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a b s t r a c t

The edit distance between two graphs on the same labeled vertex set is defined to be the
size of the symmetric difference of their edge sets. The edit distance function of a hereditary
propertyH is a function of p ∈ [0, 1] that measures, in the limit, the maximum normalized
edit distance between a graph of density p and H. The expression H = Forb(H) denotes
the property of having no induced subgraph isomorphic to H .

In this paper, we address the edit distance function for the hereditary property
Forb

(
C t
h

)
, where C t

h denotes the t
th power of the cycle of length h. For h ≥ 2t(t +1)+1 and

h not divisible by t + 1, we determine the function for all values of p. For h ≥ 2t(t + 1)+ 1
and h divisible by t +1, the function is obtained for all but small values of p. We also obtain
edit distance functions for some smaller values of h.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The edit distance in graphs was introduced independently by Axenovich, Kézdy, and Martin [2] and by Alon and Stav [1].
The question considered is ‘‘Given a class of graphs H what is the minimum number m = m(n) such that for every graph
on n vertices, there is a set of m edge-additions plus edge-deletions that ensure the resultant graph is a member of H?’’ A
hereditary property is a family of graphs that is closed under isomorphism and the taking of induced subgraphs. For every
hereditary property H, there is a p = p(H) such that the Erdős–Rényi random graph G(n, p) is asymptotically extremal [1].

The edit distance function of a hereditary property H is a function of p ∈ [0, 1] that measures, in the limit, the
maximum normalized edit distance between a graph of density p andH. A principal hereditary property, denoted Forb(H), is
a hereditary property that consists of the graphs with no induced copy of a single graph H . Most of the known edit distance
functions concern principal hereditary properties. These include the cases where H is a split graph [7] (including cliques and
independent sets), complete bipartite graphs K2,t [8] and K3,3 [5] and cycles Ch where h ≤ 10 [6]. In this paper, we compute
the edit distance function for powers of cycles.

For positive integers t and h, the tth power of a cycle of length h is denoted C t
h and has vertex set {1, . . . , h}, where two

vertices are adjacent in C t
h if and only if their distance is at most t in Ch.

The notation in this paper primarily comes fromMartin [8]. The edit distance between graphsG andG′ on the same labeled
vertex set is denoted dist(G,G′) = |E(G) △ E(G′)|. The edit distance between a graph G and a hereditary property H is

dist(G,H) = min{dist(G,G′) : V (G) = V (G′),G′
∈ H}.
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The edit distance function of a hereditary property H measures the maximum distance of a density p graph from H, i.e.

edH(p) = lim
n→∞

max{dist(G,H) : |V (G)| = n, |E(G)| = ⌊p
(n
2

)
⌋}/
(n
2

)
.

Balogh and Martin [3] showed that this limit exists and is equal to lim
n→∞

E[dist(G(n, p),H)], with an argument similar to
one by Alon and Stav in [1]. The function has a number of interesting properties:

Proposition 1 (Balogh–Martin [3]). If H is a hereditary property, then edH(p) is continuous and concave down over p ∈ [0, 1].

By the proposition above, the function edH achieves its maximum in [0, 1]. We denote this maximum value by d∗
H, and

the set of all values of p for which the maximum is achieved by p∗
H.

Alon and Stav [1] defined the following: A colored regularity graph (CRG), K , is a complete graph with a partition of the
vertices into white VW(K ) and black VB(K ), and a partition of the edges into white EW(K ), gray EG(K ), and black EB(K ).
We say that a graph H embeds in K , denoted H ↦→ K , if there is a function ϕ : V (H) → V (K ) so that if h1h2 ∈ E(H), then
either ϕ(h1) = ϕ(h2) ∈ VB(K ) or ϕ(h1)ϕ(h2) ∈ EB(K ) ∪ EG(K ), and if h1h2 /∈ E(H), then either ϕ(h1) = ϕ(h2) ∈ VW(K ) or
ϕ(h1)ϕ(h2) ∈ EW(K ) ∪ EG(K ).

