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few results about DS graphs are known in literature. In this paper, we consider the above
problem in the context of the generalized Q-spectrum. A graph G is said to be determined
by the generalized Q -spectrum (DGQS for short) if, for any graph H, H and G have the same
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Is?e/z?;d; graphs Q-spectrum and so do their complements imply that H is isomorphic to G. We give a

Cospectral graphs simple arithmetic condition for a graph being DGQS. More precisely, let G be a graph with

Determined by spectrum adjacency matrix A and degree diagonal matrix D. Let Q = A + D be the signless Laplacian

Q-spectrum matrix of G,and Wy (G) = [e, Qe, . . ., Q" 'e] (eis the all-ones vector) be the Q -walk matrix.
We show that if deff,,vg“j) (which is always an integer) is odd and square-free, then G is
DGQS. 2
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1. Introduction

Throughout this paper, we are only concerned with simple graphs, i.e., undirected graphs without multiple edges and
loops. Given a graph G with (0,1)-adjacency matrix A(G) and degree diagonal matrix D(G), the Laplacian matrix and the signless
Laplacian matrix (also called Q-matrix) can be defined as L(G) = D(G) — A(G) and Q(G) = A(G) + D(G), respectively. The
spectrum of G consists of all the eigenvalues (including the multiplicities) of the corresponding matrix associated with G.
So we may have adjacency spectrum, Laplacian spectrum, and Q-spectrum, denoted by Spec,(G), Spec,(G) and Spec,(G),
respectively (see [3]).

Two graphs are cospectral if they share the same spectrum. A graph G is said to be determined by the spectrum (DS for
short) if, for any graph H, G and H are cospectral implies that H is isomorphic to G. (Of course, the matrix associated with
the graph should be clear from the context.)

“Which graphs are DS?” is a fundamental question in spectral graph theory. The problem dates back to more than 60 years
ago and originates from chemistry. In 1956, Giinthard and Primas [9] raised the question in a paper that relates the theory
of graph spectra to Hiickel’s theory from chemistry. An analogue of the problem is also asked by Kac [11]: “Can one hear the
shape of a drum?”. Fisher [ 10] modelled the shape of the drum by a graph. Then the sound of that drum is characterized by
the eigenvalues of the graph. Thus Kac’s question is essentially the same as ours.

Another important motivation for the above problem comes from complexity theory. It is still a long standing open
question whether graph isomorphism is a hard or an easy problem, despite the recent breakthrough result of Babai [1],
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claiming a quasipolynomial time algorithm for it. Since checking whether two graphs are cospectral can be done in
polynomial time, the focus is on checking isomorphism between cospectral graphs.

Whereas it is comparatively easy to construct pairs of cospectral and non-isomorphic graphs, it is quite challenging to
prove a given graph to be DS. Up to now, all the known DS graphs have very special properties, and the techniques (e.g., the
eigenvalue interlacing technique) involved in proving them to be DS depend heavily on some special properties of the spectra
of these graphs, and cannot be applied to general graphs. For the background and some known results about this problem,
we refer the reader to [7,8] and the references therein.

In recent years, Wang and Xu [17,18] and Wang [15,16] considered the above problem in the context of the generalized
adjacency spectrum. A graph G is determined by the generalized adjacency spectrum (DGAS for short) if, for any graph H,
Spec,(G) = Spec,(H) and Spec,(G) = Spec,(H) imply that H is isomorphic to G, where G and H denote the complement of
the graphs G and H, respectively. Let W(G) = [e, Ae, ..., A" le] be the walk-matrix of G (e is the all-one vector). In [15,16],
Wang proved the following elegant result on DGAS graphs:

Theorem 1.1 (Wang [15,16]). If det W(G)/2"/2] (which is always an integer) is odd and square-free, then G is DGAS.

The main objective of this paper is to show that a similar result holds for the generalized Q-spectrum. A graph G is
said to be determined by the generalized Q-spectrum (DGQS for short) if, for any graph H, Spec,(G) = Specy(H) and
Specy (G) = Specq (H) imply that H is isomorphic to G. We mention that it was Cvetkovi¢ and Simi¢ who initiated the study
of Q-spectrum (see [4-6]), since it seems that the Q-spectrum has low spectral uncertainty. Subsequently, there are a few
families of graphs that were shown to be DS with respect to the Q-spectrum, see e.g. [12,13,19]. However, all these graphs
have special structures and no general result as Theorem 1.1 is known in literature.

LetGbe a graph with signless Laplacian matrix Q. Define Wy (G) = [e, Qe, . .., Q" 'e] to be its Q -walk-matrix. It will soon

be clear that 2 ¥ always divides det W (G) (see Lemma 3.4) and hence det WQ( )/ZL%J is always an integer.
The main result of the paper is the following

Theorem 1.2. If det WQ(G)/2L¥J is odd and square-free, then G is DGQS.

The main idea of the proof of Theorem 1.2 follows that of Wang [15,16]. It is noticed, however, several new ingenious
ideas are needed to make the proof work.

