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We obtain the two-loop effective potential for general renormalizable theories, us-
ing a generalized gauge-fixing scheme that includes as special cases the background-
field R¢ gauges, the Fermi gauges, and the familiar Landau gauge, and using dimen-
sional regularization in the bare and MS renormalization schemes. As examples, the
results are then specialized to the Abelian Higgs model and to the Standard Model.
In the case of the Standard Model, we study how the vacuum expectation value and
the minimum vacuum energy depend numerically on the gauge-fixing parameters.
The results at fixed two-loop order exhibit non-convergent behavior for sufficiently
large gauge-fixing parameters; this can presumably be addressed by a resummation

of higher-order contributions.
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I. INTRODUCTION

The effective potential [1-3] is a useful tool for the quantitative understanding of spontaneous
symmetry breaking, with the most obvious application being to electroweak symmetry breaking in
the Standard Model and its extensions.

In gauge theories, the effective potential is simplest and easiest to compute in Landau gauge.
The 2-loop order effective potential was originally obtained for the Standard Model in [4], and
extended to general theories in [5]. The leading 3-loop contributions for the Standard Model were
obtained in ref. [6] in the approximation that the QCD and top-quark Yukawa couplings are treated
as much larger than the other dimensionless couplings. These results were then extended to full
3-loop order for a general theory in ref. [7], where they were written in terms of the basis of 3-loop
vacuum integral functions with arbitrary masses, as given in [8]. (For an alternative treatment
of the necessary basis integral functions, see [9].) When the tree-level Goldstone boson squared
mass is small or negative, as indeed occurs in the Standard Model, infrared (IR) divergences or
spurious imaginary parts arise in the effective potential, but it has been shown that a resummation
of Goldstone boson propagator contributions cures this issue [10, 11]; for further development and
related perspectives, see [12-18]. The 4-loop contributions to the Standard Model effective poten-
tial at leading order in QCD are also known [19]. One application of these results is to precision
calculations of physical masses and other observables in the Standard Model using the tadpole-free
scheme, which means that perturbation theory is organized around a vacuum expectation value
(VEV) defined as the minimum of the effective potential. This contrasts with the choice of expand-
ing around the minimum of the tree-level potential, which is often done but then requires inclusion
of tadpole diagrams and has formally slower convergence properties. Full two-loop electroweak
corrections to the Higgs boson, W, Z, and top-quark masses in this tadpole-free scheme have been
give in refs. [20-23]; these rely on the two-loop Standard Model effective potential result. Softly-
broken supersymmetric theories require a different renormalization scheme based on dimensional
reduction rather than dimensional regularization, and the 2-loop effective potential for the minimal
supersymmetric extension of the Standard Model has been obtained accordingly in refs. [24-27],
[5], [28]. All of these multi-loop results have been obtained in Landau gauge and no other, up to
now. We think it is reasonable to assert that Landau gauge is the preferred choice whenever the
effective potential plays a central role in high precision calculations.

However, it is also sometimes considered beneficial to make use of gauge invariance as a check
of both calculations and conceptual understanding. This can be done by considering the effective
potential obtained with other gauge-fixing schemes. It has long been understood [2, 29] that the
effective potential, and the vacuum expectation values of scalar fields defined by its minimum,
does depend on the gauge-fixing choice. This is not a problem, because physical observables
following from the effective potential, including its values at local minima, pole masses of particles,
and properly defined transition rates, are independent of the choice of gauge fixing. Important
results and a variety of perspectives on the issues related to the gauge dependence of the effective
potential and the gauge independence of physical observables can be found in [2, 29-53]. The
Nielsen identities [33, 34] parameterize the fact that the gauge-fixing dependence of the effective
potential can always be absorbed into a redefinition of the scalar fields. However, these identities
hold to all orders in perturbation theory, and practical results that are truncated at finite order



often require a careful treatment in order to demonstrate gauge-fixing independence of physical
quantities. In some cases, there are subtleties involved in verifying that a particular version of a
calculated quantity of interest is really a physical observable. Recently, it has been argued that
resummations of diagrams to all orders in perturbation theory are necessary to make manifest the
gauge-fixing independence [45] and to cure [50] related infrared (IR) divergence problems [35, 37]
that occur in Fermi gauges.

One of the uses of the effective potential is to study the stability of the Standard Model vacuum
with respect to the Higgs field [54-59], [37], [60-69], [43, 47, 51], [70, 71]. The observed value of
the Higgs boson mass near 125 GeV implies that the electroweak vacuum is metastable, if one
assumes that the Standard Model holds without extension up to very high energy scales. As noted
particularly in [37, 43], it is non-trivial to identify an instability scale that is gauge-independent.
Care is needed to identify physical observables correlated with the vacuum instability problem, and
to ensure that practical calculations of them in perturbation theory maintain the gauge invariance
that in principle should govern an all-orders calculation, as dictated by the Nielsen identities.

In this paper, we provide a calculation of the 2-loop effective potential in a general linear gauge-
fixing scheme, but leave aside such issues as resummation. We will provide results for a general
gauge theory, and then specialize to the Abelian Higgs model and the Standard Model as examples.

To establish notations and conventions, let us write the bosonic degrees of freedom in the
Lagrangian as a list of real gauge vector bosons Aj(z) and a list of real scalar fields ®;(z). The
latter transform under the gauge group with generators t‘;k, which are Hermitian, antisymmetric,
and therefore purely imaginary matrices. The indices j, k, ... label the real scalars, and a, b, ... are
adjoint representation indices for the real vector fields Ay, with coupling constants g, and totally
antisymmetric structure constants f%°, determined by [t?,t?] = ifect¢. Before gauge fixing, the
Lagrangian is:

1

1
ﬁYM = _ZFW/aFﬁV — §Du@jDu(I>j - V((I)]) + ﬁfermionsa (11)

where V(®;) is the tree-level scalar potential, and!

Ff, = 0,A% — 0,A% + g f*"°AD A, (1.2)
D@ = 0u®j — iga At5; Pp. (1.3)

Now we write each real scalar field as the sum of a constant background field ¢; and a dynamical
field R;,

Pi(x) = ¢j + Rj(z). (1.4)

T The metric signature is (=+,+,+). Throughout this paper, by convention, repeated indices in each term are
implicitly summed over, unless they appear on both sides of an equation. Thus, a is summed over in the last term
of eq. (1.3), but not in eq. (1.2).



In this background, the fermion Lagrangian for a general renormalizable theory can be written as

1

£fermions = i¢T15uDu¢I - §(MII,71Z)I¢I’ + YjIJRj¢I¢J + C.C.)- (15)

Here 17 are two-component left-handed fermion fields, labeled by capital letters from the middle

of the alphabet, I, J, K,.... The covariant derivative acting on fermions is
Dytbr = Ouibr — iga AT, (1.6)
with gauge group generator Hermitian matrices T}l‘] , which also satisfy [T%, T? = ifeT°. In

eq. (1.5), Y77 are Yukawa couplings, and M I are ¢j-dependent fermion masses. It is assumed
that (by performing an appropriate unitary rotation on the fermion indices) the fields ¢; have been
arranged to be eigenstates of the background field-dependent squared masses

M} = Mj, = M), (1.7)

such that the mass matrix M!!" connects pairs of fermion fields with opposite conserved charges.
Thus, it is understood that primed indices I’, J’, K’ ... label the mass partners of fermions with the
opposite charges labeled I, J, K, ... when they form a Dirac pair, while I’ = I for each fermion with
a Majorana mass and no conserved charge left unbroken by the background fields ¢;. Because two-
component fermion fields are intrinsically complex, the heights of the fermion indices are significant,
and raising and lowering them is taken to indicate complex conjugation, so that:

My = (M Yy = (Y7, Ty = (T17)". (1.8)

The effective potential is then a function of the constant background fields ¢;, and can be
evaluated in a loop expansion:

1 1
V() = VO6) + 5=V (0 + gV @)+ (1.9)

where V) (¢;) = V(¢;) is the tree-level part, and the contribution V(™) is obtained for n > 1 from
the sum of 1-particle irreducible n-loop Feynman diagrams with no external legs. Carrying out the
evaluation of the loop corrections requires gauge fixing and regularization of divergences.

A useful consistency check is obtained from renormalization group invariance of the MS form
of the effective potential. Writing the loop expansion of the beta function for each MS parameter
X (including the background fields ¢;, and the gauge-fixing parameters discussed below) as
dX 1 1
Qg =Fx = @5&” + 7(1%2)25@ ..., (1.10)



then the requirement

AVegr 0 0
Qo = (Q%jtgﬂxa—){)veff =0 (1.11)
yields
in(e) +§<26(4—n)iv(n)) =0 (1.12)
oQ =\ X 0Xx B '

at each loop order £/ =1,2,....

II. GENERALIZED GAUGE FIXING

To treat the gauge fixing, consider an off-shell BRST [72] formalism for the gauge invariance,
with Grassmann-odd ghost and anti-ghost fields n* and 7%, and bosonic Nakanishi-Lautrup [73]
auxiliary fields b*. The BRST transformations of the fields are essentially gauge transformations
parameterized by the ghost fields n®:

oprsTA), = Oun® — 9afabc7}bz427 (2.1)
OprsTR; = igan ] (oK + Ry), (2.2)
SprsTY1 = igan T 1, (2.3)
1
Oprst” = —5gaf """, (24)
dprsTN" = b, (2.5)
SpreTb® = 0. (2.6)
From these one can check the nilpotency of the BRST transformations:
OBRST(0BRSTX) = 0 (2.7)

for any field X. (Note that dggrgr is Grassmann-odd; it obtains a minus sign when moved past a
fermion or ghost field.) The Lagrangian in eq. (1.1) is invariant under this BRST transformation.
Together, these facts mean that we can obtain a BRST-invariant gauge-fixed Lagrangian by:

L = £YM + Eg.f. + Eghosta (28)

where the gauge-fixing plus ghost part is obtained as a BRST variation:

Lot + Lghost = OBRST (ﬁa Eé’ab“ —O"AY — iga%?t?kRk] ) (2.9)



Here £, and 5;” are gauge-fixing parameters; in general the latter may or may not be related to the
background scalar fields ¢; that the effective potential depends on. It follows that

1 ara a a . Taja
Lo = FEb"" —b (Z?MAM—i—zgaqﬁjtijk) (2.10)
and
Lonost = — 07" 0"1" + ga f0"T 0P AS + [gats; 0% [guthy (60 + R (2.11)

By integrating out the auxiliary fields b, one can re-write eq. (2.10) as:

1

Fet = T,

(0" A% + igad2te Ry)”. (2.12)

There are various special cases of the above general gauge-fixing condition that are of interest:

e Landau gauge: 5;” = 0 and ¢ — 0. This condition is renormalization group invariant,
and avoids kinetic mixing between scalar and vector fields. The resulting simplicity is why
this gauge condition is by far the most popular one for practical applications involving the
effective potential.

o Fermi gauges: gz~5? = (0. This condition is renormalization group invariant. However, the
parameters &, do run with the renormalization scale (except when they vanish). A further
complication is that when &, # 0, the scalar and vector fields have propagator mixing with
each other, which arises due to cross-terms Aj0"R; in the scalar kinetic term in eq. (1.1).
In the Landau gauge limit £, — 0, the effects of this cross-term disappear from the scalar
and vector propagators.

e “Standard” R¢ gauges: 5}1 = £a¢§1, where the ¢§1 are the classical VEVs that minimize
the tree-level scalar potential. This gauge-fixing condition is not renormalization group

invariant. In applications other than the effective potential, one can also set the background
fields ¢; to be equal to ¢§1, which results in cancellation of the scalar-vector propagator
kinetic mixing. However, when calculating the effective potential Veg(¢;), the whole point is
to allow variation of the background scalar fields ¢; that appear in the scalar kinetic terms,
the scalar potential, and in the fermion Lagrangian, so they cannot be fixed equal to the
tree-level VEVs (b;l that appear in the gauge-fixing term. Therefore the A7,0" ?; cross-terms
in the scalar kinetic term in eq. (1.1) do not cancel against those in eq. (2.12), so that there
is kinetic mixing between the scalar and vector fields.

e Background-field R¢ gauges: QNSE‘ = £,¢;. This avoids kinetic mixing between scalar and

vector fields, by canceling the cross-terms Af0"R; in the scalar kinetic term in eq. (1.1)
against those in the gauge-fixing term eq. (2.12), after integration by parts. However, this
condition is not renormalization group invariant, as noted immediately below.

e Generalized background-field R5 ¢ gauges: 5}1 = anbj where Ea is a gauge-fixing parameter

that is taken to be independent of £,. As a result, there is propagator kinetic mixing between




the scalars and vectors, proportional to ga—Ea. Also, it turns out that &, and Ea have different
counterterms, and run differently with the renormalization scale (except in the Landau gauge
case §a = ¢, = 0). To understand this, note that invariance of the Lagrangian under the
BRST symmetry does not require any special relationship between £, and Ea. Therefore,
they are free to be renormalized differently, and explicit calculation (given below for the
Abelian Higgs model and the Standard Model) shows that indeed they are. In contrast,
while §a appears in both Ly ¢ and Lghest, those instances of Ea are required to be the same
by the BRST invariance.

In this paper, we choose to specialize slightly to a particular version of the last, generalized
background-field R&g gauge-fixing condition. However, the 37 two-loop effective potential functions
that we will use to write the results [listed below in eq. (3.27), and evaluated in eqgs. (3.30)-(3.66)
and (3.108)-(3.144)] are actually generally applicable, because they correspond to the complete set
of two-loop vacuum Feynman diagram topologies, and so in principle are sufficient to evaluate the
two-loop effective potential even in the case of arbitrary (53’, or if the parameter &, is generalized
to a matrix £gp.

