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a b s t r a c t

‘‘Which graphs are determined by their spectrum (DS for short)?’’ is a fundamental question
in spectral graph theory. It is generally very hard to show a given graph to be DS and
few results about DS graphs are known in literature. In this paper, we consider the above
problem in the context of the generalized Q -spectrum. A graph G is said to be determined
by the generalized Q -spectrum (DGQS for short) if, for any graph H , H and G have the same
Q -spectrum and so do their complements imply that H is isomorphic to G. We give a
simple arithmetic condition for a graph being DGQS. More precisely, let G be a graph with
adjacency matrix A and degree diagonal matrix D. Let Q = A + D be the signless Laplacian
matrix of G, andWQ (G) = [e,Qe, . . . ,Q n−1e] (e is the all-ones vector) be the Q -walk matrix.
We show that if detWQ (G)

2⌊
3n−2

2 ⌋
(which is always an integer) is odd and square-free, then G is

DGQS.
© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, we are only concerned with simple graphs, i.e., undirected graphs without multiple edges and
loops. Given a graphGwith (0,1)-adjacencymatrix A(G) and degree diagonalmatrixD(G), the Laplacianmatrix and the signless
Laplacian matrix (also called Q-matrix) can be defined as L(G) = D(G) − A(G) and Q (G) = A(G) + D(G), respectively. The
spectrum of G consists of all the eigenvalues (including the multiplicities) of the corresponding matrix associated with G.
So we may have adjacency spectrum, Laplacian spectrum, and Q -spectrum, denoted by SpecA(G), SpecL(G) and SpecQ (G),
respectively (see [3]).

Two graphs are cospectral if they share the same spectrum. A graph G is said to be determined by the spectrum (DS for
short) if, for any graph H , G and H are cospectral implies that H is isomorphic to G. (Of course, the matrix associated with
the graph should be clear from the context.)

‘‘Which graphs are DS?’’ is a fundamental question in spectral graph theory. The problemdates back tomore than 60 years
ago and originates from chemistry. In 1956, Günthard and Primas [9] raised the question in a paper that relates the theory
of graph spectra to Hückel’s theory from chemistry. An analogue of the problem is also asked by Kac [11]: ‘‘Can one hear the
shape of a drum?’’. Fisher [10] modelled the shape of the drum by a graph. Then the sound of that drum is characterized by
the eigenvalues of the graph. Thus Kac’s question is essentially the same as ours.

Another important motivation for the above problem comes from complexity theory. It is still a long standing open
question whether graph isomorphism is a hard or an easy problem, despite the recent breakthrough result of Babai [1],
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claiming a quasipolynomial time algorithm for it. Since checking whether two graphs are cospectral can be done in
polynomial time, the focus is on checking isomorphism between cospectral graphs.

Whereas it is comparatively easy to construct pairs of cospectral and non-isomorphic graphs, it is quite challenging to
prove a given graph to be DS. Up to now, all the known DS graphs have very special properties, and the techniques (e.g., the
eigenvalue interlacing technique) involved in proving them to beDS depend heavily on some special properties of the spectra
of these graphs, and cannot be applied to general graphs. For the background and some known results about this problem,
we refer the reader to [7,8] and the references therein.

In recent years, Wang and Xu [17,18] and Wang [15,16] considered the above problem in the context of the generalized
adjacency spectrum. A graph G is determined by the generalized adjacency spectrum (DGAS for short) if, for any graph H ,
SpecA(G) = SpecA(H) and SpecA(Ḡ) = SpecA(H̄) imply that H is isomorphic to G, where Ḡ and H̄ denote the complement of
the graphs G and H , respectively. Let W (G) = [e, Ae, . . . , An−1e] be the walk-matrix of G (e is the all-one vector). In [15,16],
Wang proved the following elegant result on DGAS graphs:

Theorem 1.1 (Wang [15,16]). If detW (G)/2⌊n/2⌋ (which is always an integer) is odd and square-free, then G is DGAS.

The main objective of this paper is to show that a similar result holds for the generalized Q -spectrum. A graph G is
said to be determined by the generalized Q -spectrum (DGQS for short) if, for any graph H , SpecQ (G) = SpecQ (H) and
SpecQ (Ḡ) = SpecQ (H̄) imply that H is isomorphic to G. We mention that it was Cvetković and Simić who initiated the study
of Q -spectrum (see [4–6]), since it seems that the Q -spectrum has low spectral uncertainty. Subsequently, there are a few
families of graphs that were shown to be DS with respect to the Q -spectrum, see e.g. [12,13,19]. However, all these graphs
have special structures and no general result as Theorem 1.1 is known in literature.

Let G be a graphwith signless Laplacianmatrix Q . DefineWQ (G) = [e,Qe, . . . ,Q n−1e] to be its Q -walk-matrix. It will soon
be clear that 2⌊

3n−2
2 ⌋ always divides detWQ (G) (see Lemma 3.4) and hence detWQ (G)/2⌊

3n−2
2 ⌋ is always an integer.

The main result of the paper is the following

Theorem 1.2. If detWQ (G)/2⌊
3n−2

2 ⌋ is odd and square-free, then G is DGQS.

The main idea of the proof of Theorem 1.2 follows that of Wang [15,16]. It is noticed, however, several new ingenious
ideas are needed to make the proof work.

The rest of the paper is organized as follows. In Section 2, we give some preliminary results that will be needed later in the
paper. In Section 3, we present the proof of Theorem 1.2. In Section 4, we give some examples of DGQS graphs. Conclusions
are given in Section 5.

2. Preliminaries

In this section, we shall give some preliminary results that will be needed later in the paper.

2.1. The main strategy

In this subsection, we shall describe our main strategy to prove a graph to be DGQS, which roughly follows the ideas
from [15,16,18]. The following theorem is the starting point of our method, which gives a simple characterization of two
graphs sharing the same generalized Q -spectrum. Next, we define e as the all one vector, and the following theorem is the
analogue of a result for adjacency matrix obtained by Wang and Xu [18].