The rest of the paper is organized as follows. In Section 2, we give some preliminary results that will be needed later in the
paper. In Section 3, we present the proof of Theorem 1.2. In Section 4, we give some examples of DGQS graphs. Conclusions
are given in Section 5.

2. Preliminaries
In this section, we shall give some preliminary results that will be needed later in the paper.
2.1. The main strategy

In this subsection, we shall describe our main strategy to prove a graph to be DGQS, which roughly follows the ideas
from [15,16,18]. The following theorem is the starting point of our method, which gives a simple characterization of two
graphs sharing the same generalized Q -spectrum. Next, we define e as the all one vector, and the following theorem is the
analogue of a result for adjacency matrix obtained by Wang and Xu [18].

Theorem 2.1. Let G be a graph such that det Wy (G) # 0. There exists H such that G and H are cospectral with respect to the
generalized Q -spectrum if and only if there exists a rational orthogonal matrix U such that

UTQ(G)U = Q(H), Ue =e. (m
Proof. Suppose that there exists a rational orthogonal matrix U such that Eq. (1) holds. Note that

Q(G) = D(G) + A(G) =] + (n — 2)I — Q(G).

It follows that UTQ(G)U = Q(H). Thus, we have Specqy (G) = Specy(H) and SpecQ(G) = SpecQ(I:I) and the sufficiency part of
the lemma follows.
Next, we show the necessity part of the lemma is true. Note that

det(Al + ] — Q(G)) = det(Al — Q(G) + tee")
= det(M — Q(G))det(I 4+ t(AI — Q(G)) 'ee”)
= (1+te" (M — Q(G))"e) det(Al — Q(G)),

for any & ¢ o(Q(G)), where o (Q(G)) is the set of the eigenvalues of Q(G) (without multiplicities). It follows that det(Al +
tJ — Q(G)) is linear in t. Similarly, we have

det(A 4+ ¢] — Q(H)) = (1 + te" (Al — Q(H)) 'e)det(Al — Q(H)).
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Since Spec, (G) = Specy(H) and Specy (G) = Specy (H), we have det(Al — Q(G)) = det(Al — Q(H)), and det(Al +J — Q(G)) =
det(Al +J — Q(H)). Then, det(Al + tJ] — Q(G)) = det(Al + tJ — Q(H)) for any t. Thus,

e' (A — Q(G)) e = e (A — Q(H)) e (2)

Since Q(G) is a symmetric real matrix, it has a set of eigenvectors that form an orthonormal basis for R". Group the
eigenvectors with respect to the eigenvalues into matrices P,,, where the subscripts represent the eigenvalues. We have the
following spectral decomposition

1
(A=QG) "= Y, PP
nea(Q(G)) n

Define the matrices R,, similarly for H, and there is a similar decomposition for H. Plugging into Eq. (2), we get

T,12 T 5112
Z IPell _ Z IIR,AeII.
A—u

)\. —
neo@ey * T M uesamy

This shows that the Euclidean norm of Pjje and R} e is the same for each . Therefore, there exist orthogonal matrices H,,
such that PZe = HMRlTLe. Finally, let

T T T T
U=I[Pu.Puy..... P, IR H . Ry,HL ... Ry H T,
where o(Q(G)) = {u1, m2, ..., us}. Direct calculation shows that U is an orthogonal matrix satisfying Ue = e and

UTQ(G)U = Q(H). Thus we have
UTQ/(G)e = Qi(H)e, fori=0,1,...,n—1,

i.e., UTWq(G) = Wy (H). Hence U = Wq(G)Wq(H) ! is a rational matrix satisfying Eq. (1).
Uniqueness of the matrix U follows by assuming U;"Q(G)U; = U,"Q(G)U, = Q(H) and Uje = U,e = e, which generates
UTWq(G) = UJWq(G). Then the fact that Wy (G) is full rank gives U; = U,. This completes the proof. O

Define
I'(G) = {U € 0,(Q)|UTQ(G)U = Q(H) for some graph H and Ue = e},

where 0,(Q) denotes the set of all orthogonal matrices with rational entries.
Similarly, the following theorem is also the analogue of a result for adjacency matrix obtained by Wang and Xu [18].

Theorem 2.2. Suppose det Wy (G) # 0. Then G is DGQS if and only if I'(G) contains only permutation matrices.

Proof. Suppose I'(G) contains only permutation matrices, we show G is DGQS. For contradiction, suppose G is not DGQS. Then
there exists a graph H that is cospectral with G w.r.t. the generalized Q -spectrum but non-isomorphic to G. By Theorem 2.1,
there exists a rational orthogonal matrix U with Ue = e such that UTQ(G)U = Q(H). Then U e I'(G) but U is not a
permutation matrix; a contradiction.

