


case, allows for an efficient (polynomial time) algorithm to

answer the passive stability query. We use more realistic fric-

tion constraints, where frictional forces are not linearly related

to the externally applied wrench, and obey the maximum

dissipation principle. Our main contributions are as follows:

• For two-dimensional grasps, we show that the total num-

ber of possible “slip states” for the system (where each

contact is labeled as sticking or slipping, and the direction

of slip is also determined) that must be considered under

rigid body constraints is polynomial — in fact, quadratic

— in the number of contacts.

• We use this result to derive the first polynomial-time

algorithm that can provably determine if a solution exists

to the passive equilibrium problem for a multi-contact

grasp under an externally applied wrench, using friction

constraints that obey the maximum dissipation principle.

The ability to make strong guarantees about the existence of

equilibrium is one of the most attractive features of analytical

models as compared to data-driven approaches. Previous meth-

ods either sacrifice this ability (e.g. by introducing iterative

algorithms that are not guaranteed to converge), or simplify

the constraints such that results can be physically inconsistent.

We attempt to avoid such a trade off here, while preserving

the ability to solve the equilibrium query efficiently.

II. RELATED WORK

One class of trivially stable robotic grasps consists of

form-closure grasps, which completely immobilize the grasped

object. As the object is completely kinematically constrained,

it will be stable in the face of arbitrary applied wrenches -

even in the absence of friction. Checking if a grasp has form

closure can be done by solving a linear program [9]. However,

form closure grasps require a large number of contacts (at

least 7 in the three dimensional case [15],[10]) and are not

generally achievable with most robotic hands. Hence, grasps

that do not exhibit form closure are of primary interest to

this investigation. As was described in the Introduction, the

existence of a solution to the equilibrium equations alone is not

a sufficient condition for stability. Neglecting the mechanisms

by which contact wrenches arise leads to false positives in

cases where solutions exist, but do not arise in practice.

For a given robotic grasp, Pang et al. [12] group applied

external wrenches into three classes:

• Weakly Stable Loads: a solution to the equilibrium equa-

tions exists for given friction coefficients at the contacts.

This can be tested for by solving a linear program.

• Strongly Stable Loads: A subset of Weakly Stable Loads,

the applied load leads to zero workpiece acceleration

for given friction coefficients. This is equivalent to non-

positive virtual work for every virtual motion that satisfies

the kinematic constraints of the grasp.

• Frictionless Stable Loads: A small subset of the Strongly

Stable Loads. Pang et al. show that if a load is weakly or

strongly stable in the frictionless case, it is also strongly

stable for all positive friction coefficients. Membership

can be tested for by solving a linear program.

An algorithm very commonly used in practice to determine

the total space of possible resultant wrenches as long as each

individual contact force obeys (linearized) friction constraints

was introduced by Ferrari and Canny [6]. They call this space

the Grasp Wrench Space (GWS), which can also be used to

test a grasp for force closure. This geometric method is an

example of an algorithm we can use to determine the weakly

stable loads as described above. It is an example of a method

for stability analysis that does not account for the distinction

between active and passive wrench reaction and the necessity

of a preload in a grasp to withstand certain applied wrenches.

In general - when trying to determine the stability of a grasp -

an enumeration of the first class of applied loads is of limited

use due to the possibility of false positives.

The final class of loads as defined by Pang and summarized

above is overly conservative, as friction is a powerful tool to

achieve stable grasps. The grasp in Fig. 1 for example is unsta-

ble in the frictionless case. The second class of loads is most

useful for grasp stability analysis. Given a load known to be

in the first class, in order to test for membership in the second

we need to develop an algorithm that tests if the physically

correct solution (i.e. the one that would arise in reality) lies in

the space of solutions to the equilibrium equations; we need

to develop further constraints that discriminate if a solution to

the equilibrium equations is physically correct.

One approach to this problem is to resolve the statical

indeterminacy by introduction of compliance. This reduces the

solution space to at most a single solution, which is deemed

to be the physically correct one. Of course, the physical cor-

rectness depends on the correctness of the assumptions made

in resolving the statical indeterminacy. In his works [1][2][3]

Bicchi assumes a linear compliance matrix (see also [4]),

which is also a potential limitation, as it assumes a linear

stiffness of the contacts. Friction forces, however, are non

linear with respect to the relative sliding motion at the contacts.

Prattichizzo et al. [14] built on the previous work by

Bicchi and developed tools for grasp force optimization that

specifically take into account the kinematics of the hand. They

also improve on the linear friction model used by Bicchi in

order to alleviate some limitations of the linear model we will

discuss in the next section. The complexity of their algorithm

is exponential in the number if contacts and may hence be

infeasible to deploy. Furthermore, its stability prediction is

somewhat conservative, as we will show later in this paper.