To see why the qualifier “particular version” appears in the preceding paragraph, note that
when the rank of the gauge group is larger than 1, the gauge fixing actually depends on a choice of
basis for the gauge generators, because the form of eq. (2.12) is not invariant’ under an arbitrary
orthogonal rotation of the real vector labels a. To choose a nice basis, consider the real rectangular

matrix:
F“j = igat?kqﬁk. (2.13)

The Singular Value Decomposition Theorem of linear algebra says that a real rectangular matrix
can be put into a diagonal form by an invertible change of basis, so that for some (perhaps
background field-dependent) orthogonal matrices (Oy ) and (Og);,

(Ov)* F*(Os)kj = Mad;. (2.14)

Assume that we have already rotated to the diagonal basis, which will be distinguished from now
on by boldfaced indices a, b, c,... for the vectors, and j, k.1, ... for the scalars, so that:

F?j = Mad2, (2.15)

where the M, are the singular values, with magnitudes equal to the gauge boson masses. In
general, this basis will mix vector bosons belonging to different simple or U(1) factors of the gauge
Lie algebra; in particular, this occurs in the Standard Model, where the mass eigenstate Z boson
and photon are mixtures of the SU(2);, and U(1)y gauge eigenstate vector fields.

In this basis, eq. (2.15) provides a natural correspondence between the massive vector bosons
and a subset of the dynamical scalar bosons. The members of this subset of the scalar bosons will be

T We will discuss this further in the concrete example of the Standard Model, in section IV C.



called Goldstone scalars because of this association with massive vector bosons and therefore with
broken generators. However, the contributions to the Goldstone scalar tree-level squared masses
from the scalar potential V' do not vanish, because we are not expanding around the minimum of
the tree-level potential.

It is convenient to split the lists of real vector fields and real scalar fields into those which
have non-zero M,, denoted by Z;f and G4, respectively, and the remaining ones, which will be
denoted by AZ and R;. Thus, indices A, B,C, ... are used to span the sub-spaces corresponding
to massive vectors and their corresponding Goldstone scalars, while from now on non-boldfaced
indices a, b, ¢, ... span only the complementary subspace for massless vectors, and non-boldfaced
.k, L, ... now span only the complementary subspace of non-Goldstone scalars. Thus the lists of
vectors and scalars split up as:

{45} = {2}, A%}, {R;} = {Ga, R;}. (2.16)
The ghosts and anti-ghosts also split into these sectors in the same way as the vectors:
{n*} = {n*, "}, = {1, (2.17)

where the same orthogonal rotation on the adjoint representation indices has been used as for the
vector fields. One can also write:

{Ma} = {Muy, 0}, (2.18)
{ga} = {gAa 5{1}7 (2.19)
{€a} = {&a, O} (2.20)

The vanishing of Ea in eq. (2.20) follows from eq. (2.18), because the Ea always appear multiplied
by the corresponding M,. In the following, the gauge interaction terms in the Lagrangian will be

written in terms of couplings:

gab07 g?ky g?J7 (221)

which are obtained respectively from the couplings g, f**, igat?k, and g, T I“J appearing in eq. (1.6),

by performing the same basis change via orthogonal rotations on vector and scalar indices as in

eq. (2.14). Note that we rely on the index height to distinguish these vector-vector-vector, vector-

scalar-scalar, and vector-fermion-fermion interaction couplings, because they all use the letter g,
and because scalar and vector indices can both be A, B, .. ..

The gauge-fixing and ghost terms in the Lagrangian then become:
1 ~ 2 1

Lot = ——(0"Z) — €AMAGA)” — ——

g 2 5 A ( u ) 2 ga

Lonost = —0"TP0um™ — EaMAT 0 + g*C A2nP O — EagdyMa Ry . (2.23)

(9rA2)?, (2.22)



This gauge-fixing can be specialized to the Landau gauge (by taking E A =0and £4,&, — 0), or
the Fermi gauges (by taking £~ 4 = 0), or the background-field R¢ gauges either in the bare theory
or at some particular renormalization scale (by taking 5 A=E4).

There are contributions to the scalar squared masses from the tree-level potential:

0%V
2
2 - __— 2.24
NJk aRjﬁRk Rn:07 ( )
which, in the basis we are using, can be divided into sectors as:
2 2
: " a . (2.25)
Hak  Hap

One can always specify a basis consistent with the one chosen so far, by doing a further rotation
(if necessary) among only the non-Goldstone scalar fields R;, with the result that

b2 = 10 (2.20)

is diagonal. However, in the most general case ,u124 p 1s not diagonal and ,u?% need not vanish. In
the remainder of this section we will discuss this general case, and in Section IV we will discuss
the simplifications that occur in the favorable case u%z = dapp? and /%241: = 0, with examples
including the Abelian Higgs model and the Standard Model.

The part of the Lagrangian quadratic in the bosonic and ghost fields is, after integration by

parts:
1 2 2 1 2 o2 2 1 2 2
L= SRy [0° = 5] B+ 5Ga [8 - (fA/gA)MA} Ga = 5HapGaGE — pa;GaR;
1 1
+54% [ 0% + (1/&, — 1)0"0"] A% + 523 [ (0% — M%) + (1/64 — 1)0"0"] Z7)

+MA(L = E4/€4) Z 0" G + T 4[0% — EAMAINA + T,0%1a (2.27)

By taking the inverse of the quadratic kinetic differential operator, one obtains propagator Feynman
rules of the form shown in Figures 2.1 and 2.2. The propagators for scalars and the massive vector
bosons both involve the same unphysical squared mass poles M2, labeled by x = 1,..., N, with N
the total number of real scalars plus massive vector bosons. The M?2 are the roots of a polynomial
in —p? of order N, involving the quantities Mi, &a, §A, ,u?, uij, and uiB. The M? may well be
complex, and are not always obtainable in closed algebraic form, but can be solved for numerically

on a case-by-case basis. The propagator Feynman rules also involve residue coefficients aﬂ?, bf&%,

and c%), which similarly require numerical evaluation in the most general case. The massive vector
boson propagators also have poles at the physical squared masses Mi. The massless vectors and
their corresponding ghosts are unmixed, and their propagator Feynman rules are shown in Figure
2.2. The two-component fermion propagators follow from eq. (1.5) in the usual way [74, 75|, and

are shown in Figure 2.3.
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FIG. 2.1: The scalar, massive vector Z, and corresponding ghost propagators, in the general case of
arbitrary mixing between Goldstone scalars and other scalar and vector bosons. The squared mass
poles M2 arise as the roots of a polynomial of order N in —p?, where N is the total number of real

scalar bosons and massive vector bosons, with kK =1,..., N.
u v
AN e Poeennnnnns
—1 n% w, v/, 2 —1
pfg[n + (& — Dp"p" /%] 2

FIG. 2.2: Feynman rules for the propagators of the massless vectors A (wavy lines), and the corre-
sponding massless ghosts 7%, 7% (dotted lines with arrows), each carrying 4-momentum p*.

p— I I I I
D — — O —— O
ip-o —ip-0 —iM1T —iMrp
5> 9 or - —— [ -
P2+ M? p? + M} p2 + M? p? + M}

FIG. 2.3: Feynman rules for the propagators of the two-component fermions (using the conventions of
[74, 75]), each carrying 4-momentum p*. The arrows follow the helicity, and the large dots represent
fermion mass insertions.

The interaction part of the Lagrangian can now be written in the form:

1.. 1 . 1 .
Ling = = N9R BBy — S N By By Ry R — S (VI Rytprpy + c.c)
a a — a a 1 a a
+o7” Ao ) — GR AL RO R — 5 0 in ARA"P Ry R
—g3iMaRZ{ AP — g3 €A M ARy 0
_gabcAuaAubaMAch o igabegcdeAuaAubA/(iAS + gabcAznbauﬁc7 (2.28)
where the ¢-dependent (scalar)® and (scalar)? couplings are defined from the tree-level scalar

potential by

Ajkl . 83‘/

N aRjaRk8R1 Rn:O’ (2'29)
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AR L’k v I I
x -k x =
1- ‘ “.m 1- ‘ J J
—iAjklm —iAjk1 iyklJ —1Yxrg
I j S Hn,a /j Hn,a
K 3 AR g _d
7/ N
q e ’ \\
J k’ v,b vk v,b
igp o, or —igiloy “GP+Du —iu (g5 IRn + Gain) —in, G2P
um,a v, b H,a as, a,
p\ v, b "’. m,C "'
p > P AN PR
« - -
I P*F *
p,C o,d p,C b~ A~
—iGEDse ! —g*Pp, —ig5;€AMa

FIG. 2.4: Feynman rules for interactions. Dashed lines represent scalars, solid lines with arrows
represent fermions, wavy lines represent vectors, and dotted lines with arrows represent ghosts. Bold-
faced letters from the beginning of the alphabet (a, b, ¢, ...) run over all real vectors in the theory
and their corresponding ghosts and anti-ghosts. Bold-faced letters from the middle of the alphabet
(J, k, 1, ...) run over all of the real scalars in the theory. Capital letters from the middle of the
alphabet (I, J,...) represent two-component fermions. The vector-vector-scalar coupling Gjab is given
by eqgs. (2.31)-(2.33). The (vector)* coupling is defined by Gf‘);;g = g2, e — Nuotup] +
92°°g°° 1M — Nuotve] + 9249P°C[Nupe — Mupnve]. The (vector)® coupling tensor is defined by
Tywp = N (@ — @)p + Mp(q — k) + npup(k — p)o. In the last, ghost-antighost-scalar, interaction, the

index A corresponds to a vector with non-zero physical mass.

\KIm v

" OR;0RORORm (2:30)

The interaction vertex Feynman rules can be obtained in the usual way, and are shown in Figure
2.4. Here we have defined a vector-vector-scalar coupling GJ?b in terms of the scalar-scalar-vector

coupling, according to:

G§® =0, (2.31)
G = G{* = g%Ma, (2.32)
G{'¥ = gi;Ma+ gi;Mp. (2.33)
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III. EFFECTIVE POTENTIAL AT TWO-LOOP ORDER

A. General form

In this section we present the results for the effective potential, with the general gauge fixing
described above.
The 1-loop effective potential contribution is:

VD = N Fr) —2) fI) + D BAv(A) = 2f(Ay)]. (3.1)
K I A

where f(z) and fy(x) are renormalization scheme-dependent loop integral functions, which will be
given below in the bare and MS renormalization schemes. Here and below, we use a notation in
which an index is used as a synonym for the squared mass whenever it appears as the argument of
a loop integral function. For example, in eq. (3.1), s stands for M2, and I stands for M ,and A
for Mi, and we also use

An = EAMiv
a, = 0 (3.3)

for the ghost squared masses.

For the 2-loop effective potential, there are 23 non-vanishing Feynman diagrams, shown in
Figure 3.1. It follows that the two-loop contributions to the effective potential are given, in terms
of the couplings and propagator parameters defined above, by:

Vg = 8”1‘1’“ alwaly) fss (k. 0), (3.4)
Vids = 12>\Jk1>\mnp (R)afmalp fsss(k,0,p), (3.5)
W = Sahfiol frs(an) + sofkafald b7 Frs(om), (3.6)
Visy = igj‘kgf‘ma?f’aiiifssm 7,2) + 105kl AT s 7). (3.7)
Vivs = Gaka aJk ' frvs(ab,r) + = GaAGaB (K VTh Foys(o,a, k)

GABGCD (K)b(XC Bvavs(U psK), (3.8)
Vise = gAJk‘gmn afmay et fssa(s, 0, p), (3.9)
Vi = 2AJk1GAB ol Qe faas(o, p, k), (3.10)
Vide = %gﬁ(gfnagf)c% & fsaa(r, o, p), (3.11)
Vi = gaGi2al e} fasv(o,m,a) + gR Gl Q8L fosr (0. 5. 0), (3.12)

1 o
VC(JZG)G = 2gJCl’<GABCE4J)CSBkCCI feca(k, o, p), (3.13)
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/ N/ \ 1 \ ’ \ 1 \
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mG 147 VvV mV
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FIG. 3.1: The non-vanishing 2-loop Feynman diagrams for the effective potential, for gauge-fixing choices
that have propagator mixing between massive vectors and Goldstone scalars. Scalar bosons, fermions, vector
bosons, and ghosts are represented by dashed, solid, wavy, and dotted lines, respectively. The arrows on
fermion lines indicate the helicity, and large dots represent fermion mass insertions. For the FFS and FFG
diagrams, there are also diagrams with all fermion arrows reversed.
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1 ! ! 1
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1
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AJ _BJ'
29 gr

7 (g?J}/}'I/JMII/ — C.C.> Cig)ffFG(I, J, /{),

(5) (9)p,

CAk®Bj CDfVGG(P,/’i o),

BchVG(U a, k),

Avav(“ a)

1
( abc) fVVV(a b C) + 4gabA abBb( BfVVV(H a, b)

1 aAB aCD b('i

Z(YJIJYkI,JIMII/MJJ/ + c.c.)anﬁ)fWS(I, J, I{),

91 gBIbABfFFV(I J k),

MY My b5 fromr (1, J, 1),

In these equations, all indices (including &, o, p) are summed over in each term.

It remains to find the following’ 37 two-loop integral functions:

fss(z,y), fsss(w,y,2), fvs(@y), fps(@.y), fssv(z,y,z),
fssv(@y,2),  fvvs(z,y.2),  frvs(®,y.2), frvs(y,2),  fssa(z,y,2),
faas(®,y,2), fsec(x,y,2), fasv(®,y,2), fosv(®,v,2), foca(w,y,z),
faov(x,y,2), fvec(,v,2), [raa(®y,2), fvva(z,y,z),
frve(@,y.2), fons(@,y,2)s fopa(®,y,2), fvv(z,y),

fov@y), fw(y), fvvv(zy.2), fepv(@y,2), fpv(y,2),
fov (@, y,2), [7(@,y,2), frrs(z,y,2),  frrs(,y,2),

frev(e,y,2),  frpv(@,y.2), frry(@,9,2), ferv(®9.2),  frpa(T,y, 2).

14

(3.14)
(3.15)
(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
(3.21)
(3.22)
(3.23)
(3.24)

(3.25)

(3.26)

(3.27)

In the next subsection III B, we present the results for the loop integration functions in the case

T One might naively expect functions faav (@, vy, 2), fvva(®, vy, 2), and fipv(x,y, 2) to appear in egs. (3.14), (3.16),
and (3.20), respectively. However, those three contributions turn out to vanish identically.
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that all parameters of the theory are taken to be bare parameters using dimensional regularization
[76-80]. In subsection IIIC, we present the result in the more practically relevant case that all
parameters are renormalized in the MS [81, 82] scheme. In both cases, we write the results in
terms of 1-loop and 2-loop basis vacuum integrals following the conventions of refs. [5, 7]; these are
reviewed for convenience in Appendix A below.

