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ABSTRACT

Quantum devices made from van der Waals (vdW) heterostructures of two dimensional (2D) materials may herald a new frontier
in designer materials that exhibit novel electronic properties and unusual electronic phases. However, due to the complexity of
layered atomic structures and the physics that emerges, experimental realization of devices with tailored physical properties will
require comprehensive measurements across a large domain of material and device parameters. Such multi-parameter measure-
ments require new strategies that combine data-intensive techniques—often applied in astronomy and high energy physics—with
the experimental tools of solid state physics and materials science. We discuss the challenges of comprehensive experimental
science and present a technique, called Multi-Parameter Dynamic Photoresponse Microscopy (MPDPM), which utilizes ultrafast
lasers, diffraction limited scanning beam optics, and hardware automation to characterize the photoresponse of 2D heterostruc-
tures in a time efficient manner. Using comprehensive methods on vdW heterostructures results in large and complicated data
sets; in the case of MPDPM, we measure a large set of images requiring advanced image analysis to extract the underlying
physics. We discuss how to approach such data sets in general and in the specific case of a graphene-boron nitride-graphite
heterostructure photocell.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5085007

I. INTRODUCTION result from length scale engineering—tuning the electronic

properties by structuring the critical device length scales

Since the discovery of graphene, nanotechnologists have
developed rapidly evolving techniques to engineer novel quan-
tum devices from atomically thin materials such as hexago-
nal boron nitride (hBN) and transition metal dichalcogenides
(TMDs)."-*> These materials can be stacked vertically into van
der Waals (vdW) heterostructures that combine the elec-
tronic properties of the constituent materials in unusual
ways.*> Much recent research has focused on combining and
engineering 2D materials to create designer properties that

at or below the electron wavelength.5'? In loose analogy
to optical metamaterials, engineering sub-wavelength struc-
ture in these quantum metamaterials may give unprecedented
access to quantum material properties, allowing us to engi-
neer custom unit cells, topological bands, and altered excited
states. Intriguingly, length scale engineering of these mate-
rials may also allow us to tune interactions between charge
carriers in the materials, creating novel correlated electronic
phases.!’-16
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The proliferation of available 2D materials, the means to
assemble high quality heterostructures, and the theoretical
proposals of emergent phenomena have led to a remarkable
growth in the complexity of vdW heterostructure stacks. From
these innovations, diverse research avenues have been initi-
ated, yet many challenges lie ahead. The new materials and
metamaterials are increasingly complex, and understanding
their behavior involves probing large multi-variable parame-
ter spaces. Individual electronic transport or optical probes of
solid-state physics may not be sufficient for comprehensive
understanding of emergent complex behavior. In this work,
we identify the challenges involved in measuring complex
quantum materials (Sec. 1), present a combined optical and
electronic transport technique, Multi-Parameter Dynamic
Photoresponse Microscopy (MPDPM), to overcome these
challenges (Sec. II), and discuss how to analyze MPDPM data
and draw conclusions from an example MPDPM measurement
(Sec. I1I).

A. Challenge: Complex behavior involving
multiple parameters

As nanotechnologists and materials scientists, how do we
systematically assess complex electronic behavior that may
arise in new material systems, particularly those with unusual
synthetic properties? In solid-state physics, the answer has
traditionally been to set up a single-parameter experiment
that aims to cut through the complexity and capture quan-
tum phenomena in as concise a measurement as possible.
Typical experiments consist of well-established transport or
spectroscopic measurements sampling over a single indepen-
dent variable. Often, these measurements use commercially
available instruments. Implicit in this approach is the assump-
tion that all other experimental parameters have a negligible
effect on the variable of interest. In 2D materials, many prop-
erties are the result of atomic thinness, which also makes
them sensitive to external conditions, defying the assump-
tion that other independent variables do not contribute to
the electronic behavior. Truly comprehensive characteriza-
tion using standard measurement approaches would require
prohibitively long times due in part to the measurement
rate and the numerous trials required to address variations
across many material parameters. As the complexity of 2D sys-
tems increases, new data intensive approaches—taking inspi-
ration from astrophysics, high-energy physics, and biomedical
imaging—must be developed.

In this section, we lay out an elementary assessment
of the most restrictive experimental parameter—experimental
time—and discuss how multi-variable searches can be opti-
mized to improve the search for correlations across experi-
mental variables. Fundamentally, experimental time T is the
dominant limiting factor in measuring complex device behav-
ior. Simply stated, the total time of a measurement com-
bines the hardware-limited time per point t, with the sample
response time t;, multiplied by the total number of data points
to be measured.

