978-1-5386-4780-6/18/$31.00©2018 |IEEE

2018 IEEE International Symposium on Information Theory (ISIT)

On the Fundamental Limits of Coded Data Shuffling

Adel Elmahdy
Department of ECE, University of Minnesota
Email: adel@umn.edu

Abstract—We consider the data shuffling problem, in which
a master node is connected to a set of worker nodes, via a
shared link, in order to communicate a set of files to the worker
nodes. The master node has access to a database of files. In every
shuffling iteration, each worker node processes a new subset of
files, and has excess storage to partially cache the remaining
files. We characterize the exact rate-memory trade-off for the
worst-case shuffling under the assumption that cached files are
uncoded, by deriving the minimum communication rate for a
given storage capacity per worker node. As a byproduct, the exact
rate-memory trade-off for any random shuffling is characterized
when the number of files is equal to the number of worker nodes.
We propose a novel deterministic and systematic coded shuffling
scheme, which improves the state of the art. Then, we prove the
optimality of our proposed scheme by deriving a matching lower
bound and showing that the placement phase of the proposed
coded shuffling scheme is optimal over all shuffles.

I. INTRODUCTION

Data Shuffling is one of the core components of distributed
computing algorithms. In distributed learning algorithms, the
data-set is randomly shuffled among a cluster of worker
nodes to provide new batches of the data points at each
learning epoch. It has been shown that data shuffling enhances
the learning model quality and leads to significant statistical
gains [1]. However, the statistical benefits of data shuffling
in distributed computing systems come at a price. For each
new shuffle, the entire data-set is communicated from the
master node to the worker nodes. Consequently, this leads to
performance bottlenecks due to the communication overhead.

Inspired by the coded caching introduced by Maddah-Ali
et al. [2], Lee et al. [1] proposed the first coded shuffling algo-
rithm, based on random storage placement, that leverages the
excess storage of the local caches of the worker nodes to slash
the communication bottlenecks. Several works investigated
the data shuffling problem and proposed different shuffling
algorithms [3]-[6]. A similar coding idea was proposed in
MapReduce distributed computing framework, e.g. [7].

The most related work to ours was done by Attia and
Tandon [3], [4], where a data shuffling problem, consisting of
a master node that communicates data points to worker nodes
with limited storage capacity, was studied. An information-
theoretic formulation of the shuffling problem was proposed
for data delivery and storage update phases. Furthermore, the
worst-cast communication rate is defined to be the maximum
communication load from the server to the worker nodes over
all possible data shuffles. Accordingly, the authors character-
ized the optimal trade-off between the storage capacity per
worker node and the worst-case communication rate for certain

Soheil Mohajer
Department of ECE, University of Minnesota
Email: soheil@umn.edu

M,
E Master Node

Wy Wo e ooe Wi e

‘_ | -3 = l}\\orkcr
zj. Zz. z,‘. Nodes

Fig. 1. Data shuffling in distributed computing systems.

cases. This rate was characterized when the number of worker
nodes is limited to K € {2, 3} in [3]. Furthermore, the special
case of no-excess storage (arbitrary N and K, but S = N/K)
was addressed in [4]. However, the proposed schemes in these
works do not generalize for arbitrary parameters.

In this paper, we propose a novel systematic and determinis-
tic coded shuffling scheme which improves the state of the art
and achieves a lower communication rate, for random shuffling
when N = K. Furthermore, inspired by a recent work of [8],
the optimality of the proposed coded shuffling scheme is
demonstrated through a matching converse proof. We show
that the placement phase, assuming uncoded prefetching, of
the proposed scheme is optimal. We also use this canonical
case as a building block, and propose a shuffling strategy for
N > K, which is optimum for the worst-case shuffle.