B. Results for two-loop effective potential functions in terms of bare parameters

In this section, we report the results for the 2-loop effective potential in terms of bare parameters.
This means that all of the masses and couplings appearing in eqgs. (3.1) and (3.4)-(3.26) are the
bare ones, and the corresponding loop integral functions will be distinguished by using f in place
of f in the names of the functions. Then then 1-loop integrals appearing in eq. (3.1) are:

f(x) = zA(z)/d, (3.28)
fy(z) = (d—1)zA(x)/3d. (3.29)

(The notations for the basis integrals A(x) and I(x,y,z) are reviewed in Appendix A.) For the
two-loop integrals appearing in eqs. (3.4)-(3.26), we obtain:

fsss(ﬂi‘ Y,z ) = —I(ﬂj‘ Y,z )7 (330)
fss(r,y) = A(x)A(y), (3.31)
fvs(%y) = (d—1)A(z)A(y), (3.32)

vs(Ty) = A(z)A(y), (3.33)
fssv(,9,2) = = [-Aw.0, 201y, 2) + (7~ )10, ,3) + 2A(2)A(y)
+y—z—2)A(x)A(z) + (x —y — 2)A(y)A(2)], (3.34)

fosr(n,0,2) = (@~ 9P Iw,9,2) ~10.2,9)] + (2~ y — )A@)A()

Hy - - DAWAR) ), (3.35)

frvg(r,y,2) = ﬁ {—(ac +y— 2)21(95, Y, 2) + (z — 2)21(0, x,z) + (y — 2)21(0, Y, 2)

—221(0,0,2) + (2 — v — ) A(@)A(y) + yA(2)A(2) + zA()A(2)],  (3.36)

fVVS(x’y7 Z) = _fWS(gj7y7 Z) —I(JL',y,Z), (337)

fvvs(ﬂf, Y, Z) fv (33‘ Y,z ) + (2 - d)I(ﬂj Y, Z)v (338)

fssa(r,y,2) = (z —y)l(z,y,2) + [A(z) — A(y)]A(2), (3.39)

foos(r,,2) = 3 [(@+y - e,y 2) + AWAW) - AWAG) - AWAG)],  (340)

fsca(,9,2) = —(@— ) — 21w, 3, 2) + (y — ) A AY) + (= — 2)A2) A2)
+zA(y)A(z), (3.41)

1
fGSV($7y7 Z) = _§fSSV(x7y7 Z)7 (342)



fGSV(x7 Y, Z) =

faca(z,y,2) =

fGGV(x7 Y, Z) -

fvgg(ﬂf, Y, Z) =

fVGG(x7 Y, Z) =

fVVG(x7 Y, Z) =

fryy(@,y,2) =

o= 2~y + 2Ty 2) + (@ - 9)10,2,9)

(o —y+2)AWA() + (y — ) A)A()]
L@ )l -2 - y)Iey.7) - A)AQ)]
+(@+y)[AW) - A@AEG)},

5 [\

+(x 42— y)A@)A(2) + (y + z — 2)A(y)A(2)],
1

! Mz, y, 2)I(z,y,2) + (z +y — 2)A(z)A(y)
)

+(x—y+ 2)A(x)A(z) — zA(y )A(z)]
(

4x

+Ha +y - 2)A@)A(2) + (z + 2 — y)Al)Ay)],
(

4xy
+y(y — 2)°10,y,2) + (z — y)(z + y — 2)A(z)A(y)

+y[(4d — 6)z + y — 2] A(2) A(2) — zl(4d — 6)y + = — 2] A(WA(2)

1
= —Zfssv(zyyyx),

I(‘T7y72)7

_fGG5($7Z7y)7

WD A w)aw)

WU A w)aw)

D amaw)

M@y M) + 4= Doy a2+ ) 2)
+(z y)2[:17 + %+ (4d — 6)xy|1(0, z,y) — z4I(0 0,2)

+(z — 2)%[2® + 22 + (4d — 6)x2]1(0, 2, 2) — y'1(0,0,y

+(y — )2[@/ + 22+ (4d 6)yz|1(0,y, 2) — 41(0 0,z

+[(7 — 4d) (2 + * — yz) + (2 — 4d + 4/d)zy + 2*]zA(z)

+[(7T—4d)(2® + 22 —xy — y2) + (2 — 4d + 4/d)zz + Py A(z) A(

+[( )(y® )+ )

1

dxyz {(y - Z) Az, y, 2) + 4(d — 1)yz]I(z,y, 2)

—(y — 2)[1y? + 22 + (4d — 6)y2]1(0,y, 2) — (z — 2)22%1(0, z, 2)
—(z — y)*y*1(0, z,y) + y*1(0,0,y) + 2*1(0,0, 2) — 2(y —
+[(7T—4d)y(z —y) + (x — 2)z + (6 — 4d — 4/d)xy|2A(z)A(y)

4£ [ (l‘ Y,z )I(ﬂj‘,y, Z) - ( - Z)2I(0,y, Z) + (:E +y— Z)A(l‘)A(y)
)
Ll ty- 2@ +2-I@y.2) + (- 2)?10,5,2) - AWM A()
YA

= )N, 2) + 4 DT,y 2) — oz — 210, 2)

2)?A(y)A(2)
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(3.43)

(3.44)

(3.45)

(3.46)

(3.53)

(3.54)

7T —4d)(y* 4+ 22 —xy —x2) + (2 — 4d + 4/d)yz + :EQ]xA(y)A(z)}, (3.55)



fWV(x7 Y, Z)

fnnV (33‘, Y, Z)

fnnv(x7 y? Z)

fFFS(x7 Y, Z)
frrs(

fFFV(x7 Y, Z)

fFFV(x7 Y, Z)

fﬁv(.’ﬂ, Y, Z)
fm(ﬂj‘, Y, Z)
ffFG(x7 Y, Z)

+[(7 = 4d)z(y —

1
4xy
—2%1(0,0,2) +

+2[eA ) + yA@)A ()},

o Ny (e ,2) — (0

z)+ (z

- y)21(07 €L, y)

{ N, y, 2)(x,y, 2) + (x — 2)221(0,2, 2) + (y —

— )y + (6 — 4d — 4/d)zz]yA(2)A(2) .

2)?21(0,y, 2)
(2% — 22 —yz + 4xy(1/d — 1)]A(z)A(y)

—zA(2)A(y) + (z -y + 2)A(2)A(2) + (y — 2 + 2) A(y) A(2)],

1

2—Z[(y—x—z)(:n—y—2)1(x,yy 2) + (¢ —y)?

+(y —z + 2)A(x)A(z) + (z — y + 2)A(y)A(2)],

1(0,z,y) — zA(z)A(y)

= (z+y—2)(z,y,2) + A(@)A(y) — A(z)A(2) — A(y)A(2),
T,y,2) =
- (:E - y)21(07 €, y)

21(z,y, 2),
{2 + -2y 2. 2)
+z—y+ (2 —d)z]A(z)A(2) + [y —x + (2 — d)z]A(y)A(z)

_l’_

[

(d-2):A(x)A@W)},

{(zz +yz — 2® + 22y — y*)I(z,y,2) + (z
(= —y)[Ay) — A(x)]A(2)},

2(d — DI(z,y,2),
2L(z,y, 2),

(y+ 2z —2)I(z,y, 2)

+ w =

C. Results in terms of MS parameters

- y)21(07 Z, y)

— A(z)A(y) — A(z)A(2) + A(y)A(2).
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(3.56)

(3.57)

(3.58)

(3.59)
(3.60)
(3.61)

(3.62)

3.63
3.64
3.65
3.66

AA/_\/_\
— — ~— —

In this subsection, we provide the results for the effective potential loop integral functions, this

time as they appear in in the MS scheme with renormalization scale Q, and In(z) =

renormalized basis integrals A(x) and I(z,y, z) given in Appendix A.

In(z/Q?), and

The one-loop functions for the MS scheme can be obtained from the ones for the bare scheme

by including counterterms for the ultraviolet 1-loop sub-divergences, and then taking the limit as

€ — 0. One has

with the results:

f@) = lim|f(x)+ -],
2

e—0 €

. X
fv(z) = ll_lg[fv(x)Jrél—e],

f]}'2

(3.67)

(3.68)

(3.69)
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2

fula) = 2 [Mlx) - 5/6) (370

which should be used in eq. (3.1) for the MS scheme.
Similarly, the two-loop functions appearing in eqs. (3.4)-(3.26) in the MS scheme can be obtained

by taking the limit ¢ — 0 after including counterterms for the 1-loop and 2-loop sub-divergences.

The 2-loop counterterms are determined by modified minimal subtraction and the requirement

that the resulting functions are finite as ¢ — 0. The inclusions of counterterms are as follows:

fSSS(x7y7 Z)

fss(z,y) =

fVS(x7y) =

fvs(x7y)

fssv(z,y,2) =

fSSV(x7 Y, Z)

fVVS(x7y7 Z)

fVVS(x7y7 Z)

fWS(x7y7 Z) =

fSSG(x7y7 Z)

fGGS(x7y7 Z)

1 1
lim{ fs55(2, . 2) + 55 +y+2) = 5@ +y+2)

2¢2
—HWA<>+A<>+Aun} (371)
{&s+—wy+§wAu»+xA@n} (372
{fvs + —xy + % [(d — 1)yA(z) + 3:17A(y)]}, (3.73)
= 11_I>r(1]{f xy + % [yA(z) + xA(y)]}, (3.74)
hm{fssv (1,y,2 2—12 (—3&:2 —3y? — 3zz — 3yz + 22)
+§ (32 + 3y* — 72 + 18zy + 1532 + 15yz)
P2 [-3rA () — 3yAG) + (1 - d)(z +y—2/AE)] L (3.75)
—g%ﬁwvw% + 5 @9,2) — A+ oo~ y)?
Pl -y - A@) + (-7 - 2)AL) — (@ +9AG)] ), (3.76)

1 1
lim{fvvs(:n, Y, 2) + —= (92 + 9y + 122) + — (22 — 152 — 15y)
e—0 862 8¢

+% (4~ 1D)A() + (d - DA(y) +4A(2)]}, (3.77)

. 3 1
_ 11m{fVVS(:1:,y,z) + @(!E +y)— —(z+5y+62)

8e
+i BA() + (d— 1)A(y)]}, (3.78)

e—0

li_rg(l]{fWS(:n,y, 2) + 8—12(:17+y—|—4z) 816(—3:13—3y+2z)
+i [A(x) + A(y) +4A(2)] |, (3.79)
li_rg(l]{fSSG($v Y, Z) +

L)ty ty+2)

2e 2e
Pl -+ AR + (-7 - AW} (3.80)
li_%{fggg(:n,y, 2) + i 2(z2 — 2% —y? —2xz — 2yz) + i(m +y—2)(x+y+2)
+% [~zA(z) ~ yA(y) + (= — 22— 24) A(2)] }, (3.81)



fSGG(x7y7 Z) =

fGSV(x7 Y, Z) =

fGSV(xr Y, Z)

faaa(z,y,2) =

faav(z,y,2) =

fVGG(x7y7 Z)

fVGG(mvyrz)

fvva(z,y, 2)

= hm{fVGG($7 Y, Z) +
e—0

1
— W+ 2z—)(wy + 2z + yz — 27)

li {f
61_13(1] SGG($7y7z) + %

1

5@y =) +y+2)

_|_% [(Mz,y,2) + 3yz)A($) +yzA(y) + yzA(z)]}

lim{fgsv($, Y, 2) + (3x + 3y% + 3z2 + 3yz — 2?)
e—0 4de 4¢2

1
—1-4—(7,22/3 — 2?2 — 6y — y? — bxz — 5yz2)

€

—1-2% BxA(x) 4+ 3yA(y) + (d—1)(x+y—z/3)A (z)]}

1 1
= hm{fGSV(a: Y, 2) + @(2my+x2+3yz—2y2)+4_( y—x)(2x + z)

€—

_|_% (x—y+2)Ay) + (z +y)A(z)/2] }v

: 1 2 2 2
gg%{fc;ca(x,y, 2)+ 2@ - )@ +y" - 27— 202 — 2y2)
1

t@ -y -ylz+y+2)

o [ae — g~ 22)A) +y(e —y +22)Al) + (s~ 0)=AG)] .

ll_%{fGGV(xaya 2)

1

—I-p(—:n?’ — 3 — 22 4+ 32%y + 3xy® + 3222 + 3222 + 3y?z + 3y2?)
€

1
+— (2 + 3 + 7233 — 2Py — xy® — 2?2 — y?2 — bx2® — By2® — 6ry2)

4de
L le(3y + 32 — 2)A(2) + y(3z + 32 — y)A(y)

ol
+(d -1z +y - 2/3)A()] |,

1
@(3112 +32% — 2% + 3y + 322)

1
+§(7x2/3 —y? — 2% — Bay — Sxz — 6yz)

o@D+ 2~ 2/3)A() + 3yAly) +3:A0)] .

