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Deep Neural Network Based
Wavelength Selection and
Switching in ROADM Systems
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functionality. Software-defined networking (SDN)
Abstract—Recent advances in software and  potentially provides software control capabilities that might

hardware greatly improve the multi-layer control and
management of ROADM systems facilitating
wavelength switching; however, ensuring stable
performance and reliable quality of transmission
(QoT) remain difficult problems for dynamic
operation. Optical power dynamics that arise from a
variety of physical effects in the amplifiers and
transmission fiber complicate the control and
performance predictions in these systems. We present
a deep neural network based machine learning
method to predict the power dynamics of a 90-channel
ROADM system from data collection and training. We
further show that the trained deep neural network

can recommend wavelength assignments for
wavelength  switching with minimal power
excursions.

Index Terms—Machine learning; Power excursions;
Wavelength switching; ROADM systems;

I. INTRODUCTION

Growing dynamic traffic demands for Internet
applications, including HD video rendering, cloud
computing, and the Internet of things (IoT), motivate more
efficient networks capable of handling a wide range of
applications [1]. Dynamic reconfigurable optical add-drop
multiplexer (ROADM) systems in which connections are
established through real-time wavelength switching have
long been studied as a means to achieve greater scalability
and increase the network resource utilization [2]. However,
today’s commercial ROADM systems remain ‘quasi-static’,
with wavelengths being provisioned to meet the peak traffic
requirements and left in place [3]. While ROADMs are
extensively deployed in today’s wavelength-division
multiplexing (WDM) systems, they are primarily used for
flexible wavelength provisioning without real-time switching
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be exploited to achieve real-time wavelength switching, but
its scalability and flexibility are limited by various types of
physical layer impairments [4-6].

A key unresolved challenge to achieving dynamic ROADM
systems through SDN is predicting and controlling the
optical power dynamics resulting from wavelength switching
operations. Power excursions can result from the
interactions between the wavelength dependent gain and
automatic gain control of optical amplifiers, Raman
scattering in the fiber and other wavelength dependent
phenomena. Deviations of the channel powers outside
pre-allocated system margins can potentially result in
service disruption due to reduced quality of transmission
(QoT) [7]. For this reason, today’s commercial systems take
minutes and even hours to provision a wavelength through
time-consuming power adjustments along an optical path
[8]. To realize dynamic ROADM systems, we implement a
deep neural network that predicts power excursions
resulting from wavelength switching operations. After
training a 90-channel multi-hop ROADM system including 8
Erbium-doped fiber amplifiers (EDFAs) and 5 ROADM
nodes with 67200 training samples, the deep neural network
is able to recommend wavelength assignments for
wavelength switching in randomly loaded systems with over
99% precision.

The remainder of this paper is organized as follows. In
Section II, we discuss the basics of power excursions and
related work to address power excursions. In Section III, we
introduce the principle of the proposed deep neural network
approach. The experimental setup is discussed in Section IV.
In Section V, we discuss the deep neural network
architecture, data collection, training, and power excursion
prediction. The performance of the deep neural network is
evaluated against different metrics to show its effectiveness
to mitigate power excursions in wavelength switching
operations. In Section VI, we address the scalability of the
proposed approach for large-scale ROADM systems. We
conclude our findings in Section VII.

II. PROBLEM STATEMENT

Recent work has extensively investigated advanced
modulation formats to improve the spectral efficiency and
network capacity of WDM transmission systems [9]. But,
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these spectrally efficient modulation formats require tighter
QoT margins due to lower tolerance to both optical noise
accumulation (impacting the optical signal-to-noise ratio
(OSNR)) and fiber nonlinearity based impairments. As a
result, the reduced transmission distances are further
compromised by large margins that are needed to account for
optical channel power variations or uncertainties. Thus,
optical power dynamics that arise from wavelength
switching operations become especially problematic in these
systems. Furthermore, optical power dynamics often include
phenomena that switching a wavelength on one channel
causes power changes on other channels [7].

One main manifestation of optical power dynamics is the
transient effect in an optical amplifier. The transient effect is
fast power overshoots and undershoots that arise from
sudden changes in input power due to wavelength switching
operations or upstream fiber cut. For automatic gain
controlled (AGC) EDFAs, a fast feedforward control loop can
be implemented to augment the slower feedback control loop
to effectively and rapidly suppress the transient effect. The
feedforward control loop has the response time of 1 ps that
can immediately adjust the pump power based on a
pre-defined relationship between the pump current and
input power for a target gain [10].

