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Abstract— Hybrid systems theory has become a powerful
approach for designing feedback controllers that achieve dy-
namically stable bipedal locomotion, both formally and in
practice. This paper presents an analytical framework 1) to
address multi-domain hybrid models of quadruped robots
with high degrees of freedom, and 2) to systematically design
nonlinear controllers that asymptotically stabilize periodic or-
bits of these sophisticated models. A family of parameterized
virtual constraint controllers is proposed for continuous-time
domains of quadruped locomotion to regulate holonomic and
nonholonomic outputs. The properties of the Poincaré return
map for the full-order and closed-loop hybrid system are
studied to investigate the asymptotic stabilization problem of
dynamic gaits. An iterative optimization algorithm involving
linear and bilinear matrix inequalities is then employed to
choose stabilizing virtual constraint parameters. The paper
numerically evaluates the analytical results on a simulation
model of an advanced 3D quadruped robot, called Vision 60,
with 36 state variables and 12 control inputs. An optimal amble
gait of the robot is designed utilizing the FROST toolkit. The
power of the analytical framework is finally illustrated through
designing a set of stabilizing virtual constraint controllers with
180 controller parameters.

I. INTRODUCTION
This paper establishes an analytical foundation to sys-

tematically design nonlinear controllers that asymptotically
stabilize periodic orbits for multi-domain hybrid models of
3D quadruped locomotion with high degrees of freedom. We
present a family of virtual constraint controllers that regulate
holonomic and nonholonomic outputs for different domains
of locomotion. The paper presents a scalable algorithm to
design stabilizing controllers for the full-order hybrid models
of locomotion rather than simplified ones. The framework
can ameliorate specific challenges in the design of nonlinear
controllers for hybrid systems of quadruped robots arising
from high dimensionality and underactuation.

A. Related Work
Models of legged locomotion are hybrid with continuous-

time domains representing the Lagrangian dynamics and
discrete-time transitions representing the change in the phys-
ical and unilateral constraints [1]–[25]. Steady-state walking
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Fig. 1: Vision 60, a 3D quadruped robot with 18 DOFs,
designed and manufactured by Ghost Robotics [46].

locomotion can be represented by periodic solutions of these
multi-domain hybrid systems. State-of-the-art controller de-
sign methods that address hybrid nature of models of legged
locomotion are developed based on hybrid reduction [26]–
[29], controlled symmetries [4], transverse linearization [6],
[30], and hybrid zero dynamics (HZD) [15], [31]. From
these methods, transverse linearization and HZD can address
underactuation. The notion of HZD was introduced in [31] to
design feedback controllers that can explicitly accommodate
underactuation in bipedal robots and move beyond flat-footed
walking gaits arising from the Zero Moment Point (ZMP)
criterion [32], [33]. In the HZD method, a set of output
functions, referred to as virtual constraints [34], [35], is de-
fined and enforced by input-output (I-O) linearizing feedback
controllers [36]. HZD-based controllers have been validated
numerically and experimentally for 2D and 3D bipedal robots
[14], [37]–[41], 2D and 3D powered prosthetic legs [42],
[43], exoskeletons [44], monopedal [16], and simple (i.e.,
reduced-order) models of quadruped robots [45].
B. Motivation

The extension of the HZD approach to design nonlinear
controllers for full-order and multi-domain hybrid models
of quadruped robots is a significant challenge. In particular,
the mechanical systems of these machines may form closed
kinematic chains during multi-contact domains of locomo-
tion for which at least two legs are in contact with the
ground. This complicates the design procedure of virtual
constraints such that 1) the I-O linearization results in a
full-rank decoupling matrix and 2) the corresponding zero
dynamics manifold becomes nontrivial. In addition to this,
we have observed that the proper selection of the virtual
constraints (i.e., output functions) can drastically affect the
stability properties of walking gaits [47]. The most basic tool
to investigate the stability of hybrid periodic orbits is the
Poincaré sections analysis [1], [25], [48]. One drawback of



the Poincaré sections approach is the lack of closed-form
expressions for the Poincaré return map that complicates
the design of stabilizing virtual constraint controllers. To
overcome this difficulty, our previous work [12], [47], [49]
presented an iterative optimization algorithm involving bi-
linear matrix inequalities (BMIs) to systematically choose
stabilizing virtual constraints. This algorithm was success-
fully employed for the centralized/decentralized feedback
control design of autonomous bipedal robots with up to 13
degrees of freedom (DOFs) [47] and powered prosthetic legs
[12]. In this paper, we aim to answer these fundamental
questions: 1) how can we present holonomic and nonholo-
nomic virtual constraint controllers for single- and multi-
contact domains of quadruped locomotion, 2) how can we
address the asymptotical stabilization problem of gaits for
high-dimensional hybrid models of quadruped robots, and 3)
can the BMI algorithm look for optimal and stabilizing HZD-
based controllers of quadruped robots in a scalable manner?

