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 
Abstract—Recent advances in software and 

hardware greatly improve the multi-layer control and 

management of ROADM systems facilitating 

wavelength switching; however, ensuring stable 

performance and reliable quality of transmission 

(QoT) remain difficult problems for dynamic 

operation. Optical power dynamics that arise from a 

variety of physical effects in the amplifiers and 

transmission fiber complicate the control and 

performance predictions in these systems. We present 

a deep neural network based machine learning 

method to predict the power dynamics of a 90-channel 

ROADM system from data collection and training. We 

further show that the trained deep neural network 

can recommend wavelength assignments for 

wavelength switching with minimal power 

excursions. 

 
Index Terms—Machine learning; Power excursions; 

Wavelength switching; ROADM systems;   

 

I. INTRODUCTION  

rowing dynamic traffic demands for Internet 

applications, including HD video rendering, cloud 

computing, and the Internet of things (IoT), motivate more 

efficient networks capable of handling a wide range of 

applications [1]. Dynamic reconfigurable optical add-drop 

multiplexer (ROADM) systems in which connections are 

established through real-time wavelength switching have 

long been studied as a means to achieve greater scalability 

and increase the network resource utilization [2]. However, 

today’s commercial ROADM systems remain ‘quasi-static’, 

with wavelengths being provisioned to meet the peak traffic 

requirements and left in place [3]. While ROADMs are 

extensively deployed in today’s wavelength-division 

multiplexing (WDM) systems, they are primarily used for 

flexible wavelength provisioning without real-time switching 
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functionality. Software-defined networking (SDN) 

potentially provides software control capabilities that might 

be exploited to achieve real-time wavelength switching, but 

its scalability and flexibility are limited by various types of 

physical layer impairments [4-6]. 

A key unresolved challenge to achieving dynamic ROADM 

systems through SDN is predicting and controlling the 

optical power dynamics resulting from wavelength switching 

operations. Power excursions can result from the 

interactions between the wavelength dependent gain and 

automatic gain control of optical amplifiers, Raman 

scattering in the fiber and other wavelength dependent 

phenomena. Deviations of the channel powers outside 

pre-allocated system margins can potentially result in 

service disruption due to reduced quality of transmission 

(QoT) [7]. For this reason, today’s commercial systems take 

minutes and even hours to provision a wavelength through 

time-consuming power adjustments along an optical path 

[8]. To realize dynamic ROADM systems, we implement a 

deep neural network that predicts power excursions 

resulting from wavelength switching operations. After 

training a 90-channel multi-hop ROADM system including 8 

Erbium-doped fiber amplifiers (EDFAs) and 5 ROADM 

nodes with 67200 training samples, the deep neural network 

is able to recommend wavelength assignments for 

wavelength switching in randomly loaded systems with over 

99% precision.  

The remainder of this paper is organized as follows. In 

Section II, we discuss the basics of power excursions and 

related work to address power excursions. In Section III, we 

introduce the principle of the proposed deep neural network 

approach. The experimental setup is discussed in Section IV. 

In Section V, we discuss the deep neural network 

architecture, data collection, training, and power excursion 

prediction. The performance of the deep neural network is 

evaluated against different metrics to show its effectiveness 

to mitigate power excursions in wavelength switching 

operations. In Section VI, we address the scalability of the 

proposed approach for large-scale ROADM systems. We 

conclude our findings in Section VII. 

II.  PROBLEM STATEMENT 

Recent work has extensively investigated advanced 

modulation formats to improve the spectral efficiency and 

network capacity of WDM transmission systems [9]. But, 
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Fig. 1. (a) The schematic diagram of a neuron (b) Illustration of a 

deep neural network containing two hidden layers. 

these spectrally efficient modulation formats require tighter 

QoT margins due to lower tolerance to both optical noise 

accumulation (impacting the optical signal-to-noise ratio 

(OSNR)) and fiber nonlinearity based impairments. As a 

result, the reduced transmission distances are further 

compromised by large margins that are needed to account for 

optical channel power variations or uncertainties. Thus, 

optical power dynamics that arise from wavelength 

switching operations become especially problematic in these 

systems. Furthermore, optical power dynamics often include 

phenomena that switching a wavelength on one channel 

causes power changes on other channels [7]. 

One main manifestation of optical power dynamics is the 

transient effect in an optical amplifier. The transient effect is 

fast power overshoots and undershoots that arise from 

sudden changes in input power due to wavelength switching 

operations or upstream fiber cut. For automatic gain 

controlled (AGC) EDFAs, a fast feedforward control loop can 

be implemented to augment the slower feedback control loop 

to effectively and rapidly suppress the transient effect. The 

feedforward control loop has the response time of 1 µs that 

can immediately adjust the pump power based on a 

pre-defined relationship between the pump current and 

input power for a target gain [10].  

