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Abstract—We consider the data shuffling problem, in which
a master node is connected to a set of worker nodes, via a
shared link, in order to communicate a set of files to the worker
nodes. The master node has access to a database of files. In every
shuffling iteration, each worker node processes a new subset of
files, and has excess storage to partially cache the remaining
files. We characterize the exact rate-memory trade-off for the
worst-case shuffling under the assumption that cached files are
uncoded, by deriving the minimum communication rate for a
given storage capacity per worker node. As a byproduct, the exact
rate-memory trade-off for any random shuffling is characterized
when the number of files is equal to the number of worker nodes.
We propose a novel deterministic and systematic coded shuffling
scheme, which improves the state of the art. Then, we prove the
optimality of our proposed scheme by deriving a matching lower
bound and showing that the placement phase of the proposed
coded shuffling scheme is optimal over all shuffles.

I. INTRODUCTION

Data Shuffling is one of the core components of distributed

computing algorithms. In distributed learning algorithms, the

data-set is randomly shuffled among a cluster of worker

nodes to provide new batches of the data points at each

learning epoch. It has been shown that data shuffling enhances

the learning model quality and leads to significant statistical

gains [1]. However, the statistical benefits of data shuffling

in distributed computing systems come at a price. For each

new shuffle, the entire data-set is communicated from the

master node to the worker nodes. Consequently, this leads to

performance bottlenecks due to the communication overhead.

Inspired by the coded caching introduced by Maddah-Ali

et al. [2], Lee et al. [1] proposed the first coded shuffling algo-

rithm, based on random storage placement, that leverages the

excess storage of the local caches of the worker nodes to slash

the communication bottlenecks. Several works investigated

the data shuffling problem and proposed different shuffling

algorithms [3]–[6]. A similar coding idea was proposed in

MapReduce distributed computing framework, e.g. [7].

The most related work to ours was done by Attia and

Tandon [3], [4], where a data shuffling problem, consisting of

a master node that communicates data points to worker nodes

with limited storage capacity, was studied. An information-

theoretic formulation of the shuffling problem was proposed

for data delivery and storage update phases. Furthermore, the

worst-cast communication rate is defined to be the maximum

communication load from the server to the worker nodes over

all possible data shuffles. Accordingly, the authors character-

ized the optimal trade-off between the storage capacity per

worker node and the worst-case communication rate for certain
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Fig. 1. Data shuffling in distributed computing systems.

cases. This rate was characterized when the number of worker

nodes is limited to K ∈ {2, 3} in [3]. Furthermore, the special

case of no-excess storage (arbitrary N and K, but S = N/K)

was addressed in [4]. However, the proposed schemes in these

works do not generalize for arbitrary parameters.

In this paper, we propose a novel systematic and determinis-

tic coded shuffling scheme which improves the state of the art

and achieves a lower communication rate, for random shuffling

when N = K. Furthermore, inspired by a recent work of [8],

the optimality of the proposed coded shuffling scheme is

demonstrated through a matching converse proof. We show

that the placement phase, assuming uncoded prefetching, of

the proposed scheme is optimal. We also use this canonical

case as a building block, and propose a shuffling strategy for

N ≥ K, which is optimum for the worst-case shuffle.

II. PROBLEM FORMULATION

Let [K] denote {1, 2, . . . ,K}. Fig. 1 depicts a distributed

computing system with a master node, denoted by M , and a

set of K worker nodes, denoted by W = {Wi : i ∈ [K]}. The

master node is assumed to have access to the entire data-set

of N files1, denoted by F = {F j : j ∈ [N ]}, where the size

of each file is normalized to 1 unit. Each worker node Wi has

a cache Zi that can store up to S files. At every iteration, the

master node randomly shuffles N files, and assigns N/K files2

to each worker node to store in its cache and perform a local

computational task. This imposes the constraint S ≥ N/K
on the size of the cache at each worker node. For a given

iteration t, we denote by u(i) the set of indices of the files to

be processed by Wi, and by Pi the portion of the cache of Wi

dedicated to the under-processing files: Pi = {F j : j ∈ u(i)}.