II. PROBLEM FORMULATION

Let [K] denote {1,2,...,K}. Fig. 1 depicts a distributed
computing system with a master node, denoted by M, and a
set of K worker nodes, denoted by W = {W, : i € [K]}. The
master node is assumed to have access to the entire data-set
of N files!, denoted by F = {FV : j € [N]}, where the size
of each file is normalized to 1 unit. Each worker node W; has
a cache Z; that can store up to S files. At every iteration, the
master node randomly shuffles N files, and assigns N/ K files?
to each worker node to store in its cache and perform a local
computational task. This imposes the constraint S > N/K
on the size of the cache at each worker node. For a given
iteration ¢, we denote by (i) the set of indices of the files to
be processed by W;, and by P? the portion of the cache of W;
dedicated to the under-processing files: P* = {F7 : j € u(i)}.
The subsets {u(i) : ¢ € [K]} provide a partitioning for the set
of files, i.e., u(i) Nu(j) = @ for i # j, and Ufil u(i) = [N].
Similarly, d(i) denotes the subset of N/ K files to be processed
by W, at iteration ¢t + 1, where {d(i) : ¢ € [K]} also form a
partitioning for . When S > N/K, each worker node can

'We study the shuffling problem under the practical assumption N > K.
2Unless otherwise stated, we assume that N/K and S/(N/K) are integers.

716

2018 IEEE International Symposium on Information Theory (ISIT)

cache (parts of) the other files in F, in addition to the N/K
files being processed. We denote by &, = Z;\P? the remaining
space of the cache of W;, which is called the excess cache and
used to stores sub-files of other files. Therefore, Z; = P? ué,.

Filling the excess part of the cache is performed regardless
of the new assigned subsets {d(i) : i € [K|}. Between itera-
tions ¢ and t+1, the master node should compute and broadcast
a message (a function of all files in F), such that each worker
node W; can retrieve all files in d(i) from its cached data
Z,; and the broadcast message X. The communication load
R is defined as the size of the broadcast message X. We
interchangeably refer to R as rate and communication load.
The goal is to minimize R for any {d(i) : ¢ € [K]}. For
S > N, we have R = 0 since each worker node can store all
the files and no communication is needed. Thus, we can focus
on the regime N/K < S < N.

A demand profile is defined as a directed graph G(V, E),
where V' is the set of K vertices and F is the set of NV directed
edges. An edge e; = (i,() € E with j € [N] indicates j €
u(i) Nd(¢), ie., file F7 is processed by worker node W; at
iteration ¢, and by worker node W, at ite/{ation t+1.

File Partitioning and Labeling: Let S = S/(N/K). At
every iteration, each file F7, that is processed by Wj, is split
into (g:ll) equal sub-files, and the subfiles are labeled as
Fi = {Fl.:T C[K]\{i},|T| = §—1}, for i € [K], j € [N].
Since the size of each file is normalized to 1, the size of each
sub-file will be 1/ (%{__11) We also define dummy sub-files
Fl. =0, for every T' C [K] with j € T or |T'| # 5—1.

Sub-file Placement: The cache Z; of W, consists of two
parts: (1) the under-processing part P?, in which all sub-files
of files {FV:j € u(i)} are cached; (2) the excess storage
part &£, which is equally distributed among all other files. We
denote by &/ the portion of &, dedicated to the file F*, in
which all sub-files FY% with i € I are cached. Hence, we have

_ pi _ pi ‘
Z,=P'UE =P U (Uee[zv]\u(i) SZ) (1)
P ={F:jeu), TCIKN\{}, [M=5-1}, @

gf = {Flé 0 ¢ u(i), iel C [K], IF\=§—1}a)

for i € [K]. For any worker node W;, there are N/K complete
files in P’. Moreover, for each of the remaining N — N/K
files, there are (5_2) sub-files, out of a total (15_1) sub-files,

that are cached ifliche excess storage part. Thug,iéve have
K—2
i N Ny (55)
Z0=1Ple 3 el g (Vo) gt =8
Le[N]\u(z) S—1

which satisfies the memory constraints.

Let Q;, for i € [K], denote the set of sub-files to be
processed by W; at iteration ¢ + 1, which are not available
in its cache Z; at iteration ¢, that is,

Qi:{Flé 0ed(i), 0¢ u(i), i ¢ T, |r|:§f1}.)

It is easy to see that each worker node needs to decode at most

(%577) sub-files for each of the N/K files in d(i), in order to
process them at iteration ¢ + 1.

1/2
1/5
0

1 2 3 4 5 6 S

Fig. 2. Trade-off curve between broadcast communication rate R and storage
capacity per worker node S, when N = K = 6 and v = 3.

