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1. Introduction

All graphs in this paper are finite, undirected, and have neither loops nor multiple edges. For all missing definitions, we
refer the reader to Bollobas [5].

For agraph G, let V = V(G) and E = E(G) denote the vertex set of G and the edge set of G, respectively. Let |A| denote the
cardinality of a set A. Let n = |V(G)| and m = |E(G)| denote the number of vertices (the order) of G, and number of edges
(the size) of G, respectively. By 7, » we denote the family of all graphs of order n and size m. We refer to graphs from this
family as (n, m)-graphs.

The Turdn graph T.(n), r > 1, is the complete r-partite graph of order n with all parts of size either [n/r] or [n/r].Itis
easy to show that such a graph is unique. For example, an n-partite graph of order n is the complete graph K,,. If r = 2, T(n)
is K; s forn = 2s,and K41 s for n = 2s + 1. Let t;(n) = |E(T:(n))| denote the number of edges of T.(n).

The edit distance of two graphs of the same order is the minimum number of edges that need to be added and deleted
from one graph to make it isomorphic to the other. A graph G is said to be d-close to a graph H, if the edit distance between
the graphs is at most d.

An edge {x, y} of a graph will also be denoted by xy, or yx. For a positive integer A, let [A] = {1, 2, ..., A}. A function
¢ : V(G) — [A] such that c(x) # c(y) for every edge xy of G is called a proper vertex coloring of G in at most A colors, or simply
a A-coloring of G. The smallest value A for which a A-coloring of G exists is called the chromatic number of G, and is denoted
x(G). Let x(G, A) denote the number of A-colorings of G. For a fixed G, x(G, 1) is known to be a polynomial of A, called the
chromatic polynomial of G.

For readers familiar with Tutte polynomial, which will not be used in this paper, we wish to mention that the chromatic
polynomial x (G, 1) of a graph G can be viewed as a specialization of the Tutte polynomial T5(x, y) of G:

x(G, 1) = (—)VIHORKOT(1 - 2, 0),

where k(G) is the number of components of G. See, e.g., [5] for more details.

We consider the following optimization question concerning chromatic polynomials: For given positive integers m, n, A,
what is the maximum number of A-colorings of a graph with n vertices and m edges? For which graphs is this maximum
attained? This problem was stated independently by Wilf [42] and Linial [22], and is still unsolved. The question can be
rephrased as the question on maximizing x (G, A) over all graphs with n vertices and m edges. Let f(n, m, A) denote this
maximum, i.e., f(n, m, A) = max{x(G, 1) : G € Fpn}.

In this article we survey the current state of the research directed at solving the problem.

By log we will always denote the natural logarithm. For functions f and g from the set of positive integers to (0, co), we
write f = o(g) forn — oo, if lim,_. o f(n)/g(n) = 0. We write f = 0(g) asn — oo, if there exist ¢, np > 0 such that
f(n) < cg(n) for all n > ny. And we write f = £2(g) forn — oo, if g = O(f).

The article is organized as follows. In Section 2 we provide a background for the problem; in Section 3 we present results
onf(n, m, A); in Section 4 we discuss the ideas and techniques used in obtaining these results; and Section 5 contains several
open problems.

2. Background

Investigation of proper colorings of planar graphs was originally motivated by a map coloring problem, that was
generalized later to a graph coloring problem. The latter lead to the notions of the chromatic number and the chromatic
polynomial of a graph, see Birkhoff [2,3], Whitney [40,41], and Birkhoff and Lewis [4].

A source of related problems, that is closer to the subject of this survey, is the sequence of papers by Read and by Wright.
Generalizing the result of Gilbert [ 14], Read [27] found a method of computing the total number of A-colorings of all graphs
of order n, i.e.,

> x(Ga).

G.|V(G)|=n

Using this Wright [44,45] determined the asymptotic behavior of the sum for fixed A asn — oo. Continuing the investigation
Wright [46] found an asymptotic approximation to the number } ;. » x(G, &) for large nand all m = m(n). The latter leads
easily to an asymptotic approximation of the average number of A-colorings of graphs from F, ,, for large n and all m = m(n),
and this gives a lower bound for f(n, m, A).