To illustrate how the total time can be evaluated for a
simple experimental system, Iig. 1(a) shows a generic phe-
nomenological response that depends on two experimental

ARTICLE scitation.orgljournal/rsi

FIG. 1. (a) Phase space of a hypothetical phenomenon that depends on two
independent variables, with the observable value represented by a color scale.
Single variable measurements are represented as dashed white lines with Y held
constant. (b) Phase space of a hypothetical phenomenon that depends on three
independent variables; each point in three-dimensional space has an observable
value represented by color. The green cube in the upper left represents a single
voxel.

parameter dimensions, measured with single variable mea-
surements. The experiment sweeps the X variable at
constant Y, taking a series of line cuts through the experimen-
tal phase space. The time of such an experiment is given by
T = (tp + ts)%%, where AX and AY are the ranges of X and
Y defining the parameter space and r and ry are the resolu-
tions of the X and Y variables. Generalizing to an N dimen-
sional parameter space spanned by N independent variables

(61, ey eN),
N Ae;
T=+t)] [ (1)
i=1 b

Here, Eq. (1) can be understood intuitively as the time spent
per voxel multiplied by the volume of the parameter space,
[TiAe;, divided by the voxel volume, [];r;. For a fixed parameter
space volume, as the voxel volume decreases (i.e., the resolu-
tion increases), the total experimental time will increase.
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Increasing the dimension N of a parameter space enforces
greater limitations on total experimental time. To see this,
Fig. 1(b) illustrates the same phenomena as Fig. 1(a) but in
a 3D parameter space (N = 3), representing observables as
colored points and showing a voxel as a small green cube.
Measurements of complex systems—those where non-trivial
correlations exist between N > 1 independent variables—
require significant values of Ae and r to obtain sufficient data
for meaningful statistical analysis. In Fig. 1(b), we see that due
to the dimensionality of the phase space, the number of voxels
is exponentially larger than for a two-dimensional experiment.
Comprehensive measurements in a N-dimensional parameter
space thus require exponentially more time.

High dimensional experimental phase spaces require
making careful choices to minimize T while acquiring suffi-
cient data for robust statistical analysis. Assume that, in gen-
eral, T is large and constant, limited by experimenter (i.e.,
graduate student) time, sample lifetime, or other resources.
Optimizing high dimensional measurements involves optimiz-
ing the hardware, which decreases t;, or optimizing the search
of parameter space by making trade-offs in Ae; and r;. How-
ever, the intrinsic sample response time t; limits how fast
a measurement can proceed, and if t; > t;, hardware opti-
mization does little to increase measurement efficiency. Hard-
ware optimization is application specific, we discuss it for
heterostructures of 2D materials in Sec. IT A.

The greatest gains in efficiency come from trade-offs
in resolution. Ideally, the experimenter can reduce exces-
sive resolution in one parameter to gain resolution in another
parameter. Less ideally, the experimenter can choose to
restrict the range of one or more parameter(s) Ae;, or neglect
certain parameters, resulting in a narrower but better resolved
measurement. The latter is the conventional strategy, which
has greater likelihood of missing or misrepresenting phenom-
ena occurring within a complex parameter space.

In the large T limit, conventional single variable measure-
ments are fundamentally inefficient. By their nature, single
variable measurements explore one parameter, for example,
the X variable in Fig. 1(a), with high resolution, and all other
variables held constant, meaning ry < 1y, 1z, . . ., *n. With hard-
ware heavily optimized for only one variable, it is difficult to
effectively trade resolution in X for resolution in another vari-
able, and experimenters often deal with finite time by restrict-
ing the domains or omitting parameters. Single variable mea-
surements become increasingly ineffective in identifying cross
correlations between multiple parameters as the complexity
of a measurement increases (i.e., as N increases), as higher
resolution is needed, or as the relevant ranges become larger.

Does a better understanding of multi-parameter mea-
surement science translate into accelerated discovery? While
it is beyond the scope of this work, we posit that experimen-
talists using only standard techniques risk falling prey to a ver-
sion of the availability heuristic. By focusing on measurements
that are easy to perform with off-the-shelf or commercial
equipment, complex phenomena that correlate across mul-
tiple parameters are missed or misinterpreted. Expectation
bias is a danger when choosing parameters for new materials:
an experimenter may unconsciously select the parameters

ARTICLE scitation.orgljournal/rsi

that are most likely to conform to expectations or estab-
lished models.’7-2° Choosing which variables to hold constant
can easily introduce selection bias that leads to compelling,
yet incomplete, phenomenological knowledge, complicating
realistic interpretation. Comprehensive methods are there-
fore significantly advantageous in the search for new phenom-
ena, particularly when a unique target system is probed using
multiple non-standard experimental techniques.