III. PASSIVE EQUILIBRIUM FORMULATION

This section introduces the general framework of our prob-

lem. Consider a grasp that consist of m contacts. Each contact

is defined by a location on the surface of the object and a

normal direction (determined by the local geometry of the

bodies in contact). For any contact-specific vector (such as

contact force or relative contact motion), we will use subscript

n to denote the component lying in the normal, and subscript t

to denote the component lying in the tangent direction. We use

the vector c ∈ R
2m to denote contact forces, where ci ∈ R

2 is

the force at the i-th contact. Using the notation above, ci,n ∈ R





contact preload. The solution consists of a virtual object rota-

tion that “loads” the contacts, creating the normal forces (and

thus the friction) needed to resist the disturbance. However,

in the absence of any initial preload, we would expect system

to be unstable in the presence of the shown wrench, and the

object to slide out. The underlying reason for this behavior is

that we have not yet accounted for energy constraints on our

system. According to the Maximum Dissipation Principle [13],

at a contact that is slipping (virtual motion in the tangential

direction is not zero) frictional force should dissipate as much

energy as possible. This is achieved if friction opposes virtual

motion, and lies on the edge of its friction cone. Thus, at a

contact i that slips (and thus has relative tangential motion),

the friction force can be expressed as the vector of relative

motion multiplied by an unknown scalar σi, and constrained

to lie on the edge of the friction cone:

ci,t = σi(G
T
d)i,t (5)

σi ≤ 0 (6)

|ci,t| = µci,n (7)

for all i s.t. (GT
d)i,t 6= 0

For a contact that does not slip, the friction force is still only

bound by (3). We now also have a constitutive relation for fric-

tional forces, and hence all the constraints we require to model

a grasp. However, the formulation we have arrived at does not

allow for an efficient solution method: we have to distinguish

between the possible slip states of a contact in order to decide

which constraints apply. With m contacts, considering only

two (stick/slip) possible states for each contact still leaves us

with a total of 2m possible combinations for our system.

In this light, our contributions are as follows. For two-

dimensional grasps, we will show that, given rigid body

movement constraints, the number of possible slip states for

the system is in fact polynomial in the number of contacts,

even if also including the direction (positive or negative) of

slip along a tangential axis. Then, we will show how this result

allows us to break the problem down into a polynomial number

of sub-problems, which can be solved efficiently.

IV. NUMBER OF POSSIBLE SLIP STATES

We focus here on the problem of determining the state of

each contact for a two-dimensional grasp with m contacts. In

its simplest form, this state only considers two possibilities

per contact: sticking or slipping. However, we consider three

possible states for each contact: stick, plus slip in the positive

or negative direction of the local tangent axis. We define a slip

state Sk ∈ {−1, 0, 1}m as a vector comprising information

about slip at every contact. The i-th element of Sk, labeled

ski , defines the state of contact i in state k as follows:

ski = 0 : stick, (GT
d)i,t = 0 (8)

ski = −1 : negative slip, (GT
d)i,t < 0 (9)

ski = 1 : positive slip, (GT
d)i,t > 0 (10)

Finally S is the set of all possible system slip states, thus

Sk ∈ S for k = 1..#(S), where #(S) is the cardinality

of S. At first glance, #(S) = 3m: since each contact can

have three states, the total number of states for the system

is exponential in the number of contacts. Indeed, this is the

approach used in previous studies that account for stick/slip at

each contact [14]. Our main insight is that not all of these

possible state combinations are consistent with rigid body

movement of the grasped object. Assuming that the object

is rigid, displacement at each contact reference frame must

be related to object displacement at all other contacts, and a

linear function of object displacement d expressed at the object

reference frame. In fact, we will show that, when accounting

for rigid body motion, #(S) is quadratic in m.

A. Slip states as plane arrangements

We make an argument from geometry to show that not

all combinations of slip states are indeed possible. First, let

us look at the stick condition defined above: in the three-

dimensional space of possible object motions d = [x, y, r],
the constraint (GT

d)i,t = 0 defines a plane. Note that this

plane goes through the origin. Any object motion lying on

this plane will result in zero relative tangential motion at this

contact. Motion in the halfspace where (GT
d)i,t ≥ 0 will

result in slip along the tangential axis in the positive direction,

while motion in the complementary halfspace (GT
d)i,t ≤ 0

will result in slip in the negative direction. Combining the

planes defined by each contact, we obtain the possible states

for all of our contacts. These planes segment the space of

object motions into:

• 3-dimensional “regions” where all contacts are slipping;

• 2-dimensional “facets” (region boundaries on a single

plane) where one contact is sticking;

• 1-dimensional “lines” (intersections of multiple planes)

where multiple contacts are sticking.