On the other hand, suppose G is DQGS, we show I'(G) contains only permutation matrices. For otherwise, suppose that
there exists a rational orthogonal matrix in I"(G), say Uy, which is not a permutation matrix. Then it is easy to see that the
graph H with Q-matrix U]T Q(G)U; is cospectral with G w.r.t. the generalized Q -spectrum but non-isomorphic to G (since if
H and G are isomorphic, there exists a permutation matrix P such that PTQ(G)P = Q(H) and Pe = e, which contradicts the
uniqueness of Uy ). Thus, we got a contradiction. This completes the proof. O

By the above theorem, in order to show a given graph G is DGQS, we have to determine whether I"(G) contains only
permutation matrices. In order to do so, we give the following definition.
Definition 2.1. Let U be an orthogonal matrix with rational entries. The level of U, denoted by £(U) or simply ¢, is the smallest
positive integer k such that kU is an integral matrix.

Clearly, a rational orthogonal matrix U with Ue = e is a permutation matrix if and only if £(U) = 1. Thus, for a given
graph G, our main strategy in proving /"(G) contains only permutation matrices is to show that every U € I'(G) has level
£=1.

2.2. The Smith Normal Form

When dealing with integral and rational matrices, the Smith Normal Form (SNF for short) is a useful tool. An integral
matrix V of order n is called unimodular if detV = +1. The following theorem is well-known.

Theorem 2.3 (See e.g., [2]). For an integral matrix M, there exist unimodular matrices V, and V, such that M = V,SV,, where
S = diag(dy, da, ..., dy)is the SNFwith d; | diy1 fori=1,2,...,n — 1, and d; is called the ith elementary divisor.
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Note that the SNF of a matrix can be computed efficiently (see e.g. page 50 in [ 14]).
The following lemma plays a key role in the proof of Theorem 1.2.

Lemma 2.4 (Wang [15]). Using the notations above, the system of congruence equations Mx = 0 (mod p?) has a solution
x # 0 (mod p)ifand only if p? | d,.

Proof. The equation Mx = 0 (mod p?) is equivalent to diag(d;, do, ..., d;)Vox = 0 (mod p?). Let Vox = y. Consider
diag(dy, dy, ..., dn)y = 0 (mod p?). On the one hand, If p? | dy, lety = (0,0,...,0,1)T, thenx = V; 'y # 0 (mod p) is
a required solution to the original congruence equation. On the other hand, it is easy to see if p? { d,, then the equation has
no solution x with x # 0 (mod p). This completes the proof. O

2.3. A technical lemma
Finally, we present the following technical lemma, which plays a key role in the proof of Theorem 1.2.

Lemma 2.5. Let G be a graph with signless Laplacian matrix Q. Then e’ Qe = 0 (mod 4), and e” Q*e = 0 (mod 8), for any integer
k> 2,

Proof. Note that Ae = De = d, where d = (di,d,...,d,)" and d; is the degree of the ith vertex. It follows that
Qe = (A + D)e = 2d. Thus we have e’Qe = 2d"e = 4|E| = 0 (mod 4). Moreover, we have e’ Q%e = (Qe)'(Qe) = 4d'd =
4(dy +dy + - - - +d,) = 0 (mod 8). Next, we show e’ Q*e = 0 (mod 8) for any k > 3.
Note that Q = A + D and Ae = De. It follows that
e’ Q%e = 4e" D(A + D)*?De = 4Tr(D(A + D)*~2D) (mod 8).

So it suffices to show Tr(D(A + D)*~2D) is always even for k > 3.

For the ease of presentation, we define 2" as the free monoid generated by {a, d},and 2;, = {X € 27| the length of Xis m}.
Define a mapping t on 2, which reverses the order of elements of X € 2, i.e, X = MM, ... My, where M; is the
(m —1i+ 1)-thcharacterof X,i =1, 2, ..., m. Denote by X = MM, ... M, the product of the string of matrices in X, where
M; = Aif the ith character of X is a, and M; = D if the ith character of X is d, fori = 1, 2, ..., m. It is easy to see X" € 2y, is
uniquely determined by X and X" = X".

Using the notations above, we have

Tr(D(A + D)*?D)= " Tr(DXD).
Xe X2

Note that Tr(DXD) = Tr((DXD)") = Tr(DX*D). Then we have
> Tr(DXD) = 0 (mod 2).

XeZy o
X#XT

It follows that
Tr(D(A+ D)*?D)= " Tr(DXD)(mod 2).

XeZy_y
X=XT

We distinguish the following two cases:

Case 1. k is even. Using that De = Ae, note that
Tr(DX*AAXD) = Tr(AXDDX"A)

e’ AXDDX" Ae

e’ DXDDX"De

Tr(DXDDX'D) (mod 2).

Thus
Tr(D(A + D)* D) = Z Tr(DXD)

XeXy_»
X=XT

= Z Tr(DX*(AA + DD)XD)
Xe X2

> T(DXDDX'D)+ Y Tr(DX"DDXD)
XeZyj2-2 XeZyj2-2
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=2 ) Tr(DXDDX'D)
Xe X2

= 0 (mod 2).