B. Challenge: Optoelectronic measurements
of 2D materials

In optoelectronic materials, photo-excited electrons are
promoted to high energies, leaving behind short-lived charge
vacancies, or holes. In this way, electrons promoted across
a semiconductor bandgap result in long-lived electron-hole
pairs, while those excited in a semimetal may result in short-
lived excitations. The time scale over which the electron-
hole pairs recover to equilibrium is determined by energy and
momentum relaxation processes in the material, which in turn
depend on electronic band structure, electronic interaction
strength, and electron-phonon coupling.

In 2D semiconductors and semimetals, photoexcited
electron-hole pairs may interact in unusual ways, giving rise
to many body correlations that persist even at room tem-
perature. In TMDs, charge carriers form hydrogen-like bound
states with well-defined orbital and spin angular momen-
tum.?'?? Depending on the structure of the material, these
strongly bound excitons may be influenced by non-trivial
bands such as topological or moiré bands or have additional
quantum numbers such as valley index or pseudospin.® In
graphene, the electron-hole pairs form a rapidly evolving hot
carrier distribution exhibiting unusual cooling pathways, with
electron-electron and electron-phonon scattering processes
competing to relax excess energy. Combining 2D semiconduc-
tors, 2D insulators, or semimetals into vdW heterostructures
(such as the example graphene—boron nitride heterostruc-
ture, shown schematically in Fig. 2) introduces additional
degrees of freedom, for instance, allowing excitons to form
with the electron and hole in different materials.” All of these
unique properties contribute to energy and momentum relax-
ation, giving rise to highly complex behavior over a large range
of time scales (from femtosecond electron-electron scattering
to nanosecond exciton recombination).

These unusual electron-hole interactions in vdW meta-
materials result in part from reduced dimensionality, which
increases the energy scales of electronic states and inter-
actions (e.g., increasing the binding energy of excitons).?*
Due to electron confinement, 2D materials allow correlated
or interacting phases to exist at higher temperatures than
in conventional materials. Such effects are less accessible in
3D materials, which exhibit high symmetry due to translation
invariance of the unit cell in all three spatial dimensions. Not
only does high symmetry constrain the possible phenomena in
many ways, but it also allows the experimenter to make sev-
eral assumptions about the behavior based on the unit cell.
2D materials inherently break several exploitable symmetries,
expanding the space of possible phenomena and increasing
the phase space for electronic states and interactions.
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FIG. 2. Schematic of a vdW heterostructure made of graphene on top of hexagonal
Boron Nitride (hBN) on top of ultra-thin graphite. The heterostructure is excited with
a 1200 nm ultrafast pulsed laser, and interlayer photocurrent, /, can be measured
as a function of laser parameters (beamspot position, laser power, etc.) and bias
voltage applied to the graphene, V.

In multiple respects, the properties that make vdW
heterostructure metamaterials interesting also make them
difficult to measure and understand. Understanding electron-
hole pair dynamics in 2D systems presents numerous
experimental challenges since observable quantities—such as
current, voltage, reflectivity, or photoluminescence—are aver-
aged in space and time. Purely electronic measurements only
access low energy dynamics near the Fermi surface and aver-
age the electron dynamics over the spatial extent of the
device. In the time domain, dynamics occur on time scales
of femtoseconds to hundreds of picoseconds, and if an exci-
tation persists significantly longer than those time scales, it
will give only steady state equilibrium values. Gaining experi-
mental information about the dynamics and testing theoretical
models require optical techniques with high spatial and/or
temporal resolution.?* Moreover, in vdW heterostructures,
multiple unusual electronic effects may overlap. Though indi-
vidual effects could be exploited for manipulating electronic
behavior, experiments must take into account and carefully
control for all overlapping effects. Separating out individual
properties requires multiple experimental variables so that the
property of interest can be uniquely accessed.

Il. MULTI-PARAMETER DYNAMIC
PHOTORESPONSE MICROSCOPY

We describe a technique, called Multi-Parameter Dynamic
Photoresponse Microscopy (MPDPM), that efficiently mea-
sures the optoelectronic response of vdW heterostructures.
Utilizing diffraction limited optics, ultrafast lasers, and scan-
ning mirror optics, MPDPM excites the sample with a high
intensity optical probe that drives the sample away from equi-
librium, thus accessing correlated states, resolving short time
scales, and producing high signal-to-noise photoresponse.

ARTICLE scitation.orgljournal/rsi

The optical components are automated and controlled by an
integrated, fully automated Data Acquisition (DAQ) program
that simultaneously controls all other experimental parame-
ters (such as applied voltage, magnetic field, and tempera-
ture). Such centralized control allows for efficient trade-offs
between parameters when exploring a large sample phase
space. This technique acquires data rapidly, densely, and
systematically with respect to many experimental variables,
resulting in high dimensional data arrays. The end result of
MPDPM is a large set of photoresponse images spanning all
relevant experimental variables that ideally capture all the
complexity of device’s phase space. Although the data sets
are more complex than in conventional measurements, these
large and complex data sets can be efficiently handled through
careful data analysis, as described in Sec. III.