Linial [22] arrived at the problem of minimizing the chromatic polynomial over the family 7, n, by studying the worst-case
computational complexity of a certain algorithm. At the end of this paper, Linial poses the problem of maximizing x (G, 1)
over Fpn m.

Around the same time, Wilf [43] and Bender and Wilf [1] studied the backtrack algorithm for the decision problem on
the existence of A-coloring of a given graph G, in particular, for the family 7, ,,. This prompted Wilf [42] to ask the question
of maximizing x (G, 1) over 7 .

Extremal problems on chromatic polynomials over the families of graphs other than 7, were also studied by
Tomescu [31-38]. For other examples, see the monograph by Dong, Koh and Teo [10], and recent preprints by Erey [11,12],
by Knox and Mohar [15,16], and by Fox, He and Manners [ 13].
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3. Results

Below we will survey results concerning f(n, m, 1) and related extremal graphs. In general, we have grouped results by
the number of colors A. When a small value of A is fixed, we present the results concerning f(n, m, A) where m is a function
of n. Section 3.5 is an exception, as Turan graphs have played a special role in the subject.

3.1. f(n,m,2)

The value of f(n, m, 2) and a complete description of the extremal graphs achieving this value was obtained by Lazebnik
in [17]. (See Chen [7] for a minor correction to [17].) To state the result we need the following definitions.

Suppose p = |+/m] and p> < m < (p + 1+ a)(p — a) for an integer a > 0. Let H(p + 1, p, a) be obtained by deleting
(p+ 14 a)p — a) — m edges from some K}, ;144 p—q. For example, for m = 38 we have p = 6; possible values for a are 0,1.
Therefore H(7, 6, a) can be obtained by deleting 4 edges from K7 ¢ or 2 edges from Kg 5.

Similarly, if p?4+p < m < (p+1)*> —a? foran integer a > 0, let H(p+ 1, p+ 1, a) be obtained by deleting (p+ 1)> —a*> —m
edges from some K, 1 14q,p+1—q. Let G; + G, denote the disjoint union of graphs G; and G,.

Theorem 3.1 ([17]). Let 0 < m < |[n?/4],p = |/m|, G € Fumand x(G, 2) = f(n, m, 2). Then

2" ifm=0,
f(n,m,2) = {2 Vm+1 g < m < [n?/4),
0 if m> |n*/4],
and
Ky p +En—2p B ifa<m= Pz,
G={H(p+1.p.a)+ K, 51 ifa<p’ <m<p’+p,
Hp+1,p+1,0)+Ky0p2 ifd<p’+p<m=(p+1)>
3.2. f(n,m, 3)

The value of f(n, m, 3) is not known in general. In [17], it was observed that for m < n?/4, extremal graphs appeared to
be close to complete bipartite graphs with one partition much smaller than the other, plus isolated points. This observation
motivated the following definition: let 0 < p < a < b be positive integers. A semi-complete bipartite graph K, , , hasa+b+1
vertices and ab + p edges, and is obtained from K, ; by adding a vertex to the partition of size b and joining it to p vertices in
the partition of size a. Notice that K p ¢ = Kg p+1.0 = Ka p+1-

Theorem 3.2 ([17]). For 0 < m < n?/4,

3.(2°420—-2) ifp=0,

X(Kapp, 3) = {3 (20T 4 20 4 20pHTy fl<p<a,

wheren=a+b+ 1and m = ab + p.

Theorem 3.2 can be used to obtain a lower for f(n, m, 3). Several other nontrivial upper and lower bounds for x (G, 3)
have been established by Byer [6], Lazebnik [17,18], Liu [23], and Dohmen [8,9], but the bounds are widely separated. For
A > 3and any m > 4, Simonelli [28] exhibited a subfamily of (n, m)-bipartite graphs M(n, m) (we omit its definition) which
generalized the family of semi-complete bipartite graphs, and showed that the maximum number of A-colorings of a bipartite
(m, n)-graph is necessarily attained on a graph from M(n, m). The following conjecture was motivated by computations on
small graphs, several bounds on x (G, 3) mentioned above, and the result of Lazebnik [19] on the extremality of K}, , for large
A (see Theorem 3.12 ahead).