The subsets {u(i) : i ∈ [K]} provide a partitioning for the set

of files, i.e., u(i)∩u(j) = ∅ for i �= j, and
⋃K

i=1 u(i) = [N ].
Similarly, d(i) denotes the subset of N/K files to be processed

by Wi at iteration t + 1, where {d(i) : i ∈ [K]} also form a

partitioning for F . When S > N/K, each worker node can

1We study the shuffling problem under the practical assumption N ≥ K.
2Unless otherwise stated, we assume that N/K and S/(N/K) are integers.
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cache (parts of) the other files in F , in addition to the N/K
files being processed. We denote by Ei = Zi\Pi the remaining

space of the cache of Wi, which is called the excess cache and

used to stores sub-files of other files. Therefore, Zi = Pi∪Ei.
Filling the excess part of the cache is performed regardless

of the new assigned subsets {d(i) : i ∈ [K]}. Between itera-

tions t and t+1, the master node should compute and broadcast

a message (a function of all files in F), such that each worker

node Wi can retrieve all files in d(i) from its cached data

Zi and the broadcast message X . The communication load

R is defined as the size of the broadcast message X . We

interchangeably refer to R as rate and communication load.

The goal is to minimize R for any {d(i) : i ∈ [K]}. For

S ≥ N , we have R = 0 since each worker node can store all

the files and no communication is needed. Thus, we can focus

on the regime N/K ≤ S ≤ N .

A demand profile is defined as a directed graph G(V,E),
where V is the set of K vertices and E is the set of N directed

edges. An edge ej = (i, �) ∈ E with j ∈ [N ] indicates j ∈
u(i) ∩ d(�), i.e., file F j is processed by worker node Wi at

iteration t, and by worker node W� at iteration t+ 1.
File Partitioning and Labeling: Let Ŝ = S/(N/K). At

every iteration, each file F j , that is processed by Wi, is split

into
(K−1
̂S−1

)
equal sub-files, and the subfiles are labeled as

F j = {F j
Γ : Γ ⊆ [K]\{i}, |Γ| = Ŝ−1}, for i ∈ [K], j ∈ [N ].

Since the size of each file is normalized to 1, the size of each

sub-file will be 1/
(K−1
̂S−1

)
. We also define dummy sub-files

F j
Γ = 0, for every Γ ⊆ [K] with j ∈ Γ or |Γ| �= Ŝ − 1.
Sub-file Placement: The cache Zi of Wi consists of two

parts: (1) the under-processing part Pi, in which all sub-files
of files

{
F j : j ∈ u(i)

}
are cached; (2) the excess storage

part Ei, which is equally distributed among all other files. We

denote by E�
i the portion of Ei dedicated to the file F �, in

which all sub-files F �
Γ with i ∈ Γ are cached. Hence, we have

Zi = Pi ∪ Ei = Pi ∪
(⋃

�∈[N ]\u(i) E
�
i

)
(1)

Pi =
{
F j
Γ : j∈u(i), Γ⊆ [K]\{i}, |Γ|= Ŝ−1

}
, (2)

E�
i =

{
F �
Γ : � /∈ u(i), i∈Γ ⊆ [K], |Γ|= Ŝ−1

}
, (3)

for i ∈ [K]. For any worker node Wi, there are N/K complete

files in Pi. Moreover, for each of the remaining N − N/K
files, there are

(K−2
̂S−2

)
sub-files, out of a total

(K−1
̂S−1

)
sub-files,

that are cached in the excess storage part. Thus, we have

|Zi| =
∣∣Pi
∣∣+ ∑

�∈[N ]\u(i)

∣∣E�
i

∣∣ = N

K
+

(
N − N

K

) (K−2
̂S−2

)(K−1
̂S−1

) = S,

which satisfies the memory constraints.

Let Qi, for i ∈ [K], denote the set of sub-files to be

processed by Wi at iteration t + 1, which are not available

in its cache Zi at iteration t, that is,

Qi=
{
F �
Γ :�∈d(i), � /∈ u(i), i /∈ Γ, |Γ|= Ŝ−1

}
. (4)

It is easy to see that each worker node needs to decode at most(K−2
̂S−1

)
sub-files for each of the N/K files in d(i), in order to

process them at iteration t+ 1.
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Fig. 2. Trade-off curve between broadcast communication rate R and storage
capacity per worker node S, when N = K = 6 and γ = 3.

III. THE CANONICAL SETTING (N = K)

Since N =K, then Ŝ = S. Without loss of generality, we

assume that Wi processes file F i at iteration t, i.e., u(i)= i,
for i∈ [K], otherwise we can relabel the files. The number of

cycles in the underlying graph of the demand profile is denoted

by γ, with cycle lengths (�1, �2, . . . , �γ) where
∑γ

i=1 �i = K.

