) for b > 1. The probability that

the link releases the channel during any time τ ∈ (rt, r(t+ǫ))

is thus less than
∑r(t+ǫ)

τ=rt r−b which is O(r1−b) which goes to

0 as r → ∞. This shows that at the fluid limit, if µj
i (t) > 0

and qji (t) > 0, then µj
i (t) = 1. Hence, any positive period of

transmission, no matter how short, must be followed by full

transmission at rate 1 until the queue has drained on the fluid

scale. Furthermore, when the queue hits zero, another non-

zero queue will capture the channel without any capture delay

(the proof is similar to that of [29, Lemmas 8 and 9]).

This implies that in the heterogeneous HD-FD network,

whenever the initiator queue qji belongs to an HD user i, the

queue qji drains at full rate 1 until it becomes empty at fluid

scale. Whenever the initiator queue qji (j ∈ {u, d}) belongs

to an FD user i, both its UL and DL queues qu
i and qd

i can

drain at the maximum rate of 1, until the initiator queue hits

zero, at which point both queues release the channel (due to the

coordination among a pair of FD UL and DL in Algorithm 2).

Whenever an HD or FD user releases the channel, another

HD or FD user will capture the channel immediately and

start transmission at full rate. The choice of which user and

which queue captures the channel is randomized over non-

zero queues according to access probabilities α and whether

i⋆(t) ∈ NF or i⋆(t) ∈ NH . Nevertheless, as long as q(t) 6= 0,

an HD link with non-zero queue or an FD link with at least
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one non-zero queue (either UL or DL) will be activated at full

rate. This shows that the fluid limits still satisfy (11)–(14).

Hence, the fluid limit equations hold for both cases.

APPENDIX D

PROOF OF PROPOSITION 6.5

Recall from Section VI, Q =
QEmax+QEmin

2N ≥ QEmax

2N . Since

the queueing dynamics in Emax and Emax are not independent

due to the existence of FD users, we wish to find a lower bound

on QEmax
. Denote Ql,Emax

as the queue length of link l at an

arbitrary epoch during a non-serving interval for the clique

Emax. Denote Q
Ẽmax

=
∑

l∈Emax
E[Ql,Emax

]. From the workload

decomposition rule [34] applied to a discrete time GI/G/1

system in clique Emax, we have [36]

QEmax
=

∑
l∈Emax

E[Ql] = QLB
Emax

+
∑

l∈Emax
E[Ql,Emax

]

= QLB
Emax

+Q
Ẽmax

. (21)

Note that QLB
Emax

and Q
Ẽmax

are both non-negative, and an

immediate lower bound on Q is obtained by

Q =

∑
l∈E E[Ql]

2N
=

QE

2N
≥ QEmax

2N
≥ QLB

Emax

2N
. (22)

A key observation to derive the improved lower bound is

that assuming the system is stable, in each time slot, the

probability that link l transitions from idle state to active state

(i.e., link l is activated) equals the probability it transitions

from active state back to idle state (i.e., link l is deactivated).

Therefore, for any link l ∈ Emax,

P {l is activated} = P {l is deactivated} . (23)

Let ∂l denote the set of conflicting links of l including link

l itself and recall that the access probability α is fixed under

H-GMS and H-GMS-R. For ∀l ∈ Emax,

P {l is activated} = E[αl · p(Ql) · 1(Xl′(t) = 0, ∀l′ ∈ ∂l)]

≤ E[αl · p(Ql) · 1(Xl′(t) = 0, ∀l′ ∈ Emax)]

= αlE[p(Ql,Emax
)] · P {Xl′(t) = 0, ∀l′ ∈ Emax}

= αlE[p(Ql,Emax
)] · (1−∑

l′∈Emax
P {Xl′(t) = 1})

= αlE[p(Ql,Emax
)] · (1−∑

l′∈Emax
πl′), (24)

where πl′ is the steady state probability of link l′ being active.

Similarly,

P {l is deactivated} = E[(1− p(Ql)) · 1(Xl(t) = 1]

= (1− E[p(Ql)]) · πl. (25)

GMS-R. Applying (26) to all l ∈ Emax, we obtain
∑

l∈Emax

E[p(Ql,Emax
)] ≥ 1

1− λEmax

· ∑
l∈Emax

λl

αl

(1− E[p(Ql)])

≥ 1

1− λEmax

· minl∈Emax
λl

maxl∈Emax
αl

· ∑
l∈Emax

(1− E[p(Ql)])

≥ 1

1− λEmax

· λmin

αmax

· ∑
l∈Emax

(1− E[p(Ql)])

≥ 1

1− λEmax

· λmin

αmax

· |Emax| ·
(
1−

∑
l∈Emax

E[p(Ql)]

|Emax|
)

≥ 1

1− λEmax

· λmin

αmax

· |Emax| ·
(
1− p

(QEmax

|Emax|
))

, (27)

Plugging (24) and (25) into (23) yields

αlE[p(Ql,Emax
)] · (1−∑

l′∈Emax
πl′) ≥ (1− E[p(Ql)]) · πl

⇔ E[p(Ql,Emax
)]

1− E[p(Ql)]
≥ πl/αl

1−∑
l′∈Emax

πl′
≥ λl/αl

1− λEmax

, (26)

where the last inequality comes from the fact that in steady

state, λl ≤ πl for ∀l ∈ Emax. Recall the definitions of λmin and

αmax from Proposition 6.5, it is easy to see that minl∈Emax
λl ≥

λmin and maxl∈Emax
αl ≤ αmax (under both H-GMS and H-

where the last inequality comes from applying Jensen’s in-

equality to the concave increasing function p(·), i.e.,∑
l∈Emax

E[p(Ql)]

|Emax|
≤ p

(QEmax

|Emax|
)
.

In addition, the left-hand-side of (27) can be upper bounded

using Jensen’s inequality,

∑
l∈Emax

E[p(Ql,Emax
)] ≤ |Emax| · p

(Q
Ẽmax

|Emax|
)
≤ |Emax| · p

(QEmax

|Emax|
)
,

(28)

where the last inequality is due to Q
Ẽmax

≤ QEmax
(see (21)).

Putting together (27) and (28) yields

QEmax
≥ |Emax| · p−1

( λmin/αmax

1− λEmax
+ λmin/αmax

)
,

and as a result,

Q ≥ QEmax

2N
≥

(
1− NF

2N

)
· p−1

( λmin/αmax

1− λEmax
+ λmin/αmax

)
.

(29)

Combining (22) and (29) leads to (18), completing the proof.
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