A. Diffraction limited ultrafast optics

MPDPM uses a local ultrafast optical probe to perform
space-time resolved photocurrent and reflectance measure-
ments. Incident light focused to the diffraction limit can
resolve micron sized in-plane features, and the high inci-
dent intensity under a diffraction limited beamspot increases
the signal and can drive the system well out of equilibrium.
Using a scanning diffraction limited beamspot also allows light
reflected back through the optics to be focused onto a single
pixel detector, with much higher signal to noise than a CCD.
The dynamics of charge carries often occur on time scales of
order femtoseconds to picoseconds, so excitation by a con-
tinuous wave laser gives only equilibrium, steady state values,
washing out the dynamics. Therefore, the optical probe must
be localized in time as well as space. Ultrafast pulsed lasers can
generate pulses on the order of the dynamics, giving access
to phenomena that occur on those relevant time scales. In
addition, the high peak pulse intensity increases the fluence
of incident light, driving the system harder and increasing the
signal.

To generate an optical probe that is local in space and
time, we combine the techniques of scanning beam photocur-
rent and reflectance microscopy with ultrafast optical two-
pulse measurements.?>2% A schematic of the optical system
is shown in Fig. 3(a). We use a MIRA 900 OPO ultrafast laser
which generates 150 fs pulses with controllable wavelength
from 1150 nm to 1550 nm at a 76 MHz repetition rate. The out-
put of the laser is split into two paths by a 50 /50 beam splitter
and a translation stage is used to controllably introduce a path
length difference. The two beams are then recombined, and
the path length difference splits a single laser pulse into two
sub-pulses separated by a time delay, At.

The recombined beam is fed into scanning beam optics
which consist of rotating mirrors and a system of two lenses
that focus the beam onto the back of an objective lens. The
objective lens is set at the focal length of the second lens such
that, as the scanning mirror rotates, the beam is still focused
onto the same position on the back of the objective but arriv-
ing at different angles. The objective lens focuses the light
down into a diffraction limited beamspot where the position of
the beamspot depends on the incident angle. As the scanning
mirror rotates, the beamspot moves over a large area of the
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FIG. 3. Schematic of the optical setup: (a) A diagram of the optics showing all the
major optical components. (b) A cross-sectional diagram of the optical setup and
optical cryostat detailing the optics coupling into the GRIN lens.

sample without aberration, allowing for quick high-resolution
scanning. Many conventional optoelectronic measurements
keep the optics fixed and translate the sample. While sim-
ple, this technique is too slow to sample phase space in a
time efficient way. When focused, the laser beamspot spa-
tial profile is an Airy disk, which can be approximated using
a Gaussian point spread function. Figure 4(a) shows the mea-
sured photoresponse of an absorber smaller than 1 ym using
a wavelength of 1200 nm. The data are fit well by a Gaus-
sian function (black line) with a full width at half maximum of
1.67 um, indicating that our system is at the diffraction limit.

Figure 3(b) details our specific scanning optics and the
customized Janis Research ST-3T-2 optical cryostat that we
use in our experiments. The sample sits in vacuum on a sam-
ple stage, which can controllably vary the temperature from
4 K to 420 K. The sample stage is in the center of a 3 T super-
conducting magnet. The sample is electronically probed using
four probe needles which contact conductive pads on quartz
chip carriers that are wire-bonded to fabricated titanium-gold
contacts on the sample. We then amplify the electrical sig-
nal and measure the current resulting from the incident laser
light, or photocurrent. We also measure the reflectance of the
sample by measuring the intensity of the light that is reflected
from the sample with a near-infrared photodiode.

ARTICLE scitation.orgljournal/rsi
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FIG. 4. Characterization of the ultrafast pulsed beam in the optical cryostat under
vacuum. (a) Measured photoresponse of an absorber smaller than the diffraction
limit. The black line is a fit to a Gaussian function with a full width at half maximum
of 1.67 um. (b) Two pulse autocorrelation as a function of the delay between two
subsequent pulses, At.

To fully enclose our focusing optics inside the vacuum
chamber, we use a Gradient Index of Refraction (GRIN) lens
as an objective. A GRIN lens is a single small cylinder of glass
with the index of refraction varied radially. Lacking the many
interfaces of a conventional objective, a GRIN lens does not
disperse laser pulses as dramatically as a traditional objec-
tive. Figure 4(b) shows the autocorrelation of the reflected
intensity due to two overlapping laser pulses, near At = 0. The
autocorrelation width is approximately three times the pulse
width. Our autocorrelation pattern is 570 fs wide, indicating
that our pulses are 190 fs long at the sample, only 27% off the
150 fs laser specification. Low dispersion allows us to measure
short time scales and gives high peak pulse intensity. How-
ever, a GRIN lens also has downsides compared to a traditional
objective lens. When well aligned, the power throughput of
the GRIN lens is very high; however, the process of aligning
the optic over the sample under vacuum introduces system-
atic uncertainty into the laser power. Also, the field of view
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for a GRIN lens is typically smaller than that of a traditional
objective lens, which is not a problem for micron sized samples
but can limit applications in some large area samples. MPDPM
can be performed using a traditional objective lens at the cost
of increased pulse dispersion and therefore decreased time
resolution and peak pulse intensity.