Theorem 2.1. Let G be a graph such that detWQ (G) ̸= 0. There exists H such that G and H are cospectral with respect to the
generalized Q -spectrum if and only if there exists a rational orthogonal matrix U such that

UTQ (G)U = Q (H), Ue = e. (1)

Proof. Suppose that there exists a rational orthogonal matrix U such that Eq. (1) holds. Note that

Q (Ḡ) = D(Ḡ) + A(Ḡ) = J + (n − 2)I − Q (G).

It follows that UTQ (Ḡ)U = Q (H̄). Thus, we have SpecQ (G) = SpecQ (H) and SpecQ (Ḡ) = SpecQ (H̄) and the sufficiency part of
the lemma follows.

Next, we show the necessity part of the lemma is true. Note that

det(λI + tJ − Q (G)) = det(λI − Q (G) + teeT )
= det(λI − Q (G)) det(I + t(λI − Q (G))−1eeT )
= (1 + teT (λI − Q (G))−1e) det(λI − Q (G)),

for any λ ̸∈ σ (Q (G)), where σ (Q (G)) is the set of the eigenvalues of Q (G) (without multiplicities). It follows that det(λI +

tJ − Q (G)) is linear in t . Similarly, we have

det(λI + tJ − Q (H)) = (1 + teT (λI − Q (H))−1e) det(λI − Q (H)).
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Since SpecQ (G) = SpecQ (H) and SpecQ (Ḡ) = SpecQ (H̄), we have det(λI −Q (G)) = det(λI −Q (H)), and det(λI + J −Q (G)) =

det(λI + J − Q (H)). Then, det(λI + tJ − Q (G)) = det(λI + tJ − Q (H)) for any t . Thus,

eT (λI − Q (G))−1e = eT (λI − Q (H))−1e. (2)

Since Q (G) is a symmetric real matrix, it has a set of eigenvectors that form an orthonormal basis for Rn. Group the
eigenvectors with respect to the eigenvalues into matrices Pµ, where the subscripts represent the eigenvalues. We have the
following spectral decomposition

(λI − Q (G))−1
=

∑
µ∈σ (Q (G))

1
λ − µ

PµPT
µ.

Define the matrices Rµ similarly for H , and there is a similar decomposition for H . Plugging into Eq. (2), we get∑
µ∈σ (Q (G))

∥PT
µe∥

2

λ − µ
=

∑
µ∈σ (Q (H))

∥RT
µe∥

2

λ − µ
.

This shows that the Euclidean norm of PT
µe and RT

µe is the same for each µ. Therefore, there exist orthogonal matrices Hµ

such that PT
µe = HµRT

µe. Finally, let

U = [Pµ1 , Pµ2 , . . . , Pµs ][Rµ1H
T
µ1

, Rµ2H
T
µ2

, . . . , RµsH
T
µs

]
T ,

where σ (Q (G)) = {µ1, µ2, . . . , µs}. Direct calculation shows that U is an orthogonal matrix satisfying Ue = e and
UTQ (G)U = Q (H). Thus we have

UTQ i(G)e = Q i(H)e, for i = 0, 1, . . . , n − 1,

i.e., UTWQ (G) = WQ (H). Hence U = WQ (G)WQ (H)−1 is a rational matrix satisfying Eq. (1).
Uniqueness of the matrix U follows by assuming U1

TQ (G)U1 = U2
TQ (G)U2 = Q (H) and U1e = U2e = e, which generates

UT
1WQ (G) = UT

2WQ (G). Then the fact thatWQ (G) is full rank gives U1 = U2. This completes the proof. □

Define

Γ (G) = {U ∈ On(Q)|UTQ (G)U = Q (H) for some graph H and Ue = e},

where On(Q) denotes the set of all orthogonal matrices with rational entries.
Similarly, the following theorem is also the analogue of a result for adjacency matrix obtained by Wang and Xu [18].

Theorem 2.2. Suppose detWQ (G) ̸= 0. Then G is DGQS if and only if Γ (G) contains only permutation matrices.

Proof. SupposeΓ (G) contains only permutationmatrices,we showG is DGQS. For contradiction, supposeG is notDGQS. Then
there exists a graph H that is cospectral with Gw.r.t. the generalized Q -spectrum but non-isomorphic to G. By Theorem 2.1,
there exists a rational orthogonal matrix U with Ue = e such that UTQ (G)U = Q (H). Then U ∈ Γ (G) but U is not a
permutation matrix; a contradiction.

On the other hand, suppose G is DQGS, we show Γ (G) contains only permutation matrices. For otherwise, suppose that
there exists a rational orthogonal matrix in Γ (G), say U1, which is not a permutation matrix. Then it is easy to see that the
graph H with Q -matrix UT

1 Q (G)U1 is cospectral with G w.r.t. the generalized Q -spectrum but non-isomorphic to G (since if
H and G are isomorphic, there exists a permutation matrix P such that PTQ (G)P = Q (H) and Pe = e, which contradicts the
uniqueness of U1). Thus, we got a contradiction. This completes the proof. □

By the above theorem, in order to show a given graph G is DGQS, we have to determine whether Γ (G) contains only
permutation matrices. In order to do so, we give the following definition.

Definition 2.1. LetU be an orthogonalmatrixwith rational entries. The level ofU , denoted by ℓ(U) or simply ℓ, is the smallest
positive integer k such that kU is an integral matrix.

Clearly, a rational orthogonal matrix U with Ue = e is a permutation matrix if and only if ℓ(U) = 1. Thus, for a given
graph G, our main strategy in proving Γ (G) contains only permutation matrices is to show that every U ∈ Γ (G) has level
ℓ = 1.