2 2)

1
= hm{fVGG(a: Y, z) + 82(xy—|—a:z—x —y? -z

1
—|—§($ —y? =22 fay 2+ 2y2)

o[y + 2 - DA — yA() - 2AG)]

. 1
= gg%{fvm(x,y, 2) + 5@ —)92/8 —z —y)

1

oo (d = 1) [(99 + 92 — 8)A () — (9 +92 — $y)Aw)]
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(3.82)

(3.83)

(3.84)

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)



fVVG(x7y7 Z)

f?mS(xyyy Z)

fnnG(xyyy Z)

fvv(z,y)

fvv(ﬂj‘,y) =

fvvv(%yyz)

fVVV(xvyvz)

fWV(x7y7 Z)

fnnV(x7y7 Z)

fnnV(gj7 Y, Z)

20

. 1
hm{fVVG(:E, Y, 2) + @(3312 + 322 — 22 + 3zy + 322)

e—0

2

1
+— (2% — 5% — 2% — xy — x2 — 6y2)

8¢
—1-4% [(By +3z —x)A(x) + (d — 1)yA(y) + 3zA(z)]}, (3.90)
lgrg]{fnng($,y, 2) — %(:c Fy+z)+ %E(x ty+2)
~IAG) +AW) + AG)] (3.91)

1 1
lim{fnnc(:v,y, )+ 2@ =y ey )+ (- w2ty + )

e—0

+2i6 [BA @) + (22— y +22)A(y) + 2A(2)] |, (3.92)
tim { fyv (2, ) + 4272 Ty + Sgexy + %(d ~1) [yA(2) + 2A@)] |, (3.93)
tim{ f (,9) + gy + oowy + o ByA() + (d — DrA)] ), (3.94)
tim () + gy + 5wy + o WAG) +2AG)]), (3.95)
lim frvv(z,y, 2) — 412 [25(2% + y* + 27) + 36(2y + 22 + yz)]

—_

+550 [128(2” + y* + 2%) + 387(zy + 22 + y2)]

6i( d)[(25z + 18y + 182)A(x) + (25y + 18z + 182)A(y)
+(252 + 182 + 18y)A(2)] } (3.96)

1
hm{fvvv(az Y, 2) + @(2:52 + 6y + 622 — 21ay — 2lzz — 18y2)

e—0

1
—|—4—(4y +42% — 2% —zy —xz — 3yz) + = [2(z — 6y — 62)A()
€ €

+(d—1)(2y — 3z — 32)A(y) + (d — 1)(22 — 3z — 3y) A(2)] } (3.97)
1i_r>r(1]{fWV(:n, Y, 2) — %(Qxy +xz+yz)+ é(ﬁz2 +xz 4+ yz — xy)

2 [+ DA@) + (@ + AW, (399)
li_%{fmv(:n, y,2) + 4%2(%2 + 3y% — 22 4+ 322 + 3y2)

—I—éﬁ 2 _ 322 — 3y? — 18xy — 15z2 — 15y2)

oo BA() + 3A) +(d ~ D +y - 2/HAG)] ], (3.99)

. 1
l%{fnnv('x?y? ) 4 2($Z + yz - x2 - y - Z2)

—1-4%(7:2 — 2% —y? 4+ 2zy + x2 + y2)
+2i€ [—2A(z) —yA(y) + (v +y — z)A(z)]}, (3.100)



fFFS(x7y7Z) =

fﬁs(x7y7 Z) =

fFFV(x7y7Z) =1l

fFFV(x7y7 Z) =

fﬁv(gj7y7 Z) =1l

fm(ﬂj,y, Z) =

ffFG(gj7y7 Z) =1l
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1,5, 1
lim{ frps(@,y,2) + 552 —a® =y =202 = 292) + (@ +y — )z +y+2)
1
= [rA() — yAW) + (= - 20— 2)A(:)] | (3.101)
. 1 1
lim{ frpg(@,y,2) — (@ +y+2) + (@ +y+2)
=

Alz) + A(y) + A(z)]}, (3.102)

+% 1—d)(z+y— 2z/3)A(z)}, (3.103)
li_%{fFFV(x, y,2) — = (22 + 12 + 22/2 + y2/2) + — 4wy + 22 + Y2)

= [2rA() + 25A() + (= + 9)AG)] (3.104)
lgrg]{f—Fv(x,y,z) (:17+y—|—z)—|—%(:17—|—y+5z)

2 [A() + Aly) + ([d - DA)/3 ) (3.105)

€
. 1 1
llm fm(x,y,z)—6—2(:E+y—|—z)—|—€($—|—y+z)

~~[A() + Ay) + AG) (3.106)
11_1}1% frpa(®,y,2) + 2—12(:172 —y? — 2% —2zy — 2x2) + 2—16(11 +z—x)(z+y+2)
+% [(z — 2y — 22)A(z) — yA(y) — 2A(2)] } (3.107)

Using egs. (A.6) and (A.11), we thus obtain the MS two-loop functions:

fsss(z,y,2) =
y) =
fvs(z,y) =
Y) =
fssv(z,y,2) =

fSSV($7 Y, Z) =

fWS(‘rayv Z) -

fVVS(‘Taya Z) =
fVVS($7y7 Z) =

—I(z,y,2), (3.108)
Az)A(y), (3.109)
3A(x)A(y) + 22 A(y), (3.110)
Az)Ay), (3.111)
% [—A(ﬂc, ys ) (2,9, 2) + (& = y)*1(0,2,y) + (y — = — 2) A(z) A(2)

+(z -y — 2)AW)A(:)| + A@)A) + 23z + 3y — 2)A(2)/3, (3.112)

(x —y)*[I(z,y,2) = 1(0,2,9)] + (x —y — 2) A(z) A(2)
+y—z— Z)A(y)A(Z)}, (3.113)

% [_(ﬂc +y—2)°1(z,y,2) + (x — 2)°1(0,2,2) + (y — 2)*1(0, 9, 2)

—221(0,0,2) + (2 — x — y) A(x) Aly) + yA(z) A(2) + xA(y)A(z)] , (3.114)
_fWS(xvyvz) —[(l',y,Z) _A(y)/27 (3115)
frvs(@,y,2) —20(x,y,2) + A(x)/2 + A(y) /2 + 2A(2) —x —y — 2, (3.116)



fssa(z,y,2) =
faas(z,y,2) =

fsaa(z,y,2) =

fGSV($7y7 Z) =

fGSV(xv Y, Z) =

fGGG($7y7 Z) =

fGGV($7y7 Z) =

fVGG($7y7 Z) =

fVGG(xvya Z) -

fvva(z,y,2) =

fvvc(x Y,z) =
fms(@,y,2) =
fnnG(fE Y,z )

fov(z,y) =
fVV(x7y) =
fW(xvy) =

fvvv(z,y,2) =

22

(¢~ 9)1(,9,2) +[A@) ~ A)A(2), (3.117)
S|ty =2, 2) + A@AG) - A@AG) - Aw)AE)]. (3.115)
= 9) — DT (@,9,2) + (g~ DA@AQ) + (=~ 2) A ()

+zA(y)A(z), (3.119)
~5fssv(Ey.2) (3.120)
-2 -y 1y + @ - P0.2y)

H(z =y + 2)A@)A) + (y — 2)A@)A(2)] (3.121)
@ Wl - 1)y, 2) ~ A AW)]

Ha +9)[A) - A@IAG)}, (3122)
M@y I(@,9,2) + (@ 4y — DA AW) + (= + 2 — 1) A@)A()

+(y + 2z — 2)A(y) A(2)] + 2(2/3 — z — y) A(2), (3.123)
@2 (@,0,2) = (4= 2P10,4,2) + (2 +y — D AE@)A()

o —y+ 2)A@@)A(2) — zA(y)A(2)]

+(2/6 —y/2 — 2/2) A(x), (3.124)
ﬁ [(z+y—2) (@ —y+2)(x,y,2) + (y — 2)°10,y,2) + (z — y + 2) A(x) A(y)
+(z 4y — 2)A(z)A(2) — zA(y)A(2)], (3.125)

é{(w — YAz, y,2) + 12xy)I (2, y, 2) — 2z — 2)*1(0, 2, 2)

+y(y — 2)°1(0,y,2) + (z — y)(x +y — 2) A(x) A(y)
10z +y — 2] A(x)A(2) — 2[10y + = — z]A(y)A(z)}
+(y/2+ 2/2 = 22/3)A(x) — (2/2 + 2/2 — 2y/3) A(y)

+(@—y)(@+y+2), (3.126)
—ifssv(z, y, ) + (y/2 + 2/2 — 1/6)A(x) — yA(y)/2, (3.127)
I(z,y,2), (3.128)
—fecs(w,2,y), (3.129)
2T M) Al) + 2 A() + 7 Am)] + Soay, (3.130)
%A(w)A(y) + %yA(m) + ng(y) + zy/16, (3.131)
SA@)A() + SyA() + 2A()] - 2y/16 (3.132)
4x1y2{ Mz, y,2) [Nz, y, 2) + 12(zy + 22 + y2)]| I (z,y, 2)

+(z — y)2(2® 4+ 9 + 1029)1(0,z,y) — 2*1(0,0, 2)

+(x — 2)%(2? + 22 + 1022)1(0, z, 2) — y*1(0,0,7)

(y?

+(y — 2)*(y* + 2> + 10y2)1(0,y, z) — 2*1(0,0,z)
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+(22 — 922 — 9y* 4 9z + 9yz — 132y)2A(2) Ay)
(y? — 92 — 92° 4+ 9zy + 9yz — 13z2)yA(z)A(2)
+ (2% — 9y? — 92% 4+ 9zy + 9z — 13y2)zA(y A(z)}
—[(40z + 3y + 32)A(z) + (40y + 3z + 32)A(y)
+(40z + 3z + 3y)A(2)] /24 + Az, y, 2) + 161(2zy + 22 + yz)/16, (3.133)
= PP + 1200w, 2)

—(y — 2)’[y* + 2* + 10yz]1(0,y, 2) — (x — 2)*2°1(0, , 2)

+

)
)
)
(

fVVV($7y7 Z) =

—(z —y)*y*1(0,2,y) +y"1(0,0,y) + 2"1(0,0,2) — z(y — 2)*A(y)A(=)
+lrz — 22 — 1lzy — Yyz + 9]z A(z) A(y)
+lzy — y? — 1lzz — Iyz + 922y A(x) A(2) }
+[—15(y + 2)A(x) + (8y — 4z — 3x) A(y) + (82 — 4y — 32) A(2)]/8
+y —2)° = z(y + 2)/16, (3.134)
frvv (@, y,2) = é{—z)\(a:,y, 2)I(x,y,2) + (x — 2)?21(0,z,2) + (y — 2)*21(0,y, 2)

—231(0,0, 2) + [2% — 22 — yz — 3zy]A(z) Ay)
+2[zA(y) + yA(fv)]A(Z)} — [yA(z) + zA(y)]/8 + zy/16, (3.135)

Fanv (,9,2) = 5 [Mw9,2)T(,9,2) ~ (&~ 9)*1(0,,9) ~ 2A(x) Aly)
Ho =+ AW@AR) +(y— 2+ )AWAE)]
(

+(z/3 —x —y)A(z), (3.136)

S (@9, 2) = 2—1z [(y = —2)(x —y— 2)I(2,y,2) + (x = y)*1(0,2,y) — zA(z)A(y)
+(y —z + 2)A(2)A(2) + (z — y + 2)A(y) A(2)], (3.137)
frrs(r,y,2) = (v +y—2)I(z,y,2) + A@)Aly) — A(x)A(2) — A(y)A(2), (3.138)
frrs(@,y,2) = 21(z,y, 2), (3.139)

frrv(z,y,z) = %{[A(m, y,2) + 3z(x +y — 2)|(z,y,2) — (x —y)?1(0,z,y)

+r —y— 22]A(x)A(2) + [y — = — 22]A(y) A(2) + 2zA(x)A y)}
—2xA(x) — 2yA(y) + (22/3 — 22 — 2y)A(2) + (x +y — 2)(x +y + 2),  (3.140)

frrv(@,y,2) = %{(x2+yz—w2+2wy—y) (z,y,2) + (x — y)*1(0,z,y)

+(z —y)[Aly) — A(2)]A(2)}, (3.141)
frrv(@,y,2) = 6I(z,y,2) — 4A(z) — 4A(y) + 22 + 2y + 2z, (3.142)
frrv(e,y,2) = 21(z,y, 2), (3.143)
frra(@y,2) = (y+2—2)l(z,y,2) — Az)A(y) — A(2)A(z) + A(y)A(2). (3.144)

The results for fss, fsss, fvs, fssv, fvvs, fvv, fvvv, faqv, frrs, frrg, frrv, and frp, agree
with those found in refs. [4, 5]; the other functions do not contribute in Landau gauge. In ref. [5],

some of these functions were combined, so that a function fgauge included all of the effects of fyvv,
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fvv, and f,,v. In the present paper we choose to keep them separate so that the functions are in
correspondence with the Feynman diagrams, to keep their origins clear.

Despite the factors of 1/x, 1/y, or 1/z appearing in the above expressions, the two-loop integral
functions are all finite and well-defined in the limits of massless vector bosons.! To make this
plain, one can take the appropriate limits x — 0, etc. The limiting cases that are not immediately
obvious are:

fssv(,y,0) = (z+y)* —2zA(z) — 2yA(y) + 3A(2)A(y) + 3(x + y)1(0, ,y), (3.145)
fesv(2,9,0) = —(z+ y)2 + 22 A(z) + 2yA(y) — 2A(x)A(y) — (x + y)I(0, z,y), (3.146)

Fovs(O.y,2) = % (32 — 99)1(0,, 2) — 321(0,0,2) + 3A(y)A(2) + 8yA(2)

—y(3y + 22)], (3.147)
fvvs(0,0,2) = —31(0,0,z) + TA(z)/2 — 52/4, (3.148)
Fora(0,y,2) = % [3(y + 2)I(0, . 2) + 321(0,0,2) — BA@)A() — yly +22)]. (3.149)
foa(@,0,2) = ﬁ [“3(z + 2)I(0,, 2) + 321(0,0, ) — 3A(x)A(2) + 22A(x)

—z(z + 22)], (3.150)
frve(0,0,2) = —3A( )/2 + z/4, (3.151)
fivs(0,9,2) = 4— [(3z — y)I(0,y,2) — 321(0,0,2) + 3A(y)A(z) — 2yA(y) + y(y + 22)],(3.152)
forg(0,0,2) = —I(0,0,2) + 3A(2)/2 — z/4, (3.153)
fasv(z,y,0) = [=3(z+y)1(0,2,y) — 3A(2)A(y) + 22A(z) + 2y A(y) — (x +v)*] /2,  (3.154)
fasv(®,9,0) = yI(0,2,y) + A(z)A(y) — zA(z) — yA(y) + (z +y)*/2, (3.155)
frea(0,y,2) = [=3(y + 2)1(0,y,2) — 3A(y) A(2) + 2y A(y) + 22A(2) — (y +2)°] /4, (3.156)
frac(0,y,2) = [(y+2)1(0,y,2) + A(y)A(2) — 2yA(y) — 22A(2) + (y + 2)°] /4, (3.157)
Frve0,:) = 11+ 92 = 82)T(0,9.2) = 21(0,0.2) + (2 = Sy) A(y) AC:)

+(y —32)A(y)/6 — 2A(2)/2 + (y + 2)(z — 3y) /4, (3.158)
frve(0,0,2) = 0, (3.159)
firve(0,y,2) = [—3(y +2)1(0,y,2) —3A(y)A(z) + 22A(z) — (y + 2)2] /4, (3.160)
Frvv0,:2) = [+ 2)(Ty = 2)(7= = 9)T(0.9.2) + T91(0.0.9) + T1(0,0.)