Conjecture 3.3 ([17]). Let 0 < m < n?/4 and G be an (n, m)-graph. Then f(n, m, 3) = x(G, 3)ifand only if G is a semi-complete
bipartite graph.

Though Theorems 3.1 and 3.12 imply that for (2p, p?)-graphs Conjecture 3.3 is true for A = 2 and for large A, a similar
result for A = 3 was obtained only fifteen years later by Lazebnik, Pikhurko and Woldar [20].

Theorem 3.4 ([20]). Forallt > 1,

f(2t5t2!3):X(I<tt73):6(2[_ 1)7 (1)

with K; . being the only extremal graph.

Please cite this article in press as: F. Lazebnik, The maximum number of colorings of graphs of given order and size: A survey, Discrete Mathematics
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This result was extended in several ways. First, in a remarkable paper [24], Loh, Pikhurko and Sudakov proved Conjec-
ture 3.3 for large m and in a strong way. To state their result we need the following definition. Given A > 2, we define the
constant

| [1ogtn/. — 1)) log . -
= ogr Vg —1)) -

Clearly, ), = (1 + o(l))ﬁ, when A — oo.

Theorem 3.5 ([24]). For every fixed A > 3, and any k < «;, the following holds for sufficiently large m with m < «n?. Every
(n, m)-graph that maximizes the number of A-colorings is a semi-complete bipartite subgraph of K, plus isolated vertices, where

a=(14o(1)),/m-log ﬁ/logk and b = (1 + o(1)),/m - log A/log ﬁ m — oo. The corresponding number of colorings is

AleleHoVIm 1 o o where ¢ = 2 log x)%l - log A.

The partition sizes of all extremal graphs above have the ratio roughly log A/log A)\j that is similar to the case for
3-colorings from [17].

It was shown in [24] that for three colors more could be proven. The following notion is important in dealing with some
rare exceptions. We say that we add a pendant edge to a graph, if we add a new vertex and connect it to any vertex of the
graph.

Theorem 3.6 ([24]). The following holds for all sufficiently large m with m < n?/4. Every (n, m)-graph with the maximum
number of 3-colorings is either

(i) asemi-complete bipartite graph K, p, , plus isolated vertices if necessary, or
(ii) K, p plus a pendant edge. Furthermore,
(iii) If m < «3n?, then

3 3
a:(l—}—o(l)),/m-logi/log?: and b:(1+o(l)),/m-log3/log5,m—> 0.

The corresponding number of 3- colorings is 3"e/*%"V™m ‘m — oo, where ¢ = 2,/log 3 - log 3.

(iv) If k3n? < m < in?, then

a= (% +o(1)>(n+ n%2 —4m) and b = (% +o(1))(n — v/ n? —4m), n— oo.

The corresponding number of 3-colorings is 2°7°" n — oo.

Another way to generalize Theorem 3.4 is to obtain a similar result for all Turan (n, t,(n))-graphs and A = r + 1 for all
n>r > 2(forr = 2, we get A = 3). The following theorem from [24] establishes the extremality of T,(n) for a fixed r,
A =1+ 1and large n.

Theorem 3.7 ([24]). Fix an integer r > 3. For all sufficiently large n, the Turdn graph T,(n) has more (r + 1)-colorings than any
other graph with the same number of vertices and edges.

At about the same time, Lazebnik and Tofts [21] obtained a similar result but foralln,2 <r <n.

Theorem 3.8 ([21]). Let 2 < r < n. Then
ft(n), r+ 1) = x(Ty(n),r + 1) = (r + D(s 2" + (r —s)2"" = (r — 1)),

wherel <r <nk = L?J > 1,and 0 < s = n — rk < r. Moreover, T,(n) is the only extremal graph.
3.3. f(n,m, 4)
The following theorem shows that the graph T,(2t) is asymptotically extremal for A = 4.