2.2. The Smith Normal Form

When dealing with integral and rational matrices, the Smith Normal Form (SNF for short) is a useful tool. An integral
matrix V of order n is called unimodular if det V = ±1. The following theorem is well-known.

Theorem 2.3 (See e.g., [2]). For an integral matrix M, there exist unimodular matrices V1 and V2 such that M = V1SV2, where
S = diag(d1, d2, . . . , dn) is the SNF with di | di+1 for i = 1, 2, . . . , n − 1, and di is called the ith elementary divisor.
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Note that the SNF of a matrix can be computed efficiently (see e.g. page 50 in [14]).
The following lemma plays a key role in the proof of Theorem 1.2.

Lemma 2.4 (Wang [15]). Using the notations above, the system of congruence equations Mx ≡ 0 (mod p2) has a solution
x ̸≡ 0 (mod p) if and only if p2 | dn.

Proof. The equation Mx ≡ 0 (mod p2) is equivalent to diag(d1, d2, . . . , dn)V2x ≡ 0 (mod p2). Let V2x = y. Consider
diag(d1, d2, . . . , dn)y ≡ 0 (mod p2). On the one hand, If p2 | dn, let y = (0, 0, . . . , 0, 1)T , then x = V−1

2 y ̸≡ 0 (mod p) is
a required solution to the original congruence equation. On the other hand, it is easy to see if p2 ∤ dn, then the equation has
no solution xwith x ̸≡ 0 (mod p). This completes the proof. □

2.3. A technical lemma

Finally, we present the following technical lemma, which plays a key role in the proof of Theorem 1.2.

Lemma 2.5. Let G be a graph with signless Laplacian matrix Q . Then eTQe ≡ 0 (mod 4), and eTQ ke ≡ 0 (mod 8), for any integer
k ≥ 2,

Proof. Note that Ae = De = d, where d = (d1, d2, . . . , dn)T and di is the degree of the ith vertex. It follows that
Qe = (A + D)e = 2d. Thus we have eTQe = 2dT e = 4|E| ≡ 0 (mod 4). Moreover, we have eTQ 2e = (Qe)T (Qe) = 4dTd ≡

4(d1 + d2 + · · · + dn) ≡ 0 (mod 8). Next, we show eTQ ke ≡ 0 (mod 8) for any k ≥ 3.
Note that Q = A + D and Ae = De. It follows that

eTQ ke = 4eTD(A + D)k−2De ≡ 4Tr(D(A + D)k−2D) (mod 8).

So it suffices to show Tr(D(A + D)k−2D) is always even for k ≥ 3.
For the ease of presentation,we defineX as the freemonoid generated by {a, d}, andXm = {X ∈ X | the length of X ism}.

Define a mapping τ on Xm which reverses the order of elements of X ∈ Xm, i.e., X τ
= M1M2 . . .Mm, where Mi is the

(m− i+ 1)-th character of X , i = 1, 2, . . . ,m. Denote by X = M1M2 . . .Mm the product of the string of matrices in X , where
Mi = A if the ith character of X is a, and Mi = D if the ith character of X is d, for i = 1, 2, . . . ,m. It is easy to see X τ

∈ Xm is
uniquely determined by X and XT

= X τ .
Using the notations above, we have

Tr(D(A + D)k−2D) =

∑
X∈Xk−2

Tr(DXD).

Note that Tr(DXD) = Tr((DXD)T ) = Tr(DX τD). Then we have∑
X∈Xk−2
X ̸=Xτ

Tr(DXD) ≡ 0 (mod 2).

It follows that

Tr(D(A + D)k−2D) ≡

∑
X∈Xk−2
X=Xτ

Tr(DXD) (mod 2).

We distinguish the following two cases:

Case 1. k is even. Using that De = Ae, note that

Tr(DX τAAXD) = Tr(AXDDX τA)
≡ eTAXDDX τAe
= eTDXDDX τDe
≡ Tr(DXDDX τD) (mod 2).

Thus

Tr(D(A + D)k−2D) ≡

∑
X∈Xk−2
X=Xτ

Tr(DXD)

=

∑
X∈Xk/2−2

Tr(DX τ (AA + DD)XD)

≡

∑
X∈Xk/2−2

Tr(DXDDX τD) +

∑
X∈Xk/2−2

Tr(DX τDDXD)
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= 2
∑

X∈Xk/2−2

Tr(DXDDX τD)

≡ 0 (mod 2).

Case 2. k is odd. Note that

Tr(DX τAXD) = Tr(XDDX τA)

=

n∑
i,j=1

(XDDX τ )ij(A)ij

= 2
∑

1≤i<j≤n

(XDDX τ )ij(A)ij

≡ 0 (mod 2).

It follows that

Tr(D(A + D)k−2D) ≡

∑
X∈Xk−2
X=Xτ

Tr(DXD)

=

∑
X∈X(k−3)/2

Tr(DX τ (A + D)XD)

≡

∑
X∈X(k−3)/2

Tr(DX τDXD) (mod 2).

Notice that Tr(DX τDXD) ≡ Tr(DX τDDXD) ≡ Tr(DXDX τD) (mod 2). Therefore, we have

Tr(D(A + D)k−2D) ≡

∑
X∈X(k−3)/2

Tr(DX τDXD)

=

∑
X∈X(k−3)/2

X=Xτ

Tr(DX τDXD)

≡

∑
X∈X(k−3)/2

X=Xτ

(eTDX τD)(DXDe)

≡

∑
X∈X(k−3)/2

X=Xτ

eTDXDe

≡ Tr(D(A + D)(k−3)/2D) (mod 2)

Now, it is easy to show by induction on k that eTD(A + D)k−2De is even.
Combining Cases 1 and 2, we have eTQ ke ≡ 4Tr(DQ k−2D) ≡ 0 (mod 8) (k ≥ 2). This completes the proof. □

3. The proof of Theorem 1.2

In this section, we present the proof of Theorem 1.2. For every U ∈ Γ (G) with level ℓ, we shall show that the condition
of Theorem 1.2 implies that ℓ = 1. For this purpose, we shall show that any prime p is not a divisor of ℓ. This will be done in
two cases: p = 2 and p is an odd prime.