Flyz — o — 2)AW)AR)] — o [(32 +32) Aly) + (322 + 39)A(2)]

+4y® + 422 + 217yz /16, (3.161)
frvi(0,0,2) = 2521(0,0,2)/2 — 612A(2)/6 + 232%/4, (3.162)
fovy (0,y,2) = 42%2 [=3(y + 2)*1(0,y, 2) + 3y°1(0,0,y) + 32°1(0,0, 2)

¥ However, this is not true at three-loop and higher orders for similar loop integral functions involving massless
gauge bosons. The three-loop contribution to the Standard Model effective potential has a (benign) IR logarithmic
divergence due to doubled photon propagators [7].
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—3(y* + 6yz + zZ)A(y)A(z)] + 6yA(y) + 62A(2)

—21% — 222 — 15y2/2, (3.163)
firvv(2,0,2) = ﬁ (22 — 22% + 72°)1(0, 2, 2) — 72%1(0,0,2) + (72 — 11z) A(z) A(2)]

—112A(x)/8 4+ (2 — 3x/8) A(2) + 2(82 — 5x)/16, (3.164)
fovy (2,0,0) = —2I(0,0,)/2, (3.165)
Fovr(0,0,2) = —321(0,0,2)/2 + 92A(2)/2 — 52% /4, (3.166)
oy (0,y,2) = % [3(y +2)21(0,y, 2) — 32°1(0,0,2) + 32A(y) A(z)]

—2A(y)/2 + 2(y + 22) /4, (3.167)
frry (0,0,2) = 32A(2)/2 — 22/4, (3.168)
fov (2,9,0) = [=3(z +y)1(0,2,y) — 3A(x) A(y) + 2z A(z) + 2y A(y) — (x +y)*] /2, (3.169)
Fov (@,9,0) = [(z +9)1(0,2,y) + A(z)A(y) — 20 A(x) — 2yA(y) + (= +)*] /2, (3.170)
frrv(z,y,0) = 0, (3.171)
frrv(@,y,0) = 2(x +y)I(0,2,y) + 2A(x)A(y) — 2xA(x) — 2yA(y) + (z + )% (3.172)

For convenience, the results listed in egs. (3.108)-(3.172) are also given in electronic form in an
ancillary file distributed with this paper, called functions. In order to carry out the renormal-
ization group invariance check of eq.(1.12) in specific models, it is useful to have the derivatives
of the above integral functions with respect to the renormalization scale ). These are provided in
Appendix B.

IV. EXAMPLES

A. Simplifications for models without Goldstone boson mixing

In favorable cases, the Goldstone sector scalar squared masses are separate from the non-
Goldstone scalars, and diagonal, so that the contributions in eqgs. (2.24) and (2.25) satisfy:

SaBIY- (4.2)

2
HAB

This implies a significant simplification, because now the propagators for each index A do not mix,
and the unphysical squared masses M? occurring in the scalar and massive vector propagators are
obtained as the solutions of only quadratic equations. This happy circumstance occurs for theories
with only one background field ¢; in a single irreducible representation of the gauge group, as in
the Abelian Higgs model and the Standard Model. However, eq. (4.1) fails to hold in theories such
as the Minimal Supersymmetric Standard Model or more general two Higgs doublet models; those
theories do have mixing between the Goldstone and physical Higgs scalar bosons, and so must be
treated with the more general formalism given in section III above.

In the following, we present the results for the case that eqgs. (4.1) and (4.2) hold; then the
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p*+ M3 P \PP+Mi, pPH+Mj_ p* +Ea M3

FIG. 4.1: Feynman rules for the propagators of the Goldstone scalars G 4 (dashed lines), massive vectors
z, 4 (wavy lines), and the corresponding ghosts and antighosts n*, 7 (dotted lines with arrows), each
carrymg 4-momentum p#, in the special case that eqs. (4.1) and (4.2) hold. The squared masses M3
6).

and the coefficients o, b5, and ¢ are defined in eqs. (4.3)-(4.

1 v

________ ANNNN i
—i —q —1
_ [y — DpHp? /p? _
P 2 (" + (&a — 1)ptp” /p°] 2

FIG. 4.2: Feynman rules for the propagators of the non-Goldstone scalars R; (dashed lines), massless
vectors Aj (wavy lines), and the corresponding massless ghosts 7%, n® (dotted lines with arrows), each
carrying 4-momentum p*, in the special case that eqs. (4.1) and (4.2) hold.

propagator Feynman rules for the bosons simplify to the forms shown in Figures 4.1 and 4.2. The
unphysical squared mass poles M? for the massive vectors and Goldstone scalars are now at

My = EaMi+ %(ui + \/ i3 |13+ A€ — €a)M3 ] ) (4.3)

for each index A, with residue coefficients

2 2
o = et (44
MA,ﬂ: o MA,:F
i (264 — E4)EaM3E — EaM3 (45)
A Mi,ﬂ: - fo,q: ’
— )M
b= M' (4.6)

= A2 2
MA,j: - MA,:F
Note that the superscript labels 4+ here correspond to the labels k appearing in Figure 2.1, and

af +a, =1, (4.7)
b-iA_“‘bZ - éA)

cz—kcz = 0.
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The massive vectors Z;f and their associated Goldstone scalars G4 have propagator mixing pro-
portional to €4 — &4, and they have three distinct poles in —p?, at Mi, MEH_, and Mz’_. The
latter two squared mass poles are real (but not necessarily positive!) if and only if

A(Ea — EA)MAE < (W) (4.10)

Note that care is needed to cancel ,u124 in this inequality, because it can have either sign. At one-loop
order, complex squared mass poles do not lead to an imaginary part of the effective potential [50],
but the two-loop order basis integral I(x,y, z) has a less obvious branch cut structure when one or
more of its arguments are complex. In this paper, we will simply avoid choices of the gauge-fixing
parameters that make the squared mass arguments complex.

As simple special cases, we have:

Background-field R¢ gauge: MELJF = EAM3 + 14, ME&,— = Mfw = £4 M3,

af =1, a;=0 by=01by=¢E4 c;=0 (411
and the further specialization

Landau gauge: MELJF =3, Mi_ = Mfm =0, (4.12)

ay=1, a;=00b;=0, c;=0. (4.13)

As before, we use the index of a field as a synonym for the squared mass whenever it appears
as the argument of a loop integral function, so that in the following,

A = M3, (4.14)
Ay = Mj 4, (4.15)
A, = EaM3. (4.16)

The 1-loop contribution to the effective potential can now be re-expressed as:

VO = STFG) 23 £ + YD BAv(A) + F(AY) + F(AD) —2f(A)]. (417)
j I A

In order to facilitate compact expressions below, we also extend the squared-mass notations to
the massless vector fields, so that when appearing as the argument of a two-loop integral function,
a and a4 and a, are to be interpreted according to egs. (4.14)-(4.16) when a = A, and are taken
to vanish when a = a. We also define residue coefficients

bf =0, (4.18)
b, = & (4.19)

so that the notation b} is to be interpreted by either eq. (4.5) or eqs. (4.18)-(4.19), depending on
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whether the corresponding vector field is massive or not. Similarly, for scalar fields, the notation

+

for coefficients a; is to be interpreted using eq. (4.4) when j = A is a Goldstone scalar, or

af =1, (4.20)
T =0, (4.21)

when j = j is a non-Goldstone scalar. Furthermore, when ji appears as an argument in a loop
integral function, it is to be interpreted either according to eq. (4.15) for a Goldstone scalar or

for a non-Goldstone scalar. [Note that j_ is not relevant as the argument of a loop integral
function, because of eq. (4.21).] The two-loop contributions to the effective potential, given in the
most general case in egs. (3.4)-(3.26), now become:

vig = gA”kka i fss(ie k), (4.23)
Vids = 1—12 (M) asag af” fsss(ie, ke 1en), (4.24)
Vg = %(gj’k) [fvs a,je) + b5 frs(ae,je) | . (4.25)
VD = 1 (6807 aja [Fssv e ko) + 5 Fysplie ke aon)] (4.26)
V\g\;s = E(Gf}i ) [fVVS(a b, je) + 20, fVVS(aﬁab je) + b Nst(aeubs"ajs) , (4.27)
Vise = %AAjkgji‘{aEaTQCi'fssc(je,ka,Ae”), (4.28)
Vids = 1X“BjGj‘Bcf«:fB’aj”f(;cs(AE,Bef,jeff), (4.29)
Vide = ;QB_]QAJ a5c¢ic fsaa (e, Ae, Bar), (4.30)
V((;zs)v = gGi2cyaf [fGSV(Ae,jE/,a) +bg stv(Ae,je’,ae”)}, (4.31)
Vide = %ggBGéBCZC%CZ/*/fGGG(Ae,BeuCe”)a (4.32)
Viow = %gaABgi‘xBCiC%fGGv(Ae,Beua), (4.33)
Vit = ngaGiaCixCB [fVGG(a, Ae, Ber) +b:/fVGG(ae”,Ae,Be/)] : (4.34)
v, = ; abAab, ¢ [fwg(a b, A.) + 2b5 fVVG(aE/,b,Ae)}, (4.35)
Vins = %gﬁjgfnggBMAMBaﬁfnns(Amije% (4.36)
Vn% = ¢*B oA pEAMACS frnc(an, Ay, Be), (4.37)
V& = 1(6™) [frv(ab) + 26 fo (e b) + D305 fip(ac b (4.38)
1

Vity = 5(0%)° [frvv(@,b.e) + 36 fyyy (ac bie) + 366 fryy (ac bose)] . (4.39)
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Vn(s\)/ = %(Qabc)z [fnnV(ambmc) + bifnnv(ambmce)] , (4.40)
Vg = %YjUYjIJaEfFFS(I, J,Je), (4.41)
Ve = i(Yj”lelJ/MHIMJJ/ +c.c)al frps (L, . ge), (4.42)
Vi = Sat i frev(LJa) + b (T T ac)] (4.43)
v = %g?"g?f"M Ny [ fy (I, @) + b (1, 2] (4.44)
v = i (0 Yars M~ ce) ¢ frpalT g AL, (4.45)

In these equations, all indices are summed over in each term that they appear in, including ¢, €, ¢”
each summed over =+.

B. Abelian Higgs model

Consider as an example the Abelian Higgs model. The Lagrangian is:

1
L= g F"Fy — D'"®'D,® — A~ m?|®[% — N®* + Lgt + Lehosts, (4.46)

where ® is a complex scalar field charged under a U(1) gauge symmetry with vector field Z, and
field strength

F, = Z?MZ,, — HVZM, (4.47)

with covariant derivatives
D,® = @u — z’eZu)CIL (4.48)
DHO* = (0" +ieZt)D*, (4.49)

and )\ is a positive scalar self-interaction coupling, m? is a squared mass, and A is a field-independent
vacuum energy (needed for renormalization scale invariance of the effective potential). Now write:

_ L

d(x) 7

[0+ H(x)+iG(x)], (4.50)

where ¢ is the position-independent background scalar field, and H, G are real scalar fields. Then:

1 1 1
L= = FuF" = S(0,H + eZ,G)? — 5 (OuG — eZu(6 + H))?

A g[GP+ (64 HY) - J[G7 + (6+ HYP
+£g.f. + Eghosta (451)
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where, in terms of the Nakanishi-Lautrup Lagrange multiplier field b and the ghost and anti-ghost
fields n and 7,

Lot = 68— DD, 2" — €60, (4.52)

Lonost = —0u7i0"n — E2p(¢ + H)im. (4.53)

This Lagrangian is invariant under the Grassmann-odd BRST symmetry:

OBRSTZy = O, (4.54)
dprsTG = e(¢ + H)n, (4.55)
dprsTH = —eGn, (4.56)
oprsT?] = b, (4.57)
oprsTn = 0, (4.58)
Sprsth = 0. (4.59)

Because the BRST symmetry does not require any particular relation for £ and E, there is no reason
that they should not be renormalized differently, with independent counterterms.

The parameters of the theory are: ¢, e, A, m?, A, &, and 5 This model can be obtained from
the general case by:

Ja — €, (4.60)

ey = —tYe = —i, (4.61)
960 = —9he = € (4.62)
o = €0, (4.63)

L = 0, (4.64)

FZq = eg, (4.65)

FZy =0 (4.66)

Because there is only one Goldstone boson and it does not mix with the non-Goldstone scalar H,
the formalism of the previous subsection IV A applies. The squared mass eigenvalues for use as
arguments of loop integral functions are:

H = m? + 3\, (4.67)
7 = ¢, (4.68)
7y = €7+ % [G - \/G[G +4(E€-6)Z2]|, (4.69)

n = &z, (4.70)
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where
G = pd =m? + \p* (4.71)

We also have bosonic propagator residue coeflicients:

Zy — &7
= 2= 5= 4.72
a+ Z:I: — Z:F’ ( )
(26 — £)€Z — ¢24
= 4.
b:l: Z:I: — Z$ 3 ( 73)
(£~ &)ed
= =—=" 4.74
C4+ Zj: — Z:F ( 7 )
The effective potential in terms of bare parameters can be written as
Vg = VO + Ly Ly, (4.75)
¢ BT iex2 B (16m2)2° B ‘
where the subscript B stands for bare. The tree-level and 1-loop contributions are:
1 1
V) = i (Mg + gmboh + {Andh), (4.76)
vy = [HBA(HB) +Zy BA(Z1 B) + Z- BA(Z_ ) — 2npA(nB)
+(3 - 26)ZBA(ZB)} /(4 — 2e), (4.77)

where Hp, Zp, Z+ p, and np are obtained from eqgs. (4.67)-(4.70) by substituting bare parameters
everywhere, and € = (4 — d)/2 in d spacetime dimensions, and p is the regularization scale (see
Appendix A). The 2-loop contributions to the effective potential in the bare scheme can also be
obtained from eqgs. (4.23)-(4.45), yielding:

B 3
Ve = S| fss(H H) + ddfss(Z4, Z4) + a fss(Z-, 2-) + 2a4a-tss(Zy, 2-)|
A
+5 |astss(H, Zy) + a_fss(H,2-)|, (4.78)

Vies® = N2¢? [3fsss(H, H, H) + o fsss(H, 21, Z4)
‘a2 fsss(H,Z-, Z-) + 2a,a_fsss(H, Zy, Z-)], (4.79)
2
(&
VP = S tvs(Z, H) + bifglZe, H) + b trg(Z-, H)
+a+fV5(Z’ Z+) + a—fVS(Za Z—) + a+b+fVS(Z+7 Z_|_)

tab_fyg(Z2-,Z-) + a_bifypg(Z4, Z-) + arb_fyg(Z-, Z1)) (4.80)
2
(&
VS%LB = b} [a—l—fSSV(H, Z,Z)+afssy(H, Z_,7)

+a+b+fSSV(H7 Z_|_, Z_|_) + a_b_fssv(H, Z_, Z_)



tayb fooo(H, Zy, 7 )+ a_bifyo(H, Z_, Z+)] ,

V\S2V)'7SB = €4¢2 |:fVVS(Za Z, H) + 2b+fVVS(Z+7 Z, H)
+2b_fyo(Z_, Z, H) + b’ firpg(Z4, Z4, H)
02 Eoro(Zo, 2 H) + 20, b_fop (24, 2, H)} ,

(2),B

VSS = —2Xeo |:a+C+fssg(H, Zy, Z+) + a_C_fssg(H, Z—, Z—)

tasefsso(H, Zy, 2-) + a_cifssa(H, Z-, Z4)]

(2),B

Voos = 204 [CifGGS(Z+aZ+’H)+02_fGGS(Z—,Z—,H)

+2c+c—fGGS(Z+7 Z_, H)] ’

@, 1,
Vece = 56

+2eic fsqalH, 2+, 2-)),

[cifSGG(H, Zo Z2)+ A fsao(H, 2, Z.)