B. Integrated data acquisition system

The goal of MPDPM is to time-efficiently sample as large
of a parameter space as possible, using as many experimen-
tal parameters as are relevant and practical. To do this effi-
ciently requires the ability to optimize the measurement time,
as described in Eq. (I). The optics described in Sec. II A are
designed to allow fast scanning and other hardware compo-
nents to be optimized to work as rapidly as possible, decreas-
ing t;, to a lower bound given by maximum hardware speed
and amplifier time constants. Furthermore, the high signal-to-
noise ratios can minimize t; to its intrinsic limit. Well-designed
optics improve the time efficiency of the experiment “for free.”
However, the largest increases in efficiency come from the
ability to make trade-offs in resolution. Optimal utilization
of the optics and effective trade-offs requires an integrated
Data Acquisition (DAQ) system that automates all hardware
components through one program. Such an integrated DAQ

ARTICLE scitation.orgljournal/rsi

can control all hardware components at their optimum, in
parallel, with minimal human input. The software allows the
experimenter to choose the ranges and resolutions of various
parameters in a scan in an intelligent manner, making appro-
priate trade-offs. Finally, such a DAQ system allows data to be
gathered densely, systematically, and repeatably, in a format
that allows advanced data analysis.

We developed an integrated DAQ program using a set of
python modules that interface with equipment drivers and
control all hardware components simultaneously with the
maximum amount of automation possible. Our experimental
setup can scan a beam in two dimensions, while applying volt-
ages to the sample under various optical conditions. In addi-
tion, the optical cryostat that contains our samples can control
the temperature of the sample and apply a magnetic field. Each
of these components requires specialized hardware, which
were designed and selected to allow for full automation. The
flow of data is shown schematically in Fig. 5. The main hard-
ware components of the optics and controllers, shown in the
upper left, are controlled with feedback by the DAQ software,
which is represented in the lower left. From the user interface,
any of the hardware components can be changed or scanned,
varying some output over a given range. If one or two of the
components is set to scan, the rest will be held constant.

— Delay Stage Power InGaAs Il_:aese:rbl?i(;ﬁ t
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- ; gnal (Analog)
Denisty Filter — | i i -
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= Writing ggregation Scripts
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FIG. 5. Experimental data flowchart, schematically showing the flow of data between hardware and software components as well as the feedback involved in controlling the

experiment.
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From the user interface, the experimenter can define
which parameters form the axes of a two dimensional scan and
define the scan’s resolution in those parameters. The result is
an array of data or “data plane.” The experimenter can select
a third parameter to scan over, and the software will take
successive 2D scans as a function of that parameter, con-
structing a 3D “data cube” out of many data planes stacked
along the third axis. These data planes or data cubes form a
“run,” the discrete unit of MPDPM image data. In addition to
the data, each run saves all possible control parameters, 125 in
total, of the hardware and software to ensure consistency and
repeatability. Each run is assigned a unique run number, and
the files for that run are saved to disk in a data archive. To
efficiently take many runs, the software allows the user to
repeat a run varying another parameter, taking data cubes as
a function of this fourth parameter. Put together, the runs
form a four dimensional “data hypercube,” sampling a large
volume of parameter space. This allows the experimenter to,
with full control over the ranges and resolutions of all param-
eters, efficiently sample a four-dimensional parameter space
fully automatically. These fully automatic measurements can
run for hours or days, collecting data with no human input
needed.

C. Data taking for 2D materials

Typically, a sample will require hundreds of runs to fully
examine its parameter space. The most common scan is a
rectangular scan of the 2D scanning mirrors, which moves
the laser beamspot spatially over the surface of the sam-
ple, observing the photoresponse. These spatial scans are
designed to be high resolution with variable speed so that
resolution in space can be traded-off for resolution in other
variables when needed, while still spatially imaging. Depending
on the measurement, the laser can be scanned in two dimen-
sions, made to scan along a line in a single spatial dimension,
or held at a fixed position on the sample. Normally, when mea-
suring begins on a new sample, a set of low resolution runs are
taken to determine the relevant parameters and the ranges
that they vary over. Then a high resolution set of data cubes is
taken to densely sample the full parameter space, commonly
spatial scans as a function of two parameters, generating a
large set of images that is usually the main result. Finally, if any
unusual or interesting features are seen in that data set, some