A different form of optical power dynamics in optical 

amplifiers—power excursions that result from the 

interactions between the wavelength dependent gain and 

AGC of optical amplifiers—can occur in wavelength 

switching operations.  In the case of these power excursions, 

wavelength switching operations lead to persistent power 

differences on surviving channels, which are then corrected 

over long time scales using individual channel power 

controls in the ROADM nodes.  Power excursions can grow in 

magnitude over cascaded amplifiers and cause substantial 

service disruptions. In recent work, 15-dB power excursions 

were reported in a WDM transmission system with 

recirculating loops totaling 2240 km [11]. For this reason, 

introducing or provisioning a new channel into a ROADM 

system is a time-consuming process that requires repetitive 

small-step power adjustments by sequentially actuating 

many optical components along an optical path to ensure 

that the powers of all surviving channels are within 

pre-allocated margins. In commercial-scale transmission 

systems, the fastest reported wavelength provisioning time 

is several minutes for a single 400 Gbps wavelength channel 

over a long-distance link [8]. 

There have been a number of approaches to address these 

amplifier-based power excursions. A fast tunable source was 

implemented to distribute a single optical signal over two 

wavelengths—one with a high gain and the other with a low 

gain—to equalize the mean gain and cancel out the power 

excursions [12]. An analytical solution was studied in [13] to 

mitigate power excursions based on a pre-measured EDFA 

gain spectrum. However, the gain spectrum does not 

consider the tilt change during wavelength switching 

operations and as a result only 5%-15% power excursion 

reduction is achieved. An optical probing method was also 

investigated to measure the EDFA gain spectrum without 

causing power excursions on surviving channels and thus 

recommend an optimal wavelength assignment with 

minimal power excursions [14]. Nevertheless, previous work 

relies on either specific system designs or specialized 

hardware and as a result increases the total hardware cost. 

Conversely, machine learning offers a more flexible solution 

without special hardware requirements. Particularly, 

machine learning has been well used to promote the 

development of intelligent optical communication systems 

[15, 16]. Through the extensive data collection of the power 

excursions versus changing channel loadings, a machine 

learning model can be trained to accurately recommend new 

wavelength assignments which will not cause power 

excursions. Previous machine learning applications 

examined wavelength assignment and defragmentation to 

minimize the channel power divergence or standard 

deviation of surviving channels, which primarily arises from 

the static gain ripple and tilt of EDFAs [17, 18]. Regression 

models, such as ridge regression and kernelized Bayesian 

regression were investigated to predict the channel power 

divergence in a 24-channel single-hop ROADM system, but 

such regression models do not consider the interactions 

between WDM channels and are unlikely to accurately 

predict the power excursions in wavelength switching 

operations. In order to accurately predict power excursions 

for WDM transmission systems including multiple ROADM 

hops and full C-band WDM channels, a more sophisticated 

machine learning model based on a deep neural network is 

investigated in this paper. In this work, we extend a recent 

analysis of neural network based wavelength switching in 

[19]. We provide additional analysis on the computational 

complexity, overfitting reduction, and early termination 

using the deep neural network. The performance is also 

compared against random forest, showing the advantage of 

the deep neural network in learning and predicting complex 

power excursions. The scalability of the deep neural network 

in large-scale transmission systems is discussed, and we 

propose two approaches as our future work. 

 

III. PROPOSED MACHINE LEARNING METHODOLOGY 

Machine learning has been developed to allow computers 

to learn to do a specific task without being explicitly 

instructed. Machine learning problems can be divided into 

two general categories—supervised learning problems and 

unsupervised learning problems. Supervised learning 

analyzes the training data and produces a relationship 

between an input object and the desired output object, which 

can be used for predicting the output of new input objects.       

Unsupervised learning problems try to draw inferences from 

datasets only consisting of input data. In this work, the focus 

is on developing a supervised machine learning model to 
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Fig. 2. Schematic of the experiment setup including 5 ROADM nodes, 4 fiber spans and 8 EDFAs with different gain characteristics. The 

training, validation and test data are collected by reconfiguring the channel loadings and measuring the power excursions.   

 
Fig. 3. EDFAs in the first span with different gain spectra. (a) 

Wavelength dependent gain spectrum of the first EDFA (b) 

Wavelength dependent gain spectrum of the second EDFA. 

predict power excursions based on an initial set of channels 

and the addition of a new set of channels. The data set 

includes the impact of complex interactions between 

channels that result in the power excursion response. A 

popular machine learning model for solving such complex 

problems is deep neural networks. 