Case 2. k is odd. Note that
Tr(DX"AXD) = Tr(XDDX"A)
n
= ) (XDDX");(A)j
ij=1

=2 ) (XDDX")j(A);
1<i<j<n

= 0 (mod 2).
It follows that
Tr(D(A + D)D) = Z Tr(DXD)

XeZy_o
X=XT

= > THDX"(A+ D)XD)
X&€Z(k-3)/2

= > Tr(DX"DXD)(mod 2).
Xe %(k,g)/z

Notice that Tr(DX"DXD) = Tr(DX"DDXD) = Tr(DXDX*D) (mod 2). Therefore, we have
Tr(D(A + D)D) = Z Tr(DX*DXD)

XeZik-3)/2

= > Ti(DX'DXD)
Xe «"\’f(k—g)/z

> (e"DX"D)(DXDe)

XEJZ"(;(,:;)/Z
X=XT

> e'DXDe

XeZ(k-3)/2
X=XT

Tr(D(A + D)*~3/2D) (mod 2)

Now, it is easy to show by induction on k that e’ D(A 4+ D)*~2De is even.
Combining Cases 1 and 2, we have e’ Qe = 4Tr(DQ*~2D) = 0 (mod 8) (k > 2). This completes the proof. O

3. The proof of Theorem 1.2

In this section, we present the proof of Theorem 1.2. For every U € I'(G) with level £, we shall show that the condition
of Theorem 1.2 implies that £ = 1. For this purpose, we shall show that any prime p is not a divisor of £. This will be done in
two cases: p = 2 and p is an odd prime.

For the ease of presentation, we define .%; , to be set of all graphs on n vertices such that det::fgz((j) is odd and square-free.

Moreover, the Q-walk matrix W (G) ‘collapses’, in the sense that the rank of W (G) becomes one in contrast that the rank of
the walk matrix W(G) is [n/21 (see [16]), over the finite field F,. So we define the modified Q -walk matrix, denoted by WQ( )
or simply WQ, to be [e, & 2 Lo (G)e = A(G)e + D(G)e = 2A(G)e. It is clear that WQ(G) is an integral matrix,
which plays a similar role as that of W(G) in [15,16], as we shall see later.

In what follows, we shall use the finite field notation IF, and mod p (for a prime p) interchangeably, and shall use rank,(M)
to denote the rank of an integral M over Fp.

3.1. The case p is an odd prime
In this subsection, we shall deal with the case that p is an odd prime of £. The main result of this section is the following

Theorem 3.1. Let G € %y , and U € I'(G) with level £. Then for any odd prime p, we have p 1 £.

Please cite this article in press as: L. Qiu, et al., A new arithmetic criterion for graphs being determined by their generalized Q-spectrum, Discrete
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Before presenting the proof of Theorem 3.1, we need the following lemma.

Lemma 3.2. Let U € I'(G) with level ¢. Suppose p is a prime divisor of £. Then there exists an integral vector v # 0 (mod p)
such that

v"Q¥(G)v = 0(mod p?), Wi (G)v = 0 (mod p), 3)
forany k > 0.

Proof. Let U = ¢U. Then U is an integral matrlx Let H be a graph such that UTQ(G)U = Q(H) and Ue = e. It follows from

Eq. (1) that UTQX(G)e = Q(H)¥e, and hence UT &2 o (G Q(H ¢ forany k > 1. Thus, we have UT W, (G) = Wq(H). Let v be any
column of U withv # 0 (m_od p) (su_ch a v must exnst due to the definition of £). With such a v we have Wé(c)v = 0(mod p).
Moreover, it follows from UTQ¥*(G)U = ¢2Q*(H) = 0 (mod p?) that vTQ¥*(G)v = 0 (mod p?), for any k > 0. This completes
the proof. O

Now we present the proof of Theorem 3.1:

Proof. Suppose on the contrary that p | £. By Lemma 3.2 and the fact p? ¢ det(WQ ), we have rankp(WQ) =n—11t
follows from U™W, = 0 (mod p) and the definition of ¢ that rank,(U) = 1. Then there exists an integral vector y such that
vyT = U (mod p), where v is the vector satisfying Eq. (3). Let v be the Ith column of U. Let UTQ(G)U = Q(H) for some graph
H.Then

Q(G)v = UQ(H) = v(y"Q(H)) = Aov (mod p),

where Q(H), denotes the Ith column of Q(H) and Ay = yTQ(H), is an integer. It follows that rank,(Q(G) — Aql) # n. Next let
Q = Q(G), we distinguish the following three cases:

Case 1. rank,(Q — Aol) = n — 1. Note that v"v = 0 (mod p) and v"e = 0 (mod p) and v(Q — Aol) = 0 (mod p). It follows
that there exist integral vectors y and u such that v = (Q — Agl)y (mod p) and e = (Q — XAol)u (mod p). It follows that
e = (Q — xol)u + ppB for some integral vector 8.