C. Goals, Objectives, and Contributions
The primary goal of this paper is to establish an analytical

foundation to 1) address multi-domain hybrid models of
quadruped robots with high degrees of freedom, and 2)
systematically design HZD-based controllers that stabilize
hybrid periodic orbits. This goal will be achieved through
the following objectives and contributions. 1) A family of
parameterized HZD-based controllers is presented for single-
and multi-contact domains of quadruped locomotion. These
controllers are utilized to zero a combination of parameter-
ized holonomic and nonholonomic outputs; 2) The properties
of the full-order Poincaré return map are investigated to ad-
dress the asymptotic stabilization problem of dynamic gaits;
3) The stabilization problem of multi-domain hybrid periodic
orbits is then translated into an iterative BMI optimization
problem that solves for the virtual constraint parameters;
4) An optimal and dynamic amble gait is designed for an
advanced quadruped robot, called Vision 60 (see Fig. 1), with
36 state variables and 12 control inputs. The motion planning
algorithm is based on a nonlinear programming problem that
is effectively solved using the FROST toolkit [50]; and 5)
Analytical results are finally confirmed through designing a
stabilizing HZD-based controller with 180 parameters.

II. HYBRID MODEL OF LOCOMOTION
A. Vision 60

Vision 60 is a mid-sized tele-op and autonomous all-
terrain ground drone designed and manufactured by Ghost
Robotics [46] for research markets (see Fig. 1). It weighs
approximately 20 (kg) and supports a total payload of 14
(kg). Vision 60 has 18 DOFs of which 12 leg DOFs are
actuated. In particular, each leg of the robot consists of a
1 DOF actuated knee joint with pitch motion and a 2 DOF
actuated hip joint with pitch and roll motions. The remaining
6 DOFs are associated with the translational and rotational
movements of the torso. The robot can transverse a range
of unstructured terrains and substrates, and even stairs. The
numerical model parameters are obtained from the design of
Vision 60.

Fig. 2: Floating base model of the robot with the associated
configuration variables.

B. Robot Model
To describe the configuration of the robot, we make use

of a floating base coordinates system. For this purpose, let
us attach a body frame Rb to the base of the robot. The
Cartesian coordinates of the origin of this fame with respect
to an inertial world frame, denoted by R0, can be given by
pb ∈ R3 (see Fig. 2). Furthermore, the orientation of Rb
with respect to R0 is expressed by φb ∈ SO(3). Next let us
suppose that qbody ∈ Qbody denotes a set of coordinates to
describe the body (shape) of the robot. The generalized coor-
dinates vector is then taken as q := col(pb, φb, qbody) ∈ Q :=
R3 × SO(3) × Qbody, where Q represents the configuration
space. For future purposes, we define nq := dim(q) as the
number of degrees of freedom for the floating base model.
The state vector of the mechanical system is finally taken
as x := col(q, q̇) ∈ TQ, in which TQ denotes the tangent
bundle of Q.

C. Hybrid Systems Formulation for Locomotion
The open-loop hybrid model of quadruped locomotion can

be given by the following tuple [51]

H L ol = (Λ,X ,U ,D,S,∆, FG) , (1)

where Λ := (V, E) represents a directed cycle with the
vertices set V and the edges E ⊆ V × V (see Fig. 3). In
this formulation, the vertices represent the continuous-time
dynamics of locomotion, referred to as domains or phases.
The evolution of the system during each domain is described
by ordinary differential equations (ODEs) arising from the
Lagrangian dynamics. The edges denote the discrete-time
transitions between two continuous-time domains that arise
from the change in the number of physical constraints.
The discrete-time transitions are further supposed to be
instantaneous. In this paper, we assume that µ : V → V
denotes the index of the next domain function for the studied
locomotion pattern. Using this notation, the set of edges can
be expressed as E := {e = (v → µ(v))}v∈V . The set of state
manifolds for the graph (1) is represented by X := {Xv}v∈V ,
in which Xv ⊆ R2nq denotes the state manifold for the vertex
(i.e., domain) v ∈ V . The set of admissible controls is also
given by U := {Uv}v∈V , where Uv ⊆ Rm represents the
set of admissible control inputs for the domain v ∈ V and
some positive integer m. We remark that for the Vision 60,
Xv ⊆ R36 and Uv ⊆ R12. D := {Dv}v∈V denotes the set of
domain of admissibility, in which Dv ⊆ Xv×Uv is a smooth
submanifold of R2nq×Rm. FG := {(fv, gv)}v∈V represents
the set of control systems, where (fv, gv) is a control system