Given a hereditary property H, it is easy to see that it can be expressed as H =
⋂

{Forb(H) : H ∈ F(H)} for some
family of graphs F(H). We denote K(H) to be the subset of CRGs such that no forbidden graph embeds into them, i.e.
K(H) = {K : H ̸ ↦→ K , ∀H ∈ F(H)}. In our case, K(H) = {K : H ̸ ↦→ K } for H = Forb(H). We define a CRG K to be a
sub-CRG of K̃ if K can be obtained by deleting vertices of K̃ .

For every CRG K we associate a function g on [0, 1] defined by

gK (p) = min{xTMK (p)x : xT1 = 1, x ≥ 0}, (1)

where

[MK (p)]ij =

{p, if vivj ∈ EW(K ) or vi = vj ∈ VW(K );
1 − p, if vivj ∈ EB(K ) or vi = vj ∈ VB(K );
0, if vivj ∈ EG(K ).

(2)

The g function of CRGs can be used to compute the edit distance function. Balogh and Martin [3] proved that edH(p) =

inf {gK (p) : K ∈ K(H)} andMarchant and Thomason [5] further proved that the infimum is achieved by some K , i.e. edH(p) =

min {gK (p) : K ∈ K(H)}. So, for every p ∈ [0, 1], there is a CRG K ∈ K(H) such that edH(p) = gK (p). It is also shown in that
paper that in order to find such CRG we only need to look at so called p-core CRGs. A CRG K̃ is p-core if gK̃ (p) < gK (p) for
every sub-CRG K of K̃ .

The CRG with r white vertices, s black vertices and all edges gray is denoted K (r, s). The clique spectrum of the hereditary
property H = Forb(H), denoted Γ (H), is the set of all pairs (r, s) such that H ̸ ↦→ K (r, s). It is easy to see that, for any
hereditary property H its clique spectrum Γ = Γ (H) can be expressed as a Ferrers diagram. That is, if r ≥ 1 and (r, s) ∈ Γ ,
then (r−1, s) ∈ Γ and if s ≥ 1 and (r, s) ∈ Γ , then (r, s−1) ∈ Γ . An extreme point of a clique spectrum Γ is a pair (r, s) ∈ Γ

such that (r + 1, s) and (r, s + 1) do not belong to Γ . The set of all extreme points of Γ is denoted by Γ ∗.
Define the function γH(p) = min{gK (r,s)(p) : (r, s) ∈ Γ (H)}. Clearly, edH(p) ≤ γH(p). Moreover, one only need consider

the extreme points rather than all of Γ itself, that is, γH(p) = min{gK (r,s)(p) : (r, s) ∈ Γ ∗(H)}.
In this paper, the hereditary properties we consider are of the form H = Forb(C t

h). Since Martin [6] gives edForb(Kh)(p) =

p/(h − 1), we will assume that h ≥ 2t + 2. For convenience, we denote ℓr =
⌈ h

t+r+1

⌉
, for r ∈ {0, . . . , t}. We also denote

pt = ℓt
−1. The motivation for these values will be discussed in Section 5.

The main results of this paper are Theorems 2 and 3.

Theorem 2. Let t ≥ 1 and h ≥ max{t(t + 1), 4} be integers, and for r ∈ {0, 1, . . . , t}, let ℓr =
⌈ h

t+r+1

⌉
and let H = Forb(C t

h).
If p ∈ [0, 1], then

γH(p) = min
r∈{0,1,...,t}

{
p(1 − p)

r(1 − p) + (ℓr − 1) p

}
, if (t + 1) | h;

γH(p) = min
r∈{0,1,...,t}

{
p

t + 1
,

p(1 − p)
r(1 − p) + (ℓr − 1) p

}
, if (t + 1) |̸ h.

Note: If r = 0, then p(1−p)
r(1−p)+(ℓr−1)p =

p(1−p)
(ℓ0−1)p , which we define to be 1−p

ℓ0−1 at p = 0.