Deep neural networks are computational models that are 

inspired by the biological neural networks in the human 

brain [20]. The basic unit of a deep neural network is a 

neuron (also known as a node or unit) as shown in Fig. 1(a), 

which receives the input from other neurons and computes 

the output. In the real world, most data are nonlinear and we 

want these neurons to learn complex nonlinear 

representations. Therefore, nonlinear activation functions 

are introduced to the output of neurons to improve neural 

network approximations. Common types of nonlinear 

activation functions include tanh (hyperbolic tangent), 

sigmoid, and ReLU (a unit ramp function). Recent work has 

reported the advantages of ReLU because ReLU does not 

cause the “Gradient Vanishing” problem (which can 

completely stop the neural network from further training) 

[21]. However, the optimal activation functions will still 

depend on the particular applications and need to be 

determined by trial and error during the training process.  

Deep neural networks combine many layers of neural 

networks to find complex relationships and abstractions 

from the input data to understand and approximate the 

output. 

A deep neural network consists of three types of layers as 

shown in Fig. 1(b): (i) Input layer: contain input neurons that 

provide information from the outside world. (ii) Hidden 

layer: contain hidden neurons that perform nonlinear 

transformations from the input layer to the output layer. A 

deep neural network may contain multiple hidden layers. 

(iii) Output layer: contain output neurons that predict the 

output to the outside world. The initial weights of the neural 

network are randomly set based on a probability distribution 

determined by the user. The first stage of training the neural 

network is forward propagation. The input vector is 

propagated through the neural network to determine the 

corresponding output. A cost function C is used to measure 

the accuracy of the predicted output ŷi and the corresponding 

true output yi. Common cost functions include mean square 

error (MSE) for regression (Eq. (1)) and cross entropy log loss 

for classification (Eq. (2)): 
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The next step is to determine how to update the network 

weights in order to minimize the cost function. Mini-batch 

(only a user-selected small subset of the training set in each 

training iteration) gradient descent is commonly used to 

determine the direction of steepest descent and how each 

weight in the neural network should be updated [22].  

In order to optimize the performance of the deep neural 

network, validation data is used to compare the performance 

of a deep neural network with different parameters. The 

configuration that minimizes the specified loss function is 

chosen, and the test data is used to get an unbiased view of 

the performance of the deep neural network.    

IV. EXPERIMENTAL SETUP 

A metro-scale multi-hop ROADM system shown in Fig. 2 

is built to study wavelength switching using the proposed 

machine learning approach. At the transmitter, a 90-channel 

comb source with spacing of 50-GHz is used to create 90 

WDM channels from 191.60 THz to 196.05 THz (i.e., 1529.2 

nm to 1564.7 nm in wavelength). The power of the 

transmitter is then equally divided into four equal outputs 

using a 1×4 splitter, and each output is sent to a different 

ROADM (ROADM 1 to ROADM 4) to create different channel 

loadings. The ROADM system consists of five ROADMs 

which are separated by four standard single-mode fiber 

(SSMF) spans. Each SSMF span contains two dual-stage 

AGC EDFAs to compensate for the loss of the ROADMs and 

the transmission fiber and one variable optical attenuator 

(VOA) to increase the span loss to match the average 18-dB 

amplifier gain. Two-stage EDFAs realize the tilt-control by 

adjusting the attenuation of the variable optical attenuator 

(VOA) in the first stage, taking advantage of the fact that the 

tilt is dependent on the internal gains of the individual 

stages [14]. The tilt of each EDFA is adjusted in order to 

create wavelength dependent gain and study the power 

excursion mitigation, however, the peak to peak gain 

variation is kept within +/- 0.5 dB, which is typical for line 

(1) 

(2) 
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Fig. 4. The architecture of the deep neural network. The input 

layer contains 180 features, representing the ‘on’ or ‘off’ state of 

initial channels and new channels. The output layer contains a 

single output, representing the maximal power excursion 

among all initial channels. 