III. THE CANONICAL SETTING (N = K)

Since N = K, then § = 5. Without loss of generality, we
assume that W; processes file F' at iteration t, i.c., u(i) =1,
for i € [K], otherwise we can relabel the files. The number of
cycles in the underlying graph of the demand profile is denoted
by v, with cycle lengths (¢1,0s,...,¢,) where Y], (; = K.
The following theorems summarize our main results.

Theorem 1. For a distributed computing system with K
worker nodes each with a cache of size S € {1,2,...,N}
files®, the broadcast communication rate R required to shuffle
N = K files for any demand profile is upper bounded by*
K—1
("5)
K-1\°
(s71)

The next theorem provides an achievable rate (depending
on the demand profile) by an opportunistic coding scheme.

R <

(&)

Theorem 2. For a distributed computing system with K
worker nodes each with a cache of size S € {1,2,...,N}
files, the shuffling of N = K files for a given demand profile
that comprises vy cycles can be performed by broadcasting a
message of size R, where

P O R)

(59

Theorem 3. For the distributed computing system introduced
in Theorem 2, the broadcast communication rate R required to
shuffle N = K files for a given demand profile that comprises
v cycles is lower bounded by

K-1\ (v-1
pe (505
(s1)
Theorems 2 and 3 prove the optimality of the proposed
shuffling scheme. Fig. 2 captures the trade-off curve between

R and S for N = K = 6 and v = 3. Detailed proofs of the
theorems are provided in the extended version of this paper [9].

(6)

)

IV. CODED SHUFFLING SCHEME FOR ANY RANDOM
SHUFFLING (N = K)

A. Illustrative Example
Consider a shuffling system with a master node and K =
6 worker nodes. The size of the cache at each worker

3For non-integer values of S, the lower convex envelope of the N corner
points is achievable by space-sharing.
“Note that () =0 when n < k.

717

2018 IEEE International Symposium on Information Theory (ISIT)

d4)=D d6) = FE

@ W

Fig. 3. Demand profile for a data shuffling system with N = K = 6 and
v = 3. Worker nodes W1, Wa, W3, Wy, W5 and Ws are processing files
A, B, C, D, E, and F, respectively.

node is S = 3 files. There are N = 6 files, denoted by
{FY F?, F3 F* F> F%}. For simplicity, we rename the files
as {A,B,C,D,E,F}, respectively. Assume worker nodes
Wy, Wy, W3, Wy, Wi and Wy are processing files A, B, C, D,
E, and F, respectively. The demand profile of worker nodes
is depicted by Fig. 3. It comprises v = 3 cycles, with cycle
lengths (41, ¢2,¢3)=(3,1,2), i.e., Thatis, d(1)=B, d(2)=C,
d(3)=A, d(4)=D, d(5)=F, d(6) = E. Fig. 4 captures the
cache organization of worker nodes, along with the sub-files
assigned to them by the master node at the next iteration. Note
that P and &,, for i € [K], are designed according to (2) and
(3), respectively. Moreover, we use (9) and (10) to design the
broadcast message X. For example, X123 is expressed as

X3 = (F213@F123@(F324@F2?5@F326))@(F123@F132@(F134
@F135@F136))@(Ffz@F213@(F214@F215@F216)) :
= Aoa B Ass B Ao ® B34 D B35 B3 ®C14DC15BCh6.

Similarly, the set of other functions transmitted by the master
node to the worker nodes is expressed as

X124 =A21P B34 P Bys P Bag®Ch4,

X125 =Ao5® B35 ®Bys O Bsg D C15D E12D Fioa,

X134 =A2s D Ays © Ay ® B34 ©Chy,

X135 =Ao5 B Aus B Ase® B35 DC15 D E13D Fs,

X145 =Aus B Bys O E14D Fy, ®)

Xo34=A24® B34 DC14DCusDCys,

Xo35=Ao5 D B35 DC 15D Cs5DCs6D Eoz @ Fas,

Xou5=DBas ®Cus B Foy® Fou,

X345 =AssBCa5D E34 B Fy.
For each worker node, Fig. 6 shows the received functions
from the master node after removing the sub-files that exist
in its cache. The decoding procedure of the proposed coded
shuffling scheme is analogous to interference mitigation tech-
niques in wireless communications. To present this analogy,
we focus on three different cases of the decoding procedure.