Theorem 3. Let t ≥ 1 and h ≥ 2t(t + 1) + 1 be positive integers, let pt =
⌈ h

2t+1

⌉−1
, and let H = Forb(C t

h). If (t + 1) |̸ h and
0 ≤ p ≤ 1 or (t + 1)|h and pt ≤ p ≤ 1, then

edH(p) = γH(p). (3)
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Corollary 4. Let h ≥ 5 be a positive integer and let H = Forb(Ch).

• If h is even, then for ⌈h/3⌉−1
≤ p ≤ 1,

edH(p) = min
{

p(1 − p)
1 − p + (⌈h/3⌉ − 1)p

,
1 − p

⌈h/2⌉ − 1

}
.

• If h is odd, then for 0 ≤ p ≤ 1,

edH(p) = min
{
p
2
,

p(1 − p)
1 − p + (⌈h/3⌉ − 1)p

,
1 − p

⌈h/2⌉ − 1

}
.

It was shown by Martin [6] and by Marchant and Thomason [5], respectively, that

edForb(C3)(p) = p/2 and edForb(C4)(p) = p(1 − p).

It follows from this and the above corollary that when t = 1, the furthest graph from Forb(Ch) is a graph which has density
p∗

= 1/(⌈h/2⌉ − ⌈h/3⌉ + 1) when h ≥ 3 and h ̸∈ {3, 4, 7, 8, 10, 16}, and has density p∗
= 1/(1 +

√
⌈h/3⌉ − 1) when

h ∈ {3, 4, 7, 8, 10, 16}. Observe that the maximum value of the edit distance function can be an irrational number.
Our proof techniques often require us to compare the g function of a CRG to one of the individual functions that are given

in Theorem 2. However, when h is large enough at most 3 of these functions are necessary to define γH.

Corollary 5. Let t ≥ 2 and h ≥ 4t2+10t+24 be positive integers. Let ℓ0 =
⌈ h

t+1

⌉
, ℓt =

⌈ h
2t+1

⌉
, pt = ℓ−1

t , and letH = Forb(C t
h).

• If (t + 1) |̸ h, then for 0 ≤ p ≤ 1,

edH(p) = min
{

p
t + 1

,
p(1 − p)

t(1 − p) + (ℓt − 1)p
,
1 − p
ℓ0 − 1

}
.

• If (t + 1) | h, then for pt ≤ p ≤ 1,

edH(p) = min
{

p(1 − p)
t(1 − p) + (ℓt − 1)p

,
1 − p
ℓ0 − 1

}
.

We prove this in Section 6.
The rest of the paper is organized as follows: Section 2 provides some definitions and basic results, Section 3 gives the

proof of Theorem 2, Section 4 gives Lemma 13 which is the key lemma for the proof of Theorem 3, Section 5 gives the proof
of Theorem 3, Section 6 gives the proofs of some helpful lemmas and facts, and Section 7 gives some concluding remarks.

2. Definitions and tools

All graphs considered in this paper are simple. For standard graph theory notation please see West [11], for the edit
distance notation please see Martin [6]. A sub-CRG K ′ of a CRG K is a component if it is maximal with respect to the property
that, for all distinct v, w ∈ V (K ′), there exists a path consisting of white and black edges entirely within K ′. It is easy to
compute the g function of a CRG given the g function of its components:

Proposition 6 ([6]). Let K be a CRG with components K (1), . . . , K (r) and p ∈ [0, 1]. Then (gK (p))−1
=
∑r

i=1

(
gK (i) (p)

)−1.

Note that by Proposition 6,

gK (r,s)(p) =

(
r
p

+
s

1 − p

)−1

. (4)

LetK be a CRG, v ∈ V (K ), and let x be an optimal solution to the quadratic program (1). Theweight of v, denoted x(v), is the
entry of the vector x that corresponds to v. We will often refer to x as the optimal weight function of K . We say that w ∈ V (K )
is a gray neighbor of v ∈ V (K ) ifw is adjacent to v via a gray edge.White and black neighbors are defined analogously. The set
of all gray neighbors of v is denoted by NG(v) and the number of vertices adjacent to v via gray edges is denoted by degG(v),
i.e. degG(v) = |NG(v)|.