For the ease of presentation, we define FQ ,n to be set of all graphs on n vertices such that detWQ (G)

2⌊
3n−2

2 ⌋
is odd and square-free.

Moreover, the Q -walk matrixWQ (G) ‘collapses’, in the sense that the rank ofWQ (G) becomes one in contrast that the rank of
the walk matrixW (G) is ⌈n/2⌉ (see [16]), over the finite field F2. So we define the modified Q -walk matrix, denoted by W̃Q (G)
or simply W̃Q , to be [e, Qe

2 , . . . , Q n−1e
2 ]. Since Q (G)e = A(G)e + D(G)e = 2A(G)e. It is clear that W̃Q (G) is an integral matrix,

which plays a similar role as that ofW (G) in [15,16], as we shall see later.
Inwhat follows, we shall use the finite field notation Fp andmod p (for a prime p) interchangeably, and shall use rankp(M)

to denote the rank of an integralM over Fp.

3.1. The case p is an odd prime

In this subsection, we shall deal with the case that p is an odd prime of ℓ. The main result of this section is the following

Theorem 3.1. Let G ∈ FQ ,n and U ∈ Γ (G) with level ℓ. Then for any odd prime p, we have p ∤ ℓ.
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Before presenting the proof of Theorem 3.1, we need the following lemma.

Lemma 3.2. Let U ∈ Γ (G) with level ℓ. Suppose p is a prime divisor of ℓ. Then there exists an integral vector v ̸≡ 0 (mod p)
such that

vTQ k(G)v ≡ 0 (mod p2), W̃ T
Q (G)v ≡ 0 (mod p), (3)

for any k ≥ 0.

Proof. Let Ū = ℓU . Then Ū is an integral matrix. Let H be a graph such that UTQ (G)U = Q (H) and Ue = e. It follows from
Eq. (1) that UTQ k(G)e = Q (H)ke, and hence UT Q k(G)e

2 =
Q (H)ke

2 , for any k ≥ 1. Thus, we have UT W̃Q (G) = W̃Q (H). Let v be any
column of Ū with v ̸≡ 0 (mod p) (such a v must exist due to the definition of ℓ). With such a v we have W̃ T

Q (G)v ≡ 0 (mod p).
Moreover, it follows from ŪTQ k(G)Ū = ℓ2Q k(H) ≡ 0 (mod p2) that vTQ k(G)v ≡ 0 (mod p2), for any k ≥ 0. This completes
the proof. □

Now we present the proof of Theorem 3.1:

Proof. Suppose on the contrary that p | ℓ. By Lemma 3.2 and the fact p2 ∤ det(W̃Q ), we have rankp(W̃Q ) = n − 1. It
follows from ŪT W̃Q ≡ 0 (mod p) and the definition of ℓ that rankp(Ū) = 1. Then there exists an integral vector γ such that
vγ T

≡ Ū (mod p), where v is the vector satisfying Eq. (3). Let v be the lth column of Ū . Let UTQ (G)U = Q (H) for some graph
H . Then

Q (G)v = ŪQ (H)l ≡ v(γ TQ (H)l) = λ0v (mod p),

where Q (H)l denotes the lth column of Q (H) and λ0 = γ TQ (H)l is an integer. It follows that rankp(Q (G)− λ0I) ̸= n. Next let
Q = Q (G), we distinguish the following three cases:

Case 1. rankp(Q − λ0I) = n − 1. Note that vTv ≡ 0 (mod p) and vT e ≡ 0 (mod p) and vT (Q − λ0I) ≡ 0 (mod p). It follows
that there exist integral vectors y and u such that v ≡ (Q − λ0I)y (mod p) and e ≡ (Q − λ0I)u (mod p). It follows that
e = (Q − λ0I)u + pβ for some integral vector β .

Thus, we have

W̃Q = [e,
Qe
2

, . . . ,
Q n−1e

2
]

= (Q − λ0I)[u,
Qu
2

, . . . ,
Q n−1u

2
] + p[β,

Qβ

2
, . . . ,

Q n−1β

2
]

= (Q − λ0I)X + p[β,
Qβ

2
, . . . ,

Q n−1β

2
],

where X := [u, Qu
2 , . . . , Q n−1u

2 ] (note that X need not be an integral matrix, but X (mod p) is meaningful since p is an odd
prime). It follows that

W̃ T
Q v = XT (Q − λ0I)v + p[vTβ,

vTQβ

2
, . . . ,

vTQ n−1β

2
]
T .

Moreover, since p+1
2 × 2 ≡ 1 (mod p), we get p+1

2 ≡
1
2 (mod p). Thus,

W̃ T
Q v

p
≡ XT (Q − λ0I)v

p
+ vTβ[1,

(p + 1)λ0

2
, . . . ,

(p + 1)λn−1
0

2
]
T (mod p).

Since vTv ≡ 0 (mod p2), we have vT (Q−λ0I)v
p ≡ 0 (mod p). Further notice that vT (Q − λ0I) ≡ 0 (mod p), and

rankp(Q − λ0I) = n − 1. It follows that there exists an integral vector x such that

(Q − λ0I)v
p

≡ (Q − λ0I)x (mod p).

Moreover, note that

v ≡ (Q − λ0I)y (mod p),

eTQy
2

≡
(p + 1)λ0

2
eTy +

p + 1
2

eTv ≡
(p + 1)λ0

2
eTy (mod p),

eTQ 2y
2

≡
(p + 1)λ0

2
eTQy +

p + 1
2

eTQv ≡
(p + 1)λ2

0

2
eTy (mod p),
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· · · · · ·

eTQ n−1y
2

≡
(p + 1)λn−1

0

2
eTy (mod p).