(1) Decoding C4 from X4 by Wo:
Xioga= Ciu S AP Bss®Bis BBy .
——

Desired sub-file

Cached sub-files in Z5
The decoding procedure is analogous to the interference
suppression technique. Wy decodes Cj4 by canceling the
interfering sub-files using its cache content Zs.

(2) Decoding 016 from X123 by WQI

Xigs= Cis ® Cu @ Ci5
~—~ ~— ~—~
Desired sub-file Decoded sub-file Decoded_sub-file
from X124 from X125

@ A4 ® Ags D Asg ® B34 @ B3s @ B

Cached sub-files in Z5

2(t)
P(t) E(t) Q(t)
—_—
o A A A i Bis Bis Bis Big) Ci2 Cus C15 Cie
23 Aza Ags Age Aza By Bs; Bsg
@ Aygs Asg Ays Asg Asg | D12 D13 Dis Dis © Enz iz Bua Erg Bus Bag B
Fi; Fiz Fi Fis
o s i i B Azg Azs Aos Azg Ci2 Ca4 Ca5 O
13 D14 Bis B Bag C14 Cy5 C
Dys Doy Dys Dog | Eyg Eag Eoy E: 12 Bl
@ Bys Bug Bas Bug Bag 12 D23 Das Dag 12 Bz By Ege Cas Cae Cog
Fiz Fo3 Foy Fs
e Asz Ass Ass Ase Bis Ba Bs Bag
12 C14 C15 C6 Cos Azs Ags Azg
Dy3 Dag D35 D3 | By Eag B3y E:
@ a5 Cag Cig Cuag Cg | 17 728 790 750 EAEEEEENT | 445 Aug Aso
Fi3 Fo3 Fiy Fis
Azq Azy Ags Ass | Bura Bza Bas Bag
D1 D13 D15 Dig D3
6 Eyy By E3y E.
@ Das Do Doy Do Dg Ciq Coy Cy5 Cys 14 Eay B3y Egg
Fiy Foy Fsy Fys
Ans Ass Ass Ass | Bis Bss Bas Bss
Ei Ei3 Evq Eyg E: Fiy Pz Fy
12 Bi3 Eia Ere B Cts Cos Cas G Dys Dy Dig 12 Fis Fua
By Exg Esy Egs Esg Fas Foy Faq
Fi5 Fos Fs Fis
e E B BB Az Ase Asg Ass Bie Bss Bas Bse
12 Fiz Fia Fis Fas . » D N Enp Er3 B
@ Fyy Fos Fyy Fyy Fu Cig Ca6 Cag Cs6~ Dig Dag Dsg Dsg Ea Eay Ess
Eng Bz Es Eas

Fig. 4. Cache organization of worker nodes at iteration ¢, along with the set
of sub-files to be processed at iteration ¢ + 1, which are not available in the
caches at iteration ¢.

Z(t+1)

P(t+1) Et+1)