By construction, since all of our planes go through the origin,

the only possible zero-dimensional “point” intersection is the

origin itself (see Fig. 5.) Given this partition of the space

of possible object motions, it follows that any system slip

state Sk that is consistent with a possible object motion must

correspond to either a region, a face, or a line created by this

plane arrangement. Finding the maximum number of three-

dimensional regions given m planes is equivalent to finding

the maximum number of regions on a sphere cut with m

great circles, which is known to be O(m2) [8]. However, the

regions do not define all the combinations of slip states we

care about. We must also consider the cases where at least

one contact sticks, namely the “facets” and “lines” defined

as above. We can show that the number of regions, facets

and lines is bounded polynomially by applying Zaslavski’s

formula [7]. Let f
(d)
k (n) be the number of “k-faces” of an

arrangement of n hyperplanes in d dimensional space, where

k is the dimension of the face. Then, the following holds:

f
(d)
k (n) ≤

(

n

d− k

) k
∑

i=0

(

n− d+ k

i

)

(11)

In our case, the total number of slip states we are interested in

is equal to
∑3

k=0 f
(3)
k (m) and hence polynomial in m. This is,





Algorithm 2

Build S, the set of all possible slip states

for k = 1..#(S) do

Given Sk, solve system (1), (2), (4), (12-14)

if solution found then

Return: grasp stable

end if

end for

Return: grasp unstable

which correspond to faces of the dual polyhedron. We obtain

the faces of our dual polyhedron by computing the Minimum

Cycle Basis (MCB) of the undirected graph defined by its

edges (computed at the previous step). This gives us F − 1
of the faces of our polyhedron; to see why consider that the

number of cycles in the minimum cycle basis is given by

E − V + 1 [11]. Recall the Euler-Poincaré characteristic χ =
V −E+F relating the number of vertices, edges and faces of

a manifold. For a convex polyhedron χ = 2, and from this we

can derive the number of faces of our dual polyhedron to be

equal to E−V +2. The last face is obtained as the symmetric

sum of all the cycles in the MCB (defined as in [11]).

Once we have the cycles corresponding to the faces of the

dual polyhedron, we convert them into slip states as follows.

For each cycle, starting from the slip state Sk corresponding

to any of the vertices in the cycle, we set si = 0 for any

plane i that is traversed by an edge in the cycle. The total

number of slip states S we obtain is thus equal to the number

of regions, facets and lines of the plane arrangement, which is

the same as the number of vertices, edges and faces of its dual

polyhedron. We have already shown that this is polynomial

(quadratic) in the number of planes (contacts). We also show

that the enumeration algorithm above has polynomial runtime.

We note that Step 1 has two nested loops, with one iterating

over planes and the other one over existing states. The number

of states at the end of this step is bounded by m2, thus the

running time of this Step is O(m3). Step 2 must check every

state against every other one, with O(m2) states, thus its

running time is O(m4). Finally, the dominant part of Step 3 is

the computation of the MCB. We have used an implementation

with O(E3+V E2logV ) running time, where V and E are the

number of vertices and edges of the dual polyhedron. Since

both E and V are polynomial in m, the running time of the

MCB algorithm is as well. Thus our complete enumeration

method has polynomial runtime in the number of contacts m.

V. COMPLETE EQUILIBRIUM DETERMINATION

In this section we use the set of slip states S previously

derived to arrive at a complete algorithm for determining the

existence of passive equilibrium for our system.

A. Solution for a particular slip state

We recall that a slip state Sk = {si}, i ∈ {1..m}, where

ski = {−1, 0, 1}. For each contact i, ski = −1 means that the

contact is slipping in the negative direction, ski = 1 means

slip in the positive direction, and finally ski = 0 means the

contact is sticking. Critically, the fact that Sk comprises not

just stick/slip information, but also the direction of slip, turns

friction into a simple linear dependency on object motion. The

complete friction constraints are:

ci,t = µci,n for all i s.t. ski = −1 (12)

ci,t = −µci,n for all i s.t. ski = 1 (13)

−µci,n ≤ ci,t ≤ µci,n for all i s.t. ski = 0 (14)

Intuitively, these correspond to the following three states:

1) The contact slips in the negative tangential direction.