Theorem 3.9 ([20]).

f2t, t2,4) ~ x(Ty(2t), 4) ~ (6 + 0(1))4', ast — oo. (2)

In [26], Norine showed that results similar to the ones of Theorems 3.7, 3.8 (but for sufficiently large n), and 3.9, hold also
for all other values of A > r + 1 > 3 as long as r is a divisor of A. In particular, it holds for (r, A) = (2, 4) and sufficiently
large n, that strengthens (2) to f(n, t;(n), A) = x(T;(n), 1),as n — oc.

Please cite this article in press as: F. Lazebnik, The maximum number of colorings of graphs of given order and size: A survey, Discrete Mathematics
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Theorem 3.10 ([26]). For any positive integers r, A, such that 2 < r < A and r divides A, there exists ng = no(r, 1), such that
foralln > ny,

f(n, tr(n)a )\') = X(Tr(n)v )“)a
and that T,(n) is the only extremal graph.

This result was followed by a paper by Tofts [30], where the extremality of To(n) with respect to the number of 4-colorings
was proven for alln > 4.

Theorem 3.11 (/30]). Let n =2k +s > 4and s € {0, 1}. Then
f(n, ta(n), 4) = x(Ta(n), 4) = 6 - 2" + 4(1 + 3%)3% — 12(1 + 2°)2F 4- 12,

with T,(n) being the only extremal graph.

3.4. f(n, m, 1) for large A
Here we collect results that hold for some fixed (n, m) and A large.

Theorem 3.12 ([19]). (i) Let p > 3. Then for A > p°,
F@p.p*. 1) = x(Kpp. 1),

and K, p is the unique extremal graph.
(ii) Let p > 3,n > 2p, m = p?. Then for A > p*/12,

f(n, p?, ) = x(Kpp + Kn2p, 1),
and K p + En,zp is the unique extremal graph.

Part (i) of this theorem was generalized to all Turan graphs with a slightly greater lower bound on A.

Theorem 3.13 ([19]). Let p and r > 2 be positive integers, n = pr, m = t.(n), and A > 2(';1) Then
f(n, &(n), &) = x(Te(n), 1),
and T,(n) is the unique extremal graph.

If we allow A to depend on n and m, then Theorems 3.5, 3.8, and 3.10 provide additional results.
3.5. f(n, t,(n), ) and extremality of x(T.(n))
The following conjecture by Lazebnik (unpublished, 1987) appeared in print in [20].

Conjecture 3.14 ([20]). Foralln >r > 2andall» > r,
f(n, t:(n), 1) = x(T(n), A),

and T,(n) is the only extremal graph.

When A = r, the statement follows from the celebrated Turan’s theorem [39], since any (n, t,(n))-graph different from
T:(n) has chromatic number at least r + 1.

Conjecture 3.14 was widely believed to be true, and all related results from previous subsections of this survey
supported it. It has been a surprise to many to learn that the conjecture was actually false. In [25], Ma and Naves presented
counterexamples to the conjecture for some ranges of r and A.

Theorem 3.15 ([25]). (i) For all integers r > 50000 and )¢ such that

T'2

r<ixg<-—m—m,
- 0_20010gr

there exists an integer A within distance at most r from Ag, such that Conjecture 3.14 is false for (r, A).
(ii)If r +3 < X < 2r — 7, where r is an integer and r > 10, Conjecture 3.14 is false.

20

Nevertheless, in the same paper the authors confirmed that T,(n) is asymptotically extremal when A = £(r?/logr),
r — oo.

Please cite this article in press as: F. Lazebnik, The maximum number of colorings of graphs of given order and size: A survey, Discrete Mathematics
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Theorem 3.16 ([25]). (i) For sufficiently large integers r and A with . > 113?3 , the following holds for all sufficiently large n. Every
extremal graph that maximizes the number of A-colorings over all (n, %nz + o(n?))-graphs is o(n?)-close to T,(n).
(ii) If r < A < r + 2, then for every integer r > 1 and sufficiently large integers n, every extremal graph that maximizes the

number of A-colorings over all (n, -2 n* + o(n?))-graphs is o(n*)-close to T(n).