Ci3 C1a C15 Ci6
Dz Dis D15 Dig
Bz Ers B Ers

B3 Boy Bas Bas) Aiz Aza Azs Az
D1z Dag Das Dag Fia Fy3 Fpy Fog
Eyp Ebg Epy Eps

A1z Aia A5 Ase

Bas By Bas Bas Bas Fia Fis Fus Fio

Bss Bys Bas Bas Bse

C13 C1s C15 Ci6 Ca
Cs5 C36 Cas Cag Cs

Bas Bs Bss Bsg
D13 Da3 D35 Dsg
Eq3 Eas Esq Ess

Ci3 C34 C35 Cs6

A1z Arg As Asg Az Fis Fyy Fys Fag

Ags Age Ass Asg Ase

By Bys Bas Bus
A1 Azq Asgs Ase
Eha By B3 Ess

Cia C34 Cas5 Cis

Dz Dig D15 Dy Das Fia Fox Fas Fag

Ds5 Dag D35 Dsg Dse

Bas Bss Bas Bse
Ci5 C35 Cas Cse
Ei5 Eys Ess Ess

A1s Azs Ass Ase

Fia Fig Py Fig Fas Dus Dys Das D
15 Das Dss Dse

Fyy Fyg F34 Fye Fug

By Byg Bag Bse
Cis C36 Cas Cs6
Fig Fas Fis Fas

A Azg Ass Ase

Eyz Erg Bra Ers Ens Dug Dag Dss Dsg
5

Eys Eps E3y E3s Eys

®& 6 66 66

Fig. 5. Cache organization of worker nodes at iteration ¢ + 1 after updating
the caches and relabeling the sub-files of Fig. 4. For instance, subfiles
{B13, B14, B15, B1g} in &,(t) are moved £,(t + 1) and relabeled to
{Ba3, Ba4, Bas, Bag }, respectively.

The decoding procedure is analogous to successive interfer-
ence cancellation (SIC) technique. W5 decodes C4¢ by first
canceling the sub-files that exist in Z5. Next, it exploits the
sub-files decoded from X954 and X235 to successively cancel
the interfering sub-files.

(3) Decoding Es3 from X34 by W

Xozs = Eog P (Cs68F23) P (Aas @ B35 BCi5BCls) .

Desired sub-file Cached sub-files
in Zg

X123 B Xo3a

The decoding procedure is analogous to aligned interference
suppression technique. Wy decodes Es3 by first canceling the
sub-files cached in Zg. Then, by the proposed data placement
phase, the remaining interfering sub-files are the result of

718

2018 IEEE International Symposium on Information Theory (ISIT)

Wi Wy Ws Wy Ws We
Az4 ® Ass®|Ags ® Azs®
Byu @ Bys|Cry ® Crs®| Azs ® A5 DY iy
X123 . B3y @ B3s®|Bag €
Bss Cig Az . o
Cly&Cig | Ca® Cis
Bsy @ By . Asy @ Bis€| Azq & B31®[A2 & Byy®
X4 B Cua - s o
46 By By @ Cra | Bas ® Cra
Bss @ Buse
Cis - Py
RSE ' "
Ays © Age®|Any & A5 Aoy @ Aye®|Ans & Ags D)
Xiza | Ba) - o o
Cu Age B3y ®Cua | Bay ®Cry
X135
Xias
Xo3a
Ao @ Bysé
Xoss Ao - Py |owecse
Eas
&) Bus ® Cus®)
X. ¢ - %
245 * Fay o B
Cis ® E34®B|Ags ® Cas® Ays © Cys9|
X‘ 5 v N ’ A 5 - F 4 v ’
45 Fu | EueFu ” ' By

Fig. 6. Received functions by worker nodes after removing the cached sub-
files. The complete received functions at worker nodes are expressed in (8).

XORing some other received sub-messages, i.e., X123 @ Xo34,
and hence, they can be canceled accordingly.

As a result, the rate iS Reogeq = (g) / (g) = 1. On the other
hand, the rate achieved by the uncoded shuffling scheme, under
the same placement strategy, is Runcoded = (5 % 6)/(5) = 3.
In other words, the proposed coded shuffling scheme can save
around 66% of the communication rate, and thus, it speeds
up the overall run-time of the data shuffling process. When
each worker node decodes all missing subfiles at iteration ¢,
Fig. 5 depicts the cache organization of each worker node after
updating the cache and relabeling the subfiles in preparation
for the following random shuffle at iteration ¢ 4 1.

B. Proposed Achievable Scheme

When S = 1, each worker node only stores the file that it
processes with no extra storage. The following set of encoded
functions X = {Z; ® Z;41 : i € [K — 1]} ensures that each
worker node accesses all the files and stores what it needs
to process at the next iteration. Thus, the achieved rate under
this scheme is R = K — 1. On the other hand, when S = N,
each worker node can store all the files in its cache. Therefore,
there is no communication needed between the master node
and the worker nodes, and hence, R = 0. The challenging
regime of S is when 1 < S < N where N = K. In what
follows, we propose an achievable scheme to show the rate is
R=(";1/(52)) in this regime.