A different form of optical power dynamics in optical
amplifiers—power excursions that result from the
interactions between the wavelength dependent gain and
AGC of optical amplifiers—can occur in wavelength
switching operations. In the case of these power excursions,
wavelength switching operations lead to persistent power
differences on surviving channels, which are then corrected
over long time scales using individual channel power
controls in the ROADM nodes. Power excursions can grow in
magnitude over cascaded amplifiers and cause substantial
service disruptions. In recent work, 15-dB power excursions
were reported in a WDM transmission system with
recirculating loops totaling 2240 km [11]. For this reason,
introducing or provisioning a new channel into a ROADM
system is a time-consuming process that requires repetitive
small-step power adjustments by sequentially actuating
many optical components along an optical path to ensure
that the powers of all surviving channels are within
pre-allocated margins. In commercial-scale transmission
systems, the fastest reported wavelength provisioning time
is several minutes for a single 400 Gbps wavelength channel
over a long-distance link [8].

There have been a number of approaches to address these
amplifier-based power excursions. A fast tunable source was
implemented to distribute a single optical signal over two
wavelengths—one with a high gain and the other with a low
gain—to equalize the mean gain and cancel out the power
excursions [12]. An analytical solution was studied in [13] to
mitigate power excursions based on a pre-measured EDFA
gain spectrum. However, the gain spectrum does not
consider the tilt change during wavelength switching
operations and as a result only 5%-15% power excursion
reduction is achieved. An optical probing method was also
investigated to measure the EDFA gain spectrum without
causing power excursions on surviving channels and thus
recommend an optimal wavelength assignment with

minimal power excursions [14]. Nevertheless, previous work
relies on either specific system designs or specialized
hardware and as a result increases the total hardware cost.
Conversely, machine learning offers a more flexible solution
without special hardware requirements. Particularly,
machine learning has been well used to promote the
development of intelligent optical communication systems
[15, 16]. Through the extensive data collection of the power
excursions versus changing channel loadings, a machine
learning model can be trained to accurately recommend new
wavelength assignments which will not cause power
excursions. Previous machine learning applications
examined wavelength assignment and defragmentation to
minimize the channel power divergence or standard
deviation of surviving channels, which primarily arises from
the static gain ripple and tilt of EDFAs [17, 18]. Regression
models, such as ridge regression and kernelized Bayesian
regression were investigated to predict the channel power
divergence in a 24-channel single-hop ROADM system, but
such regression models do not consider the interactions
between WDM channels and are unlikely to accurately
predict the power excursions in wavelength switching
operations. In order to accurately predict power excursions
for WDM transmission systems including multiple ROADM
hops and full C-band WDM channels, a more sophisticated
machine learning model based on a deep neural network is
investigated in this paper. In this work, we extend a recent
analysis of neural network based wavelength switching in
[19]. We provide additional analysis on the computational
complexity, overfitting reduction, and early termination
using the deep neural network. The performance is also
compared against random forest, showing the advantage of
the deep neural network in learning and predicting complex
power excursions. The scalability of the deep neural network
in large-scale transmission systems is discussed, and we
propose two approaches as our future work.

Input Hidden Hidden  Output

layer layer1  layer2 layer
Inputs v v ve v

(bias) 1 K

Wi

(lnput1) x4———y
Y
(Input 2) xZ_W‘__.

(Input n) xn/n'

(a)

Fig. 1. (a) The schematic diagram of a neuron (b) Illustration of a
deep neural network containing two hidden layers.

ITII. PROPOSED MACHINE LEARNING METHODOLOGY

Machine learning has been developed to allow computers
to learn to do a specific task without being explicitly
instructed. Machine learning problems can be divided into
two general categories—supervised learning problems and
unsupervised learning problems. Supervised learning
analyzes the training data and produces a relationship
between an input object and the desired output object, which
can be used for predicting the output of new input objects.
Unsupervised learning problems try to draw inferences from
datasets only consisting of input data. In this work, the focus
is on developing a supervised machine learning model to
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Fig. 2. Schematic of the experiment setup including 5 ROADM nodes, 4 fiber spans and 8 EDFAs with different gain characteristics. The
training, validation and test data are collected by reconfiguring the channel loadings and measuring the power excursions.

predict power excursions based on an initial set of channels
and the addition of a new set of channels. The data set
includes the impact of complex interactions between
channels that result in the power excursion response. A
popular machine learning model for solving such complex
problems is deep neural networks.