The king is dead. Long live the king! The refutation of the conjecture makes the original problem of determining f(n, m, 1)
even more challenging.

4. Ideas and techniques

In this section we make an attempt of covering some ideas and techniques used in the proofs of main results mentioned
in the previous section. Here we arrange the material closer to the chronological order, trying to unite results which proofs
share similar techniques, and trace the development of the ideas where it is possible.

4.1. Theorem 3.1

It is obvious that for a graph G to have at least one 2-coloring, it has to be bipartite. In this case, if G has c(G) components,
then x(G, 2) = 249, In order to maximize the number of components of a bipartite graph for m < n?/4, we pack all edges
as tight as possible, so the number of isolated vertices becomes maximum. See [17] for details.

4.2. Theorems 3.12 and 3.13

Suppose we wish to understand which (n, m)-graph G has the largest number of A-colorings for n and m fixed and large A.
We will use a characterization of the coefficients of x (G, 1) in terms of so called ‘broken circuits’ of graph G [40,41]. Suppose
we number the edges of G by integers from 1 to m in some manner. Next, from the edge set of each cycle of G we delete the
edge with the highest index, obtaining, thereby, the set of edges called the broken cycle.

Theorem 4.1 ([41], Whitney’s ‘Broken Circuits’ Theorem). For a graph of order n,

x(G, 1) = aoA" — A"+ A" — - (= 1) Nap g, (3)
where the coefficient a; is equal to the number of j-subsets of edges of G which contain no broken cycles.

For any (n, m)-graph G, the first two coefficients of (3) are fixed: ag = 1 and a; = m. Since we wish to maximize x(G, A)
for large A, we look for (n, m)-graphs with the largest positive coefficient a,. Then among all such graphs, we will look for
the ones with the least as. This will lead us to a unique extremal graph.

As an immediate corollary from Theorem 4.1 we get that a, = (';) — c3, where c3 = c3(G) = the number of triangles
in G. This relation shows that a, is the greatest if and only if c3 is the least. If m < n?/4, then, by Turan’s theorem, there
exist (n, m)-graphs without triangles (e.g., bipartite graphs), and for them c3 = 0. Hence, the coefficient a, = (';) for each of
them, i.e., at its maximum, and we focus our attention on the value of as for this subfamily of graphs. It is easy to see that for
triangle-free graphs, as = (';1) — 4, Where ¢, = c4(G) = the number of quadrilaterals in G. Thus the problem is reduced to the
following: for m < n? /4, among all triangle-free (n, m)-graphs find ones with the greatest number of quadrilaterals. It turns
out that for n > 2p and m = p?, the only(!) triangle-free (n, m)-graph graph having the greatest number of quadrilaterals is
Kpp+ R,,_zp. Our search is finished. The lower bounds for A are derived by using an upper bound on roots of polynomials in
terms of their coefficients. For (n, t;(n))-graphs, the approach is similar. See [ 19] for details.

4.3. Theorems 3.4, 3.8 and 3.11

The proof of Theorem 3.4 used induction on p, and the explicit formula 6(2° — 1) for x (K, , 3).1t begins with an observation
that there exists an extremal graph H, i.e. x(H, 1) = f(2p, p?, A), having at most one component with more than one vertex.
If H is not isomorphic to K, ,, then, by Turan’s theorem it must contain a triangle T. Then either there is an edge uv of T,
such that d(u) 4+ d(v) < 2p, or for every edge uv of T, d(u) + d(v) > 2p + 1. In the first case, after deleting vertices u and
v from H, the result easily follows. The second case does not use induction hypothesis, and is more involved. It was proven
by partitioning of vertices of H not in T into several classes, and estimating the number of edges between each class and the
vertices of T.

The proofs of Theorems 3.8 and 3.11 generalize the one of Theorem 3.4 that we just described. Though their logic is
similar, the proofs are substantially harder.
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4.4. Theorem 3.9

In proving Theorem 3.9 the following approach was used.