Encoding: Given all cache contents {Z; : i € [K]} and
{d(i) : i € [K]}, the broadcast message X’ is obtained at
the master node by the concatenation of several sub-messages
X, each specified for a group of worker nodes A, that is,

X ={Xa:AC[K—1],|A| =5}, where 9

A i d 1
Xa 2@ [Fam®Fagun ® D Fijomn g |-(10

€A JEKI\A

The encoding design hinges on (K —1) worker nodes. Without
loss of generality, we consider Wy, W, ..., W _1 for whom
the broadcast sub-messages are designed, and designate Wi as
the ignored worker node. Accordingly, there is a total of (K s 1)
sub-messages, each of size of the unit partition 1/ (15:11) that
is transmitted by the master node to the worker nodes. Hence,
the overall broadcast communication rate is given by (5).

Decoding: Each worker node utilizes the cache content,
along with the functions received from the master node, in
order to decode the missing sub-files that constitute the file
to be processed at iteration ¢ + 1. We demonstrate a decoding
scheme that allows each worker node to decode its intended
sub-files. More specifically, we divide the set of worker nodes
into two different groups, namely, W, with ¢ € [K — 1]
and a single element group Wpg. The following lemmas
demonstrate how the intended sub-files can be decoded from
the broadcast sub-messages and the cache contents of worker
nodes. Detailed proofs of the lemmas are reported in [9].
Lemma 1. If K ¢ T, then a sub-file Flii(z) € Qy intended for
Wy, for £ € [K —1], can be decoded from the cache content Z;
and the broadcast sub-message X (gyur. On the other hand, if
K €T, then Flil © can be decoded from the cache content Z
and the broadcast sub-message X(r\{xy)u{e,d¢)}, and other
sub-files previously decoded by Wy.

Lemma 2. Any sub-file Fd(K) € Qg intended for Wi can
be decoded from the Cache content Zy and the broadcast
sub-message @ X{eyur-
Le[K—1\T

Cache Updating and Subfile Relabeling: After the worker
nodes decode the missing subfiles characterized by (4), the
caches of worker nodes need to be updated and the subfiles
needs to be relabeled before processing the files at iteration
t + 1. The precise procedure can be found in the extended
version of this paper [9]. Finally, the shuffling procedure at
iteration ¢ terminates, and the master node commences another
random data shuffling at iteration ¢ + 1.

V. OPTIMAL CODED SHUFFLING SCHEME FOR ANY
RANDOM SHUFFELING (N = K)

The scheme proposed in Section IV provides the worker
nodes with their missing sub-files using the broadcast message
and cached sub-files. However, depending on the demand pro-
file, the rate obtained by that scheme may be sub-optimum. In
the extended version of this paper [9], and based on the scheme
proposed in Section IV, we propose an opportunistic coded
shuffling scheme that yields a lower rate. More concretely,
when v—1 > S, there are precisely (751) sub-messages
in (9) that are linearly dependent on the other sub-messages.
Thus, by refraining from broadcasting these sub-messages, the
reduced rate is given by (6).

719

2018 IEEE International Symposium on Information Theory (ISIT)

VI. CONVERSE PROOF FOR DATA SHUFFLING (N = K)

We prove the optimality of the proposed coded shuffling
scheme in Section V. Let us assign, for a given demand
profile, a unique index pair (c(i),p(7)) to W;, where c(i) is
the cycle number that W; belongs to, and p(¢) is the position
of W; within cycle ¢(7). More formally, there is a function w
that maps the worker node index ¢ and the unique index pair
(c(7),p(i)) as follows:

i = w((c(i),p(4))), forie[K], c(i)el], p(i)€l].
Note that there is a one-to-one mapping between the worker
node index and the introduced index pair, and hence, we can
interchangeably use them without confusion. Let us denote by
F; the part of file F'* cached at W;. Furthermore, for a subset
of worker nodes J C [K]\{i}, we define the cardinality
of a union of sub-files of F* that are cached at J as 7% =

let un denote the average cardinality of a set of sub-files that
are cached by 1 worker nodes, that is,