Thus, we have

~ Qe anle
Wo =[e, —, ...,

o=les 7

QU Qn ] Qﬂ*]
=(Q—kol)[u,7,. ]+ plB, ﬁ 5 /3]
Q Qn 1
=@ +p18, Y, E ’31,
where X = [u, %, R Q] (note that X need not be an integral matrix, but X (mod p) is meaningful since p is an odd

prime). It follows that

T Ton—-1
Wiv = X"(Q — Aol)v + p[v B, zQﬂ : Qz Py

Moreover, since 221 x 2 = 1 (mod p), we get 2! = 1 (mod p). Thus,

Wlv — Xol)v + 1A + 1)t
Q EXT(Q of) +vTﬂ[1,(p )O,...,(p Mo 1" (mod p).
p p 2 2
Since v'v = 0 (mod p?), we have vTW = 0 (mod p). Further notice that v(Q — Ael) = 0 (mod p), and
rank,(Q — Aol) = n — 1.1t follows that there exists an integral vector x such that
(Q — Aol )v

) = (Q — Aol)x (mod p).

Moreover, note that

v = (Q — Aol)y (mod p),

ETQV _ (p+1))\OeTy+p+] T (p+l))\0 T

> = 5 5 ev= 5 y (mod p),
TQ? + Dr +
e%y (p Z)OTQV+ Qv = (p 2) y (mod p),

Please cite this article in press as: L. Qiu, et al., A new arithmetic criterion for graphs being determined by their generalized Q-spectrum, Discrete
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e'Q"ly _ (p+ g
= > 0 ey (mod p).

From the above congruence equations, we can get

_ + 1A (p+ A1
WQyEeTy[l,(p 2)0,..., P > % _1(mod p).

Now we show that eTy # 0 (mod p). For otherwise, if e’y = 0 (mod p), then Wéy = 0 (mod p). Note that ng = 0(mod p)

and rankp(WQ) =n — 1.Thus, y and v are linearly dependent over [F,. However, this is a contradiction. In fact, assume there

exist k1 and k; such that kiy+k,v = 0, over [F,.. Left multiplying both sides by Q — Aol gives that kyv = 0. Thus we getk; = 0,

since v # 0. It follows from k,y = 0 and y # 0 that k, = 0. Thus, there exists an integer t such that v7 8 = te’y (mod p).
Note that Wé = XT(Q — Agl) (mod p). Therefore, we obtain

WT
T = WQX + tWQy (mod p).

Thus,
W{ (v — px — pty) = 0 (mod p).

It follows from Lemma 2.4 that p? | det(WQ ), which contradicts the assumption of Theorem 1.2.

Case 2. rank,(Q — Aol) = n — 2. Now we show that v cannot be expressed as linear combinations of the column vectors of
Q — Aol over .. For otherwise, if there exists an integral vector w such that (Q — AoI)w = v (mod p), then
eQw  eTQ* v 2e’Q¥'w  Afew

5 = 3 + 5 = 5 (mod p),

for any k > 1. Moreover, since rank,(Q — Aol) = n — 2, there exists a vector y such that (Q — Aol)y = 0 (mod p), and
e’y # 0 (mod p). It is easy to see that v, w and y are linearly independent. Let & = (ey)w — (e’ w)y. Then & £ 0 (mod p),

T rkely T AkeTy T . .
e'y-55— — e’ w-5= = 0 (mod p). Therefore, Woa =0 (mod p), which contradicts the fact

e’ = 0 (mod p), and @ =
that rankp(WQ) =n—1

Denote by [Q — oI, v] the matrix obtained by adding the column v to Q — A¢l. Thus, we have rank,([Q — Aol, v]) = n—1.
Note that vTe = 0 (mod p) and v7[Q — A¢l, v] = 0 (mod p). It follows that there exist integral vectors u, 8 and an integer s
such that

e=(Q — xolu+sv + pB.

Thus, we have

- n—1
nfl n— 1 n—1
:(Q—Mﬂ)[u,%,... Y Q %1+ pLB. ﬂ Qzﬂ]
n— 1 n—1
N S U S 7} % ,Q2 ’31,
where X = [u, 2,...,%_1”].
It follows that
V~VT — n—1
Q" EXT(Q Aol +(SvTv+v B1 (p+ UAO,..., (Pt 1y 1" (mod p).
p p p 2 2

It follows from the facts that UTW = 0 (mod p), and v"[Q — Aol, v] = 0 (mod p), and rank,[Q — Aol,v] = n — 1
that there exist an integral vector x and an integer m such that

(Q — Aol
p

Moreover, since e’y # 0 (mod p), there exists an integer t such that £ v v+ 0T B+ muTv — svTx = teTy (mod p).

= (Q — Aol )x + mz (mod p).