First the formula x (K, , 4) = 6 - 4P + 8 - 3* — 24 - 2P 4 12 was established. It provided a lower bound on f(2p, p?, 4).

Then a weaker result was established, namely that if a graph is close to K}, , with respect to edit distance, then the number
of its 4-colorings is at most (6 4 o(1))4¥. In other words, Theorem 3.9 was first proven for these special graphs:

Theorem 4.2. There exist constants € > 0 and p such that for every p > po and every (2p, p*)-graph G which is ep*-close to
Ky » we have

x(G,4)<6-4° +(4—€).

Thus, it suffices to consider graphs which are not close to K, , with respect to edit distance. Let a kite be a graph F
isomorphic to K, with one edge deleted, i.e., consisting of two triangles sharing an edge. Since x (F) = 3, the Stability Theorem
of Simonovits [29] implies that, for sufficiently large p, any (2p, p?)-graph G not close to K, p contains a subgraph isomorphic
toF.

Next the authors consider constants € and po which satisfy the statement of Theorem 4.2 and such that € > 1/po, and
show that

f2L 2, 4) < (6 + €)4!

foralll > pé. The proof of the theorem continues by induction on p. If it is possible to remove a pair of vertices occurring in
a unique triangle of a kite so that at most 2p — 2 < p? — (p — 1)? edges are deleted, then the number of colorings decreases
by at least a factor of 4, and the proof is finished.

Suppose there is no such an edge. It follows that vertices of every kite is incident to many edges. Then all 4-colorings of
the graph are split into two classes depending on whether or not there is a kite with all four vertices having different colors.
Using an argument similar to the one of the proof of Theorem 3.4 (and much more), the sizes of both classes are bounded,
and this implies an upper bound on the number of all 4-colorings. See [20] for details.

4.5. Theorems 3.5, 3.6, 3.7

In [24], Loh, Pikhurko and Sudakov developed the ideas of the proof of Theorem 3.9, and introduced new techniques
which have been successfully used by others in further studies of f(n, m, A). It was certainly a breakthrough paper. It is long
and is very well written. We cannot summarize the ideas of the paper better than its authors. Therefore, let us quote them
(we just replace the authors g for the number of colors by A).

... Perhaps part of the difficulty for general m, n, A stems from the fact that maximal graphs are substantially more
complicated than the minimum graphs that Linial found. For number-theoretic reasons, it is essentially impossible to
construct maximal graphs for general m, n. Furthermore, even their coarse structure depends on the density m/n?. . ..
Therefore, in order to tackle the general case of this problem, one must devise a unified approach that can handle all
of the outcomes.

In this paper, we propose such an approach, developing the machinery that one might be able to use to determine the
maximal graphs in many nontrivial ranges of m, n. Our methodology can be roughly outlined as follows. We show,
via Szemerédi’s Regularity Lemma, that the asymptotic solution to the problem reduces to a certain quadratically-
constrained linear program in 2* — 1 variables. For any given A, this task can in principle be automated by a computer
code that symbolically solves the optimization problem, although a more sophisticated approach was required to solve
this for all A. Our solutions to the optimization problem then give us the approximate structure of the maximal graphs.
Finally, we use various local arguments, such as the so-called “stability” approach introduced by Simonovits [29], to
refine their structure into precise results. . . .

We conclude these comments with the statement of the optimization problem mentioned above. It reduces the
asymptotic version of the original problem to the following linear optimization problem with quadratic constraints. We
follow the exposition in [24] with some changes in notation.

Fix an integer A > 2 and a real number y. Consider the following objective and constraint functions:

OBJ(x) := ZXA loglAl;  v(X) = ZxA, E(x) := Z XaXp.

AL A#D ANB=p

The vector x has 2* — 1 coordinates x4, € R indexed by the nonempty subsets A C [1], and the sum in E(x) runs over
unordered pairs of disjoint nonempty sets {A, B}. Let FEAS(y ) be the feasible set of vectors defined by the constraints x > 0,
v(x) = 1, and E(x) > y. We seek to maximize OBJ(x) over the set FEAS(y ), and we define OPT(y ) to be this maximum value
which exists by compactness. Vector X solves OPT(y ) when both x € FEAS(y ) and OBJ(x) = OPT(y ).