Friction opposes the relative motion s.t. ci,t = µci,n.

2) The contact slips in the positive tangential direction.

Friction opposes the relative motion s.t. ci,t = −µci,n.

3) The contact sticks (it exhibits no relative motion in

the tangential direction). The friction force lies in the

interior of the friction cone s.t. −µcj,n ≤ cj,t ≤ µcjn.

Thus, for any given slip state Sk, the system given by Eqs.

(1), (2), (4) and (12-14) is easy to solve. In fact, we notice that

we have a total of 3+2m unknowns (vectors d and c). From

equilibrium in eq. (1), the normal force constitutive relations

in eq. (4) and the above eq. (12&13) we have 3+m+(m− l)
constraints, where l is the number of slipping contacts. We can

use the condition that the remaining m− l stationary contacts

do not exhibit any relative motion in the tangential direction

to formulate m − l additional constraints, leading to a total

of 3+2m constraints matching the number of unknowns. For

a given Sk we can thus trivially find a solution to the linear

system of equations given by Eqs. (1),(4) and (12&13). We

then check if the solution also meets Eqs. (14) (friction cone at

sticking contacts) and (2) (normal force non-negativity). If the

matrix corresponding to Eqs. (1),(4) and (12&13) is singular

this operation is replaced by a simple linear program, which

looks for a solution in the nullspace satisfying also equations

(14),(2). Only if the solution we obtain satisfies all constraints

do we deem the grasp to be stable for slip state Sk.

B. Complete equilibrium algorithm

We can now formalize our complete algorithm using the

components outlined so far (Algorithm 2). We first build the

total set of possible slip states S. Then, for every Sk ∈ S,

we check for a solution to the system described above. If

one exists, we deem the grasp stable. If, after enumerating

all possible Sk, we do not find one that admits a solution, we

deem the grasp unstable. We make two important observations

regarding Algorithm 2. First, its running time is polynomial

in the number m of contacts. This follows trivially from the

results obtained so far. We know that #(S) is polynomial in

m, as is the process for building it. For each Sk, we then solve

at most a linear program with 2m+ 3 unknowns, which also

has a polynomial runtime, which completes this result.

Second, Algorithm 2 guarantees that, if no solution is found,

none exists that satisfies the constraints of our system. S

provably contains all the slip states consistent with rigid body

movement; for each of these, equilibrium conditions form a



linear program for which we can provably find all solutions (if

they exist). So, under the assumed formulation (virtual springs

used to determine passive reaction, and frictional constraints

including the maximum dissipation principle), if a solution

exists to the equilibrium problem, we must find it.

VI. RESULTS

In this section we will demonstrate that our framework - in

contrast to previous approaches to this problem - predicts the

correct force distributions and makes an accurate prediction on

grasp stability. We will utilize the grasp examples introduced

in Figs. 1, 3 & 4, because the correct force distribution and

stability of the grasp is easily understood intuitively.

Let us first consider the problem first described in the

Introduction: can we discriminate which applied wrenches will

be balanced purely passively, and where an active preload

of the grasp is required? Recall that there exist contact

forces in the interior of the friction cones that balance both

wrenches shown in Fig. 1. Perhaps the most commonly used

approach to grasp stability analysis is the Grasp Wrench Space

method [6]. Indeed, when we consider the slice through the

GWS visualized in Fig. 7(a) we can see that there exist contact

forces that balance arbitrary forces in the plane. However,

we argue that while w2 will always be reacted passively, no

matter the preload, in order to react w1 we require the grasp to

have been sufficiently preloaded. The GWS method correctly

indicates the existence of equilibrium contact forces but does

not predict if they may arise, and hence does not capture the

necessity of a preload.

Now let us apply our framework to this problem: Using

our algorithm, we can test the resistance of this grasp to

forces in the plane. We do this by discretizing the direction

of application of force to the object and finding the maximum

resistible force in each direction using a binary search. Figs.

7(b) & 7(c) shows the region of resistible wrenches for a grasp

without and with a preload respectively. As our algorithm takes

into account passive effects it correctly predicts that, in both

cases, forces with non-positive component in the y-axis and

arbitrary magnitude can be withstood. Indeed, for any applied

wrench w = (0, wy, 0), wy ≤ 0 our framework predicts

contact forces (0, 0) at contacts 1 and 3, and contact force

(−wy, 0) at contact 2 (see Table I). Furthermore, it captures

the necessity of a preload in order to resist forces with positive

component in the y-direction: For wy > 0 our algorithm finds

no solution, and hence the grasp must be unstable to this

disturbance, unless an appropriate preload is applied.