Alternate

~hd Processed
Projection o

Dynamical Map
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high resolution scans are taken to finely characterize those
features, often continuing until the sample dies or degrades
beyond usefulness.

lll. HIERARCHICAL ANALYSIS OF MULTI-PARAMETER
DATA SETS

MPDPM generates large sets of images varying across
several experimental variables, requiring sophisticated anal-
ysis to extract and visualize results. While the analysis of these
sets will vary based on the specific sample, in this section,
we will give a general procedure to hierarchically exploit data
geometry in order to condense a multivariate data set down
to a manageable amount of processed data. Figure 6 illustrates
this process for a hypothetical four dimensional (hypercubic)
data set. The raw data are a set of data cubes spanning three
dimensions (e, ey, e3), incremented along a fourth dimen-
sion e4. Each data cube is processed to map out a dynami-
cal parameter that represents the behavior of the data cube
along one axis (in this case, ey). There are multiple possible
projections and representations; although not all are useful,
the possibility space should be explored. Image analysis is
used on the dynamical maps to identify key features that are
then collected into a single visualization. In this hypothetical
case, ellipses enclosing the “bright” photoresponse are visual-
ized as contours. Ideally, this visualization will represent the
evolution of some physically interesting quantity within the
four-dimensional parameter space.

Toillustrate this process in a vdW heterostructure device,
Fig. 7 presents data and analysis from a graphene on boron
nitride on graphite (GBNGr) stacked heterostructure photo-
cell, shown schematically in Fig. 2. The component mate-
rials were exfoliated from high quality bulk crystals onto
Si/SiO, substrates. The heterostructure was assembled in
a custom built transfer microscope using a well known dry
transfer technique developed by Castellanos-Gomez et al.?”
Polydimethylsiloxane (PDMS) /polypropylene carbonate (PPC)
stamps were used to pick up and controllably deposit the
exfoliated flakes on top of each other. Titanium-gold (Ti/Au)
electrical contacts were fabricated onto the device using
electron beam lithography to provide electrical connection
to the graphene (on the top) and graphite (on the bottom).
When photoexcited, a Fermi-Dirac distribution of hot carriers
rapidly forms in the graphene layer and the exponential tail of

Visualization

FIG. 6. A schematic of the analysis of
a hypothetical four dimensional (hyper-
cubic) data set, going from raw data to
processed dynamical maps to a compact
visualization.
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this hot distribution may extend into the valence band of the
boron nitride, resulting in interlayer photocurrent between
the graphene and graphite.?® To measure this interlayer pho-
tocurrent, the graphene contacts were set at a fixed voltage,
and current was collected on the graphite and measured with
a lock-in amplifier.

Using MPDPM on the GBNGr sample, we obtain our main
data set: photocurrent data cubes composed of 25 spatial
scans at varying laser power, repeated as a function of volt-
age (applied to the top graphene) in 2 mV increments from
-20 mV to 30 mV, for a total of 625 spatial photocurrent
images, sampling a four dimensional parameter space (two
spatial dimensions, laser power, and voltage). Following the
general procedure, we will condense the data by fitting them
to a phenomenological power law that describes the sam-
ple’s behavior, identifies a physically interesting nodal feature
in the resulting non-linearity maps, and visualizes the sam-
ple’s behavior by tracking that node as a function of space.
The GBNGr data are instructive because they have very dis-
tinct features in the non-linearity dynamical parameter, mak-
ing analysis straightforward, but this approach can easily be
adapted to other experiments and MPDPM data sets.

A. Data processing and dynamical fitting

Data processing systematically prepares the raw MPDPM
data and extracts dynamical variables that indicate changes in
behavior. We use a set of custom python modules, together
forming a “toolbox” to handle data runs in a systematic man-
ner. The lower right section of Fig. 5 shows the main functions
of the toolbox. Given a run number, the code retrieves the rel-
evant calibration data and returns the calibrated data along
with all the experimental parameters. The next step is to com-
bine the two dimensional images into a larger data set, such as
constructing a three-dimensional data cube from a series of
images. For spatial images, the image processing must account
for the physical drift in the images, or other similar distortions,
to spatially correlate the images.