From the above congruence equations, we can get

W̃Q y ≡ eTy[1,
(p + 1)λ0

2
, . . . ,

(p + 1)λn−1
0

2
] (mod p).

Now we show that eTy ̸≡ 0 (mod p). For otherwise, if eTy ≡ 0 (mod p), then W̃ T
Q y ≡ 0 (mod p). Note that W̃ T

Q v ≡ 0 (mod p)
and rankp(W̃Q ) = n− 1. Thus, y and v are linearly dependent over Fp. However, this is a contradiction. In fact, assume there
exist k1 and k2 such that k1y+k2v = 0, over Fp. Left multiplying both sides byQ −λ0I gives that k1v = 0. Thuswe get k1 = 0,
since v ̸= 0. It follows from k2y = 0 and y ̸= 0 that k2 = 0. Thus, there exists an integer t such that vTβ ≡ teTy (mod p).

Note that W̃ T
Q ≡ XT (Q − λ0I) (mod p). Therefore, we obtain

W̃ T
Q v

p
≡ W̃ T

Q x + tW̃ T
Q y (mod p).

Thus,

W̃ T
Q (v − px − pty) ≡ 0 (mod p2).

It follows from Lemma 2.4 that p2 | det(W̃Q ), which contradicts the assumption of Theorem 1.2.

Case 2. rankp(Q − λ0I) = n − 2. Now we show that v cannot be expressed as linear combinations of the column vectors of
Q − λ0I over Fp. For otherwise, if there exists an integral vector w such that (Q − λ0I)w ≡ v (mod p), then

eTQ kw

2
≡

eTQ k−1v

2
+

λ0eTQ k−1w

2
≡

λk
0e

Tw

2
(mod p),

for any k ≥ 1. Moreover, since rankp(Q − λ0I) = n − 2, there exists a vector y such that (Q − λ0I)y ≡ 0 (mod p), and
eTy ̸≡ 0 (mod p). It is easy to see that v, w and y are linearly independent. Let α = (eTy)w − (eTw)y. Then α ̸≡ 0 (mod p),
eTα ≡ 0 (mod p), and eTQ kα

2 ≡ eTy λk0e
Tw

2 − eTw λk0e
T y

2 ≡ 0 (mod p). Therefore, W̃ T
Qα ≡ 0 (mod p), which contradicts the fact

that rankp(W̃Q ) = n − 1.
Denote by [Q −λ0I, v] thematrix obtained by adding the column v to Q −λ0I . Thus, we have rankp([Q −λ0I, v]) = n−1.

Note that vT e ≡ 0 (mod p) and vT
[Q − λ0I, v] ≡ 0 (mod p). It follows that there exist integral vectors u, β and an integer s

such that

e = (Q − λ0I)u + sv + pβ.

Thus, we have

W̃Q = [e,
Qe
2

, . . . ,
Q n−1e

2
]

= (Q − λ0I)[u,
Qu
2

, . . . ,
Q n−1u

2
] + s[v,

Qv

2
, . . . ,

Q n−1v

2
] + p[β,

Qβ

2
, . . . ,

Q n−1β

2
]

= (Q − λ0I)X + s[v,
Qv

2
, . . . ,

Q n−1v

2
] + p[β,

Qβ

2
, . . . ,

Q n−1β

2
],

where X := [u, Qu
2 , . . . , Q n−1u

2 ].

It follows that

W̃ T
Q v

p
≡ XT (Q − λ0I)v

p
+ (

s
p
vTv + vTβ)[1,

(p + 1)λ0

2
, . . . ,

(p + 1)λn−1
0

2
]
T (mod p).

It follows from the facts that vT (Q−λ0I)v
p ≡ 0 (mod p), and vT

[Q − λ0I, v] ≡ 0 (mod p), and rankp[Q − λ0I, v] = n − 1
that there exist an integral vector x and an integerm such that

(Q − λ0I)v
p

≡ (Q − λ0I)x + mz (mod p).

Moreover, since eTy ̸≡ 0 (mod p), there exists an integer t such that s
pv

Tv + vTβ + muTv − svT x ≡ teTy (mod p).
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Note that W̃ T
Q ≡ XT (Q − λ0I) + s[v, Qv

2 , . . . , Q n−1v
2 ]

T (mod p). We obtain

W̃ T
Q v

p
≡ XT (Q − λ0I)v

p
+ (

s
p
vTv + vTβ)[1,

(p + 1)λ0

2
, . . . ,

(p + 1)λn−1
0

2
]
T

≡ XT (Q − λ0I)x + mXTv + (
s
p
vTv + vTβ)[1,

(p + 1)λ0

2
, . . . ,

(p + 1)λn−1
0

2
]
T

≡ W̃ T
Q x + (

s
p
vTv + vTβ + muTv − svT x)[1,

(p + 1)λ0

2
, . . . ,

(p + 1)λn−1
0

2
]
T

≡ W̃ T
Q x + teTy[1,

(p + 1)λ0

2
, . . . ,

(p + 1)λn−1
0

2
]
T

≡ W̃ T
Q x + tW̃ T

Q y (mod p).

Thus,

W̃ T
Q (v − px − pty) ≡ 0 (mod p2).

It follows from Lemma 2.4 that p2 | det(W̃Q ); a contradiction.

Case 3. rankp(Q −λ0I) < n−2. Then there exist at least three linearly independent integral vectors, say v,w and y such that
(Q − λ0I)v = (Q − λ0I)w = (Q − λ0I)y = 0, over Fp. Without loss of generality assume that eTw ̸≡ 0 (mod p), and eTy ̸≡

0 (mod p). Let α = (eTy)w − (eTw)y. Then α ̸≡ 0 (mod p), eTα ≡ 0 (mod p), and eTQ kα
2 ≡ eTy λk0e

Tw

2 − eTw λk0e
T y

2 ≡ 0 (mod p).
Therefore, W̃ T

Qα ≡ 0 (mod p). Note that W̃ T
Q v ≡ 0 (mod p) and v and α are linearly independent. We got a contradiction

since rankp(W̃Q ) = n − 1.
Combining the Cases 1–3, the proof is complete. □

3.2. The case p = 2

In this subsection, we consider the case p = 2. The main result of the subsection is the following

Theorem 3.3. Let G ∈ FQ ,n. Let U ∈ Γ (G) with level ℓ, then ℓ is odd.