Fig. 3: Illustration of the multi-domain hybrid model of
3D amble gait. Continuous-time domains and discrete-time
transitions are represented by the vertices and edges of a
directed cycle Λ = (V, E), respectively.
on Dv . In particular, the evolution of the continuous-time
domain v ∈ V is expressed by the input-affine state equation
ẋ = fv(x) + gv(x)u for (x, u) ∈ Dv with fv and columns
of the gv matrix being smooth (i.e., C∞) on Xv . The set of
guards for the hybrid system (1) is then represented by S :=
{Se}e∈E on which the discrete-time transition v → µ(v)
occurs when the state and control trajectories (x(t), u(t))
intersect the guard Sv→µ(v) ⊂ Dv . ∆ := {∆e}e∈E is finally
a set of reset laws to describe discrete-time transitions, where
∆v→µ(v) is a smooth discrete-time system represented by
x+ = ∆v→µ(v) (x−) for v ∈ V . In our notation, x−(t) :=
limτ↗t x(τ) and x+(t) := limτ↘t x(τ) denote the left and
right limits of the state trajectory x(t), respectively.

Example 1 (Amble Gait): In this example, we consider an
eight-domain directed cycle illustrating a typical amble gait
shown in Fig. 3. The legs of the robot are enumerated as
{0, 1, 2, 3}. The directed cycle Λ = (V, E) for this gait
then consists of eight vertices and edges. In particular, V =
{l2,3, l2, l2,1, l1, l0,1, l0, l0,3, l3} and E = {l2,3 → l2, l2 →
l2,1, l2,1 → l1, l1 → l0,1, l0,1 → l0, l0 → l0,3, l0,3 → l3, l3 →
l2,3}, where li, i ∈ {0, 1, 2, 3} denotes the domains for which
the leg i is in contact with the ground. Furthermore, li,j ,
i 6= j ∈ {0, 1, 2, 3} represents the domains in which the legs
i and j are simultaneously in contact with the ground.
D. Continuous-Time Dynamics

During the continuous-time domain v ∈ V , we assume that
Cv represents the indexing set of holonomic constraints de-
fined on Dv . In particular, the holonomic physical constraints
are expressed as ηv(q) = 0, where ηv := {ηc}c∈Cv ∈ Rnv .
The associated velocity constraints can be given by Jv(q) q̇ =
0, in which Jv(q) := ∂ηv

∂q (q) ∈ Rnv×nq denotes the corre-
sponding Jacobian matrix that is assumed to be full-rank. The
evolution of the mechanical system during the continuous-
time domain v is then expressed as the following second-
order ODE arising from the Euler-Lagrange equations and
principle of virtual work

D(q) q̈ + C (q, q̇) q̇ +G(q) = B u+ J>v (q)λ

Jv(q) q̈ +
∂

∂q
(Jv(q) q̇) q̇ = 0, (2)

where D(q) ∈ Rnq×nq denotes the positive definite mass-
inertia matrix, C(q, q̇) q̇ ∈ Rnq represents the Coriolis and

centrifugal terms, and G(q) ∈ Rnq contains the gravitational
terms. The input distribution matrix and Lagrange multipliers
are given by B ∈ Rnq×m with the property rankB = m and
λ ∈ Rnv , respectively. By eliminating the Lagrange mul-
tipliers from (2), one can obtain the following constrained
dynamics for the domain v

D(q) q̈ + Fv (q, q̇) = Tv(q)u, (3)

in which Fv := projv F + J>v (JvD
−1 J>v )−1 ∂

∂q (Jv q̇)q̇,
F = C(q, q̇) q̇ + G(q), Tv := projv B, and projv :=
I − J>v (JvD

−1 J>v )−1JvD
−1. The equations of motion

in (3) can be rewritten in the state equation form ẋ =
fv(x) + gv(x)u for which the state manifold is given by

Xv := {x = col (q, q̇) ∈ TQ | ηv(q) = 0, Jv(q) q̇ = 0} .

According to the construction procedure, Xv is forward-
invariant under the flow of the state equation. Furthermore,
dim(Xv) = 2(nq − nv).

E. Discrete-Time Dynamics
Discrete-time transitions occur when there is a change in

physical constraints. If one of the existing contacts breaks
during the discrete-transition e = (v → µ(v)), the discrete-
time dynamics are simply taken as the identity map, i.e.,
x+ = ∆e (x−) := x− to preserve the continuity of position
and velocity. However, if there is a new contact point, the
state of the mechanical system would undergo an abrupt
change in the velocity components according to the instan-
taneous impact model between two rigid bodies [52]. More
precisely, the conservation of the generalized momentum
during the infinitesimal period of the impact results in

D(q) q̇+ −D(q) q̇− = J>µ(v) δλ, Jµ(v)(q) q̇
+ = 0, (4)

in which q̇− and q̇+ represent the generalized velocity right
before and after the impact, respectively, and δλ denotes
the intensity of the impulsive Lagrange multipliers. Using
(4) and the continuity of position (i.e., q+ = q−), one can
express the discrete-time mapping as x+ = ∆e(x

−).

F. Solutions and Periodic Orbits
Solutions of the open-loop hybrid model (1) are con-

structed by piecing together the flows of the continuous-time
domains such that the discrete-time transitions occur when
the state and control trajectories cross the switching mani-
folds. To make this concept more precise, we parameterize
the solutions by the continuous time t as well as the vertex
number v and present the following definition.