VST = —26%|erfosv(Zs, H, Z) + cfasv (2, H, 2)
terbifoer(Zy H, Z4) + e b fpep(Z- H, Z)
+C+b_stv(Z+,H, Z_) +C_b+stv(Z_,H, Z+) s

2),B 1~
Vs = 58 s (n,n, H),
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(4.81)

(4.82)

(4.83)

(4.84)

(4.85)

(4.86)

(4.87)

where the model-independent integral functions were given above in subsection III B. There is no

need to distinguish between bare and renormalized parameters in the 2-loop part, because the

difference is of higher order in the loop expansion.

Now we can derive the MS version of Vg, using an alternative but equivalent method to that

described above in the general case. To do so, consider the relationships between bare and MS

parameters:

AB

Ap

€Ep —

{B

{B

m2

2
1 ¢ 1 ct cr
i +167T2 € ++(167T2)2 €2 e
(L ar, 1 [C%_z C%_JM )
1672 € (1672)2 L €2 € A
A A A
1 c 1 c c
9 1,1 22 | ©21
(a1
K ( +167T2 € +(167?2)2 €2 - € "
1 ciq )
€ -
'u<e+167T2 € )
3
1 ciq
§+167r2 +...,
3
=, 1 <
£+167T2 € Fees
¢ o ¢
1 ¢ 1 c c
—2€ 42 11 22, 21
no (1+16772 € (167‘(’2)2[62 € ]—'_”’)’

(4.88)
(4.89)

(4.90)
(4.91)

(4.92)

(4.93)

(4.94)
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with counterterm coefficients:

2

i = (4r— 3e%)m?, (4.95)
Ay = (—10A2 + 16Xe? + 43¢* /6)m?, (4.96)
Ay = (28X% — 24xe? + 10¢h)m?, (4.97)
¢ty = 10A% — 6Ae” + 3¢, (4.98)
31 = —60A? +28\%? + T9Ne* /3 — 52€°/3, (4.99)
3o = 100A% — 90A%e? 4 47Ae? — 8e®, (4.100)
= (m?)?/2, (4.101)
cyy = 2e*(m?)? (4.102)
By = (2X —3e?/2)(m?)?, (4.103)
i, = €/6, (4.104)
which can be obtained from existing results in the literature [83-85], and
i, = —e%¢/s, (4.105)
c§~,1 = (6 — £-10/3), (4.106)
¢t = (3 -¢€+2), (4.107)
G = —22 4t (=5/3+E1+¢)), (4.108)
@, = ¢ (5—35+52/2+§[3—5+E]). (4.109)

We obtained egs. (4.105)-(4.109) by requiring no 1/e or 1/€? poles survive in Vg when written in
terms of the MS parameters. This involves re-expanding Vg from eq. (4.75) both in 1/1672 and
in € to get the MS version of the expansion:

1 1
Vg = VO 4 —_y@) @ L '
p= VOtV (16W2>2v + (4.110)

The tree-level and 1-loop contributions in the MS expansion are:

vO = A+ %m2¢2 + EA&, (4.111)
VW = f(H) +3fv(2) + [(Z+) + F(Z-) = 2f (), (4.112)
where f(z) and fiy(z) were given in egs. (3.69) and (3.70) above. The results obtained for the 2-

loop MS contribution V(?) are just given by eqs. (4.78)-(4.87) with each function f substituted by
the corresponding function f from subsection IIIC. Using eqs. (3.108)-(3.127) and then combining
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the coefficients of basis functions, one obtains:

VO =T+ Y oA A+ G A+ C (4.113)
Jik ]

J /s J
wheref

I = {I(H,H,H), I(HZ22Z2), I(H,2,2_), I(H,Z,2,), I(H,Z_,Z_),
I(H,Z_,2Z,), I(H,Z,Z.), I(H,n,n)}, (4.114)
A = {A(H), A(Z), A(Z}), A(Z)}, (4.115)

and the coefficients CjI , Cf,;“, CJA, and C are rational functions of the MS parameters of the theory.
Although there is significant simplification in the coeflicients after combining diagrams, some of
them are still somewhat complicated, so the explicit result for V() is relegated to an ancillary
electronic file V2AH distributed with this paper, in a form suitable for evaluation by computers.
The beta functions of the parameters of the theory in the general form of eq. (1.10), at the

orders needed to check renormalization group invariance, are:

B0 = (m2)?, (4.116)
B = ge2(m?)2, (4.117)
B = (81— 6e%)m?, (4.118)
BY) = (86¢" /3 + 64Xe? — 40X%)m?, (4.119)

W = 6t — 12620 + 2002, (4.120)
BE) = —208¢%/3 + 316¢"A/3 + 11262\ — 24003, (4.121)
B = /3, (4.122)
BY = (3-¢+20)e%, (4.123)
BY = [e*(~10/3 + 26 + 26€) — 47?9, (4.124)
8O = —aces3, (4.125)
BY = 2¢%(¢ — € — 10/3)¢. (4.126)

These can be obtained from the counterterms provided above.
The background field R¢ gauge-fixing result is obtained by setting § = &, which simplifies 1748
greatly, resulting in:

VO = {lHZ - H*/A=32%1(H,2.2) + [(H + Z = Gy —n*/2 = NG, H, 2) /2)1(H, Z, Z)
_[(H - G)2/4]I(H7 Z+7 Z—i-) + [(H +n - Z)2/2 - 277H]I(H7 Z, 77)

T The basis integrals (0,0, H), 1(0, H,Z), I(0, H, Z), and I1(0, H, Z_) appear in individual diagram contributions,
but cancel completely in the total.
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HI(H = Z0)* [A1(H,m, Z) + [nH = n*/2 = H? JA[I(H,n,m) = [3(H — G)*/4]I(H, H, H)
[H/4— Z/2]A(Z)* + [H/4 —1/2]A(n)* + [3(H — G)/8]A(Zy.)?

+B(H — G)/SJAH)? + [(H + 27 — 1 = G) 2] A(Z) A(Z4) + [(Z+ — H) /2] A A(Z+)
H(Z +n— H)/2JA(Z)A(n) + (37 — H + G)/2JA(H)A(Z)

+(H + 27 — G)J4JA(H)A(Z) + [(H — Z — G) /2] A(H) A(n)

+2(G + H +2Z/3|A(Z) + 3Z°A(H) + Z2A(Zy) - Z°(2Z + H) } /6%, (4.127)

+

where now Z_ = n = £Z and Z; = n+ G. This gauge has the nice property that all squared
mass arguments are real and positive as long as £ is positive with £Z > —(G, in which case there
are no infrared problems for small G. However, as noted above, this gauge-fixing condition is not
respected by renormalization, as can be seen from eqs. (4.125) and (4.126), which clearly do not
preserve £ = 5 if imposed as an initial condition. Moreover, if the MS gauge fixing parameters obey
&= E at some particular choice of renormalization scale, then the corresponding bare parameters
will not obey this condition.

C. The Standard Model

In this section we obtain the Standard Model results as a special case of the results above. The
parameters of the theory consist of the constant background Higgs scalar field ¢, a field-independent
vacuum energy A, a Higgs scalar squared mass parameter m?, a Higgs self-interaction coupling A,
gauge couphngs g3, 9,9, the top-quark Yukawa coupling y;, and gauge-fixing parameters &, £z,
f 7, Ew, §W The 2-loop effective potential does depend on the QED gauge-fixing parameter &,
but not on the corresponding QCD SU(3). gauge-fixing parameter {gcp. There is no parameter
E«,, because the photon is massless. The Yukawa couplings of all fermions other than the top quark
are negligible, and neglected.

The field content with ng generations consists of:

Real vectors: A, Z Wg, Wiy, (4.128)
Real scalars: H, Gy, Gr,Gr, (4.129)
2-component fermions: t, 1,0, b, 7,7, vr + (ng—1) x (u, a,d, d, e, e, l/e) , (4.130)

and the color octet gluons, which do not pose any problems with respect to gauge fixing. The
charged W bosons and charged Goldstone scalars have been split into real and imaginary parts
Wg, Wi and Gg, Gt respectively. We now list all of the (non-QCD) interactions of the Standard
Model.*

¥ The conventions for the couplings used in the present paper differ in certain minus signs from those listed in section
V.A [egs. (5.2), (5.15)-(5.18), (5.20), (5.22), (5.23), (5.26), (5.28), and (5.29)] of ref. [7]. The two conventions are
related by field redefinitions, specifically, flipping the signs of Wgr, Z, A, and Go. The convention chosen here
avoids minus signs in eqs. (4.154) and (4.155) below. The resulting effective potential is of course independent of
this convention choice.
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The scalar cubic interactions are

NHH — g2, (4.131)
AHGoGo = N\HERGR — \HGIGL = 9)\¢, (4.132)

and the scalar quartic couplings are
NHHHH _ 3GoGoGoGo — \GrGrGRGR — )\GIGIGIGI _ @) (4.133)

ANHHGoGo _ \HHGRrGRrR _ \HHGIG1 _ y\GoGoGRrGR — \GoGoG1Gr _ \GRGRGIGI _ 2, (4,134)

with both of these lists supplemented by all cases dictated by the symmetry under interchange
of any two scalars. The Yukawa couplings (neglecting all fermion mass effects other than the top
quark) are given by

YHtf _ _YGRbE _ inotf — in]bf — yt/\/§7 (4135)

with symmetry under interchange of the fermion (last two) indices. The electroweak gauge boson
interactions with the fermions are given by couplings of the type g'j"] :

Zf _

9 = Irgew —Yfg/sw, (4.136)
97" = Qpg'sw, (4.137)
A Af

gt = _gff:Qfe, (4.138)

where

e = g9'/Vg?+ 972, (4.139)
sw = ¢ /Vg*+ 972, (4.140)
9/vV g%+ 972, (4.141)

and Q, =2/3 and Q= —1/3 and Q, =0and Q. = —1,and I, =1, =1/2 and I; = I, = —1/2,
and Yy = Q¢ — Iy for each f, and

cw

gy "= glnd = glVev = glVne = g2, (4.142)
ng/VIu _ _g‘u/VId _ g;/VIV _ —g,I,/VIe — ig/2. (4143)

The non-zero vector-scalar-scalar interaction couplings of the type gfk are

9&.Gn = € (4.144)
9eon = VG +9%/2, (4.145)

9licn = (@@ =%/ 2V +g?), (4.146)
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W, 1% 1% W,
9G1§G0 = QGII}{ = QGOIGI = ggéH = g/2, (4.147)

with antisymmetry under interchange of the scalar (lowered) indices. The vector-vector-scalar-
scalar interactions are determined in terms of these [see eq. (2.28) and fig. 2.4], and so there is no
need to list them separately. The non-zero vector-vector-scalar couplings of the type Gj?‘b follow
from egs. (2.31)-(2.33), and are given by:

Gé‘;VR _ _GéE’VI = ged/2, (4.148)
GgII/VI _ _GgII;VR = ge¢)2, (4.149)
GIJ/;IVRWR _ GVHVIWI = ¢%¢/2, (4.150)

G = (*+97)9/2, (4.151)

and others determined by symmetry under interchanging the vector (raised) indices. Finally there
are the totally anti-symmetric vector-vector-vector couplings defined by:

gWRWT — ¢ (4.152)

gZWRWI _ 92/ /g2 + ¢2. (4.153)

The matrix F?; of gauge boson masses, using the ordered bases (Wg,Wr,Z,A) and
(G1,GRr,Go, H), is diagonal, and positive in the convention chosen here when ¢ is positive, with

non-zero entries:

FWeg = FWig = My = g¢/2, (4.154)
FZq, = Mz =+/g*+ g?%¢/2. (4.155)

The gauge-fixing part of the Lagrangian is:

1 1 ~
- 2 _ wo_ 2
c g OuA") = 56 (0,2" = E7MGo)
1 ~ 1 ~
_2£W (8MW§ - gW]WWGI)2 - %—W(aqu — fWMWGR)z. (4.156)

As an aside, we note that our choice of basis for the gauge-fixing terms differs from the choice
made in ref. [43], in which the neutral bosons have a gauge fixing Lagrangian that is instead
equivalent to the form:

1

B 1
28

o ¢ 2 _
(0,B" — &1 MpGy) 26

(0 W — &M G)? (4.157)
where Mp = ¢'¢/2 and B* = ey A* — swZF and W§' = ew Z" + sy A* are the gauge-eigenstate
neutral vector fields for U(1)y and SU(2)y, respectively. Note that there is no redefinition of gauge-

fixing parameters that can make this choice equivalent to ours in general, because the cross-terms
are different; in particular, eq. (4.157) implies a mixing between the photon and the Z boson
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(unless & = &) and between the photon and the neutral Goldstone boson (unless 5152 = —{251).
We prefer our choice of a mass-eigenstate basis for the gauge fixing terms because it avoids this
tree-level gauge-dependent mixing of the photon. This inequivalence illustrates the general remark
made just before eq. (2.13) above, concerning the fact that the form of the gauge-fixing terms
depends on the choice of basis. (The equivalence could be restored if the gauge fixing parameter
&a were generalized to a matrix &ap.)