Deep neural networks are computational models that are
inspired by the biological neural networks in the human
brain [20]. The basic unit of a deep neural network is a
neuron (also known as a node or unit) as shown in Fig. 1(a),
which receives the input from other neurons and computes
the output. In the real world, most data are nonlinear and we
want these neurons to learn complex nonlinear
representations. Therefore, nonlinear activation functions
are introduced to the output of neurons to improve neural
network approximations. Common types of nonlinear
activation functions include tanh (hyperbolic tangent),
sigmoid, and ReL.U (a unit ramp function). Recent work has
reported the advantages of ReLU because ReLLU does not
cause the “Gradient Vanishing” problem (which can
completely stop the neural network from further training)
[21]. However, the optimal activation functions will still
depend on the particular applications and need to be
determined by trial and error during the training process.
Deep neural networks combine many layers of neural
networks to find complex relationships and abstractions
from the input data to understand and approximate the
output.

A deep neural network consists of three types of layers as
shown in Fig. 1(b): (i) Input layer: contain input neurons that
provide information from the outside world. (i) Hidden
layer: contain hidden neurons that perform nonlinear
transformations from the input layer to the output layer. A
deep neural network may contain multiple hidden layers.
(i11) Output layer: contain output neurons that predict the
output to the outside world. The initial weights of the neural
network are randomly set based on a probability distribution
determined by the user. The first stage of training the neural
network 1is forward propagation. The input vector is
propagated through the neural network to determine the
corresponding output. A cost function C is used to measure
the accuracy of the predicted output §i and the corresponding
true output yi. Common cost functions include mean square
error (MSE) for regression (Eq. (1)) and cross entropy log loss
for classification (Eq. (2)):
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The next step is to determine how to update the network
weights in order to minimize the cost function. Mini-batch
(only a user-selected small subset of the training set in each
training iteration) gradient descent is commonly used to
determine the direction of steepest descent and how each
weight in the neural network should be updated [22].

In order to optimize the performance of the deep neural
network, validation data is used to compare the performance
of a deep neural network with different parameters. The
configuration that minimizes the specified loss function is
chosen, and the test data is used to get an unbiased view of
the performance of the deep neural network.

IV. EXPERIMENTAL SETUP

A metro-scale multi-hop ROADM system shown in Fig. 2
is built to study wavelength switching using the proposed
machine learning approach. At the transmitter, a 90-channel
comb source with spacing of 50-GHz is used to create 90
WDM channels from 191.60 THz to 196.05 THz (i.e., 1529.2
nm to 1564.7 nm in wavelength). The power of the
transmitter is then equally divided into four equal outputs
using a 1x4 splitter, and each output is sent to a different
ROADM (ROADM 1 to ROADM 4) to create different channel
loadings. The ROADM system consists of five ROADMs
which are separated by four standard single-mode fiber
(SSMF) spans. Each SSMF span contains two dual-stage
AGC EDFAs to compensate for the loss of the ROADMs and
the transmission fiber and one variable optical attenuator
(VOA) to increase the span loss to match the average 18-dB
amplifier gain. Two-stage EDFAs realize the tilt-control by
adjusting the attenuation of the variable optical attenuator
(VOA) in the first stage, taking advantage of the fact that the
tilt is dependent on the internal gains of the individual
stages [14]. The tilt of each EDFA is adjusted in order to
create wavelength dependent gain and study the power
excursion mitigation, however, the peak to peak gain
variation is kept within +/- 0.5 dB, which is typical for line
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Fig. 3. EDFAs in the first span with different gain spectra. (a)

Wavelength dependent gain spectrum of the first EDFA (b)