Definition 1 (Solutions): (x, u) : [0, tf ) × V → D, tf ∈
R>0 ∪ {∞} is said to be a solution for (1) if

1) x(t, v) and u(t, v) are right continuous on [0, tf ) for
every v ∈ V ;

2) The left and right limits x−(t, v) := limτ↗t x(τ, v),
u−(t, v) := limτ↗t u(τ, v), x+(t, v) :=
limτ↘t x(τ, v), and u+(t, v) := limτ↘t u(τ, v),
exist for every t ∈ (0, tf ) and v ∈ V; and

3) There exists a closed discrete subset T := {t0 <
t1 < t2 < · · · } ⊂ [0, tf ), referred to as the



switching times, such that (a) for every (t, v) ∈
[0, tf ) \ T × V , x(t, v) is differentiable with respect
to t, ∂x

∂t (t, v) = fv(x(t, v)) + gv(x(t, v))u(t, v),
(x−(t, v), u−(t, v)) /∈ Sv→µ(v), and (b) for t = tj ∈
T , (x−(tj , v), u−(tj , v)) ∈ Sv→µ(v), x+(tj , µ(v)) =
∆v→µ(v)(x

−(tj , v)).
Assumption 1 (Periodic Solution): There exist (i) a nom-

inal solution (x?, u?) : [0,∞) × V → D to (1) and (ii)
a fundamental period T ? > 0 such that x?(t + T ?, v) =
x?(t, v) and u?(t + T ?, v) = u?(t, v) for every (t, v) ∈
R≥0 × V . The corresponding periodic orbit is defined as

O := ∪v∈VOv := {x = x?(t, v) | (t, v) ∈ [0, T ?)× V} ,

where Ov is the projection of O onto the state manifold Xv .
III. FAMILY OF PARAMETERIZED VIRTUAL

CONSTRAINT CONTROLLERS
The objective of this section is to present a family of pa-

rameterized virtual constraint controllers that asymptotically
stabilize dynamic gaits for multi-domain hybrid models of
quadruped locomotion. In Section IV, we will show that the
stability of the gaits depends on the proper selection of the
virtual constraints and that is the reason to parameterize the
constraints by a set of finite-dimensional and adjustable pa-
rameters ξv ∈ Ξv . Here, ξv represents the virtual constraint
parameters for the domain v ∈ V and Ξv ⊂ Rpv denotes the
corresponding set of admissible parameters for some positive
integer pv > 2nq . The virtual constraint controllers are then
assumed to be time-invariant and nonlinear state feedback
laws, based on input-output linearization [36], to zero a
combination of parameterized holonomic and nonholonomic
outputs. The BMI algorithm of Section V will optimize these
parameters for the asymptotic stabilization of the gait.

Virtual constraints are defined as output functions for the
continuous-time domains of hybrid models of walking to
coordinate the links of robots within a stride [14], [16],
[34], [35], [37]–[44], [53]. In this paper, for single-contact
domains of locomotion with only one leg on the ground, we
regulate a holonomic virtual constraint for position tracking
purposes. For multi-contact domains with at least two legs in
contact with the ground, we propose a combination of holo-
nomic and nonholonomic virtual constraints. The holonomic
constraint is again utilized for position tracking purposes. In
addition, if there are enough admissible actuators present,
the forward velocity of the robot can be controlled as well
through zeroing a nonholonomic constraint. The idea of
using nonholonomic constraints has been motivated by the
velocity modulating outputs in [38], [51], [54] to regulate the
speed of the mechanical system. To present the main idea,
we define the concept of a phasing variable.

Assumption 2 (Phasing Variable): There exists a real-
valued function τ : X × V → R, referred to as the phasing
variable, which is (i) C∞ with respect to x and (ii) strictly
increasing function of time along the orbit Ov for every
v ∈ V .

The phasing variable replaces time, which is a key to
obtaining time-invariant controllers that realize orbital sta-
bility of O. More precisely, one can express the desired

evolution of the state variables on Ov in terms of τ rather
t as x?(τ, v). For the purpose of this paper, we assume that
phasing variables are taken as holonomic quantities. Now we
are in a position to present the virtual constraint controllers
for multi- and single-contact domains.