The next step is to extract fitting parameters that can
represent the dynamics occurring in the system. Once the
data cube is spatially correlated, the data points are fit to a
phenomenological law using a non-linear least squares fitting
algorithm. The phenomenological law can be any function that
parameterizes the data well. For photocurrent systems, we
most commonly use equations I « P” and I « e At/7 for the

ARTICLE scitation.orgljournal/rsi

Visualization

FIG. 7. (a) Example photocurrent map
from the GBNGr data set. (b) Exam-
ple ¥ map that can be obtained by fit-
ting data cubes of photocurrent images.
Scale bars are 3 um. (c) Schematic
showing how the photocurrent data are
condensed down into a set of  maps,
which can then be further analyzed and
collected into a visualization.

photocurrent (I) versus laser power (P) or versus two pulse
delay At, respectively. Phenomenological parameters, such as
v and 7, are extracted from these curve fits. These parame-
ters should be dynamical quantities so that they can represent
changes in the underlying physics. For example, y is related to
the non-linearity of the photoresponse, similarly  is the char-
acteristic time scale of a process. Changes to y or 7 indicate a
change to the character of the photoresponse, not simply a
re-scaling of the data, making these parameters very useful
proxies for the underlying physical phenomena.

The dynamical fitting parameters are used to condense
the data. For the GBNGr sample, the raw data consist of a set
of photocurrent images as a function of power; one such image
is shown as a colormap in Fig. 7(a). These images are correlated
together, and then the data at each point in space are curve fit
along the power axis to the power law I « P¥. This power law
describes the data well in this case, and the parameter y acts
as an index of the non-linearity, a useful dynamical quantity.
The fitting gives a map of the fit parameter y as a function of
space, such as that shown in Fig. 7(b). The processed y image
condenses the dynamics of the whole three dimensional set of
photocurrent images into a two dimensional map. The entire
GBNGr data set is four dimensional, with data cubes taken as
a function of laser power at various values of applied volt-
age. Figure 7(c) shows how the data set is processed; all of
the data cubes in the set are processed into y images, giving
a three dimensional set of y images representing the sample
non-linearity as a function of voltage. The resulting set of y
maps can then be analyzed using image analysis to condense
them into a single visualization.

B. Image analysis

Once processed, image analysis is used to identify, and
algorithmically extract, physically interesting features from
the processed images. Identified features can be projected
onto the spatial axes (or taken as a function of some other vari-
able). This further reduces the dimensionality, usually giving a
result that is visualizable as data mapped in space or even as
a function of a single variable, which human intuition is more
suited to handle. The algorithm used to perform image analy-
sis is the most application specific component of the process,
as the ability to quantitatively pick a feature out of an image
depends highly on what features are present. However, there
are many well established image processing algorithms, and a
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researcher with a solid foundation in programming and sig-
nal processing should be able to find a solution without much
trouble. In the author’s experience, image filtration and basic
optimization algorithms are usually all that is needed.

The GBNGr data provide a clear example of how to use
image analysis to identify interesting features from image
data. In the processed y maps, there are distinct regions with
different y values. The higher values of y [the green and yellow
areas in Fig. 7(b)] are separated from the lower values of y and
the background (blue and dark purple areas) by a sharp bound-
ary. The boundary is a physically interesting feature because
it indicates a node in the photocurrent versus power, which
evolves as a function of applied voltage due to the internal
electronic properties of the sample. We use a Laplace filter,
a common image processing filter used for edge detection, to
identify this feature. This is performed on each y map at dif-
ferent values of applied voltage. The image analysis process is
shown schematically in Fig. 8(a); the raw data cubes yield maps
of v, condensing the four dimensional data set down into a
three dimensional data set. Then the edge feature is extracted
from each y map, forming a highly condensed set of images
showing only the feature of interest.

From the condensed data, which can be correlated with
physical features of the sample, we can now develop an inter-
pretation of the MPDPM data set. Figure 8(b) shows the node
versus applied voltage overlaid on an optical image of the
GBNGr heterostructure sample. The edge is a node in the
photocurrent, implying that charges excited at that location
do not experience any force that would drive a current. This
means that, on the node, the internal electrochemical poten-
tial of the sample is zero. Figure 8(b) shows how the inter-
nal electrochemical potential of the sample is modified by
an externally applied electric field. Of particular note is the
dipole-like feature in the top center of the nodal pattern which
lies on top of an electrically floating metal contact. It has been
predicted that a floating contact would modify the internal
potential of graphene in a dipole pattern.?®

It would have been difficult to observe these data with-
out using MPDPM. No single image, or dependence of a single
parameter, contains a clear experimental signature of chang-
ing electrochemical potential. Only by sampling several exper-
imental variables, observing the changing dynamics, and pick-
ing the right feature out of the complex photoresponse could
we identify this. In addition, there is no reason that the y
node was the only interesting feature in the data set. In other
studies, the authors have examined MPDPM sets with multiple
different image analysis approaches, gleaning multiple physics
results from a single MPDPM data set.