Wavelength dependent gain spectrum of the second EDFA.
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amplifiers. Two-stage EDFAs realize the tilt-control by
adjusting the attenuation of the variable optical attenuator
(VOA) in the first stage, taking advantage of the fact that the
tilt is dependent on the internal gains of the individual
stages [14]. The VOA of the EDFA will be automatically
adjusted by its internal controller based on the user-specified
tilt requirement. The tilt is defined as the peak-to-peak gain
variation of a least-squares-fitted line of the channel gains
over the full signal band (ranging from 1529.2 nm to 1564.7
nm). Figure. 3 shows the gain spectrum of the two EDFAs in
the first span. The tilt of the first EDFA is set to -0.4 dB to
compensate for the stimulated Raman scattering (SRS) in
the transmission fiber. The tilt of the second EDFA is set to
1.0 dB. The EDFAs in the other three spans have the same
gain and tilt settings, thus giving rise to a similar gain
spectrum. After cascading four transmission spans, the
cumulative peak-to-peak gain variation across the C-band is
measured to be 3.8 dB. Note that 4-6 dB gain variation is
typically allowed between ROADM nodes depending on the
system design. Such peak-to-peak gain variation along with
the AGC operation results in substantial power excursions in
wavelength switching operations. Each ROADM is
comprised of multiple wavelength selective switches (WSSs),
per-channel VOAs and per-channel optical channel monitors
(OCMs). The power at the drop point is tapped to the OCM
for per-channel power measurement. To measure the power
excursion, we first measure the per-channel power of initial
channels at the channel drop point before the wavelength
switching operation. Then, we measure the per-channel
power of initial channels at the channel drop point after the
wavelength switching operation (i.e., a new wavelength
channel is added into the system). The power excursions are
measured by taking the differences between them. Note that
in general ROADMs will perform gain equalization for all
the output ports to remove the power excursion accumulated
in the previous link. This operation is time consuming and
requires spectral analysis and therefore would come after
the channel add or drop event and would be used to remove
any residual power excursions. Using the deep neural
network based wavelength switching, thus minimizes these
gain equalization operations, resulting in more stable
system operation and faster turn up times for new channels.

The effectiveness of machine learning is evaluated for
power excursions that occur on top of the static power
divergence due to the EDFA gain ripple and tilt. Thus, the
system 1is initially configured to remove the static power
divergence. Two types of channels are identified for
wavelength switching operations—initial channels and new
channels. First, the VOAs in each ROADM are initialized to
ensure uniform 0-dBm launch power per-channel into the
transmission fiber (i.e., 19.5-dBm total power) with the 90
initial channels (i.e., with 90-channel WDM input). These
attenuation values are stored as a reference for newly added
channels. Note that the VOA initialization can largely
mitigate the channel power divergence due to static
wavelength dependent gain in the EDFAs and static SRS in
the transmission fiber. However, the initial VOA values
cannot guarantee uniform 0-dBm power per-channel when
the initial channel loading is changed in later experiments
due to EDFA tilt change, EDFA power excursions, and
dynamic SRS. Thus, VOA adjustment is executed to remove
any power variations before wavelength switching, as would
normally be done in system operation.

V.RESULTS AND DISCUSSIONS

In this section, we describe the data collection process,
deep neural network architecture, training process, power
excursion estimation, and wavelength assignment
recommendation using the trained deep neural network. A
deep neural network is first built and trained. Its
performance is evaluated with regard to the number of
training samples, the speed of the training process, and the
accuracy in power excursion prediction and wavelength
assignments. The performance of ridge regression and
random forest methods are evaluated against the deep
neural network for comparison purposes.

A. Data Collection

The first step in learning the complex optical power
excursion response is extensive data collection of the power
excursion response under a variety of channel loadings.
However, such a data collection process is time-consuming
due to the speed limitation of hardware actuation and
software control. In this experiment, collection of each data
sample takes approximately 3 seconds on average, including
the latency of control signaling, WSS actuation along an
optical path, VOA adjustment, and power excursion
measurement. Note that the VOA adjustment is executed
only once on each initial channel for each initial channel
loading to remove any power variations, as would normally
be done in system operation. The WSS actuation to turn on
the new channels (with no additional VOA adjustments) and
the power excursion measurement are executed for each
wavelength switching operation. Collecting data might even
take longer in commercial large-scale systems, and thus
potentially imposes an obstacle to using the machine
learning in practical ROADM systems. Methods to overcome
to address these implementation issues will be discussed
later.

In this experiment, 1680 training cases are used to train a
deep neural network, each of which contains 40 power
excursion measurements (i.e., 67200 training samples in
total) as the following process: 40 available wavelength
positions for adding a new channel are randomly selected,
and the maximal power excursion among all initial channels
is measured by switching on and off these 40 wavelength
positions one by one. In addition, 210 validation cases are
collected for evaluating how well the deep neural network is
trained and which parameters provide optimal prediction
performance. Finally, another 210 testing cases are collected
for evaluating the prediction accuracy and the performance
of wavelength switching using the deep neural network. In
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Fig. 4. The architecture of the deep neural network. The input
layer contains 180 features, representing the ‘on’ or ‘off” state of
initial channels and new channels. The output layer contains a
single output, representing the maximal power excursion
among all initial channels.
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TABLE I
PARAMETERS OF THE OPTIMIZED DEEP NEURAL NETWORK

Value
(180,120,30,15)
(tanh, tanh, ReLU, ReLU)

Parameter

Neurons in hidden layers

Activation function

L2 regularization 0.001
Dropout rate 0.1

Initial learning rate 0.005
Number of epochs 217

total, 84000 data samples are used in this experiment,
taking approximately 70 hours for collection. Note that in
this experiment all channels are sent through the longest
route over 4 spans (i.e., ROADM 1-2-3-4-5), but the machine
learning methodology is applicable to the multi-route case by
recording the added ROADM and the dropped ROADM as
additional input and collecting more training samples.
Strategies to minimize the number of training samples while
ensuring the prediction accuracy will be detailed in the
training section.