1) Multi-Contact Domains: For multi-contact domains
v ∈ V , we consider a smooth and parameterized output
function yv to be regulated as follows

yv(x, ξv) := col (y1v(x), y2v(x, ξv)) ∈ R1+m2v , (5)

where y1v(x) ∈ R and y2v(x, ξv) ∈ Rm2v denote the relative
degree one and relative degree two portions of the output,
respectively, for some positive integer m2v . The relative
degree one (i.e., nonholonomic) component y1v is chosen
to regulate the speed of the robot, i.e.,

y1v(x) := s (q, q̇)− s? (τ, v) ∈ R, (6)

in which s(q, q̇) := Js(q) q̇ denotes the forward speed of
a point on the robot and s?(τ, v) represents the desired
evolution of s on the orbitOv in terms of the phasing variable
τ . The relative degree two (i.e., holonomic) component is
then defined as the following parameterized output

y2v (x, ξv) := H2v (ξv) (q − q? (τ, v)) ∈ Rm2v , (7)

where H2v(ξv) ∈ Rm2v×nq is a parameterized output matrix
to be determined and q?(τ, v) represents the desired evo-
lution of the configuration variables on Ov in terms of τ .
We remark that the output matrix H2v(ξv) is parameterized
by the virtual constraint parameters ξv ∈ Ξv . One typical
way for this parameterization is to assume that ξv forms
the columns of H2v , i.e., ξv = vec(H2v), where “vec”
denotes the matrix vectorization operator. The BMI algorithm
of Section V will look for the optimal parameters ξv to
asymptotically stabilize the gait.

Using standard input-output linearization, the output dy-
namics become[

ẏ1v

ÿ2v

]
= Av (x, ξv)u+ bv (x, ξv) , (8)

where

Av (x, ξv) :=

[
Lgvy1v(x)

LgvLfvy2v (x, ξv)

]
∈ R(1+m2v)×m (9)

bv (x, ξv) :=

[
Lfvy1v(x)

L2
fvy2v (x, ξv)

]
∈ R1+m2v . (10)

Assuming m2v < m − 1 and having a full-rank de-
coupling matrix on an open neighborhood of Ov , i.e.,
rankAv(x, ξv) = 1 + m2v , one can employ a nonlinear
feedback law Γv : Xv × Ξv → Uv as follows

u = Γv (x, ξv) := −A>v
(
Av A

>
v

)−1
(bv + wv) (11)

to yield the output dynamics[
ẏ1v

ÿ2v

]
= −wv := −

[
kp y1v

kp y2v + kd ẏ2v

]
. (12)

Here, kp and kd are positive PD gains that exponentially sta-
bilize the origin (y1v, y2v, ẏ2v) = (0, 0, 0) for (12). The feed-
back law (11) also renders the parameterized zero dynamics



manifold Zv (ξv) := {x ∈ Xv | y1v(x) = 0, y2v(x, ξv) =
Lfvy2v(x, ξv) = 0} attractive and forward-invariant under
the flow of the closed-loop system ẋ = f cl

v (x, ξv), where
f cl
v (x, ξv) := fv(x) + gv(x) Γv(x, ξv). According to the

construction procedure, dim(Zv) = 2(nq − nv −m2v)− 1.
2) Single-Contact Domains: For single-contact domains

v ∈ V , we only consider parameterized holonomic output
functions to be regulated as yv (x, ξv) = y2v (x, ξv) :=
H2v (ξv) (q − q? (τ, v)) ∈ Rm, for which dim(y) =
dim(u) = m and H2v(ξv) ∈ Rm×nq . Analogous
to the analysis for the multi-contact domains, we can
show that ÿ2v = Av(x, ξv)u + bv(x, ξv), in which
Av (x, ξv) := LgvLfvy2v (x, ξv) ∈ Rm×m and bv (x, ξv) :=
L2
fvy2v (x, ξv) ∈ Rm. Therefore, the input-output linearizing

controller is taken as

u = Γv (x, ξv) := −A−1
v (bv + kdẏ2v + kpy2v) (13)

that renders the parameterized zero dynamics manifold
Zv (ξv) := {x ∈ Xv | y2v(x, ξv) = Lfvy2v(x, ξv) = 0}
attractive and forward-invariant under the flow of the closed-
loop continuous-time domain ẋ = f cl

v (x, ξv). We also remark
that dim(Zv) = 2(nq − nv − m). For future purposes, we
suppose that the family of parameterized controllers Γ :=
{Γv}v∈V satisfies the following assumption.

Assumption 3 (Nominal Parameters): There exist nomi-
nal controller parameters ξ?v ∈ Ξv , v ∈ V such that

Γv (x? (t, v) , ξ?v) = u? (t, v) , ∀t ∈ [0, T ?), v ∈ V . (14)
Assumption 3 ensures that the open-loop control trajectories
can be produced by the family of parameterized controllers.

IV. STABILIZATION PROBLEM
The objective of this section is to address the asymptotic

stabilization problem of periodic gaits for the hybrid model
of quadruped locomotion. We make use of the Poincaré
sections analysis for the orbital stability of gaits.