The following theorems summarize our main results.

Theorem 1. For a distributed computing system with K
worker nodes each with a cache of size S ∈ {1, 2, . . . , N}
files3, the broadcast communication rate R required to shuffle
N = K files for any demand profile is upper bounded by4

R ≤
(
K−1
S

)(
K−1
S−1

) . (5)

The next theorem provides an achievable rate (depending

on the demand profile) by an opportunistic coding scheme.

Theorem 2. For a distributed computing system with K
worker nodes each with a cache of size S ∈ {1, 2, . . . , N}
files, the shuffling of N = K files for a given demand profile
that comprises γ cycles can be performed by broadcasting a
message of size R, where

R ≤
(
K−1
S

)− (γ−1
S

)(
K−1
S−1

) . (6)

Theorem 3. For the distributed computing system introduced
in Theorem 2, the broadcast communication rate R required to
shuffle N = K files for a given demand profile that comprises
γ cycles is lower bounded by

R ≥
(
K−1
S

)− (γ−1
S

)(
K−1
S−1

) , (7)

Theorems 2 and 3 prove the optimality of the proposed

shuffling scheme. Fig. 2 captures the trade-off curve between

R and S for N = K = 6 and γ = 3. Detailed proofs of the

theorems are provided in the extended version of this paper [9].

IV. CODED SHUFFLING SCHEME FOR ANY RANDOM

SHUFFLING (N = K)

A. Illustrative Example
Consider a shuffling system with a master node and K =

6 worker nodes. The size of the cache at each worker

3For non-integer values of S, the lower convex envelope of the N corner
points is achievable by space-sharing.

4Note that
(n
k

)
= 0 when n < k.
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Fig. 3. Demand profile for a data shuffling system with N = K = 6 and
γ = 3. Worker nodes W1, W2, W3, W4, W5 and W6 are processing files
A, B, C, D, E, and F , respectively.

node is S = 3 files. There are N = 6 files, denoted by

{F 1, F 2, F 3, F 4, F 5, F 6}. For simplicity, we rename the files

as {A,B,C,D,E, F}, respectively. Assume worker nodes

W1, W2, W3, W4, W5 and W6 are processing files A, B, C, D,

E, and F , respectively. The demand profile of worker nodes

is depicted by Fig. 3. It comprises γ = 3 cycles, with cycle

lengths (�1, �2, �3)=(3, 1, 2), i.e., That is, d(1)=B, d(2)=C,

d(3)=A, d(4)=D, d(5)=F , d(6)=E. Fig. 4 captures the

cache organization of worker nodes, along with the sub-files

assigned to them by the master node at the next iteration. Note

that Pi and Ei, for i ∈ [K], are designed according to (2) and

(3), respectively. Moreover, we use (9) and (10) to design the

broadcast message X . For example, X123 is expressed as

X123 =
(
F 1
23⊕F 2

13⊕
(
F 2
34⊕F 2

35⊕F 2
36

))⊕(F 2
13⊕F 3

12⊕
(
F 3
14

⊕F 3
15⊕F 3

16

))⊕(F 3
12⊕F 1

23⊕
(
F 1
24⊕F 1

25⊕F 1
26

))
.

= A24⊕A25⊕A26⊕B34⊕B35⊕B36⊕C14⊕C15⊕C16.

Similarly, the set of other functions transmitted by the master

node to the worker nodes is expressed as

X124=A24⊕B34⊕B45⊕B46⊕C14,

X125=A25⊕B35⊕B45⊕B56⊕C15⊕E12⊕F12,

X134=A24⊕A45⊕A46⊕B34⊕C14,

X135=A25⊕A45⊕A56⊕B35⊕C15⊕E13⊕F13,

X145=A45⊕B45⊕E14⊕F14,

X234=A24⊕B34⊕C14⊕C45⊕C46,

X235=A25⊕B35⊕C15⊕C45⊕C56⊕E23⊕F23,

X245=B45⊕C45⊕E24⊕F24,

X345=A45⊕C45⊕E34⊕F34.