In contrast, the gray degree of v, denoted dG(v), is the sum of the weights of gray neighbors of v, i.e. dG(v) =
∑

{x(w) :

w ∈ NG(v)}. Similarly, the white degree of v, denoted dW (v), is the sum of the weights of the white neighbors of v plus the
weight of v if and only if it is a white vertex. The black degree of v, denoted dB(v), is the sum of the weights of the black
neighbors of v plus the weight of v if and only if it is a black vertex. So, dG(v) + dW (v) + dB(v) = 1 for all v ∈ V (K ).

The number of common gray neighbors of vertices v and w is denoted by degG(v, w). The gray codegree of vertices v and
w, denoted dG(v, w), is the sum of theweights of the common gray neighbors of v andw. For a set of vertices {v1, v2, . . . , vℓ},
we say v1v2 · · · vℓ is a gray path if vivi+1 ∈ EG(K ) for i = 1, . . . , ℓ − 1. Analogously, we say v1v2 · · · vℓv1 is a gray cycle if
v1vℓ ∈ EG(K ) and vivi+1 ∈ EG(K ) for i = 1, . . . , ℓ − 1.
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Proposition 7 gives a structural classification of p-core CRGs and this is an essential tool that is the basis of the proof of
Theorem 3. We note that, in particular, the proposition ensures that all edges between white and black vertices of a p-core
CRG must be gray.

Proposition 7 (Marchant–Thomason [5]). Let K be a p-core CRG.

• If p = 1/2, then all of the edges of K are gray.
• If p < 1/2, then EB(K ) = ∅ and there are no white edges incident to white vertices.
• If p > 1/2, then EW(K ) = ∅ and there are no black edges incident to black vertices.

Proposition 8 gives a formula for dG(v) for all v ∈ V (K ) and Proposition 9 uses this to give a bound on the weight of
each v.

Proposition 8 ([6]). Let p ∈ (0, 1) and K be a p-core CRG with optimal weight function x.

• If p ≤ 1/2, then x(v) = gK (p)/(1 − p) for all v ∈ VW(K ), and

dG(v) =
p − gK (p)

p
+

1 − 2p
p

x(v), for all v ∈ VB(K ).

• If p ≥ 1/2, then x(v) = gK (p)/p for all v ∈ VB(K ), and

dG(v) =
1 − p − gK (p)

1 − p
+

2p − 1
1 − p

x(v), for all v ∈ VW(K ).

Proposition 9 ([6]). Let p ∈ (0, 1) and K be a p-core CRG with optimal weight function x.

• If p ≤ 1/2, then x(v) ≤ gK (p)/(1 − p) for all v ∈ VB(K ).
• If p ≥ 1/2, then x(v) ≤ gK (p)/p for all v ∈ VW(K ).

3. Proof of Theorem 2 : Computation of the γH function

In this section we compute the γH function, which gives an upper bound for the edit distance function for the tth power
of the h cycle, denoted C t

h . Recall that for any t ≥ 1, h ≥ 2t + 2 and r ∈ {0, . . . , t}, we denote ℓr =
⌈ h

t+r+1

⌉
.

Proof (Theorem 2). First, we state the value of the chromatic number of C t
h , denoted χ (C t

h).

Proposition 10 (Prowse–Woodall [10]). Let t ≥ 1 and h ≥ max{t + 1, 3} be positive integers, and for ρ ∈ {0, 1, . . . , t}, let
h = q(t + 1) + ρ where ρ ∈ {0, . . . , t}. Then, χ (C t

h) = t + ⌈ρ/q⌉ + 1. In particular, if h ≥ max{t(t + 1), 3}, then

χ (C t
h) =

{
t + 2, if (t + 1) |̸ h;
t + 1, if (t + 1) | h.