B. Deep Neural Network Architecture

A deep neural network is built to predict the power
excursion that occurs when adding a new channel into the
multi-hop ROADM system. The input of the deep neural
network is a 180-element binary vector as shown in Eq. (3).
The first 90 binary input features (which correspond to 90
wavelength locations) are used to represent the wavelength
locations of initial channels. A ‘1’ represents that the
wavelength is initially lit or occupied and a ‘0’ represents
that the wavelength is not initially lit. The next 90 binary
input features represent the wavelength locations of new
channels being added into the systems. The ‘1s’ represent the
new wavelength locations of new channels added into the
system. Note that in this experiment, we focus on the
channel add operation, and we will show that minimized
power excursions are guaranteed for channel add operations.
Since the channel drop operation is the reverse process of the
channel add operation, minimized power excursions are also
guaranteed for the corresponding channel drop operations.
The output that we aim to predict is the maximum power
excursion among all initial channels as shown in Eq. (4).

X = [Xinitat  Xnew :[xl9xza-“axooaxms---axmo]E{Oal}180 @)

]
};: max (AP,) (4)

Jj€lnitial channel

The optimal neural network architecture is determined by
varying a number of parameters. The optimized parameters
include: the number of hidden layers, the number of neurons
per layer, the activation function of hidden layers, the
number of iterations (or epochs), the learning rate, the L2
regularization term, and the dropout rate. The performance
is determined by minimizing the root mean square error
(RMSE) against the validation set. The RMSE can be
interpreted as the standard deviation of the difference
between observed and predicted values (in dB). A lower
RMSE indicates a more accurate prediction. The
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Fig. 5. The root-mean-square error (RMSE) of the training set
and the test set as a function of the number of training samples
during online training.

architecture with the lowest validation RMSE depicted in
Fig. 4 includes 4 hidden layers using a combination of tanh
and ReLU activation functions. Other parameters are
summarized in Table. I, and the details of training the deep
neural network will be discussed in the next section.

C. Training

It is important to minimize the data collection time while
still ensuring prediction accuracy. With a small number of
available training samples, the deep neural network tends to
over-fit the specific training samples resulting in a low
training error. However, since these training cases do not
well represent the full set of behaviors in the system, this
causes a high variance that generates a high prediction error
in the test samples as new data samples have not been seen
by the deep neural network. Getting more training samples
can effectively reduce the variance and better generalize the
model, but the prediction performance might saturate at
some point because of the existence of a small bias that
limits further improvement of learning performance. The
bias in this experiment mainly arises from actual system and
measurement errors such as time-varying penalties (e.g.,
temperature change) and measurement uncertainty (e.g.,
OCM inaccuracy). For example, the accuracy of OCMs in this
experiment is +0.1 dB, and it may happen that two data
samples with the same features give rise to different target
output.

In this experiment, online training is implemented in a
control plane to determine the number of training samples
that are needed as follows. 210 testing cases and 210
validation cases are first collected. The online training of the
deep neural network contains repetitive processes. For each
process, 168 more training cases (i.e., 6720 more training
samples) are added to the training set to train the deep
neural network and calculate the root-mean-square error
(RMSE) of the 210 testing cases. The online training
continues until the test RMSE does not decrease with two
consecutive processes. Figure. 5 illustrates the training
RMSE and test RMSE over a varying number of training
samples (also called the learning curve) during online
training of the deep neural network. The training error curve
shows the difference between the prediction based on the
training data compared against the actual training data;
whereas the test error curve shows the error in predicting
the power excursion for different sets of random data (the
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test set). With just 6720 training samples, there is a large
difference between the training error and the test error due
to large variance on different samples, indicating a poor
generalization of the model. With the increased number of
training samples, the training error and the test error start
to converge but a gap will persist due to the inherent
variance of the samples. Online training stops at 67200
training samples because there is no RMSE decrease over
two consecutive processes.