Given a vector x € FEAS(y ) for some y, we construct a graph Gy(n) on n vertices as follows. Partition V(Gx(n)) into clusters
V4 such that |V,| differs from x4n by less than 1, and for every pair A, B C [A] with AN B = @ join every vertex in V, to every
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vertex of Vg by an edge. It is clear that any coloring that for each cluster V, uses only colors from A is a proper coloring of
G = Gxand so x(G, 1) > [,lAM"! = eOBxm—0(),
The following theorem states that the graph Gx(n) represents an approximate structure of the extremal graphs.

Theorem 4.3 ([24]). For any €, x > 0 the following holds for all sufficiently large n. Let G be an (n, m)-graph with m < «n?,
which has at least as many A-colorings as any other (n, m)-graph. Then G is en®-close to a graph Gx(n) for some x which solves
OPT(y) for some y such that |y —m/n?| < eand y < «.

4.6. Theorem 3.10

We wish to begin with a quote from Norine’s paper [26] (again, in the text below the number of colors q is denoted by 1).

... In a recent breakthrough paper Loh, Pikhurko and Sudakov [24] ...remarked that “the remaining challenge is
to find analytic arguments which solves the optimization problem for general 1”. In this note we present one such
argument. We relax the optimization problem to a certain fractional version and solve some natural instances of this
relaxation.. . .

The condition r dividing A corresponds to a “natural instance”. Consider vector x from our discussion of the optimization
problem in the previous section. For a vector X = (x4), ¥ # A C [)], define support of X as a collection of sets A such that
X4 # 0. The vector X is a balanced partition vector if the support of x is a partition of [A] and all sets in the support have the
same size. This is how the divisibility condition enters the scene. See [26] for the details.

Another interesting result of the same paper is a general upper bound on x(G, A).

Theorem 4.4 ([26]). For any positive integer A > 2 and a positive real €, the following holds for any sufficiently large n. For any
(n, m)-graph,

n
(G, 2) < Wf”‘(l - 2T> :
n

4.7. Theorems 3.15 and 3.16

The comments below follow closely the ones in Ma and Naves [25].

Among the main contributions of this paper is a structural theorem that allows substantially to simplify the quadratically
constrained linear problem for general instances. This structural theorem asserts that extremal graphs must be asymptoti-
cally close (with respect to edit distance) to the ones in some family of graphs G, where k > 1 is an integer depending only
on the edge density of graphs. To be precise, for a fixed A, the family G, consists of complete multipartite graphs with at least
k and at most A parts as well as graphs obtained from a complete k-partite graph by adding some additional vertices each of
which adjacent to the vertices of all but two fixed parts. Then the following is true.

Theorem 4.5 ([25]). For any real r > 1, the following holds for all sufficiently large n. Let G be a (n, m)-graph with m =
%nz + o(n?) such that f(n, m, A) = x(G, A). Then there exists an n-vertex graph in G which is o(n?)-close to G.

The details of the proofs related to the counterexamples of Conjecture 3.14 can be found in [25].
5. Some open questions

As this survey demonstrates, the problem of finding f(n, m, 1) and extremal graphs is still wide open. Going through
conditions of many theorems from Section 3, one can easily identify the ranges of the parameters that require further work.
We would like to finish this survey by posing just three questions.

Our first question is related to Theorems 3.4, 3.11, and 3.12.

Question 5.1. Let n be a positive fixed integer, n > 6. Is it true that f(n, t;(n), A) = x(Tz(n), A) for all .. > 2, with T,(n) being
the only extremal graph? The first unknown case is A = 5.

Our second question is related to Theorems 3.8, 3.11, 3.13, and 3.16(ii).

Question 5.2. Let n, r be positive integers, n > 9,r > 2. Is it true that f(n, t.(n),r + 2) = x(T;(n), r + 2) forallr > 2, with
T.(n) being the only extremal graph?

Question 5.3. Does Theorem 3.10 hold if the condition that r divides X is removed?
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