(8)

For each worker node, Fig. 6 shows the received functions

from the master node after removing the sub-files that exist

in its cache. The decoding procedure of the proposed coded

shuffling scheme is analogous to interference mitigation tech-

niques in wireless communications. To present this analogy,

we focus on three different cases of the decoding procedure.

(1) Decoding C14 from X124 by W2:

X124 = C14︸︷︷︸
Desired sub-file

⊕A24⊕B34⊕B45⊕B46︸ ︷︷ ︸
Cached sub-files in Z2

.

The decoding procedure is analogous to the interference

suppression technique. W2 decodes C14 by canceling the

interfering sub-files using its cache content Z2.

(2) Decoding C16 from X123 by W2:

X123 = C16︸︷︷︸
Desired sub-file

⊕ C14︸︷︷︸
Decoded sub-file

from X124

⊕ C15︸︷︷︸
Decoded sub-file

from X125

⊕A24⊕A25⊕A26⊕B34⊕B35⊕B36︸ ︷︷ ︸
Cached sub-files in Z2

.

A23 A24 A25 A26 A34

A35 A36 A45 A46 A56

B34 B35 B36

B45 B46 B56

B13 B14 B15 B16 C12 C14 C15 C16

D12 D13 D15 D16 E12 E13 E14 E16

F12 F13 F14 F15

W1

W2
B13 B14 B15 B16 B34

B35 B36 B45 B46 B56

C14 C15 C16

C45 C46 C56

A23 A24 A25 A26 C12 C24 C25 C26

F12 F23 F24 F25

D12 D23 D25 D26 E12 E23 E24 E26

C12 C14 C15 C16 C24

C25 C26 C45 C46 C56

A24 A25 A26

A45 A46 A56

B13 B34 B35 B36

E13 E23 E34 E36

F13 F23 F34 F35

D13 D23 D35 D36W3

W4

W5

W6

A23 A34 A35 A36

D12 D13 D15 D16 D23

D25 D26 D35 D36 D56

B14 B34 B45 B46

E14 E24 E34 E46

A24 A34 A45 A46

C14 C24 C45 C46

F14 F24 F34 F45

E12 E13 E14 E16 E23

E24 E26 E34 E36 E46

A25 A35 A45 A56

C15 C25 C45 C56 D15 D25 D35 D56

F15 F25 F35 F45

B15 B35 B45 B56
F12 F13 F14

F23 F24 F34

A26 A36 A46 A56

C16 C26 C46 C56

E16 E26 E36 E46

F12 F13 F14 F15 F23

F24 F25 F34 F35 F45 E23 E24 E34

E12 E13 E14

B16 B36 B46 B56

D16 D26 D36 D56

︷ ︸︸ ︷ ︷ ︸︸ ︷︷ ︸︸ ︷
︷ ︸︸ ︷Z(t)

P(t) E(t) Q(t)

Fig. 4. Cache organization of worker nodes at iteration t, along with the set
of sub-files to be processed at iteration t+ 1, which are not available in the
caches at iteration t.

A14 A24 A45 A46

B24 B34 B45 B46 C14 C34 C45 C46

E14 E24 E34 E45

F14 F24 F34 F46

B23 B34 B35 B36 C13 C34 C35 C36

D13 D23 D35 D36

E13 E23 E34 E35

F13 F23 F34 F36

A12 A24 A25 A26B23 B24 B25 B26

D12 D23 D25 D26

E12 E23 E24 E25

F12 F23 F24 F26

F12 F13 F14 F16

E12 E13 E14 E15

D12 D13 D15 D16

C13 C14 C15 C16 A12 A14 A15 A16

A15 A25 A45 A56B25 B35 B45 B56

C15 C35 C45 C56 D15 D25 D35 D56

E15 E25 E35 E45

A16 A26 A46 A56B26 B36 B46 B56

C16 C36 C46 C56 D16 D26 D36 D56

F16 F26 F36 F46

B23 B24 B25 B26 B34

B35 B36 B45 B46 B56
W1

W2

W3

W4

W5

W6

C13 C14 C15 C16 C34

C35 C36 C45 C46 C56

A12 A14 A15 A16 A24

A25 A26 A45 A46 A56

D12 D13 D15 D16 D23

D25 D26 D35 D36 D56

E12 E13 E14 E15 E23

E24 E25 E34 E35 E45

F12 F13 F14 F16 F23

F24 F26 F34 F36 F46

︷ ︸︸ ︷ ︷ ︸︸ ︷
︷ ︸︸ ︷Z(t+ 1)

P(t+ 1) E(t+ 1)

Fig. 5. Cache organization of worker nodes at iteration t+ 1 after updating
the caches and relabeling the sub-files of Fig. 4. For instance, subfiles
{B13, B14, B15, B16} in E1(t) are moved E2(t + 1) and relabeled to
{B23, B24, B25, B26}, respectively.