We have already shown the main deficiency of compliance

based approaches such as in [1][2][3][14] (recall Fig. 3), which

are commonly used to predict contact forces that arise in

grasps due to disturbances. We can now use this grasp (Fig.

1) and our algorithm to show that the improvements to a

linear compliance suggested by Prattichizzo et al. [14] lead to

overly conservative stability estimates. Their approach allows

each contact to be in one of three states: sticking, slipping

or detached. A slipping contact may not apply any frictional

forces, while a detached contact may not apply any force at

w P Stable f1 f2 f3 d

(0, 0, 0) 0 Yes (0, 0) (0, 0) (0, 0) (0, 0, 0)
(0, 0, 0) 1 Yes (1,−0.5) (1, 0) (1, 0.5) (0, 0, 0)
(0,−1, 0) 0 Yes (0, 0) (1, 0) (0, 0) (0,−1, 0)
(0,−2, 0) 0 Yes (0, 0) (2, 0) (0, 0) (0,−2, 0)
(0, 1, 0) 0 No - - - -
(0, 1, 0) 1 Yes (1,−0.5) (0, 0) (1, 0.5) (0, 1, 0)
(0, 1.1, 0) 1 No - - - -

TABLE I
CONTACT FORCES fi = (fn,i, ft,i) AND VIRTUAL OBJECT MOTION

d = (x, y, r) FOR THE GRASP IN FIG. 1 AND A RANGE OF APPLIED

WRENCHES w = (wx, wy , wz). THE PRELOAD P IS SUCH THAT THE

NORMAL FORCE AT EACH CONTACT IS EQUAL TO EITHER 0 OR 1 BEFORE

ANY WRENCH IS APPLIED. THE OBJECT MOTION AND APPLIED WRENCHES

ARE EXPRESSED IN THE COORDINATE FRAME SHOWN IN FIG. 1 AND

CONTACT FORCES ARE EXPRESSED IN FRAMES AS SHOWN IN FIG. 2.

m 2 3 4 5 6 7 8 9

#(S) 10 26 50 82 122 170 226 290

time(s) 0.006 0.02 0.09 0.42 1.5 4.8 13.8 35.7

TABLE II
NUMBER OF SLIP STATES #(S) AND COMPUTATION TIME FOR GRASPS

WITH m RANDOMLY GENERATED CONTACTS.

all. If we try every possible combination of states and modify

the compliance of the grasp accordingly, this alleviates some

of the problems of the purely linear compliance approach: If

we consider contacts 1 & 3 to be slipping, our grasp in Fig.

1 may now withstand arbitrary forces, where wy ≤ 0.

This approach, however, does not allow us to arrive at the

correct result in cases where wy ≥ 0. Consider the preloaded

grasp before the application of an external wrench (Table I.)

The contact forces on both contacts 1 & 3 lie on the friction

cone edge in order to balance the preload applied by contact 2.

If we now apply an external wrench w = (0, 1, 0), there exists

no combination of sticking, slipping and detached contacts

(and corresponding modifications of the linear compliance)

that results in legal contact forces. Our algorithm, however,

predicts a stable grasp (Table I), showing how important

friction is for grasp stability and why a correct treatment of

friction is fundamental to stability analysis. Furthermore, we

have arrived at this result in polynomial time — we did not

have to consider exponentially many slip states, as in [14].

Let us now look at the grasp in Fig. 4, with which we

investigated the deficiency of solely constraining the friction

forces to lie within the friction cones. These constraints would

allow a solver to rotate the object; the normal forces built up

this way allow for arbitrary friction forces and reaction of

arbitrary wrenches. In contrast, our framework restricts the

friction force as is physically correct, and negates equilibrium

for any wrench w = (0, wy, 0) if there is no preload (see Table

III). Hence our algorithm correctly predicts that the contact

forces required to balance this wrench will not arise passively.

Let us now apply a preload to the contacts such that the

normal force at each contact is 1 (previous to the application of

an external wrench). If we now apply (0, wy, 0) our algorithm

predicts stability for ‖wy‖ ≤ 4µ only, where µ is the friction

coefficient of the contacts (we have chosen µ = 0.5). Table III
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stützflächen. Zeitschrift fr Mathematik und Physik, 45,

1900.


	INTRODUCTION
	RELATED WORK
	Passive Equilibrium Formulation
	Number of Possible Slip States
	Slip states as plane arrangements
	Slip state enumeration

	Complete Equilibrium Determination
	Solution for a particular slip state
	Complete equilibrium algorithm

	RESULTS
	CONCLUSIONS