The deep neural network shown in Fig. 4 is trained to
minimize the RMSE using mini-batch stochastic gradient
descent (SGD) with a mini-batch size of 64. In order to
prevent overfitting, regularization techniques, including L2
regularization [23] and dropout [24] are implemented.
Several combinations were tested with a varying L2
regularization value and dropout rate in each hidden layer,
and we found an L2 regularization of 0.001 and a dropout
rate of 0.1 can effectively prevent overfitting and achieve low
RMSE. The initial learning rate is set to 0.005 and is
adapted in the training stage to allow for fine weight
updates. The learning rate adaptation is multiplied by 0.99
every epoch.

It is important to reduce the training time as long training
time for a system can add significant cost. One important
metric that decides the training time is the number of epochs
in the training stage, since the total training time is linearly
proportional to the number of epochs. In this experiment, the
tradeoff between the prediction accuracy and the number of
epochs is evaluated by comparing the accuracy of the neural

Deep neural network %%

Ridge regression

6
TABLE II
TEST RMSE AND MAXIMAL PREDICTION ERROR

Machine learning Maximal
model RMSE (dB) error (dB)

Deep neural network 0.104 0.8

Ridge regression 0.273 2.3

Random forest 0.281 2.7

network predication using the validation data set. Figure. 6
shows the RMSE (in dB) of the training set and the
validation set in the training stage as a function of the
number of epochs. Initially, the RMSE of both the training
set and the validation set significantly decreases with the
increased number of epochs. After approximate 200 epochs,
although small fluctuations exist, the RMSE of the
validation set shows minimal improvement. In fact, the
RMSE of the validation set is 0.103 dB after 200 epochs and
0.100 dB after 900 epochs. In this experiment, the training
is terminated if three consecutive epochs fail to decrease the
RMSE of the validation set. By introducing this rule to the
training stage, the training stage is terminated at the 217t
epoch with a validation RMSE of 0.104 dB. Compared with
the validation RMSE of 0.100 dB at 900th epoch, there is
negligible performance difference, but the training time is
reduced by more than a factor of four.

D. Performance Evaluation

After the training stage has completed, a check on the
deep neural network performance is carried out against the
test set using different metrics. For comparison purposes,
ridge regression and random forest methods are also
evaluated against the test set. For the ridge regression
model, the regularization parameter was tuned to 0.01
through cross validation. For the random forest model, 200
trees (with 180 features being considered for each tree) are
found to provide the best performance while ensuring
minimal training time. Note that we also evaluated the
support vector machine (SVM), but its computational time
does not scale well to a large number of training samples
[25].

First, the RMSE and the maximal prediction error of the
entire test set are evaluated, and the results are summarized
in Table. II. A lower RMSE indicates a more accurate
prediction. Similarly, a lower maximal prediction error
reveals a better fit under corner cases. The deep neural
network outperforms ridge regression and random forest by
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more than a factor of two in the RMSE and the maximal
error. Random forest results in a worse performance because
it is not able to learn the complex nonlinear relationship
among 180 features with the given 67200 training samples.
Ridge regression performs worse than the deep neural
network because ridge regression does not take into account
the inter-dependencies between input features. The
prediction errors using different machine learning models
can also be viewed in Fig. 7. The actual power excursion
ranges from 0 dB to 3.5 dB, and black dashed lines indicate
the perfect prediction. Its seen that the deep neural network
obtains significantly lower errors between the actual power
excursions and the predicted power excursions, and its
accuracy is stable over the entire power excursion range. On
the other hand, both ridge regression and random forest
result in high prediction errors, particularly when the actual
power excursion is above 2 dB.

The second metric used to evaluate the performance is the
mean square error of the channel (MSEC) at a particular
wavelength. A low MSEC indicates a high prediction
accuracy for the particular wavelength, while a high MSEC
indicates that the particular wavelength may not be
considered as a potential candidate for wavelength switching
due to a substantial prediction error. Figure. 8 shows the
MSEC of 10 different wavelengths. The deep neural network
efficiently keeps the MSEC below 0.02 dB?2 across all 10
wavelength locations, while the maximal MSEC using ridge
regression and random forest can be as large as 0.11 dB2and
0.13 dB?, respectively. Moreover, the MSEC is stable among
all 90 channel wavelength locations with a standard
deviation of 0.004 (Note that only 10 wavelengths are shown
in the figure), indicating that the deep neural network is
trustworthy to make an accurate prediction over the entire
spectrum. In contrast, ridge regression and random forest
result in much higher standard deviations of 0.03 and 0.04,
respectively.