Before presenting the proof of above theorem, we need several lemmas below.

Lemma 3.4. Let G ∈ FQ ,n. Then rank2(W̃Q (G)) ≤ ⌈
n
2⌉.

Proof. First suppose n is even. Then it follows from Lemma 2.5 that

W̃ T
Q W̃Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

eT e
eTQe
2

. . .
eTQ n−1e

2
eTQe
2

eTQ 2e
4

. . .
eTQ ne

4
...

...
. . .

...

eTQ n−1e
2

eTQ ne
4

. . .
eTQ 2n−2e

4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
≡ 0 (mod 2). (4)

It follows that 2rank2(W̃Q ) = rank2(W̃ T
Q ) + rank2(W̃Q ) ≤ n. Thus we have rank2(W̃Q ) ≤

n
2 = ⌈

n
2⌉.

Now suppose n is odd. Let W̄Q be the matrix obtained from W̃Q by doubling the first column. Then it follows from
Lemma 2.5 that

W̃ T
Q W̄Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2eT e
eTQe
2

. . .
eTQ n−1e

2

eTQe
eTQ 2e

4
. . .

eTQ ne
4

...
...

. . .
...

eTQ n−1e
eTQ ne

4
. . .

eTQ 2n−2e
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
≡ 0 (mod 2). (5)

Note rank2(W̃Q ) + rank2(W̄Q ) ≤ n and rank2(W̄Q ) ≥ rank2(W̃Q ) − 1. It follows that rank2(W̃Q ) ≤
n+1
2 = ⌈

n
2⌉.

This completes the proof. □



Please cite this article in press as: L. Qiu, et al., A new arithmetic criterion for graphs being determined by their generalized Q -spectrum, Discrete
Mathematics (2018), https://doi.org/10.1016/j.disc.2018.08.008.

L. Qiu et al. / Discrete Mathematics ( ) – 9

Lemma 3.5. Let G ∈ FQ ,n. Then the SNF of W̃Q is S = diag(1, 1, . . . , 1  
⌈
n
2 ⌉

, 2, 2, . . . , 2, 2b  
⌊
n
2 ⌋

), where b is an odd square-free integer.

Proof. Since detWQ (G)/2⌊
3n−2

2 ⌋ is odd and square-free, we have det W̃Q = ±2⌊
n
2 ⌋p1p2 · · · ps, where pi’s are distinct odd

primes for each i. Thus the SNFof W̃Q canbewritten as S = diag(1, 1, . . . , 1, 2l1 , 2l2 , . . . , 2lt b),where b = p1p2 . . . ps is an odd
square-free integer. It follows from Lemma 3.4 that rank2(W̃Q (G)) ≤ ⌈

n
2⌉, i.e., n− t ≤ ⌈

n
2⌉. Thus, we have t ≥ n−⌈

n
2⌉ = ⌊

n
2⌋.

Moreover, we have l1 + l2 +· · ·+ lt = ⌊
n
2⌋, since det(W̃Q ) = ± det(S). It follows that l1 = l2 = · · · = lt = 1 and t = ⌊

n
2⌋. □

Lemma 3.6 (Cf. [15]). Let G ∈ FQ ,n and U ∈ Γ (G) with level ℓ. Then ℓ divides the n-the elementary divisor dn = 2b of W̃Q ,
where b is odd and square-free.

Proof. By the assumption, UTQ (G)U = Q (H) for some graph H . It follows that

UTQ i(G)e = Q i(H)e, for i = 0, 1, . . . , n − 1,

and hence, UT Q i(G)e
2 =

Q i(H)e
2 for i = 1, 2, . . . , n − 1. So we have UT W̃Q (G) = W̃Q (H) and UT

= W̃Q (H)W̃Q (G)−1. Suppose
S = diag(d1, d2, . . . , dn) is the SNF of W̃Q (G) and W̃Q (G) = V1SV2, where V1 and V2 are unimodular matrices. Then we have
that

dnUT
= W̃Q (H)V−1

2 diag(dn/d1, dn/d2, . . . , dn/dn−1, 1)V−1
1

is an integral matrix. Thus the lemma follows from the definition of ℓ. □

For convenience, next, we fix some notations. Let ŴQ be the matrix defined as follows:

ŴQ =

⎧⎪⎪⎨⎪⎪⎩
[e,

Qe
2

, . . . ,
Q ⌊

n
2 ⌋−1e
2

], if n is even;

[
Qe
2

,
Q 2e
2

, . . . ,
Q ⌊

n
2 ⌋e
2

], if n is odd.

The following lemma plays an important role in the proof of Theorem 3.3, the proof which is totally different from that
in [16].

Lemma 3.7. Let G ∈ FQ ,n. Then we have rank2(ŴQ ) = ⌊
n
2⌋.