The decoding procedure is analogous to successive interfer-

ence cancellation (SIC) technique. W2 decodes C16 by first

canceling the sub-files that exist in Z2. Next, it exploits the

sub-files decoded from X124 and X125 to successively cancel

the interfering sub-files.

(3) Decoding E23 from X234 by W6:

X235 = E23︸︷︷︸
Desired sub-file

⊕ (C56⊕F23)︸ ︷︷ ︸
Cached sub-files

in Z6

⊕ (A25⊕B35⊕C15⊕C45)︸ ︷︷ ︸
X123 ⊕X234

.

The decoding procedure is analogous to aligned interference

suppression technique. W6 decodes E23 by first canceling the

sub-files cached in Z6. Then, by the proposed data placement

phase, the remaining interfering sub-files are the result of
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B34 ⊕B35⊕
B36

C14 ⊕ C15⊕
C16

A24 ⊕A25⊕
A26

−
A24 ⊕A26⊕
B34 ⊕B36⊕
C14 ⊕ C16

A24 ⊕A25⊕
B34 ⊕B35⊕
C14 ⊕ C15

B34 ⊕B45⊕
B46

C14

A24 ⊕B45⊕
B46

− A24 ⊕B34⊕
B46 ⊕ C14

A24 ⊕B34⊕
B45 ⊕ C14

B35 ⊕B45⊕
B56

C15

A25 ⊕B45⊕
B56 ⊕ E12⊕

F12

− F12

A25 ⊕B35⊕
B45 ⊕ C15⊕

E12

B34

A45 ⊕A46⊕
C14

A24 ⊕A45⊕
A46

− A24 ⊕A46⊕
B34 ⊕ C14

A24 ⊕A45⊕
B34 ⊕ C14

B35

A45 ⊕A56⊕
C15 ⊕ E13⊕

F13

A25 ⊕A45⊕
A56

− F13

A25 ⊕A45⊕
B35 ⊕ C15⊕

E13

B45
A45 ⊕ E14⊕

F14

A45 ⊕B45⊕
E14 ⊕ F14

− F14
A45 ⊕B45⊕

E14

B34 ⊕ C45⊕
C46

C14 ⊕ C45⊕
C46

A24 − A24 ⊕B34⊕
C14 ⊕ C46

A24 ⊕B34⊕
C14 ⊕ C45

B35 ⊕ C45⊕
C56 ⊕ E23⊕

F23

C15 ⊕ C45⊕
C56

A25 − F23

A25 ⊕B35⊕
C15 ⊕ C45⊕

E23

B45 ⊕ C45⊕
E24 ⊕ F24

C45

B45 ⊕ E24⊕
F24

− F24

B45 ⊕ C45⊕
E24

C45 ⊕ E34⊕
F34

A45 ⊕ C45⊕
E34 ⊕ F34

A45 − F34

A45 ⊕ C45⊕
E34

W1 W2 W3 W4 W5 W6

X124

X125

X134

X135

X145

X234

X235

X245

X345

X123

Fig. 6. Received functions by worker nodes after removing the cached sub-
files. The complete received functions at worker nodes are expressed in (8).

XORing some other received sub-messages, i.e., X123⊕X234,

and hence, they can be canceled accordingly.

As a result, the rate is Rcoded =
(
5
3

)
/
(
5
2

)
= 1. On the other

hand, the rate achieved by the uncoded shuffling scheme, under

the same placement strategy, is Runcoded = (5 × 6)/
(
5
2

)
= 3.

In other words, the proposed coded shuffling scheme can save

around 66% of the communication rate, and thus, it speeds

up the overall run-time of the data shuffling process. When

each worker node decodes all missing subfiles at iteration t,
Fig. 5 depicts the cache organization of each worker node after

updating the cache and relabeling the subfiles in preparation

for the following random shuffle at iteration t+ 1.