Third, we evaluate the 6-recommendation accuracy, which
is the proportion of test cases in which the deep neural
network is able to recommend a wavelength with a power
excursion within a & margin from the minimal power
excursion (which is achieved by switching on the optimal
wavelength). A higher 6-recommendation accuracy indicates
the model is able to accurately recommend wavelengths for
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Fig. 9. 6-recommendation accuracy as a function of 6 margin
from the actual minimal power excursion. The deep neural
network is able to recommend the actual optimal wavelength
79.5% of 210 test cases.

wavelength switching operations within a tighter power
excursion bound. Figure. 9 shows the 6-recommendation
accuracy as a function of the § margin using the deep neural
network, ridge regression, and random forest. In this
experiment, the minimum & margin is 0.1 dB, taking into
account the +0.1 dB precision in the power measurement.
When the § margin is set to 0.1 dB, such that the system has
the strictest requirement of wavelength assignments (i.e.,
the exact optimal wavelength must be predicted by the
model), the deep neural network can recommend the optimal
wavelength among 40 wavelength candidates over 79.5% of
the time (i.e., 167 test cases out of 210 test cases), while ridge
regression and random forest only achieves 41.4% and 56.7%
recommendation accuracy. When the § margin increases to
0.4 dB (i.e., the actual power excursion of switching on the
recommended wavelength must be within 0.4 dB from the
minimal power excursion), the recommendation accuracy of
the deep neural network is 100%, while the recommendation
accuracy of ridge regression and random forest are only
89.5% and 96.2%. We also note that although random forest
demonstrates a better accuracy than ridge regression under
a small & margin, its performance gets saturated after 6=1.2
dB. This result indicates that random forest leads to a higher
variance over the new data set with high power excursions
(i.e., predict some test cases pretty well but others poorly).
Note that these tests are conducted over a finite size,
randomly generated data set within a very large space of
possible values and therefore this bound does not guarantee
accuracy over the full range of possible events.

Next, the classification accuracy is assessed for different
power excursion thresholds using receiver operating
characteristic (ROC) curves as shown in Fig. 10. A better
classification accuracy indicates a more powerful model that
is able to separate good wavelength candidates from the bad
ones for a given system power excursion threshold. In this
experiment, the classification accuracy is checked against
two different power excursion thresholds—0.5 dB and 1.5 dB
—in according to the system QoT requirement reported in
our previous work [12]. The classification is evaluated by two
metrics: (i) The ability to separate positive cases from
negative cases, which is quantified by the true positive rate
(TPR) at a given false positive rate (FPR). A positive case
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Fig. 10. Receiver operating characteristic (ROC) curves to
assess the classification accuracy for different system power
excursion thresholds. (a) 0.5-dB threshold (b) 1.5-dB threshold.

means that the deep neural network recommends a channel
as being within a given decision threshold, and a negative
case means that the deep neural network rejects a channel
as being outside a given decision threshold. Note that the
decision threshold is used by the machine learning model to
determine whether a potential wavelength is positive or
negative, which is different from the system power excursion
threshold. TPR is the ratio of correct positive predictions to
all actual positives, and FPR is the ratio of incorrect positive
predictions to all actual negative predictions. A perfect
classification model is able to obtain 100% TPR while
maintaining 0% FPR. The ROC curve is formed by
connecting all TPR/FPR pairs, each of which corresponds to a
different decision threshold. (ii) The area under the ROC
curve (AUC). The AUC varies from 0.5 to 1, where 0.5 is the
performance of a random classification model and 1 is the
performance of a perfect classification model. Figure 10
shows the classification accuracy under 0.5 dB and 1.5 dB
thresholds wusing the deep neural network, and the
performance is compared to ridge regression and random
forest. With a 0.5-dB power excursion threshold, the deep
neural network obtains the best classification accuracy with
a TPR of 80.4% while ensuring the FPR less than 1% and the
AUC of 0.977. When the system power excursion threshold is
increased to 1.5 dB, the deep neural network obtains the
TPR of 97.1% with less than 1% FPR and the AUC is 0.995.
We also note the interesting behavior of random forest for
which the classification accuracy goes down (with an AUC
from 0.947 to 0.883) when the system power excursion
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Fig. 11. PTPR curves using different machine learning models
with two different system power excursion thresholds. (a)
0.5-dB threshold (b) 1.5-dB threshold.

threshold is increased from 0.5 dB to 1.5 dB. This indicates
that random forest tends to estimate the power excursion to
be less than 1.5 dB, when the actual power excursion is
above 1.5 dB.