The time efficiency of the GBNGr measurement can be
seen by comparing it to a less optimized measurement. Con-
sider a similar optoelectronic system which does not use a
scanning beam setup but instead has fixed optics and trans-
lates the sample cryostat with a translation stage for spatial
dependence. Even the fastest translation stage is significantly
slower than the scanning beam system, i.e., the hardware time
tn is larger by at least an order of magnitude. To perform
the same measurement in a reasonable amount of time would
then require that some spatial resolution be traded off; for
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FIG. 8. (a) Schematic of the hierarchical analysis; processing data cubes into
single dynamical y images and then picking out the key edge feature from the
dynamical images. (b) The result of hierarchical analysis, overlaid on a high con-
trast optical image of the GBNGr sample. The black dashed line shows the active
overlap region of the GBNGr heterostructure. Physics can be determined from
this visualization by interpreting the node as the zero point in the electrochemical
potential of the sample.

example, a translation stage that is twenty times slower than
the scanning beam system (t;, — 20t;,) would require the spatial
resolution to be decreased by a factor of twenty (ry — V20ry,
Ty — \/ﬁry) to maintain the same measurement time. A sig-
nificant decrease in spatial resolution would make it harder to
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detect the y edge maps. However, a properly designed MPDPM
integrated DAQ system could, in theory, mitigate this by tak-
ing scans of voltage and power at each point in space, thus
spatially translating over the sample only once. This would
minimize the increase in t, from the slower stage, though this
process would still likely be less efficient than the scanning
beam technique.

C. Visualization

Consistent and well considered visualization is important
throughout the data analysis process. Developing a consis-
tent way to visualize the data can prevent a researcher from
becoming overwhelmed by the volume of data and provide a
platform for deeper forms of data analysis, but care must be
taken as some visualizations can inhibit understanding. The
use of colorscales in MPDPM is a good example of this, as
colorscales are important when working with images, but for
some colorscales, the non-uniformity of human color percep-
tion leads to perceived differences where there are none.3%3'
Due to this illusory contrast, a researcher combing through
a large set of images may waste time pursuing differences in
contrast that appear to be significant, but are not. A better way
would be to utilize perceptually uniform colorscales, which are
designed such that equal steps in data are perceived as equal
color differences. In this work, we always use the matplotlib
plasma colorscale to represent photocurrent and the viridis
colorscale to represent y and other dynamical quantities.

More generally, visualizing data sets of more than two
dimensions requires careful consideration, especially when
it influences choices made in the analysis process. MPDPM
data processing requires the choice of a fit function with a
significant dynamical parameter, and MPDPM image analy-
sis requires identifying an interesting feature to track. Inter-
mediate visualizations of the data are needed to make these
choices. To find the appropriate fit function, we developed
a set of python scripts that can consistently visualize cuts
through the data sets looking for non-trivial functional depen-
dence of the data. Once the fitting function is identified and
dynamical parameter maps are calculated, the (often three-
dimensional) processed data must be visualized to identify key
features for image analysis. While 3D renderings of the data,
such as that shown in Fig. 1(b), can be useful, they are heavily
influenced by perspective, which can obscure details. In the
author’s experience, it is best to examine three-dimensional
data as a movie, a series of two-dimensional dynamical images
with time representing the third axis. In this representation,
human perception is good at noticing changes, which lends
itself well to identifying features that evolve as a function of
time. Without consistent and well considered visualization, it
would be difficult to pick the right feature and results could be
missed.

IV. CONCLUSIONS

MPDPM is an efficient way to explore the complex behav-
ior of 2D vdW heterostructures and quantum metamateri-
als in general. MPDPM combines optical techniques that can
excite complex and correlated behavior in 2D systems with

ARTICLE scitation.orgljournal/rsi

an integrated data acquisition system that can make efficient
trade-offs between the resolution of parameters in order to
sample a multivariate parameter space in a reasonable amount
of time. Rather than sampling a single part of the parameter
space, MPDPM takes a comprehensive approach, which means
that complexity in the sample’s photoresponse becomes com-
plexity in the data. Therefore, advanced data analysis tech-
niques are crucial to making MPDPM work. Fortunately, the
high density and data geometry allow the data to be con-
densed and physically interesting features to be extracted and
visualized.

The number of different 2D materials and quantum meta-
materials that can be fabricated is increasing rapidly, and
so is the diversity of phenomena that they involve. As the
field expands, it is important that researchers be able to
comprehensively characterize their nanodevices, and as the
complexity of those devices increases, the need for data
intensive methods becomes greater. The general technique
of MPDPM can be adapted to many other kinds of optical
experiments beyond photocurrent, including, but not lim-
ited to, transmittance, photoluminescence, or photovoltage.
The general idea of comprehensively and efficiently search-
ing a parameter space is important for the discovery of new
physics in these materials. Developing automated experimen-
tal systems reduces some of the burden and time limitations
on researchers that would normally prohibit comprehensive
characterization. In the future, it may be possible to expand
this further, developing search algorithms to explore sample
parameter space and identify new phenomena with minimal
human input.
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