Let h ≥ max{t(t + 1), 2t + 2} and χ = χ (C t
h). Denote the vertices of C t

h by {1, . . . , h} such that distinct i and j
are adjacent if and only if |i − j| ≤ t (mod h). For each r ∈ {0, 1, . . . , t}, we first show that (r, ℓr − 1) ∈ Γ , where
Γ = Γ (Forb(C t

h)) is the clique spectrum of Forb(C t
h). We then show that (r, ℓr) ̸∈ Γ . We will also show that if χ > t + 1

then {(t + 1, 0), . . . , (χ − 1, 0)} ⊂ Γ but that (t + 1, 1) ̸∈ Γ .
This will imply that Γ ∗, the extreme points of Γ , satisfy

Γ ∗
⊆ {(r, ℓr − 1) : r = 0, 1, . . . , t} ∪ {(χ − 1, 0)},

which, together with (4), will complete the proof of Theorem 2.

Case 1: r ∈ {0, 1, . . . , t}.
First, we show that (r, ℓr − 1) ∈ Γ . By way of contradiction, assume there is a partition of V (C t

h) into r independent
sets and ℓr − 1 cliques. Let k = ℓr − 1, and let C1, . . . , Ck be the cliques. We may assume that the vertices in each Ci are
consecutive. This is because if vertices j1 and j2 are in the same clique, then by the nature of adjacency in the power of a
cycle, every vertex between j1 and j2 is adjacent to every member of the clique, and hence can be added to the clique. Thus,
|Ci| ≤ t + 1 for i = 1, . . . , k.

For i = 1, . . . , k − 1, let Bi be the set of vertices between Ci and Ci+1, and let Bk be the set of vertices between Ck and C1.
The sets Bi might or might not be empty. If some |Bi| ≥ r + 1, then the first r + 1 ≤ t + 1 vertices form a clique and so
must be in different independent sets, which is not possible since there are only r independent sets. Therefore, |Bi| ≤ r for
i = 1, . . . , k.

Consequently, we need k(t + r + 1) ≥ h in order to cover C t
h with r independent sets and k cliques. Hence, k ≥ ℓr , a

contradiction to our choice of k. Thus (r, ℓr − 1) ∈ Γ for r = 0, . . . , t .
Next, we show that (r, ℓr) ̸∈ Γ . Again, let k = ℓr − 1. For i = 1, . . . , k, let Si be the vertex set {(i − 1)(t + r + 1) +

1, . . . , i(t + r + 1)} and let Sk+1 = {1, . . . , h} − ∪
k
i=1Si. For i = 1, . . . , k, let Ci be the first t + 1 vertices of Si and let Ck+1
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be the first min{t + 1, |Sk+1|} vertices of Sk+1. For j = 1, . . . , r , let Aj consist of the (t + 1 + j)th vertex of S1, . . . , Sk and the
(t + 1 + j)th vertex of Sk+1 if |Sk+1| ≥ t + 1 + j.

The sets (A1, . . . , Ar , C1, . . . , Ck+1) form a partition of V (C t
h). Clearly each Ci, i = 1, . . . , k, is a clique of size t + 1 and

since there is a clique of size t + 1 between pairs of vertices in each Aj, each Aj is an independent set. Thus (r, ℓr) ̸∈ Γ for
r = 0, . . . , t .

Case 2: r ≥ t + 1.
If (t + 1) | h, then Proposition 10 gives that C t

h can be partitioned into t + 1 independent sets and so (t + 1, 0) ̸∈ Γ .
If (t + 1) |̸ h, then Proposition 10 gives that χ ≥ t + 2 and since C t

h cannot be partitioned into fewer than χ independent
sets, we have (t + 1, 0), . . . , (χ − 1, 0) ∈ Γ . Since C t

h can be partitioned into χ independent sets, (χ, 0) ̸∈ Γ . Finally, let
k = ⌈h/(t + 1)⌉ − 1. For j = 1, . . . , t + 1, let Aj = {(i − 1)(t + 1) + j : i = 1, . . . , k}. Let C0 = {k(t + 1) + 1, . . . , h}. The sets
(A1, . . . , At+1, C0) form a partition of V (C t

h). Clearly, C0 is a clique of size at most t + 1 and since there are at least t vertices
between pairs of vertices in each Aj, each Aj is an independent set. Thus (t + 1, 1) ̸∈ Γ .