Finally, we evaluate the PTPR, which is defined as the
precision at a specific TPR under a system power excursion
threshold. The precision is the ratio of true positives to the
number of total positive values predicted. Keeping a high
PTPR is important because minimizing the chance of adding
a channel with a power excursion beyond the system margin
(which may disrupt the whole transmission system) is more
important than missing a possible valid channel candidate.
Thus, a high PTPR guarantees reliable system operations
with a minimal possibility of system disruption due to
wavelength switching operations. Figure. 11 shows the
PTPR curve with 0.5-dB and 1.5-dB thresholds using
different machine learning models. With a 0.5-dB power
excursion threshold, the deep neural network obtains a
precision of over 99% while ensuring a TPR of greater than
76% (i.e., ensure less than 1% false positives but also misses
roughly 24% valid wavelength candidates). For comparison,
ridge regression and random forest only obtain the TPR of
13.1% and 35.4% respectively in order to achieve the same
precision. When the power excursion threshold is increased
to 1.5 dB, the deep neural network is able to obtain a 100%
precision while obtaining a 96.4% TPR (i.e., ensure zero false
positives while missing only 3.6% valid wavelength
candidates).
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VI. SCALABILITY OF THE MACHINE LEARNING
APPROACH

The results proposed in the previous sections reveal that a
deep neural network can efficiently reduce and in some
situations bound the power excursion in a 90-channel
DWDM transmission system including 4 SSMF spans and 8
EDFAs, thus allowing rapid wavelength switching
operations. Future work needs to consider the scalability and
implementation in large-scale mesh networks. Mesh optical
networks involve a larger number of spans and optical
amplifiers resulting in an increase in complexity. Methods to
address this in future work can be twofold as follows.
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Fig. 12. Illustration of the machine learning approach that
individual machine learning models are trained in a distributed
manner. Different colors represent amplifiers from different
vendors. For a new end-to-end connection request (dashed red
line), the output power can be estimated by combining the
prediction of individual neural network models.

First, practical WDM transmission systems are developed
in a mesh topology containing multiple multi-degree
ROADM nodes. As shown in Fig. 12, network edges that
connect pairs of ROADM nodes may carry channels with
different wavelengths (i.e., the set of wavelengths entering
each EDFA is different), and each edge may also contain a
different number of EDFAs. In these situations, machine
learning that is trained in a distributed manner can be used
to reduce the learning complexity as shown in Fig. 12. An
individual machine learning model can be applied to predict
the output power along individual edges. Using a centralized
SDN controller, the resulting power excursions can be
predicted by combining the individual prediction algorithms
along the edges of the path. Moreover, the SDN controller
needs coordinate lightpath setup that traverses multiple
edges, taking into account the wavelength continuity and the
system QoT.

Second, it is important to address how the machine
learning approach will scale with a different network,
especially for a practical transmission system with the
increased dimensions and complexity. It is very common to
have commercial systems upgrade to support higher
capacity, and it is impractical to train a new system every
time from scratch. In order to avoid the time-consuming
training data re-collection and machine learning model
re-training, transfer learning can be applied to migrate the
knowledge trained under one transmission system to a new
transmission system. Previous work has used transfer
learning to predict different 16 QAM systems using a trained
deep neural network under a QPSK/16QAM system with just
20 new training samples [26]. Thus, a reference system can

be trained in the test lab before deployment and then
transfer learning can be used on systems at the time of
initial deployment. Online learning can further refine the
machine learning model over time as the system
performance evolves. The prediction of the power excursion
response in different transmission systems using transfer
learning and using online learning will be investigated in
future work.

VII. CONCLUSION

A deep neural network is implemented to predict the
dynamic power excursion of a 90-channel DWDM
transmission system, containing 4 SSMF spans and 8
EDFAs. The deep neural network is able to learn the
complex optical power excursion response with 67200
training samples and obtains a 0.1-dB RMSE for 8400
random test samples. Based on the predicted power
excursions, the deep neural network can recommend valid
wavelengths for wavelength switching with a precision over
99% over the tested samples. The deep neural network was
also shown to be far more effective than regression and
random forest models. This work is a first step in applying a
deep neural network to rapid wavelength switching. The
future work will investigate the deep neural network
approach in large-scale networks along with transfer and
online learning techniques for practical implementations.
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