Please cite this article in press as: L. Qiu, et al., A new arithmetic criterion for graphs being determined by their generalized Q-spectrum, Discrete
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Note that W& =XT(Q — xol) +s[v, &, ..., QT%]T (mod p). We obtain
Wlv — 2y s + 1) + 1)t
Q EXT(Q ol) +(7UTU+UTﬂ)[l,(p )0’“”(P Ao I
p p p 2 2
1A an-t
=Xx"(Q - Aol)x+mxTv+(pv v+ 0T B)[1, (p+2)°,...,(p+2)° i
~ s 1A 1)An-1
EW5x+(7vTv+vT,3+muTv—svTx)[l,(p+ )07.”’(p+ Mo ¥
p 2 2
- 1A nan-!
EW5X+teTY[l,(p+2)0,...,(p+2)0 I

= Wjx + tWyy (mod p).
Thus,
W{(v — px — pty) = 0 (mod p?).
It follows from Lemma 2.4 that p® | det(W, ); a contradiction.

Case 3. rank,(Q — Aol) < n—2. Then there exist at least three linearly independent integral vectors, say v, w and y such that
(Q — 2 = (Q — Apl)w = (Q — Agl)y = 0, over IF,. Without loss of generality assume that e’w # 0 (mod p), and e'y #
0 (mod p). Let o = (eTy)w — (e"w)y. Then o # 0 (mod p), e’ = 0 (mod p), and @ = eTy@ — eTw)U‘SEj = 0(mod p).
Therefore, VNVéoz = 0 (mod p). Note that Wév = 0 (mod p) and v and « are linearly independent. We got a contradiction
since rank,(Wg) =n— 1.

Combining the Cases 1-3, the proof is complete. O

3.2. Thecasep = 2

In this subsection, we consider the case p = 2. The main result of the subsection is the following

Theorem 3.3. Let G € % . Let U € I'(G) with level £, then £ is odd.

Before presenting the proof of above theorem, we need several lemmas below.
Lemma 3.4. Let G € Fy . Then rankz(WQ(G)) <13l

Proof. First suppose n is even. Then it follows from Lemma 2.5 that

r eTQe eTQn—le
e'e
2 2
e’ Qe e'Q2e eTQme
WaW, = 2 4 4 = 0(mod 2). (4)
eTQ.nfle erne eTQZ.n72e
L 2 4 4 _

It follows that 2ranl<2(WQ) = rankz(Wé) + rankz(WQ) < n. Thus we have ran1<2(WQ) <53=1I3l

Now suppose n is odd. Let WQ be the matrix obtained from WQ by doubling the first column. Then it follows from
Lemma 2.5 that

eTQe eTQn—le
2ele
T22 T2n
eTQe e' Qe e' Q"
WaW, = 4 4 = 0 (mod 2). (5)
eTQn_le eane eTQ2n72e
4 4 _

Note rankz(WQ) + rankz(WQ) <nand rankz(WQ) > rankz(WQ) — 1. It follows that rankz(WQ) < —1 =[5
This completes the proof. O
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Lemma 3.5. Let G € %y n. Then the SNF of WQ isS = diag(1,1,...,1,2,2,...,2,2b), where b is an odd square-free integer.
——— ——
r L2
Proof. Since det WQ(G)/ZP%ZJ is odd and square-free, we have det Wy = +2L20p,p, - - - ps, where py’s are distinct odd
primes for eachi. Thus the SNF of W, canbe writtenasS = diag(1, 1, ..., 1, 20,2k 2b) whereb = pyp,...psisanodd

square-free integer. It follows from Lemma 3.4 that rank,(Wy (G)) < [51.ie,n—t < [5].Thus,wehavet > n—[5] =[5 ].
Moreover, we have Iy +1, +- - - +1 = | 5], since det(Wq ) = £ det(S). It follows thatly =, = --- =l = landt = | 5]. O

Lemma 3.6 (Cf. [15]). Let G € F ,and U € I'(G) with level £. Then £ divides the n-the elementary divisor d, = 2b of WQ,
where b is odd and square-free.

Proof. By the assumption, UTQ(G)U = Q(H) for some graph H. It follows that
UTQ/(Ge = Q/(H)e, fori=0,1,...,n—1,

and hence, UT% = % fori =1,2,...,n — 1.So we have UTW,(G) = Wq(H) and UT = Wy(H)W,(G)~". Suppose

S = diag(d;, da, . .., dy) is the SNF of W, (G) and W (G) = V;SV,, where V; and V5 are unimodular matrices. Then we have
that

d,U" = Wo(H)V; 'diag(dy/dy, dn/dy, . .., dn/dy1, 1)V}
is an integral matrix. Thus the lemma follows from the definition of £. O

For convenience, next, we fix some notations. Let WQ be the matrix defined as follows:

Qe Qlil-le o
e, —, ..., 1, if nis even;
Y 2 2
Wo = 2 L2
e e 2le
gQ—Q 1, if nis odd.
2 2 2

The following lemma plays an important role in the proof of Theorem 3.3, the proof which is totally different from that
in[16].

Lemma 3.7. Let G € % . Then we have ranl<2(WQ) =|3].