Proof. Let t = ⌈
n
2⌉ = rank2(W̃Q ). It suffices to show that the first t columns of W̃Q are linearly independent over F2. For

contradiction, suppose e, Qe
2 , . . . , Q t−1e

2 are linearly dependent, i.e., there exist c0, c1, . . . , ct−1 ∈ F2, not all zero, such that
c0e+c1 Qe

2 +· · ·+ct−1
Q t−1e

2 = 0. Letm be themaximum index among 0, 1, . . . , t−1with cm ̸= 0. Thenwehave 0 < m ≤ t−1
and

Qme
2

= −c−1
m c0e − c−1

m c1
Qe
2

− · · · − c−1
m cm−1

Qm−1e
2

over F2, (6)

i.e., Qme
2 ∈ span{e, Qe

2 , . . . , Qm−1e
2 }. It follows from Eq. (6) that

Qme
2

= −c−1
m c0e − c−1

m c1
Qe
2

− · · · − c−1
m cm−1

Qm−1e
2

+ 2β over Z, (7)

for some integral vector β . Left-multiplying Q on both sides of Eq. (7) gives that

Qm+1e
2

= −2c−1
m c0

Qe
2

− c−1
m c1

Q 2e
2

− · · · − c−1
m cm−1

Qme
2

+ 2Qβ,

i.e.,

Qm+1e
2

= −c−1
m c1

Q 2e
2

− · · · − c−1
m cm−1

Qme
2

over F2. (8)

It follows that Qm+1e
2 ∈ span{e, Qe

2 , . . . , Qm−1e
2 }. Similarly, we have

Qm+se
2

∈ span{e,
Qe
2

, . . . ,
Qm−1e

2
},

for any s ≥ 0. Thus we have rank2(W̃Q ) ≤ m ≤ t − 1; a contradiction. This completes the proof. □
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Let W̃Q ,1 = [e, Q 2e
2 , . . . , Q 2n−2e

2 ]. Similarly, ŴQ ,1 is defined as follows:

ŴQ ,1 =

⎧⎪⎪⎨⎪⎪⎩
[e,

Q 2e
2

, . . . ,
Q n−2e

2
], if n is even;

[
Q 2e
2

,
Q 4e
2

, . . . ,
Q n−1e

2
], if n is odd.

Lemma 3.8. Let G ∈ FQ ,n. We have rank2(
W̃ T

Q (G)ŴQ ,1(G)
2 ) = ⌊

n
2⌋.

Proof. If n is even, by Lemma 3.5, it follows det(
W̃ T

Q W̃Q
2 ) = (2⌊

n
2 ⌋b)2/2n

= b2. Therefore, the column vectors of matrix
W̃ T

Q W̃Q
2

are linearly independent over F2. It follows that rank2(
W̃ T

Q (G)ŴQ ,1(G)
2 ) equals the number of columns of ŴQ ,1, which is n

2 = ⌊
n
2⌋.

If n is odd, by Lemma 3.5, it follows det(
W̃ T

Q W̄Q
2 ) = b2. Therefore, the column vectors of matrix

W̃ T
Q W̄Q
2 are linearly

independent over F2. Thus, rank2(
W̃ T

Q (G)ŴQ ,1(G)
2 ) equals the number of columns of ŴQ ,1, which is n−1

2 = ⌊
n
2⌋. □

Now we are ready to present the proof of Theorem 3.3:

Proof. We only prove the case that n is even, the case that n is odd can be proved in a similar way.
Suppose on the contrary that ℓ is even. It follows from Lemma 3.2 that there exists a vector v ̸≡ 0 (mod 2) such that

vTQ k(G)v ≡ 0 (mod 4), W̃ T
Q (G)v ≡ 0 (mod 2). According to Lemma 3.7 and Eq. (4), it follows that v can be written as the

linear combination of the column vectors of ŴQ , i.e. v = ŴQu + 2β , where u and β are integral vectors and u ̸≡ 0 (mod 2).
It follows that

vTQ kv = (ŴQu + 2β)TQ k(ŴQu + 2β)

= uT Ŵ T
QQ

kŴQu + 4uT Ŵ T
QQ

kβ + 4βTQ kβ

≡ uT Ŵ T
QQ

kŴQu

≡ 0 (mod 4).

Note that

Ŵ T
QQ

kŴQ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

eTQ ke
eTQ 1+ke

2
. . .

eTQ n/2−1+ke
2

eTQ 1+ke
2

eTQ 2+ke
4

. . .
eTQ n/2+ke

4
...

...
. . .

...

eTQ n/2−1+ke
2

eTQ n/2+ke
4

. . .
eTQ n−2+ke

4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
≡ 0 (mod 2).

LetM = Ŵ T
QQ

kŴQ , u = (u1, u2, . . . , ul)T (l = n/2). Then it follows that

uT Ŵ T
QQ

kŴQu =

∑
1≤i,j≤l

Mijuiuj

=

∑
1≤i≤l

Miiu2
i + 2

∑
1≤i<j≤l

Mijuiuj

≡ (eTQ ke)u1 +
eTQ 2+ke

4
u2 + · · · +

eTQ n−2+ke
4

ul

= [eTQ ke,
eTQ 2+ke

4
, . . . ,

eTQ n−2+ke
4

]u

≡ 0 (mod 4),

for k = 0, 1, . . . , n − 1, or equivalently,

[
eTQ ke

2
,
eTQ 2+ke

8
, . . . ,

eTQ n−2+ke
8

]u ≡ 0 (mod 2, )

for k = 0, 1, . . . , n − 1, where we have used Lemma 2.5.
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Define

M1 : =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eT e
2

eTQ 2e
8

eTQ 4e
8

. . .
eTQ n−2e

8

0
eTQ 3e

8
eTQ 5e

8
. . .

eTQ n−1e
8

0
eTQ 4e

8
eTQ 4e

8
. . .

eTQ ne
8

...
...

...
. . .

...

0
eTQ n+1e

8
eTQ n+3e

8
. . .

eTQ 2n−3e
8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eT e
2

eTQ 2e
8

eTQ 4e
8

. . .
eTQ n−2e

8
eTQe
2

eTQ 3e
8

eTQ 5e
8

. . .
eTQ n−1e

8
eTQ 2e

2
eTQ 4e

8
eTQ 6e

8
. . .

eTQ ne
8

...
...

...
. . .

...

eTQ n−1e
2

eTQ n+1e
8

eTQ n+3e
8

. . .
eTQ 2n−3e

8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(mod 2).