amplifiers. Two-stage EDFAs realize the tilt-control by 

adjusting the attenuation of the variable optical attenuator 

(VOA) in the first stage, taking advantage of the fact that the 

tilt is dependent on the internal gains of the individual 

stages [14]. The VOA of the EDFA will be automatically 

adjusted by its internal controller based on the user-specified 

tilt requirement. The tilt is defined as the peak-to-peak gain 

variation of a least-squares-fitted line of the channel gains 

over the full signal band (ranging from 1529.2 nm to 1564.7 

nm). Figure. 3 shows the gain spectrum of the two EDFAs in 

the first span. The tilt of the first EDFA is set to -0.4 dB to 

compensate for the stimulated Raman scattering (SRS) in 

the transmission fiber. The tilt of the second EDFA is set to 

1.0 dB. The EDFAs in the other three spans have the same 

gain and tilt settings, thus giving rise to a similar gain 

spectrum. After cascading four transmission spans, the 

cumulative peak-to-peak gain variation across the C-band is 

measured to be 3.8 dB. Note that 4-6 dB gain variation is 

typically allowed between ROADM nodes depending on the 

system design. Such peak-to-peak gain variation along with 

the AGC operation results in substantial power excursions in 

wavelength switching operations. Each ROADM is 

comprised of multiple wavelength selective switches (WSSs), 

per-channel VOAs and per-channel optical channel monitors 

(OCMs). The power at the drop point is tapped to the OCM 

for per-channel power measurement. To measure the power 

excursion, we first measure the per-channel power of initial 

channels at the channel drop point before the wavelength 

switching operation. Then, we measure the per-channel 

power of initial channels at the channel drop point after the 

wavelength switching operation (i.e., a new wavelength 

channel is added into the system). The power excursions are 

measured by taking the differences between them. Note that 

in general ROADMs will perform gain equalization for all 

the output ports to remove the power excursion accumulated 

in the previous link. This operation is time consuming and 

requires spectral analysis and therefore would come after 

the channel add or drop event and would be used to remove 

any residual power excursions. Using the deep neural 

network based wavelength switching, thus minimizes these 

gain equalization operations, resulting in more stable 

system operation and faster turn up times for new channels. 

The effectiveness of machine learning is evaluated for 

power excursions that occur on top of the static power 

divergence due to the EDFA gain ripple and tilt. Thus, the 

system is initially configured to remove the static power 

divergence. Two types of channels are identified for 

wavelength switching operations—initial channels and new 

channels. First, the VOAs in each ROADM are initialized to 

ensure uniform 0-dBm launch power per-channel into the 

transmission fiber (i.e., 19.5-dBm total power) with the 90 

initial channels (i.e., with 90-channel WDM input). These 

attenuation values are stored as a reference for newly added 

channels. Note that the VOA initialization can largely 

mitigate the channel power divergence due to static 

wavelength dependent gain in the EDFAs and static SRS in 

the transmission fiber. However, the initial VOA values 

cannot guarantee uniform 0-dBm power per-channel when 

the initial channel loading is changed in later experiments 

due to EDFA tilt change, EDFA power excursions, and 

dynamic SRS. Thus, VOA adjustment is executed to remove 

any power variations before wavelength switching, as would 

normally be done in system operation.  

V. RESULTS AND DISCUSSIONS 

In this section, we describe the data collection process, 

deep neural network architecture, training process, power 

excursion estimation, and wavelength assignment 

recommendation using the trained deep neural network. A 

deep neural network is first built and trained. Its 

performance is evaluated with regard to the number of 

training samples, the speed of the training process, and the 

accuracy in power excursion prediction and wavelength 

assignments. The performance of ridge regression and 

random forest methods are evaluated against the deep 

neural network for comparison purposes. 

A. Data Collection 

    The first step in learning the complex optical power 

excursion response is extensive data collection of the power 

excursion response under a variety of channel loadings. 

However, such a data collection process is time-consuming 

due to the speed limitation of hardware actuation and 

software control. In this experiment, collection of each data 

sample takes approximately 3 seconds on average, including 

the latency of control signaling, WSS actuation along an 

optical path, VOA adjustment, and power excursion 

measurement. Note that the VOA adjustment is executed 

only once on each initial channel for each initial channel 

loading to remove any power variations, as would normally 

be done in system operation. The WSS actuation to turn on 

the new channels (with no additional VOA adjustments) and 

the power excursion measurement are executed for each 

wavelength switching operation. Collecting data might even 

take longer in commercial large-scale systems, and thus 

potentially imposes an obstacle to using the machine 

learning in practical ROADM systems. Methods to overcome 

to address these implementation issues will be discussed 

later. 

In this experiment, 1680 training cases are used to train a 

deep neural network, each of which contains 40 power 

excursion measurements (i.e., 67200 training samples in 

total) as the following process: 40 available wavelength 

positions for adding a new channel are randomly selected, 

and the maximal power excursion among all initial channels 

is measured by switching on and off these 40 wavelength 

positions one by one. In addition, 210 validation cases are 

collected for evaluating how well the deep neural network is 

trained and which parameters provide optimal prediction 

performance. Finally, another 210 testing cases are collected 

for evaluating the prediction accuracy and the performance 

of wavelength switching using the deep neural network. In 
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Fig. 5. The root-mean-square error (RMSE) of the training set 

and the test set as a function of the number of training samples 

during online training.  

TABLE I 

PARAMETERS OF THE OPTIMIZED DEEP NEURAL NETWORK 

Parameter Value 

Neurons in hidden layers (180,120,30,15) 

Activation function (tanh, tanh, ReLU, ReLU) 

L2 regularization 0.001 

Dropout rate 0.1 

Initial learning rate 0.005 

Number of epochs 217 

 

total, 84000 data samples are used in this experiment, 

taking approximately 70 hours for collection. Note that in 

this experiment all channels are sent through the longest 

route over 4 spans (i.e., ROADM 1-2-3-4-5), but the machine 

learning methodology is applicable to the multi-route case by 

recording the added ROADM and the dropped ROADM as 

additional input and collecting more training samples. 