Let ϕv(t;x0, ξv) denote the unique solution of the closed-
loop ODE ẋ = f cl

v (x, ξv), v ∈ V with the initial condition
x(0) = x0 for all t ≥ 0 in the maximal interval of
existence. For the closed-loop system, since the control laws
u = Γv(x, ξv) are already determined, one can analyze the
discrete-time transitions v → µ(v) on a set of reduced-order
and parameterized switching manifolds Ŝv→µ(v)(ξv) ⊂ Xv
rather than the original ones Sv→µ(v) ⊂ Xv × Uv . Here,
Ŝv→µ(v)(ξv) represents the set of all points x ∈ Xv for which
(x, u) = (x,Γv(x, ξv)) ∈ Sv→µ(v).

Assumption 4: For every v ∈ V and all ξv ∈ Ξv ,
Ŝv→µ(v)(ξv) is an embedded submanifold of Xv with the
property dim(Ŝv→µ(v)(ξv)) = dim(Xv)− 1.

We now define the time-to-switching function for the
domain v ∈ V as the first time at which the state solution
ϕv(t;x0, ξv) intersects the switching manifold Ŝv→µ(v), i.e.,
Tv (x0, ξv) := inf{t > 0 |ϕv(t;x0, ξv) ∈ Ŝv→µ(v)(ξv)}.
The generalized Poincaré map for the domain v ∈ V is
then defined as the flow of the closed-loop domain v ∈ V
evaluated on Ŝv→µ(v)(ξv), i.e., Pv : Xµ−1(v) × Ξv →
Ŝv→µ(v) and

Pv (x, ξv) :=ϕv
(
Tv
(
∆µ−1(v)→v(x), ξv

)
;∆µ−1(v)→v(x), ξv

)
.

Next, let us take the parameters vector as ξ :=
col(ξv1 , ξv2 , · · · , ξvN ) ∈ Ξ ⊂ Rp, where N := |V|
denotes the cardinal number of V , Ξ := Ξv1 × Ξv2 ×
· · ·ΞvN , and p :=

∑
v∈V pv . The nominal parame-

ters are also shown by ξ?. Suppose further that ω :={
v1, µ (v1) , µ2 (v1) , · · · , µN−1 (v1)

}
represents the exe-

cuted sequence of the vertices for the desired locomotion
pattern O, in which µk(v1) := µ(µk−1(v1)) for k =
1, 2, · · · and µ0(v1) := v1. We remark that according to the
periodicity of the desired gait, µN (v1) = v1. The full-order
Poincaé return map is finally taken as the composition of
the generalized maps Pv along the switching path ω, i.e.,

P (x, ξ) :=

Pv1
(
PµN−1(v1)

(
· · ·
(
Pµ(v1)

(
x, ξµ(v1)

))
· · ·, ξµN−1(v1)

)
, ξv1

)
.

The evolution of the closed-loop hybrid model on the
Poincaré section Ŝv1→µ(v1)(ξ1) can then be described by the
following discrete-time system

x[k + 1] = P (x[k], ξ) , k = 0, 1, 2, · · · , (15)

in which k represents the step number.
Assumption 5 (Transversality): We assume that the orbit

Ov is transversal to the switching manifold Ŝv→µ(v)(ξv) for
all v ∈ V and ξv ∈ Ξv . In particular, Ov ∩ Ŝv→µ(v)(ξv) is
a singleton for all controller parameters ξv . In our notation,
Ov denotes the set closure of Ov .

Theorem 1 (Poincaré Map): Suppose Assumptions 1-5
are satisfied. Then, there exist (i) a subset Ξ̂ ⊂ Ξ and (ii)
a fixed point of P (., ξ) : Ŝv1→µ(v1)(ξv1)→ Ŝv1→µ(v1)(ξv1),
represented by x?1, that is invariant under the choice of the
controller parameters ξ ∈ Ξ̂. That is, x?1 ∈ Ŝv1→µ(v1)(ξv1)

and P (x?1, ξ) = x?1 for all ξ ∈ Ξ̂. Furthermore, Ψ(ξ) :=
∂P
∂x (x?1, ξ) is well-defined and differentiable with respect to
ξ on Ξ̂.

Proof: The proof is available online1.
Problem 1 (Asymptotic Stabilization): The asymptotic

(exponential) stabilization problem consists of finding the
controller parameters ξ ∈ Ξ̂ such that the eigenvalues of the
Jacobian matrix Ψ(ξ) lie inside the unit circle.

To solve Problem 1, one would need to find 1) a controller
parameter ξ ∈ Ξ̂, 2) a positive definite matrix W , and 3) a
scalar γ ∈ (0, 1) such that the increment of the Lyapunov
function V (δx) := δx>W−1δx along the linearized discrete-
time system δx[k + 1] = Ψ(ξ) δx[k] becomes negative
definite, i.e., δV [k] := V [k + 1] − V [k] < −γ V [k], where
δx[k] := x[k]−x?1. This is equivalent to solving the following
nonlinear matrix inequality (NMI)[

W Ψ(ξ)W
? (1− γ)W

]
> 0. (16)

V. ITERATIVE BMI ALGORITHM
The objective of this section is to employ an iterative BMI

algorithm to look for the controller parameters ξ that solve
the NMI (16). The BMI algorithm was developed in [12],