B. Proposed Achievable Scheme

When S = 1, each worker node only stores the file that it

processes with no extra storage. The following set of encoded

functions X = {Zi ⊕ Zi+1 : i ∈ [K − 1]} ensures that each

worker node accesses all the files and stores what it needs

to process at the next iteration. Thus, the achieved rate under

this scheme is R = K − 1. On the other hand, when S = N ,

each worker node can store all the files in its cache. Therefore,

there is no communication needed between the master node

and the worker nodes, and hence, R = 0. The challenging

regime of S is when 1 < S < N where N = K. In what

follows, we propose an achievable scheme to show the rate is

R =
(
K−1
S

)
/
(
K−1
S−1

)
in this regime.

Encoding: Given all cache contents {Zi : i ∈ [K]} and

{d(i) : i ∈ [K]}, the broadcast message X is obtained at

the master node by the concatenation of several sub-messages

XΔ, each specified for a group of worker nodes Δ, that is,

X = {XΔ : Δ ⊆ [K − 1], |Δ| = S}, where (9)

XΔ �
⊕
i∈Δ

⎛⎝F i
Δ\{i}⊕F

d(i)
Δ\{d(i)}⊕

⊕
j∈[K]\Δ

F
d(i)
({j}∪Δ)\{i,d(i)}

⎞⎠.(10)

The encoding design hinges on (K−1) worker nodes. Without

loss of generality, we consider W1,W2, . . . ,WK−1 for whom

the broadcast sub-messages are designed, and designate WK as

the ignored worker node. Accordingly, there is a total of
(
K−1
S

)
sub-messages, each of size of the unit partition 1/

(
K−1
S−1

)
that

is transmitted by the master node to the worker nodes. Hence,

the overall broadcast communication rate is given by (5).

Decoding: Each worker node utilizes the cache content,

along with the functions received from the master node, in

order to decode the missing sub-files that constitute the file

to be processed at iteration t+1. We demonstrate a decoding

scheme that allows each worker node to decode its intended

sub-files. More specifically, we divide the set of worker nodes

into two different groups, namely, W� with � ∈ [K − 1]
and a single element group WK . The following lemmas

demonstrate how the intended sub-files can be decoded from

the broadcast sub-messages and the cache contents of worker

nodes. Detailed proofs of the lemmas are reported in [9].

Lemma 1. If K /∈ Γ, then a sub-file F
d(�)
Γ ∈ Q� intended for

W�, for � ∈ [K−1], can be decoded from the cache content Z�

and the broadcast sub-message X{�}∪Γ. On the other hand, if
K ∈ Γ, then F

d(�)
Γ can be decoded from the cache content Z�

and the broadcast sub-message X(Γ\{K})∪{�,d(�)}, and other
sub-files previously decoded by W�.
Lemma 2. Any sub-file F

d(K)
Γ ∈ QK intended for WK can

be decoded from the cache content ZK and the broadcast
sub-message

⊕
�∈[K−1]\Γ

X{�}∪Γ.

Cache Updating and Subfile Relabeling: After the worker

nodes decode the missing subfiles characterized by (4), the

caches of worker nodes need to be updated and the subfiles

needs to be relabeled before processing the files at iteration

t + 1. The precise procedure can be found in the extended

version of this paper [9]. Finally, the shuffling procedure at

iteration t terminates, and the master node commences another

random data shuffling at iteration t+ 1.

V. OPTIMAL CODED SHUFFLING SCHEME FOR ANY

RANDOM SHUFFLING (N = K)

The scheme proposed in Section IV provides the worker

nodes with their missing sub-files using the broadcast message

and cached sub-files. However, depending on the demand pro-

file, the rate obtained by that scheme may be sub-optimum. In

the extended version of this paper [9], and based on the scheme

proposed in Section IV, we propose an opportunistic coded

shuffling scheme that yields a lower rate. More concretely,

when γ − 1 ≥ S, there are precisely
(
γ−1
S

)
sub-messages

in (9) that are linearly dependent on the other sub-messages.