Strategies to minimize the number of training samples while 

ensuring the prediction accuracy will be detailed in the 

training section.  

B. Deep Neural Network Architecture 

A deep neural network is built to predict the power 

excursion that occurs when adding a new channel into the 

multi-hop ROADM system. The input of the deep neural 

network is a 180-element binary vector as shown in Eq. (3). 

The first 90 binary input features (which correspond to 90 

wavelength locations) are used to represent the wavelength 

locations of initial channels. A ‘1’ represents that the 

wavelength is initially lit or occupied and a ‘0’ represents 

that the wavelength is not initially lit.  The next 90 binary 

input features represent the wavelength locations of new 

channels being added into the systems. The ‘1s’ represent the 

new wavelength locations of new channels added into the 

system. Note that in this experiment, we focus on the 

channel add operation, and we will show that minimized 

power excursions are guaranteed for channel add operations. 

Since the channel drop operation is the reverse process of the 

channel add operation, minimized power excursions are also 

guaranteed for the corresponding channel drop operations. 

The output that we aim to predict is the maximum power 

excursion among all initial channels as shown in Eq. (4). 

 
180

1 2 90 91 180[ , ] [ , ,..., , ,..., ] {0,1}initial newx x x x x x x x  

max ( )jj Initial channel
y P


   

 

The optimal neural network architecture is determined by 

varying a number of parameters. The optimized parameters 

include: the number of hidden layers, the number of neurons 

per layer, the activation function of hidden layers, the 

number of iterations (or epochs), the learning rate, the L2 

regularization term, and the dropout rate. The performance 

is determined by minimizing the root mean square error 

(RMSE) against the validation set. The RMSE can be 

interpreted as the standard deviation of the difference 

between observed and predicted values (in dB). A lower 

RMSE indicates a more accurate prediction. The 

architecture with the lowest validation RMSE depicted in 

Fig. 4 includes 4 hidden layers using a combination of tanh 

and ReLU activation functions. Other parameters are 

summarized in Table. I, and the details of training the deep 

neural network will be discussed in the next section. 

C. Training 

It is important to minimize the data collection time while 

still ensuring prediction accuracy. With a small number of 

available training samples, the deep neural network tends to 

over-fit the specific training samples resulting in a low 

training error. However, since these training cases do not 

well represent the full set of behaviors in the system, this 

causes a high variance that generates a high prediction error 

in the test samples as new data samples have not been seen 

by the deep neural network. Getting more training samples 

can effectively reduce the variance and better generalize the 

model, but the prediction performance might saturate at 

some point because of the existence of a small bias that 

limits further improvement of learning performance. The 

bias in this experiment mainly arises from actual system and 

measurement errors such as time-varying penalties (e.g., 

temperature change) and measurement uncertainty (e.g., 

OCM inaccuracy). For example, the accuracy of OCMs in this 

experiment is ±0.1 dB, and it may happen that two data 

samples with the same features give rise to different target 

output. 

In this experiment, online training is implemented in a 

control plane to determine the number of training samples 

that are needed as follows. 210 testing cases and 210 

validation cases are first collected. The online training of the 

deep neural network contains repetitive processes. For each 

process, 168 more training cases (i.e., 6720 more training 

samples) are added to the training set to train the deep 

neural network and calculate the root-mean-square error 

(RMSE) of the 210 testing cases. The online training 

continues until the test RMSE does not decrease with two 

consecutive processes. Figure. 5 illustrates the training 

RMSE and test RMSE over a varying number of training 

samples (also called the learning curve) during online 

training of the deep neural network. The training error curve 

shows the difference between the prediction based on the 

training data compared against the actual training data; 

whereas the test error curve shows the error in predicting 

the power excursion for different sets of random data (the 

(3) 

(4) 
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Fig. 6. RMSE as a function of the number of epochs in the 

training stage.  The training stage is terminated at the 217th 

epoch with the validation set RMSE of 0.104 dB. 

 
Fig. 7. Predicted power excursion vs. measured power excursion over the test set. (a) Deep neural network (b) Ridge regression (c) Random 

forest. Both ridge regression and random forest underestimates the power excursion when the actual power excursion is above 2 dB. 

test set). With just 6720 training samples, there is a large 

difference between the training error and the test error due 

to large variance on different samples, indicating a poor 

generalization of the model. With the increased number of 

training samples, the training error and the test error start 

to converge but a gap will persist due to the inherent 

variance of the samples. Online training stops at 67200 

training samples because there is no RMSE decrease over 

two consecutive processes. 