1https://github.com/kavehakbarihamed/ProofofTh1/
blob/master/proof.pdf

https://github.com/kavehakbarihamed/ProofofTh1/blob/master/proof.pdf
https://github.com/kavehakbarihamed/ProofofTh1/blob/master/proof.pdf


[47] to systematically design centralized and decentralized
nonlinear control algorithms for bipedal locomotion. Here,
we employ the algorithm to design nonlinear controllers for
higher-dimensional hybrid systems that describe quadruped
locomotion. The objective of the BMI algorithm is to gen-
erate a sequence of controller parameters {ξ`} in an offline
manner that would eventually solve the NMI (16), where the
superscript ` = 0, 1, · · · represents the iteration number. The
algorithm includes three main steps as follows.
Step 1 (Sensitivity Analysis): During the iteration ` =
0, 1, · · · , the Jacobian matrix Ψ(ξ` + ∆ξ) is approximated
using the first-order Taylor series expansion, i.e.,

Ψ
(
ξ` + ∆ξ

)
≈ Ψ

(
ξ`
)

+ Ψ̄
(
ξ`
)

(I ⊗∆ξ) =: Ψ̂
(
ξ`,∆ξ

)
.

Here, “⊗” denotes the Kronecker product, Ψ̄(ξ`) represents
the sensitivity matrix during the iteration `, and Ψ̂(ξ`,∆ξ)
denotes the first-order approximation of Ψ(ξ` + ∆ξ) for
sufficiently small ∆ξ ∈ Rp. Our previous work has presented
a systematic and effective numerical approach based on the
variational equation and finite difference in [47, Theorems 1
and 2] to compute the sensitivity matrix. We remark that the
approximate Jacobian matrix Ψ̂(ξ`,∆ξ) is affine in terms of
∆ξ which will reduce the NMI (16) into a BMI in Step 2.
Step 2 (BMI Optimization): The objective of Step 2 is to
translate the NMI (16) into a BMI optimization problem
that can be effectively solved using available solvers, e.g.,
PENBMI [55] from TOMLAB [56]. In particular, we are in-
terested in solving the following BMI optimization problem
during the iteration `

min
(W,∆ξ,ζ,γ)

− w γ + ζ (17)

s.t.
[
W Ψ̂

(
ξ`,∆ξ

)
W

? (1− γ)W

]
> 0 (18)[

I ∆ξ
? ζ

]
> 0 (19)

γ > 0, (20)

where (18) represents a BMI condition in terms of the
decision variable. From Schur complement lemma, the linear
matrix inequality (LMI) (19) introduces the dynamic upper
bound ζ on ‖∆ξ‖22, i.e., ζ > ‖∆ξ‖22. The cost function
(17) finally tries to minimize a linear combination of the
convergence rate γ and the dynamic bound ζ. Here, w > 0
is a weighting factor as a tradeoff between improving the
convergence rate or minimizing ‖∆ξ‖ to have a good ap-
proximation based on the first-order Taylor series expansion.
Step 3 (Iteration): Let (W ?,∆ξ?, ζ?, γ?) represent a local
minimum (not necessarily the global solution) for the BMI
optimization problem (17)-(20). Step 3 updates the controller
parameters for the next iteration as ξ`+1 = ξ` + ∆ξ?. If
the requirement of Problem 1 is satisfied at ξ = ξ`+1, the
algorithm is successful and stops. Otherwise, it continuous
by coming back to Step 1 around ξ = ξ`+1 and going
through the next steps. If the BMI problem in Step 2 is not
feasible, the algorithm is not successful and stops. Sufficient
conditions for the convergence of the algorithm to stabilizing
solutions have been presented in [12, Theorem 2].

VI. NUMERICAL SIMULATIONS
The objective of this section is to numerically validate the

analytical results on a simulated model of the Vision 60 robot
(see Fig. 1).

A. FROST
We consider an amble gait for the robot as illustrated in

Fig. 3. To generate the gait, we make use of FROST (Fast
Robot Optimization and Simulation Toolkit) — an open-
source MATLAB toolkit for developing model-based control
and planning of dynamic legged locomotion [50]. FROST
provides an efficient trajectory optimization framework for
nonlinear hybrid dynamical systems. It uses the Hermite-
Simpson collocation method to translate a trajectory planning
problem into a traditional constrained nonlinear program-
ming problem (NLP):

argmin
∑
v∈V

Nv∑
i=1

Lv(.) δt+ Ev(.) (21)

subject to 1) equality constraints formed by the implicit
Runge-Kutta method, and 2) inequality constraints arising
from feasibility and physical limitations. In our notation,
Lv(.) and Ev(.) are the running and terminal costs for the
domain v ∈ V , respectively. In addition, Nv represents the
total number of grids for the domain v. FROST systemati-
cally translates the NLP problem into state-of-the-art solvers,
such as IPOPT or SNOPT. In our problem, we considered a
symmetric and periodic amble gait. The left-right symmetry
reduces the motion planning problem of the eight-domain
hybrid system into that of a four-domain hybrid system
consisting of 344 decision variables with 583 constraints.
Using a random initial guess and Ubuntu laptop with an
i7− 6820HQ CPU @ 2.70GHz and 16GB RAM, it took 85
seconds (525 iterations) for the FROST to find an optimal
amble gait. For this desired gait, the robot spends 0.1200,
0.0549, 0.0137, and 0.0501 (s) during the domains v1, v2,
v3, and v4, respectively.