Proof. Lett = f%} = rankz(VVQ). It suffices to show that the first t columns of WQ are linearly independent over F,. For

contradiction, suppose e, %, AU %ﬁlg are linearly dependent, i.e., there exist cq, c1, ..., c;_1 € [, not all zero, such that
C0€+C]%+' . -+c[_1%7le = 0.Let m be the maximum index amongO0, 1, ..., t—1withcy, # 0.Thenwehave0 <m <t—1
and
me e mfle
QT = —c,;lcoe—crglcl% - ~-~—crglcm_1Q over Iy, (6)
. Qme Qe Qm—le
ie, == €spanfe, 5, ..., =5—}. It follows from Eq. (6) that
me e m—le
Qe =—crfcoe—cnj]qg—~--—cn’1]cm,1Q + 2B over Z, (7)
2 2 2
for some integral vector 8. Left-multiplying Q on both sides of Eq. (7) gives that
Qm+1e . Qe O QZe . Qme
3 = —2c, 607 —Cp 617 — = Cy Cm_lT +2Q8,
ie.,
Qm-He . Q2€ _ Qme
R —---—cm1cm,17 over IF,. (8)
It follows that %ﬂe € spanfe, %, R %_1"}. Similarly, we have
QerSe Qe mele
€ span{e, DR Ix

for any s > 0. Thus we have rankz(WQ) < m <t — 1; a contradiction. This completes the proof. O
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Let WQJ = [e, QTze, e @], Similarly, WQJ is defined as follows:
Ze n—Ze
. [&QT,...,QZ 1, if nis even;
Wo.1 = 2, 04 n-1
e e e
[QT’QT""’QZ 1, if nis odd.

wWI(GWq 1(G
Lemma 3.8. Let G € %, . We have rankz(%w) = L%J.

wlw, n wlw,
Proof. If nis even, by Lemma 3.5, it follows det(QTQ) = (2!2/b)?/2" = b?. Therefore, the column vectors of matrix Q2 e
wl(G)Wq 1(G A
M) equals the number of columns of Wq ;, whichis 5 = | 5].
W,
2

are linearly independent over IF,. It follows that ranks(
W,

2
) equals the number of columns of WQJ, which is % =|3]. O

If n is odd, by Lemma 3.5, it follows det( ) = b2 Therefore, the column vectors of matrix

WS (G)Wo,1(G)
2

are linearly

independent over FF,. Thus, rank;(
Now we are ready to present the proof of Theorem 3.3:

Proof. We only prove the case that n is even, the case that n is odd can be proved in a similar way.

Suppose on the contrary that ¢ is even. It follows from Lemma 3.2 that there exists a vector v # 0 (mod 2) such that
vTQK¥(G)v = 0 (mod 4), W{(G)v = 0 (mod 2). According to Lemma 3.7 and Eq. (4), it follows that v can be written as the

linear combination of the column vectors of WQ, ie.v= WQu + 2B, where u and 8 are integral vectors and u # 0 (mod 2).
It follows that

vTQMv = (Wou +28) Q" (Wou +28)
= u"WiQ*Wou + 4u" W Q"B + 48" Q"

= u"WjQ " Wou
= 0 (mod 4).
Note that
r T ) 1+k Tn/2—1+k, ]
e e e e
eTle Qi . Qf
eTQ1+ke eTQ2+ke eTQn/2+ke
WéQkWQ — 2 4 o 4 = 0 (mod 2).
eTQn/é—1+ke eTQn./2+ke . eTQn.—2+ke
L 2 4 o 4 .

LetM = VAVOTQ"WQ, u=(uq, Uy, ..., u)" (I =n/2). Then it follows that

uTW£Q"WQu = Z Mijuiu;

1<ij<l
= Z Mﬁuiz + 2 Z Mijju;u;
1<i<l 1<i<j<l
ET 2+ke eT n—2+ke
= (eTle)ul + Tuz +--+ Qf”l
T 2+k T n—2+k
r-k €Q°e e Q e
= |e e, g eeey u
[e'Q 1 1 ]
= 0(mod 4),
fork =0,1,...,n— 1, or equivalently,
TNk TN 2+k T n—2+k
e'Qe e e e e
¢ , < g Ju=0(mod?2,)
2 8 8
fork=0,1,...,n— 1, where we have used Lemma 2.5.
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Define
[eTe  eTQ2e eTQe elQn2e ]
2 8 ] o 8
0 eTQ3e eTQSe eTQH71e
s S e 5
Ml - 0 eTQ4e eTQ4e eTQne
s S . s
eTQ;1+1e eTQ;1+3e ' ETQZ.H_3€
0 . —
L 8 8 8 _
ele e’Q2e efQ% eTQ"2e
2 8 8 o 8
el Qe efQ3e e'Q%e efQ" e
2 8 8 o 8
— eTQZE eTQ4e eTQGe eTQne (mod 2)
2 8 8 o 8
eTQ.nf]e eTQ.HJr]e eTQ;1+3e . eTQ2.n73e
L 2 8 8 o 8 _