The deep neural network shown in Fig. 4 is trained to 

minimize the RMSE using mini-batch stochastic gradient 

descent (SGD) with a mini-batch size of 64. In order to 

prevent overfitting, regularization techniques, including L2 

regularization [23] and dropout [24] are implemented. 

Several combinations were tested with a varying L2 

regularization value and dropout rate in each hidden layer, 

and we found an L2 regularization of 0.001 and a dropout 

rate of 0.1 can effectively prevent overfitting and achieve low 

RMSE. The initial learning rate is set to 0.005 and is 

adapted in the training stage to allow for fine weight 

updates. The learning rate adaptation is multiplied by 0.99 

every epoch. 

It is important to reduce the training time as long training 

time for a system can add significant cost. One important 

metric that decides the training time is the number of epochs 

in the training stage, since the total training time is linearly 

proportional to the number of epochs. In this experiment, the 

tradeoff between the prediction accuracy and the number of 

epochs is evaluated by comparing the accuracy of the neural 

network predication using the validation data set. Figure. 6 

shows the RMSE (in dB) of the training set and the 

validation set in the training stage as a function of the 

number of epochs. Initially, the RMSE of both the training 

set and the validation set significantly decreases with the 

increased number of epochs. After approximate 200 epochs, 

although small fluctuations exist, the RMSE of the 

validation set shows minimal improvement. In fact, the 

RMSE of the validation set is 0.103 dB after 200 epochs and 

0.100 dB after 900 epochs.  In this experiment, the training 

is terminated if three consecutive epochs fail to decrease the 

RMSE of the validation set. By introducing this rule to the 

training stage, the training stage is terminated at the 217th 

epoch with a validation RMSE of 0.104 dB. Compared with 

the validation RMSE of 0.100 dB at 900th epoch, there is 

negligible performance difference, but the training time is 

reduced by more than a factor of four.  

D. Performance Evaluation 

After the training stage has completed, a check on the 

deep neural network performance is carried out against the 

test set using different metrics. For comparison purposes, 

ridge regression and random forest methods are also 

evaluated against the test set. For the ridge regression 

model, the regularization parameter was tuned to 0.01 

through cross validation. For the random forest model, 200 

trees (with 180 features being considered for each tree) are 

found to provide the best performance while ensuring 

minimal training time. Note that we also evaluated the 

support vector machine (SVM), but its computational time 

does not scale well to a large number of training samples 

[25].  

First, the RMSE and the maximal prediction error of the 

entire test set are evaluated, and the results are summarized 

in Table. II. A lower RMSE indicates a more accurate 

prediction. Similarly, a lower maximal prediction error 

reveals a better fit under corner cases. The deep neural 

network outperforms ridge regression and random forest by 

TABLE II 

TEST RMSE AND MAXIMAL PREDICTION ERROR  

Machine learning 

model 
RMSE (dB) 

Maximal 

error (dB) 

Deep neural network 0.104 0.8 

Ridge regression 0.273 2.3 

Random forest 0.281 2.7 
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Fig. 8. MSEC as a function of wavelength locations using 

different machine learning approaches. The deep neural 

network not only provides less prediction error but also more 

stable performance across the entire 90 channel spectrum. 

 
Fig. 9. δ-recommendation accuracy as a function of δ margin 

from the actual minimal power excursion. The deep neural 

network is able to recommend the actual optimal wavelength 

79.5% of 210 test cases. 

more than a factor of two in the RMSE and the maximal 

error. Random forest results in a worse performance because 

it is not able to learn the complex nonlinear relationship 

among 180 features with the given 67200 training samples. 

Ridge regression performs worse than the deep neural 

network because ridge regression does not take into account 

the inter-dependencies between input features. The 

prediction errors using different machine learning models 

can also be viewed in Fig. 7. The actual power excursion 

ranges from 0 dB to 3.5 dB, and black dashed lines indicate 

the perfect prediction. Its seen that the deep neural network 

obtains significantly lower errors between the actual power 

excursions and the predicted power excursions, and its 

accuracy is stable over the entire power excursion range. On 

the other hand, both ridge regression and random forest 

result in high prediction errors, particularly when the actual 

power excursion is above 2 dB. 

The second metric used to evaluate the performance is the 

mean square error of the channel (MSEC) at a particular 

wavelength. A low MSEC indicates a high prediction 

accuracy for the particular wavelength, while a high MSEC 

indicates that the particular wavelength may not be 

considered as a potential candidate for wavelength switching 

due to a substantial prediction error. Figure. 8 shows the 

MSEC of 10 different wavelengths. The deep neural network 

efficiently keeps the MSEC below 0.02 dB2 across all 10 

wavelength locations, while the maximal MSEC using ridge 

regression and random forest can be as large as 0.11 dB2 and 

0.13 dB2, respectively. Moreover, the MSEC is stable among 

all 90 channel wavelength locations with a standard 

deviation of 0.004 (Note that only 10 wavelengths are shown 

in the figure), indicating that the deep neural network is 

trustworthy to make an accurate prediction over the entire 

spectrum. In contrast, ridge regression and random forest 

result in much higher standard deviations of 0.03 and 0.04, 

respectively.  