B. BMI Algorithm
PENBMI is a general-purpose solver for BMIs which

guarantees the convergence to a local optimal point satisfying
the Karush Kuhn Tucker optimality conditions [55]. To solve
the BMI optimization problem (17)-(20), we make use of
the PENBMI solver from TOMLAB [56] integrated with the
MATLAB environment through YALMIP [57].

Asymptotic Stabilization Problem: Vision 60 has m = 12
actuators. For multi-contact domains v ∈ V of the amble
gait, we consider a combination of relative degree one and
two outputs whose holonomic portion is chosen as 10 dimen-
sional, i.e., yv := col(y1v, y2v) ∈ R1+m2v , m2v = 10, and
H2v(ξv) ∈ R10×18. In particular, we have observed that for
m2v = 11, the decoupling matrix Av in (9) cannot be full-
rank, and hence, we choose m2v = 10. For single-contact
domains v ∈ V , we take a 12-dimensional output function
to be regulated, i.e., yv := y2v ∈ Rm2v , m2v = m = 12,
and H2v(ξv) ∈ R12×18. The phasing variable is also taken
as the horizontal displacement of the robot along the waking
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Fig. 4: Phase portraits during 150 consecutive steps of 3D
quadruped walking with the BMI-optimized virtual con-
straint controllers.

direction (i.e., x-axis). We start with an initial set of output
matrices H2v , v ∈ V based on physical intuition. More
specifically, for single-contact domains, we assume that the
controlled variables are taken as the actuated body joints,
i.e., H2v q = qbody. For multi-contact domains, however, we
remove the two rows of the H2v matrix that correspond to
the knee and hip pitch angles of a contacting (i.e., stance)
leg. The nonholonomic portion, i.e., y1v , is then defined as
(6) to regulate the forward velocity of the hip joint of the
same leg. For this choice of virtual constraints, the dominant
eigenvalues and spectral radius of the Jacobian matrix Ψ(ξ0)
become {−1.0350,−1.000,−0.1811±0.8766i} and 1.0350,
respectively. Hence, the gait is not stable.

Starting with the previous set of parameters, we employ
the iterative BMI algorithm of Section V with the weighting
factor w = 0.1. For the purpose of this paper, we only
look for the optimal output matrix H2v with 10 × 18 =
180 parameters for the domain v1 on which the robot
spends a longer time than other domains. The algorithm
successfully converges to a set of stabilizing parameters
after four iterations, where each iteration takes approximately
30 minutes on a Windows laptop with an i9 − 8950HK
CPU @ 2.90GHz and 32GB RAM. For the BMI-optimized
solution, the dominant eigenvalues and spectral radius of
the Jacobian of the Poincaré map become {−0.9545 ±
0.0600i,−0.2454 ± 0.8600i} and 0.9563, respectively. We
can apply the BMI algorithm for computing the optimized
output matrices for other domains as well. This would further
reduce the spectral radius value while taking a longer time
to converge. Figure 4 depicts the phase portraits during 150
consecutive steps of walking. Convergence to a periodic
orbit, even in the yaw position, can be seen in the figure.
The animation of this simulation can be found at [58].

VII. CONCLUSIONS
This paper presented an analytical foundation 1) to ad-

dress multi-domain and high-dimensional hybrid models of
quadruped robots, and 2) to systematically design HZD-

based controllers to asymptotically stabilize dynamic gaits.
We presented a family of parameterized nonlinear controllers
for the single- and multi-contact domains of quadruped
locomotion. The controllers zero a combination of holonomic
and nonholonomic outputs. We investigated the properties of
the parameterized and high-dimensional Poincaré map for the
full-order closed-loop hybrid system. The asymptotic stabi-
lization problem of multi-domain gaits was then translated
into an iterative BMI optimization algorithm that can be
effectively solved using available software packages.

To demonstrate the power of the analytical framework, an
optimal amble gait was designed using the FROST toolkit for
the Vision 60 robot with 36 state variables and 12 control
inputs. To stabilize the gait, the iterative BMI algorithm was
successfully employed to design a set of HZD-based con-
trollers with 180 controller parameters. For future research,
we will use this framework to design and experimentally
implement stabilizing centralized as well as decentralized
controllers for different gait patterns (walk, amble, pace,
trot, and gallop) of quadruped locomotion and the Vision
60 robot.
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