Then we haveM1u ≡ 0 (mod 2). Moreover,

M2 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eT e
2

0 0 . . . 0

eTQe
4

eTQ 3e
8

eTQ 5e
8

. . .
eTQ n−1e

8

0
eTQ 4e

8
eTQ 6e

8
. . .

eTQ ne
8

...
...

...
. . .

...

0
eTQ n+1e

8
eTQ n+3e

8
. . .

eTQ 2n−3e
8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eT e
2

eTQ 2e
4

eTQ 4e
4

. . .
eTQ n−2e

4
eTQe
4

eTQ 3e
8

eTQ 5e
8

. . .
eTQ n−1e

8
eTQ 2e

4
eTQ 4e

8
eTQ 6e

8
. . .

eTQ ne
8

...
...

...
. . .

...

eTQ n−1e
4

eTQ n+1e
8

eTQ n+3e
8

. . .
eTQ 2n−3e

8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1
2

⎡⎢⎢⎢⎢⎢⎢⎣

eT

eTQ
2
...

eTQ n−1

2

⎤⎥⎥⎥⎥⎥⎥⎦ [e,
Q 2e
2

, . . . ,
Q n−2e

2
]

=
W̃ T

Q ŴQ ,1

2
(mod 2),

where ŴQ ,1 = [e, Q 2e
2 , . . . , Q n−2e

2 ] and we have used the fact that eTQe ≡ 0 (mod 4) and eTQ ke ≡ 0 (mod 8) for k ≥ 2.
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According to Lemma 3.7, rank2(M2) = rank2(
W̃ T

Q ŴQ ,1
2 ) =

n
2 , i.e., M2 has full column rank over F2. Comparing M1 and M2,

we distinguish the following two cases:

Case 1. If n = eT e ̸≡ 0 (mod 4), then we have rank2(M1) = rank2(M2) =
n
2 , i.e., M1 has full column rank over F2. It follows

fromM1u ≡ 0 (mod 2) that u ≡ 0 (mod 2); a contradiction.

Case 2. If n = eT e ≡ 0 (mod 4), then we have rank2(M1) = rank2(M2) − 1 =
n
2 − 1. It follows that the solution space of

the linear systems of equations M1u ≡ 0 (mod 2) has dimension one, i.e., it is spanned by u ≡ (1, 0, 0, . . . , 0)T (mod 2).
Hence v ≡ ŴQu ≡ e (mod 2). However, by Lemma 3.6, we have ℓ | 2b. Moreover, by Theorem 3.1, we have ℓ | 2, i.e., ℓ = 2
since ℓ is assumed to be even. It follows that the (0,1)-vector v ≡ e (mod 2) has exactly four ‘‘1’’. This happens only when
n = 4. However, it is easy to check by enumerating all graphs with four vertices that none of them belongs to FQ ,n. We got
a contradiction again.

Combining Cases 1 and 2, the theorem follows. This completes the proof. □

Finally, we present the proof of Theorem 1.2.

Proof. Let G ∈ FQ ,n. Let U ∈ Γ (G) with level ℓ. By Theorem 3.1, we get p ∤ ℓ for any odd prime p. By Theorem 3.3, we get
that 2 ∤ ℓ. Therefore, the only possibility left is that ℓ = 1, and hence G is DGQS according to Theorem 2.2. This completes
the proof. □

4. Some numerical results

In this section, we shall present some numerical results to demonstrate how often a randomly generated graph satisfies
the condition of Theorem 1.2.

First we give a specific example below as an illustration of Theorem 1.2.

Example. Let the adjacency matrix of graph G be given as follows:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 1 0 1 0 0 0 0 1
1 0 1 0 0 1 0 1 1 1 0 1 1 0
0 1 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 1 0 1 1 1 0 0 0 1
0 1 1 0 1 0 0 1 1 0 0 1 1 0
1 0 0 0 0 0 0 1 1 0 1 0 0 1
0 1 0 0 1 1 1 0 1 1 1 1 1 0
1 1 0 0 1 1 1 1 0 0 1 0 0 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 1 1 1 0 0 1 1 0
0 1 1 0 0 1 0 1 0 0 1 0 1 1
0 1 0 1 0 1 0 1 0 1 1 1 0 0
1 0 0 0 1 0 1 0 0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
14×14

.

It can be computed easily using Mathematica 8.0 that

detWQ (G) = 220
× 3853 × 279659 × 60587890527299.

Thus, G is DGQS.

We have also conducted a series of numerical experiments to estimate the fraction of graphs satisfying Theorem 1.2.
Our method works as follows. For a fixed n (1 ≤ n ≤ 20), we randomly generate 10,000 graphs of order n in which every
edge was selected independently with probability 1

2 , then count the number of the generated graphs satisfying Theorem 1.2.
Table 1 records the results of one of such experiments.

It can be observed from Table 1 that there are many graphs that are DGQS. In particular, for 6 ≤ n ≤ 20, the estimated
fraction of DGQS graphs is around 21% for odd n; it is around 7% for n ≡ 0 (mod 4), and is round 14% for n ≡ 2 (mod 4).

5. Conclusions

In this paper, we have given a simple arithmetic condition for a large family of graphs to be DGQS in terms of whether the
determinant of its Q -walk matrix divided by 2⌊

3n−2
2 ⌋ is odd and square-free. It would be an interesting future work to study

the asymptotic density of graphs in FQ ,n satisfying this property, e.g., we would like to know whether the family of graphs
FQ ,n has positive density, as n → ∞.
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Table 1
Estimated fraction of DGQS Graphs.

n Fraction n Fraction

1 0 11 0.2109
2 0 12 0.0747
3 0 13 0.2137
4 0 14 0.1455
5 0 15 0.2081
6 0.0862 16 0.0736
7 0.1904 17 0.2064
8 0.0738 18 0.1408
9 0.2009 19 0.2214
10 0.1457 20 0.0730
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