Third, we evaluate the δ-recommendation accuracy, which 

is the proportion of test cases in which the deep neural 

network is able to recommend a wavelength with a power 

excursion within a δ margin from the minimal power 

excursion (which is achieved by switching on the optimal 

wavelength). A higher δ-recommendation accuracy indicates 

the model is able to accurately recommend wavelengths for 

wavelength switching operations within a tighter power 

excursion bound. Figure. 9 shows the δ-recommendation 

accuracy as a function of the δ margin using the deep neural 

network, ridge regression, and random forest. In this 

experiment, the minimum δ margin is 0.1 dB, taking into 

account the ±0.1 dB precision in the power measurement. 

When the δ margin is set to 0.1 dB, such that the system has 

the strictest requirement of wavelength assignments (i.e., 

the exact optimal wavelength must be predicted by the 

model), the deep neural network can recommend the optimal 

wavelength among 40 wavelength candidates over 79.5% of 

the time (i.e., 167 test cases out of 210 test cases), while ridge 

regression and random forest only achieves 41.4% and 56.7% 

recommendation accuracy. When the δ margin increases to 

0.4 dB (i.e., the actual power excursion of switching on the 

recommended wavelength must be within 0.4 dB from the 

minimal power excursion), the recommendation accuracy of 

the deep neural network is 100%, while the recommendation 

accuracy of ridge regression and random forest are only 

89.5% and 96.2%. We also note that although random forest 

demonstrates a better accuracy than ridge regression under 

a small δ margin, its performance gets saturated after δ=1.2 

dB. This result indicates that random forest leads to a higher 

variance over the new data set with high power excursions 

(i.e., predict some test cases pretty well but others poorly). 

Note that these tests are conducted over a finite size, 

randomly generated data set within a very large space of 

possible values and therefore this bound does not guarantee 

accuracy over the full range of possible events. 

Next, the classification accuracy is assessed for different 

power excursion thresholds using receiver operating 

characteristic (ROC) curves as shown in Fig. 10. A better 

classification accuracy indicates a more powerful model that 

is able to separate good wavelength candidates from the bad 

ones for a given system power excursion threshold. In this 

experiment, the classification accuracy is checked against 

two different power excursion thresholds—0.5 dB and 1.5 dB 

—in according to the system QoT requirement reported in 

our previous work [12]. The classification is evaluated by two 

metrics: (i) The ability to separate positive cases from 

negative cases, which is quantified by the true positive rate 

(TPR) at a given false positive rate (FPR). A positive case 
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Fig. 10. Receiver operating characteristic (ROC) curves to 

assess the classification accuracy for different system power 

excursion thresholds. (a) 0.5-dB threshold (b) 1.5-dB threshold. 

 
 
Fig. 11. PTPR curves using different machine learning models 

with two different system power excursion thresholds. (a) 

0.5-dB threshold (b) 1.5-dB threshold. 

means that the deep neural network recommends a channel 

as being within a given decision threshold, and a negative 

case means that the deep neural network rejects a channel 

as being outside a given decision threshold. Note that the 

decision threshold is used by the machine learning model to 

determine whether a potential wavelength is positive or 

negative, which is different from the system power excursion 

threshold. TPR is the ratio of correct positive predictions to 

all actual positives, and FPR is the ratio of incorrect positive 

predictions to all actual negative predictions. A perfect 

classification model is able to obtain 100% TPR while 

maintaining 0% FPR. The ROC curve is formed by 

connecting all TPR/FPR pairs, each of which corresponds to a 

different decision threshold. (ii) The area under the ROC 

curve (AUC). The AUC varies from 0.5 to 1, where 0.5 is the 

performance of a random classification model and 1 is the 

performance of a perfect classification model. Figure 10 

shows the classification accuracy under 0.5 dB and 1.5 dB 

thresholds using the deep neural network, and the 

performance is compared to ridge regression and random 

forest. With a 0.5-dB power excursion threshold, the deep 

neural network obtains the best classification accuracy with 

a TPR of 80.4% while ensuring the FPR less than 1% and the 

AUC of 0.977. When the system power excursion threshold is 

increased to 1.5 dB, the deep neural network obtains the 

TPR of 97.1% with less than 1% FPR and the AUC is 0.995. 