The squared mass poles associated with the electroweak bosons and their ghosts are at 0 and

H = m? + 3\, (4.158)
Z = (9> + g% /4, (4.159)
2o = &2+ |G+ \/GIG+ 16 - )71 (1.160
nz = &2, (4.161)
W = ¢*¢?/4, (4.162)
Wi = W+ % [G + \/G[G + A& — gW)W]] , (4.163)
mw = &wW, (4.164)
where
G =m? + A\, (4.165)

which coincides the Landau gauge version of the common Goldstone squared mass. The only other
non-zero squared mass is that of the top quark,

T = y2¢?/2. (4.166)
Because there is no mixing among the Goldstone bosons or between them and H, the results

of subsection IV A apply. Using those results, and combining coefficients of basis functions, the
tree-level and one-loop results for the Standard Model in the MS scheme are

VO = A4 m?¢%/2 + Ao /4, (4.167)
VW = f(H) = 12f(T) + 6fy (W) + 2f (W) + 2 (W_) — 4f (nw)
+3fv(2) + f(Z) + f(Z-) = 2f(nz), (4.168)

and, using egs. (3.108)-(3.172), the two-loop part V() can be written in the same form as
eq. (4.113), but now with:

A= {A(H)7 A(t)7 A(W)7 A(W+)7 A(W—)a A(T/W)7 A(Z)7 A(Z+)7 A(Z—)7 A(le)}7 (4'169)
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and$

T = {I(H,T,T), I(T,T,%), I(T,T,Z_), I(T,T,Z.), I(0,T,W), I1(0,T,W_),

100, T, W), I(0,0,W), 1(0,0,2), 1(0,W,W_), I(0,W,Ws), 1(0,W_,W.),

10, mw, W), 1(0,nw,W-), 1(0,nw,Ws), I(H, H,H), I(H,W,W),

I(HW,W_), I(H W W), I(HW_,W_), I(HW_,W,), I(H,W,, W),
(H,nw,nw), I(H,Z,Z), I(H,Z,Z_), I(H,Z,Zy), I(H, Z_,Z_), 1(H,Z_,Z,),
I(H,Zy,Z4), I(H,nz,nz), IWW,Z), IWW_,2), IW,W_,Z_), IW.W_,Z,),
(

(
(

~

IWW“F? )7 (‘/V»W-HZ—)» I(I/VvW—l—aZ-l-)v I(W—>W—7Z)v I(W_,W+,Z),
I(w_ 7W+7 —)7 I(W—7W+7Z+)7 I(W+7W+7Z)7 I(T]W7T]Z7W)7 I(nW777W7Z)7
I 77W777W7 )7 I(UW777W7Z+)7 I(UW>77Z7W—)7 I(UW>77Z>W+)}' (4170)

The coefficients in this result for V(?) are rather complicated, so they are again relegated to
an electronic ancillary file V2SM distributed with this paper, in a form suitable for evaluation by
computers. For convenience, we also include separate files V2SMFermi and V2SMbackgroundRxi and
V2SMLandau for the spemahzatlons to Fermi gauges (with 5 z = £W = 0) and to background field
R¢ gauges (with £Z = ¢4 and £W &w) and Landau gauge (with £4 = £Z =&y = {W Ew =0),
respectively.

The check of renormalization group invariance of the effective potential can now be carried out
as in eq. (1.12), with the beta functions:

Y = 2(m?)?, (4.171)
BY = (1247 + 4™ — 1242)(m?)?, (4.172)
BUY) = m2(6y? + 12X — 9¢%/2 — 39" /2), (4.173)
B2 = m2(40g2y7 — 2Ty} /2 + 45977 /4 + 85y} g% /12 — T2y2 A + (5ng — 385/16)g"

+15g29"% /8 4 (25nG /9 + 157/48) g™ + 726>\ + 249\ — 601?), (4.174)
B = —6yt+ 12921 + 9g* /8 + 39297 /4 + 39" /8 — 997\ — 3g”\ + 24)2, (4.175)
BY = —3202y! + 80932\ + 3048 — 8ytg2/3 — 3yiA — 9yPg" /4 + 2142672 2

—19y?¢" /4 + 45y2 g% N /2 + 85y7 g"* N /6 — 144y \? + (497/16 — 4ng)g°
—(97/48 4 4ng/3)g  g'* — (239/48 + 20nc/9)g* g — (59/48 + 200 /9)g"®
+(10n¢g — 313/8)94/\ +39¢%g?\/4 + (229/24 + 50n(;/9)g/4)\ + 108¢2 )2

+3692\% — 312)\3, (4.176)
B = (20n/9 +1/6)g", (4.177)
BY = (4ng/3 —43/6)g", (4.178)

§ The following basis integrals appear in individual diagram contributions, but cancel completely from the total:
1(0,0,H), 1(0,0,T7), 1(0,0,nw), 1(0,0,W_), I1(0,0,Wy), I(0,H,W), I(0,H,W_), I(0,H, W), I(0,H,Z),
I1(0,H,Zz-), I(0,H,Zy), I(0,W,Z), I(0,W,Z_), I(0,W,Zy), I(0,W_,Z), I(0,W_,Z_), 1(0,W_,Z,),
(0 Wy, ) I(O W+7Z*)7 I(O7W+7Z+)7 1(0777W777Z)7 I(W*7W*7Z*)7 I(W*7W*7Z+)7 I(W+7W+7Z*)7
I(W4, Wa, Zy).
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B = [-307 + 96 /4436 /4+ G — w/Dg® + E2/2 — E2/)(d* + gD)]o,  (4179)
B = {y?[27y7 /4 — 2063 — 4547 /8 — 85¢™/24] — 6X°

+(511/32 — 5ng/2)g* — 9¢9%¢"* /16 — (25n5 /18 + 31/96)g"
326w d® + E2(0% + 9) /2 + Ewl(Ew /4 — 2 — Ew /8 — £2/4) g + E29%9% /4]
+&,(Ew — 3)e?g? A+ Ex[—g'cly — 22 /A + Eweg? A+ E4(g7 + g)? /8]

+ew (17g" + g%9%) A+ E2(17¢" + 49%g* + g'*)/8} ¢, (4.180)
BL) = &wg? [25/3 = 8na /3 — &w — clvEz — s&] (4.181)
Be) = &w 6y} + (41/6 — 8ng/3)g” = 39° /2 + &€ /2 + (€w /2 — Ew)g”

+e29”8% /2 — E2(9% + 9%)/2]. (4.182)
B = €7 4% (25/3 — 8na/3 — 26w) — g 5% (1/3 + 40nc/9)] (4.183)
ﬁg = £2[6y7 + (41/6 — 8ng/3)g>ch, — (11/6 + 40ng/9)g s%y — 6e* + &

~Ewg® + (&2 — €2)(9" + 9)/2] (4.184)
B = ¢ [8 — 64ng /9 — 26w). (4.185)

Equations (4.171) and (4.172) were obtained in ref. [7], and egs. (4.173)-(4.178) and the parts of
egs. (4.179) and (4.180) that do not depend on the gauge-fixing parameters &y, £z, £~W, £~Z can
be found in the literature, for example in refs. [83]-[85]. The results dependent on the gauge-fixing
parameters in eqs. (4.179)-(4.184) were obtained here by requiring that Vg satisfies renormalization
group invariance. Again we note that any equality among any subset of the parameters &y, &7, EW,
E 7, and &, will not be preserved under renormalization group evolution, except in the special case
that the corresponding parameters vanish. Also, if the MS gauge fixing parameters obey &y = £~W
and/or £z = 5 7z at some particular choice of renormalization scale, then the corresponding bare
parameters will not obey these conditions, and vice versa.

V. NUMERICAL RESULTS FOR THE STANDARD MODEL

Consider the Standard Model with the following input parameters as a benchmark (the same
as in refs. [7, 19, 21-23], but with various other approximations for the effective potential):

Q = M; =173.34 GeV, (5.1)
y:(Q) = 0.93690, (5.2)
93(Q) = 1.1666, (5.3)
9(Q) = 0.647550, (5.4)
J(Q) = 0.358521, (5.5)
AMQ) = 0.12597, (5.6)

m?(Q) = —(92.890 GeV)? (5.7)
AQ) = 0. (5.8)
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Then, in the Landau gauge, the minimum of the (real part of the) 2-loop effective potential is at

vo = =Y = 246.950 GeV, (5.9)

min

V=D (4g) = —(105.560 GeV)™. (5.10)

With this choice of input parameters, the Landau gauge Goldstone boson MS squared mass is
G = —(30.763 GeV)?, so that Vg is actually complex at its minimum. For simplicity we do not
apply the Goldstone boson resummation procedure [10, 11] to eliminate the spurious imaginary
part here. Instead, we simply minimize the real part of Vg, and it should be understood below
that the spurious imaginary part is always dropped. As shown in ref. [10], the practical numerical
difference between the VEV obtained by minimizing the real part of the non-resummed effective
potential and the VEV obtained by minimizing the Goldstone boson-resummed effective potential,
which is always real, is very small.
In Figure 5.1, we show the results for v = ¢y and Veg(v) as a function of £ for the cases:

background field R gauge: &£ =¢&w = §~W =&y = §Z =&, (5.11)
Fermi gauges : {=&w =&z =¢,, and £~W = £~Z = 0. (5.12)

In the background field R, gauge, for small £ one finds that M% 4 and MEV 4 are negative and
s0 Vegr(v) has a spurious imaginary part, but M % + becomes positive for £ > 0.11112, and MV2V n
is positive for £ > 0.14388, so that there is no spurious imaginary part at the minimum of the
two-loop effective potential for £ larger than this. (Very small cusps are visible on the background
field R¢ gauge curve for v, corresponding to the points where M% 4 and MI%V . go through 0.) In
the Fermi gauge, M % 4 and MI%V 4 are positive but M %7_ and M‘%K_ are negative for all positive &,
so that the effective potential always has a spurious imaginary part, which again is ignored in the
minimization.

Although v is a non-trivial function of £, the minimum vacuum energy Vig(v) is a physical
observable (for example, by weakly coupling to gravity) and in principle should be completely
independent of ¢ when computed to all orders in perturbation theory. In the second panel of
Figure 5.1, it can be seen that the latter property indeed holds in the background field R, gauge
to better than 1 part per mille for £ < 16 and to better than 1% for £ < 37, but the situation
rapidly deteriorates for larger £. In Fermi gauge, the deviation is larger, but Veg(v) differs from its
Landau gauge value by less than 1 part per mille for all £ < 1.88 and by less than 1% for £ < 14;
the deviation again grows rapidly for larger £. In the second panel of Figure 5.1 the results from
the 1-loop effective potential approximations are also shown, as dashed lines; the deviations are
significantly worse than at 2-loop order.

In Figure 5.2, we show results for the background field R, gauge for seven different choices of
the renormalization scale Q. In each case we show the deviation of Vog min(§, Q) compared to the
benchmark value Veg min(0, M;) obtained in Landau gauge and with @ set equal to M; = 173.34
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FIG. 5.1: The Higgs VEV (top panel), and the resulting fractional change in the vacuum energy compared
to the Landau gauge £ = 0 result, in per cent (bottom panel), at the minimum of the 2-loop Standard Model
effective potential, as a function of the gauge-fixing parameter £. The solid blue (thicker) curves show the
result for the background field R gauges (with & = {w = §~W =&z = EZ = ¢&,), and the solid red (thinner)
curves are the results for the Fermi gauges (with £ = &w = {z = &, and gw = §Z = 0.) The other input
parameters are as given in egs. (5.1)-(5.8) of the text. In the top panel, very small cusps are barely visible
in the background field R¢ gauge v curve at the points & = 0.11112 and 0.14388 below which ]W§,+ and
M@V +, respectively, are negative. In the bottom panel, we also show for comparison the results from the
1-loop approximations, as dashed lines. The dependence of the VEV on ¢ is expected, but in principle the
minimum value of the vacuum energy is an observable and should be independent of £. The significant
deviation from this idealized behavior shown in the bottom panel is due to a breakdown in perturbation
theory truncated at 2-loop order for large &.
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FIG. 5.2: The fractional change in the vacuum energy in per cent, at the minimum of the 2-loop Standard
Model effective potential, as a function of the background R¢ gauge-fixing parameter £ = &w = {w =

&z =&z = &,. The comparison value Vinin (0, M) is the Landau gauge result with the input parameters of
eqs. (5.1)-(5.8) at Q@ = M;. To find Viuin(&, Q), these parameters are then run using their 2-loop renormal-
ization group equations to the scale @, the gauge fixing is then imposed with parameter £, and the 2-loop
effective potential is minimized. From top to bottom on the left, the curves are @ = 250 GeV, 225 GeV,
200 GeV, M; = 173.34 GeV, 150 GeV, 125 GeV, and 100 GeV. On each curve, the black dot is the point to
the right of which the effective potential is real at its minimum; to the left of the dot, it is actually the real
part of the effective potential that is minimized.

GeV. To make this graph, the parameters in eqs. (5.1)-(5.8) are first run' according to their 2-
loop renormalization group equations to the scale (), and then the minimum value of the two-loop
effective potential Veg min(§, @) is obtained. Since Vg min(§, @) is a physical observable, it should
in principle be independent of both £ and @ if calculated to all orders. We see that for £ less than
of order roughly 30, in the 2-loop approximation the dependence on £ is much smaller than the
dependence on the renormalization scale, but for larger & this is no longer true as perturbation
theory breaks down.