Then we have M;u = 0 (mod 2). Moreover,

e'e
5 0 0 0
e’Qe eTQ3e e'Qe efQ" e
4 T84 T86 B T8n
M, = 0 e' Q% e' Q% e'Q'e
3 3 3
eTQ.n+l e eT Q.n+3e . eTQZ'n—3e
= 8 8 8 -
m ele e’Q% efQ%e eTQ"2%e
2 4 4 4
el Qe efQ3e e’Q% e'Q" e
4 8 8 8
— eTQZe eTQ4e eTQGe eTQne
4 8 8 8
eTQ."_]e ETQ.H_HE’ E’TQ;H—3€ . eTQé”‘3e
L 4 8 8 8 -
eT
e’'Q
1 2 QZ2e Q" %e
= E . [e, T, e ) ]
ern—l
2
WIW,
= 0% 10d 2),
2
where WQJ = [e, QTZ‘?, o, %729] and we have used the fact that e’ Qe = 0 (mod 4) and e’ Q*e = 0 (mod 8) for k > 2.
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WIW,
According to Lemma 3.7, ranky(M,) = ranky( Qz !

we distinguish the following two cases:

Case 1.1fn = eTe # 0 (mod 4), then we have rank,(M;) = rank,(M,) =
from Miu = 0 (mod 2) that u = 0 (mod 2); a contradiction.

) = % i.e., M, has full column rank over . Comparing M; and M-,

5, 1.e, My has full column rank over F,. It follows
Case 2.1fn = eTe = 0 (mod 4), then we have rank,(M;) = ranky(M,) — 1 = g — 1. It follows that the solution space of
the linear systems of equations Miu = 0 (mod 2) has dimension one, i.e,, it is spanned by u = (1,0,0, ..., 0)T (mod 2).
Hence v = Wyu = e (mod 2). However, by Lemma 3.6, we have £ | 2b. Moreover, by Theorem 3.1, we have ¢ | 2,ie, £ = 2
since £ is assumed to be even. It follows that the (0,1)-vector v = e (mod 2) has exactly four “1”. This happens only when
n = 4. However, it is easy to check by enumerating all graphs with four vertices that none of them belongs to .%, ,. We got
a contradiction again.
Combining Cases 1 and 2, the theorem follows. This completes the proof. O

Finally, we present the proof of Theorem 1.2.
Proof. Let G € %y n. Let U € I'(G) with level £. By Theorem 3.1, we get p 1 £ for any odd prime p. By Theorem 3.3, we get

that 2 { £. Therefore, the only possibility left is that £ = 1, and hence G is DGQS according to Theorem 2.2. This completes
the proof. O

4. Some numerical results
In this section, we shall present some numerical results to demonstrate how often a randomly generated graph satisfies
the condition of Theorem 1.2.

First we give a specific example below as an illustration of Theorem 1.2.

Example. Let the adjacency matrix of graph G be given as follows:

01 00 O0OT1O0OT1TTUO0UO0OUOO1
1 0100101110110
01 0001 O0O0OO0OO0OOT1TTGO0OTFO
0 0 00OO0OOOOOTTT1TUO0T1TO0
0 00001011100 01
01 101001 1TO0O0T1TT1FPO0
A_lOOOOOOllOlOOl
10 1001110111110
110011110010 O0O0
01 011001 O0O0O0O0OT1TTO0
0 001 0011 1 0O0T1T1O0
01 1 00101O0O0T1O0 11
01 010101011 1O0O0
1 000101 0O0O0O0T1TTO0TO0

14x14
It can be computed easily using Mathematica 8.0 that

det W (G) = 2%° x 3853 x 279659 x 60587890527299.
Thus, G is DGQS.

We have also conducted a series of numerical experiments to estimate the fraction of graphs satisfying Theorem 1.2.
Our method works as follows. For a fixed n (1 < n < 20), we randomly generate 10,000 graphs of order n in which every
edge was selected independently with probability % then count the number of the generated graphs satisfying Theorem 1.2.
Table 1 records the results of one of such experiments.

It can be observed from Table 1 that there are many graphs that are DGQS. In particular, for 6 < n < 20, the estimated
fraction of DGQS graphs is around 21% for odd n; it is around 7% for n = 0 (mod 4), and is round 14% for n = 2 (mod 4).

5. Conclusions

In this paper, we have given a simple ;:1rithme}tic2 condition for a large family of graphs to be DGQS in terms of whether the
determinant of its Q -walk matrix divided by 2"7) is odd and square-free. It would be an interesting future work to study
the asymptotic density of graphs in .%, , satisfying this property, e.g., we would like to know whether the family of graphs

o n has positive density, asn — oo.

Please cite this article in press as: L. Qiu, et al., A new arithmetic criterion for graphs being determined by their generalized Q-spectrum, Discrete
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Table 1

Estimated fraction of DGQS Graphs.
n Fraction n Fraction
1 0 11 0.2109
2 0 12 0.0747
3 0 13 0.2137
4 0 14 0.1455
5 0 15 0.2081
6 0.0862 16 0.0736
7 0.1904 17 0.2064
8 0.0738 18 0.1408
9 0.2009 19 0.2214
10 0.1457 20 0.0730
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