We also note the interesting behavior of random forest for 

which the classification accuracy goes down (with an AUC 

from 0.947 to 0.883) when the system power excursion 

threshold is increased from 0.5 dB to 1.5 dB. This indicates 

that random forest tends to estimate the power excursion to 

be less than 1.5 dB, when the actual power excursion is 

above 1.5 dB. 

Finally, we evaluate the PTPR, which is defined as the 

precision at a specific TPR under a system power excursion 

threshold. The precision is the ratio of true positives to the 

number of total positive values predicted. Keeping a high 

PTPR is important because minimizing the chance of adding 

a channel with a power excursion beyond the system margin 

(which may disrupt the whole transmission system) is more 

important than missing a possible valid channel candidate. 

Thus, a high PTPR guarantees reliable system operations 

with a minimal possibility of system disruption due to 

wavelength switching operations. Figure. 11 shows the 

PTPR curve with 0.5-dB and 1.5-dB thresholds using 

different machine learning models. With a 0.5-dB power 

excursion threshold, the deep neural network obtains a 

precision of over 99% while ensuring a TPR of greater than 

76% (i.e., ensure less than 1% false positives but also misses 

roughly 24% valid wavelength candidates). For comparison, 

ridge regression and random forest only obtain the TPR of 

13.1% and 35.4% respectively in order to achieve the same 

precision. When the power excursion threshold is increased 

to 1.5 dB, the deep neural network is able to obtain a 100% 

precision while obtaining a 96.4% TPR (i.e., ensure zero false 

positives while missing only 3.6% valid wavelength 

candidates). 
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Fig. 12. Illustration of the machine learning approach that 

individual machine learning models are trained in a distributed 

manner. Different colors represent amplifiers from different 

vendors. For a new end-to-end connection request (dashed red 

line), the output power can be estimated by combining the 

prediction of individual neural network models. 

VI. SCALABILITY OF THE MACHINE LEARNING 

APPROACH 

The results proposed in the previous sections reveal that a 

deep neural network can efficiently reduce and in some 

situations bound the power excursion in a 90-channel 

DWDM transmission system including 4 SSMF spans and 8 

EDFAs, thus allowing rapid wavelength switching 

operations. Future work needs to consider the scalability and 

implementation in large-scale mesh networks. Mesh optical 

networks involve a larger number of spans and optical 

amplifiers resulting in an increase in complexity. Methods to 

address this in future work can be twofold as follows. 

First, practical WDM transmission systems are developed 

in a mesh topology containing multiple multi-degree 

ROADM nodes. As shown in Fig. 12, network edges that 

connect pairs of ROADM nodes may carry channels with 

different wavelengths (i.e., the set of wavelengths entering 

each EDFA is different), and each edge may also contain a 

different number of EDFAs. In these situations, machine 

learning that is trained in a distributed manner can be used 

to reduce the learning complexity as shown in Fig. 12. An 

individual machine learning model can be applied to predict 

the output power along individual edges. Using a centralized 

SDN controller, the resulting power excursions can be 

predicted by combining the individual prediction algorithms 

along the edges of the path. Moreover, the SDN controller 

needs coordinate lightpath setup that traverses multiple 

edges, taking into account the wavelength continuity and the 

system QoT.  

Second, it is important to address how the machine 

learning approach will scale with a different network, 

especially for a practical transmission system with the 

increased dimensions and complexity. It is very common to 

have commercial systems upgrade to support higher 

capacity, and it is impractical to train a new system every 

time from scratch. In order to avoid the time-consuming 

training data re-collection and machine learning model 

re-training, transfer learning can be applied to migrate the 

knowledge trained under one transmission system to a new 

transmission system. Previous work has used transfer 

learning to predict different 16 QAM systems using a trained 

deep neural network under a QPSK/16QAM system with just 

20 new training samples [26]. Thus, a reference system can 

be trained in the test lab before deployment and then 

transfer learning can be used on systems at the time of 

initial deployment. Online learning can further refine the 

machine learning model over time as the system 

performance evolves. The prediction of the power excursion 

response in different transmission systems using transfer 

learning and using online learning will be investigated in 

future work. 

VII. CONCLUSION 

A deep neural network is implemented to predict the 

dynamic power excursion of a 90-channel DWDM 

transmission system, containing 4 SSMF spans and 8 

EDFAs. The deep neural network is able to learn the 

complex optical power excursion response with 67200 

training samples and obtains a 0.1-dB RMSE for 8400 

random test samples. Based on the predicted power 

excursions, the deep neural network can recommend valid 

wavelengths for wavelength switching with a precision over 

99% over the tested samples. The deep neural network was 

also shown to be far more effective than regression and 

random forest models. This work is a first step in applying a 

deep neural network to rapid wavelength switching. The 

future work will investigate the deep neural network 

approach in large-scale networks along with transfer and 

online learning techniques for practical implementations.  
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