The increasingly strong deviation of Veg min(§)/Vesr,min(0) from 1 is evidently due to the failure
of the 2-loop truncation of the perturbative expansion for large £. The fact that the £ — oo limit
of the effective potential is problematic when calculated at finite loop order in Fermi gauges has
been noted already in [45, 50, 53]. In ref. [45], it was shown how a resummation of a class of
diagrams to all orders in perturbation theory restores the gauge-fixing independence within Fermi
gauges. The Fermi gauge fixing also has IR divergence problems [35, 37, 45] in the limit that
the minimum of the tree-level potential coincides with the minimum of the full effective potential.
Ref. [50] showed that the same resummation that fixes the IR problems of Fermi gauges also cures

 Background field R¢ gauge is not respected by renormalization group running, so we do not run £. Instead, the
value of £ is the one imposed at Q. Also, note that the running of A is crucial for getting the correct Veg min (&, @)-
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the gauge dependence issue. We expect that a suitable resummation of higher-order diagrams will
also eliminate the problematic behavior for large £ in more general gauge-fixing schemes, including
the background field R¢ gauge-fixing scheme illustrated here. However, this is beyond the scope
of the present paper. In any case, it is worth noting that for a range of reasonable values of &
(say, 0.25 < £ < 10) the background field R¢ gauge does not have infrared subtleties or spurious
imaginary parts (which can occur at smaller &, depending on @) and the minimum value does not
have a significant dependence on the gauge-fixing parameter (which occurs at larger &).

VI. OUTLOOK

In this paper, we have obtained the two-loop effective potential for a general renormalizable
theory, using a generalized gauge fixing scheme that includes the Landau gauge, the Fermi gauges,
and the background-field R¢ gauges as special cases. The essential results are given as 37 loop
integral functions in eqgs. (3.108)-(3.144), with special cases arising for vanishing vector boson
masses given in egs. (3.145)-(3.172). For convenience, these results are also provided in an ancillary
electronic file called functions.

In the most general case, these 37 functions contribute to the two-loop effective potential as
in egs. (3.4)-(3.26). The practical implementation of this result is sometimes complicated by
the fact that the squared masses appearing as arguments of the loop integral functions can be
complex. As far as we know, a complete treatment of the two-loop vacuum integral basis functions
I(x,y, z) for complex arguments does not yet exist, and would be a worthwhile subject of future
investigations. In favorable cases such as the Standard Model or the Abelian Higgs model, the
absence of Goldstone mixing with other scalars allows a significant simplification, as given in
eqs. (4.23)-(4.45), because the squared masses are then always solutions of quadratic equations.
However even in these simplified cases the squared masses can still be complex, depending on the
choice of gauge-fixing parameters. In the numerical examples of the present paper, we simply
avoided choices that could lead to complex squared masses.

For softly broken supersymmetric theories the results above will need to be extended. This
is because the MS scheme based on dimensional regularization introduces an explicit violation of
supersymmetry. For applications to the Minimal Supersymmetric Standard Model or its extensions,
it will be necessary to instead use the DR’ scheme based on dimensional reduction, which respects
supersymmetry. This will require a slightly different calculation than the one here, as has already
been done [5] in the Landau gauge special case.

In our numerical study of the Standard Model case, we found that fixed-order perturbation
theory breaks down for sufficiently large £ (although moderately large choices £ < 10 seem to be
fine, and introduce a smaller variation than does the choice of renormalization scale, at least for
the minimum vacuum energy as a test observable). This is not unexpected, and given the results
of e.g. refs. [45, 50] it seems likely that some appropriate resummation to all orders in perturbation
theory of selected higher-order corrections will cure that problem in the most general cases. This
could also be a worthwhile subject of future work.

However, an alternate point of view, to which we are sympathetic, is that the complications
associated with generalized gauge-fixing schemes provide a strong motivation to simply stick to
Landau gauge. This avoids all possibilities of complex squared masses, kinetic mixing between
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Goldstone scalars and massive vector degrees of freedom, as well as the non-trivial running of the
gauge-fixing parameters. By sticking only to Landau gauge, one does lose the checks that come from
requiring independence of physical observables with respect to varying gauge-fixing parameters, but
there are other powerful checks within Landau gauge coming from the cancellations of unphysical
Goldstone contributions to physical quantities, as shown for example in refs. [20]-[23]. From that
point of view, the present paper might serve as a pointed warning about the difficulties to be faced
for those who would dare to venture outside of Landau gauge.

Appendix A: Basis integrals
In this Appendix, we review the conventions and notations for the 1-loop and 2-loop basis

integrals, which follow refs. [5, 7, §].
Define the Euclidean integral notation in

d=4-2¢ (A.1)

dimensions:

2¢
/,, = (16n2) (;ﬂ) . / d'p. (A.2)

Here 1 is the regularization scale, related to the MS renormalization scale Q by
drp? = EQ. (A.3)

Then the basis integrals appearing in the two-loop effective potential in terms of bare parameters
are defined as:

Alr) = / S = R T ), (A.4)

1
l(z.9,2) = // PraE o a2 (A.5)

Expanding in small €, we write:

Az) = —% + A(z) + eAd(a) + ..., (A.6)
with

A(z) = zln(x) — =, (A.7)
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where

In(z) = In(z/Q?), (A.8)

and A (z) is known, but we won’t ever need its explicit form and it won’t appear in the final
expressions for the renormalized effective potential. Sometimes the following identities can be

useful:
d
%A(a:) = A(z)/x + 1, (A.9)
2 Ada) = [Adw) — A/ (A.10)
We also expand:
I(z,y,2) = —(x+y+2)/22 + [Az) + A(y) + A(z) — (z +y + 2)/2] /e
+I(x,y,2) + Ac(z) + Ac(y) + Ae(2) + O(e), (A.11)

where I(x,y, z) is known in terms of dilogarithms. The basis integrals needed for the 2-loop effective
potential contribution written in terms of MS parameters are just the non-bold-faced integrals A(x)
and I(z,y, z). In any 2-loop quantity written in terms of MS parameters, all of the A, functions
always cancel against 1-loop contributions; this is a useful check.

Below, define for convenience:

D = [p* +2][¢® +yl[(p — ¢)* + 2]. (A.12)
Then a useful integral table is:
= I(z,y,2), (A.13)
= A(y)A(z) — z1(x,y,2), (A.14)

(2 =2 —y)I(z,y,2) — Alx)A(y) + A(z)A(z) + A(y)A(2)],  (A.15)

T
S~
i)
sl
Il
| =

(P2)2 2 _
[ [T = #1602 - 4+ DAWAG), (A.16)
pPYq p2q2
/ / PL — ayl@,y,2) — sA@)A(:) - yAW)A(2), (A.17)
2.
// P (]Z) 9) = %[m(:ﬂ+y—z)1($,y,z)—I—:EA(!E)A(Z/)—ﬂ?A(ﬂ?)A(Z)

—(z+ 2y)A(y)A(z)] , (A.18)

[(z+y—2)°L(z,y,2) + (x+y — 2)A(x)A(y)

—
—
)
SIFS
5
I
=
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+(z — 3z — y)A(2)A(2) + (z — = — 3y)A(y)A(z)], (A.19)
213
/ / (pp) = —2"U(w,y,2) + [ + 07 + 2 + 2y + 22 + 2+ 4/d)yz] A(y)A(2), (A.20)
| zp2)2q2 > 2
// 5 = yI(z,y,2) + 2°A(2)A(2) + y(z + y + 2)A(y)A(z), (A.21)

2\2 .
L] YD _ oo ey 2) - ?A@AW) + AEAR)

a? + 20y + 2% + (2 + 4/d)y=] AW A(2) |, (A.22)
2 20, .
[ [ = Sy — = )Ty 2) — syA@AG) + (20 + )AGIAC)
Tyl + 2 A(n)A()]. (A.23)
// ZM = % [—JE(JE +y—2)?T(z,y,2) + (2 + 3vy + 4y* — vz + dyz/d)A(y)A(2)
+x(z — 2z —y)A(x)A(y) + 23z +y — 2)A(x)A(2) |, (A.24)
PRY:
/p i (qu) = %{z—x— 3Iwy, 2)
+—x? —y? — 22— (24 4/d)ay + 222 + 2yz]A(z)A(y)
+[7x + 2+ 22 + Aoy + (4)d — 4)zz — 2y2] A(x)A(2)
+[7y? 4+ 2% 4 22 + day + (4/d — Dyz — 222]A(y)A(2)], (A.25)

and others obtained by p <+ ¢ and x <> y. Other integrals can be obtained from the above by e.g.

1 171 1
N N A.26
pPr(p*+x) oz [pz p? +$} (4.26)

We also make use of the notation:

N,y 2) = o2 + 92 + 22 — 2xy — 202 — 2y2. (A.27)

Appendix B: Derivatives with respect to the renormalization scale

In this Appendix, we collect the derivatives of the loop integral functions with respect to the
MS renormalization scale Q.

Q Qfss(w y) = —2yA(z) — 22A(y), (B.1)

Q%fgsg(w, y,2) = 2z +y+2z— A(z) — A(y) — A(2)], (B.2)

@%fvs@,y) = day — byA(z) — 6z A(y), (B.3)
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Q%fvg(w, y) = —2yA(z) — 2zA(y), (B.4)
Q%fsgv(az, y,z) = —22% — 12zy — 2y° — 622 — 6yz + 1022 /3 + 6zA(x) + 6yA(y)
+(6z + 6y — 22)A(2), (B.5)
Qg fssrle2) = 2@ =P +(y -2+ AW + @ -y + AW
+(z +y)A(2)], (B.6)
Q%fvvs(:n, Yy, z2) = 92/24+9y/2 — 2z —9A(x)/2 — 9A(y)/2 — 6A(z), (B.7)
Qs frvsev2) = [0+ 3y + 62~ 3A) - 34())/2 (B.8)
Q%fws($,y, z) = 3x/2+43y/2—z— A(x)/2 — A(y)/2 — 2A(2), (B.9)

Q%fssc(fl?a y,2) = 2y — o)z +y+2)+2x -y —2)Ax) +2(r -y +2)A(y), (B.10)
Q%feas(% y,2) = (z—z—y)(@+y+2)+zA(x) +yAly) + (22 + 2y — 2)A(2), (B.11)

Qg fsaatay.) = 2 —y)le = o +y+2) - v2Al) - v2AC)

+(22y + 202 — 2? — yz — y? — 2%) A(x)], (B.12)
Q% fasv(z,y,z) = a%+ 6zy + 3> + 3wz + 3yz — 522 /3 — 3z A(z) — 3yA(y)

(2 — 3z — 3y)A(2), (B.13)

Q%fc;sv(% y,2) = (2 —y)2x +2) +2(y — 2 — 2)A(y) — (z + y)A(2), (B.14)

Qg foca(e.u,2) = (o= y)o+y—)a+y+2) +aly -2+ 22)A)

—y(z —y+22)Ay) + (z — y)zA(2), (B.15)
Q%fG’GV(fEa Y, 2) = —z3 — y3 — 523/3 + x2y + 2%z + :1:y2 + y2z + 3222 + 3yz2

+62yz + x(x — 3y — 32)A(x) + y(y — 3z — 32) A(y)

+2(z — 3x — 3y)A(2), (B.16)
Q%f\/GG(% y,2) = [y> +6yz + 2° + 3y + 3wz — 52? /3 — 3yA(y) — 32A(z)

+(z — 3y — 32)A(2)] /2, (B.17)

0
Q%fVGG(a:, y,z) = [y2 —Qyz+ 22—y —xz— 2+ yA(y) + zA(2)

+(x—y—2)A(x)]/2, (B.18)
Q%f\/vg(w, y,2) = [(y—x)(22x 4+ 22y + 272) /3 + (82 — 9y — 92) A(x)

+(9z — 8y + 92)A(v)]/2, (B.19)
Q%fWG(a;, y,2) = [~2® +ay +3y* + 22+ 6yz + 22 + (x — 3y — 32) A(z)

—3yA(y) — 3zA(2)]/2, (B.20)



Qs ms(@9,2) =
Q5 fmcte.v.2) =
Q%fvv(:v,y) =
Qg friey) =
Qg frrie.y) =

Q%fVVV($7 Y, Z) =

0
Q%f?vv(xa Y, Z)

0
Q%fwv(xvya Z) -

0
Q%fnnv(x,y,z)

0
Q%fnnV(‘Tv Y, Z)
Qg frrs@.2) =

Q%fﬁs(w,y,@
Qg frrviey.s) =
Q%fwv(fv,y,z) =
Qg frrv(n2) =
Qg frrv(e.2)

0
Q@ffFG($v Y, Z) =

20—z —y—z+ Ax) + Ay) + A(2)],
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(B.21)

(x—y+2)(x+y+2) —2zA(x) + (y — 20 — 22)A(y) — 2zA(z2), (B.22)

—4bzy/2 — 2TyA(z) /2 — 272 A(y) /2,
—9zy/2 — 9y A(z)/2 — 9z A(y)/2,
—zy/2 = 3yA(x)/2 — 3zA(y)/2,

(—282% — 243y — 28y — 243x2 — 243y~ — 282%) /6

+(25z 4+ 18y + 182) A(x) + (18x + 25y + 182) A(y)
+(18z + 18y + 252) A(2),

= 22 +4xy — 6y + 4oz + Yyz — 62% 4 (6y + 62 — ) A(x)

+3(3z — 2y + 32)A(y)/2 + 3(3x + 3y — 22)A(2)/2,

[y — x2z —yz — 622 + 3(y + 2)A(z) + 3(x + 2)A(y)]/2,

= 22 + 6xy + 1y + 312 + 3yz — 522 /3 — 3z A(z) — 3yA(y)

+(z — 3z — 3y) A(2),

= 2% — 2y +y? —xz—yz— 22 + zA(z) + yAly)

+(z =z —y)A(2),
20z —x —y)x+y+2)+ 2A(z) + yA(y)
+(22 + 2y — 2)A(2)],

= 4[—x—y— 2+ A(z) + Ay) + A(2)],

z(6x + 6y + 82/3) + (62 + 6y — 42)A(z),
—8ry — 2wz — 2yz + 4z A(z) + dyA(y) + 2(z + y) A(2),

—4(x+y+32) + 12A(x) + 12A(y) + 12A(z),

2z —y—2)(x+y+2)+ 2y +2z —z)A(x)
+yA(y) + zA(2)].

(B.23)
(B.24)

(B.25)

(B.26)

(B.27)
(B.28)

(B.29)

(B.30)

(B.31)
(B.32)

(B.33)
(B.34)
(B.35)

(B.36)

(B.37)
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