Thus, by refraining from broadcasting these sub-messages, the

reduced rate is given by (6).
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VI. CONVERSE PROOF FOR DATA SHUFFLING (N = K)

We prove the optimality of the proposed coded shuffling

scheme in Section V. Let us assign, for a given demand

profile, a unique index pair (c(i), p(i)) to Wi, where c(i) is

the cycle number that Wi belongs to, and p(i) is the position

of Wi within cycle c(i). More formally, there is a function w
that maps the worker node index i and the unique index pair

(c(i), p(i)) as follows:

i = w((c(i), p(i))), for i∈ [K], c(i)∈ [γ], p(i)∈ [�c].
Note that there is a one-to-one mapping between the worker

node index and the introduced index pair, and hence, we can

interchangeably use them without confusion. Let us denote by

F̃ i
j the part of file F i cached at Wj . Furthermore, for a subset

of worker nodes J ⊆ [K] \ {i}, we define the cardinality

of a union of sub-files of F i that are cached at J as μi
J =∣∣∣⋃

j∈J F̃ i
j

∣∣∣. For a given cardinality η of a set of worker nodes,

let μη denote the average cardinality of a set of sub-files that

are cached by η worker nodes, that is,

μη =
1

K
(
K−1
η

) ∑
i∈[K]

∑
J⊆[K]\i,
|J |=η

μi
J . (11)

Accordingly, the following properties hold: μ0 = 0, μ1 =
S−1
K−1 , μK−1 = min{1, S−1}. Let us assume a virtual worker

node W� equipped with a cache Z� that is characterized as

Z� = Z(1)
� ∪ Z(2)

� , where Z(1)
� =

⎛⎜⎜⎝ ⋃
i:c(i)∈[γ],
p(i)=1

Fu(i)

⎞⎟⎟⎠,

Z(2)
� =

⎛⎜⎜⎜⎝ ⋃
j:c(j)∈[γ],
p(j)>1

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝ ⋃

r:c(r)<c(j),
p(r)<�c(r)

F̃
u(j)
u(r)

⎞⎟⎟⎟⎠∪

⎛⎜⎜⎝ ⋃
r:c(r)=c(j),
p(r)<p(j)

F̃
u(j)
u(r)

⎞⎟⎟⎠
⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠.

Lemma 3. Given the broadcast message X , and the cache
content Z� of the virtual worker node W�, then

H({F i}Ki=1|X,Z�) = 0. (12)

Therefore, W� can decode all the files of the shuffling system.

Next, the communication rate is lower bounded as follows.

Lemma 4. The communication rate R, over all files and
all sets of worker nodes with given cardinalities, is lower
bounded by

R ≥ N − γ −
K−γ∑
i=1

μi. (13)

Finally, we seek the tightest lower bound on R as follows.

Lemma 5. The optimal {μ�
j}K−1j=0 , that maximizes

∑K−γ
i=1 μi

over its feasible region, is characterized by

μ�
j = 1−

(
K−j−1
S−1

)(
K−1
S−1

) . (14)

Substituting (14) into (13) yields the tightest lower bound

on the communication rate R given by (7). Detailed proofs of

the lemmas are reported in [9].

VII. THE GENERAL SETTING (N ≥ K)

We investigate the general setting of data shuffling problem

when N ≥K, using the results obtained in Section III when

N=K. The following theorems summarize our main results.

Theorem 4. For a distributed computing system that processes
N files, and consists of K worker nodes each with a nor-
malized storage capacity of Ŝ = S/(N/K) ∈ {1, 2, . . . ,K}
files per worker node, the achievable communication rate R
required to shuffle N files for any demand profile is upper
bounded by

R ≤ N

K

(K−1
̂S

)(K−1
̂S−1

) . (15)

Theorem 5. For the distributed computing system introduced
in Theorem 4, the worst-case communication rate Rworst-case

required to shuffle N files for any demand profile is lower
bounded by

Rworst-case ≥ N

K

(K−1
̂S

)(K−1
̂S−1

) . (16)

Theorems 4 and 5 prove the optimality of the proposed

shuffling scheme in the worst-case shuffle. The main idea is

to decompose the demand profile into N/K sub-graphs on

the same set of nodes, such that the in-degree and out-degree

of each node in a sub-graph are 1. Each resulting sub-graph

reduces to a data shuffling system with K files (corresponding

to the edges appear in the sub-graph), K worker nodes,

and storage capacity per worker node S/(N/K). Hence, we

can apply the optimal coded shuffling scheme proposed in

Section V to achieve the minimum communication rate within

each sub-graph. This decomposition is shown to be optimum

for the worst-case shuffle when N ≥ K, and hence, it yields an

exact rate-memory trade-off characterization, reported in [9].

The characterization of the optimum trade-off for a given

profile demand is still an open problem.
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