Hn = (K1Z Z “.7

i€[K] JC[K\i,
|T=n
Accordingly, the following properties hold: pg = 0, u; =
%, pr—1 =min{1,S—1}. Let us assume a virtual worker
node W, equipped with a cache Z, that is characterized as

(1)

2z, =210z, where 2V=| |J FO|,
ie(i) €[],
p(i)=1
(2) _ ru(d) ru(J)
Z* - U U Fu U U u(r)
Jie(G)E], | rie(r)<c(s), ric(r)=c(j),
p(j)>1 p(r)<£c(7‘) p(T)<p(j)

Lemma 3. Given the broadcast message X, and the cache
content Z, of the virtual worker node W, then

H({F}E X, 2,)=0. (12)
Therefore, W, can decode all the files of the shuffling system.

Next, the communication rate is lower bounded as follows.
Lemma 4. The communication rate R, over all files and
all sets of worker nodes with given cardinalities, is lower
bounded by

K—~
R>N—~- Z M-
i=1

Finally, we seek the tightest lower bound on R as follows
Lemma 5. The optimal {1} }J ", that maximizes Z 7
over its feasible region, is characterized by

(“s2i)
Wy =1- "
_] -
(s21)
Substituting (14) into (13) yields the tightest lower bound

on the communication rate R given by (7). Detailed proofs of
the lemmas are reported in [9].

13)

(14)

VII. THE GENERAL SETTING (N > K)

We investigate the general setting of data shuffling problem
when N > K, using the results obtained in Section III when
N =K. The following theorems summarize our main results.

Theorem 4. For a distributed computing system that processes
N files, and consists of K worker nodes each with a nor-
malized storage capacity of S = S/(N/K) € {1,2,...,K}
files per worker node, the achievable communication rate R
required to shuffle N files for any demand profile is upper

bounded by K-1

=K (E-Ly

()
Theorem 5. For the distributed computing system introduced
in Theorem 4, the worst-case communication rate R, case

required to shuffle N files for any demand profile is lower

bounded by P
Ryorst-case > N (%5)

SR

Theorems 4 and 5 prove the optimality of the proposed
shuffling scheme in the worst-case shuffle. The main idea is
to decompose the demand profile into N/K sub-graphs on
the same set of nodes, such that the in-degree and out-degree
of each node in a sub-graph are 1. Each resulting sub-graph
reduces to a data shuffling system with K files (corresponding
to the edges appear in the sub-graph), K worker nodes,
and storage capacity per worker node S/(N/K). Hence, we
can apply the optimal coded shuffling scheme proposed in
Section V to achieve the minimum communication rate within
each sub-graph. This decomposition is shown to be optimum
for the worst-case shuffle when N > K, and hence, it yields an
exact rate-memory trade-off characterization, reported in [9].
The characterization of the optimum trade-off for a given
profile demand is still an open problem.

5)

(16)

REFERENCES

[1] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” /IEEE Transac-
tions on Information Theory, 2017.

[2] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE
Transactions on Information Theory, vol. 60, no. 5, pp. 2856-2867, 2014.

[3] M. A. Attia and R. Tandon, “Information theoretic limits of data shuf-
fling for distributed learning,” IEEE Global Communications Conference
(GLOBECOM), pp. 1-6, 2016.

, “On the worst-case communication overhead for distributed data
shuffling,” 54th Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pp. 961-968, 2016.

[5] L. Song, C. Fragouli, and T. Zhao, “A pliable index coding approach
to data shuffling,” IEEE International Symposium on Information Theory
(ISIT), pp. 2558-2562, 2017.

[6] J. Chung, K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ram-
chandran, “Ubershuffle: Communication-efficient data shuffling for SGD
via coding theory,” Advances in NIPS, 2017.

[7]1 S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed com-
puting,” IEEE Transactions on Information Theory, vol. 64, no. 1, pp.
109-128, 2018.

[8] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-memory
tradeoff for caching with uncoded prefetching,” IEEE Transactions on
Information Theory, vol. 64, no. 2, pp. 1281-1296, 2018.

[9] A. Elmahdy and S. Mohajer, “On the fundamental limits of coded data
shuffling,” http://people.ece.umn.edu/~soheil/pubs/Shuffling.pdf .

(4]

720