Summarizing, the extreme points of the clique spectrum, Γ , are a subset of {(r, ℓr − 1) : r ∈ {0, 1, . . . , t}} if (t + 1) | h
and are a subset of {(r, ℓr − 1) : r ∈ {0, 1, . . . , t}} ∪ {χ − 1, 0} if (t + 1) |̸ h.

Using Proposition 6, if h = q(t + 1) + ρ where ρ ∈ {0, . . . , t}, then

γH(p) = min
r∈{0,1,...,t}

{
p(1 − p)

r(1 − p) + (ℓr − 1) p

}
, if ρ = 0;

γH(p) = min
r∈{0,1,...,t}

{
p

t + ⌈ρ/q⌉
,

p(1 − p)
r(1 − p) + (ℓr − 1) p

}
, if ρ ̸= 0.

Restricting to the case h ≥ max{t(t + 1), 4}, we have the result in the statement of the theorem.

4. Forbidden cycles

Recall that we may assume h ≥ 2t + 2. Before we can prove Theorem 3, we need to study the properties of the p-core
CRGs into which C t

h does not embed. According to Proposition 7, if we have a p-core CRG, then the part of the CRG induced
on the black vertices has only gray or white edges (and only gray edges if p ≥ 1/2). An important property of a p-core CRG,
K such that C t

h ̸ ↦→ K is that the set of lengths of gray cycles on black vertices is restricted, as is shown in Lemma 13. Its proof
needs the technical inequalities in Facts 11 and 12. For completeness, we give the proofs of these facts in Section 6.

Fact 11. Let h, x, y be positive integers. Then

(a) ⌊h/x⌋ ≥ y if and only if ⌊h/y⌋ ≥ x.
(b) ⌈h/x⌉ ≤ y if and only if ⌈h/y⌉ ≤ x.

Fact 12. Let t ≥ 1, h ≥ max{t(t − 1), 2t + 2}, and r ∈ {0, . . . , t − 1} be positive integers. Then
⌈ h

t+r+1

⌉
≤
⌊ h

t

⌋
.

Lemma 13 is a key lemma in proving our main result of Theorem 3.

Lemma 13. Let p ∈ (0, 1/2] and let t ≥ 1 and h ≥ 2t + 2 be integers. Let K̃ be a p-core CRG with exactly r white vertices such
that C t

h ̸ ↦→ K̃ . Let K be the sub-CRG of K̃ induced by the set of all black vertices of K̃ . Then:

(a) If r ∈ {0, . . . , t − 1} and h ≥ t2 − t, then K has no gray cycle that has length in
{⌈ h

t+r+1

⌉
, . . . ,

⌊ h
t

⌋}
.

(b) If r = t, then |V (K )| ≤ ℓt − 1.
(c) If r ≥ t + 1, then (t + 1) |̸ h and V (K ) = ∅.

Note:We interpret a gray cycle of length 2 to be a gray edge.

Proof (Lemma 13). By Proposition 7, K has only white and gray edges. Denote the vertices of C t
h by {1, . . . , h} such that

distinct i and j are adjacent if and only if |i − j| ≤ t (mod h).

Case (a).
Note that Fact 12 establishes that the range of forbidden cycle lengths is nonempty.
Let r ∈ {0, . . . , t − 1} and h ≥ t2 − t . By way of contradiction, for some k ∈ {⌈h/(t + r + 1)⌉, . . . , ⌊h/t⌋}, let K have a

gray cycle on a set of black vertices {v1, . . . , vk} such that vivi+1 is a gray edge, where the indices are taken modulo k. Note
that k ≥ 1 because t ≥ 1, 0 ≤ r ≤ t − 1, and h ≥ max{t2 − t, 2t + 2}.

Wewill partition V (C t
h) into atmost r independent sets and exactly k cliques C1, . . . , Ck such that there is no edge between

nonconsecutive cliques. First partition V (C t
h) into k sets of consecutive vertices S1, . . . , Sk, with each set Si of size either ⌈h/k⌉

or ⌊h/k⌋.
If r = 0, then simply let Ci = Si for i = 1, . . . , k. Because we need the sets Ci to be cliques, each must be of size at most

t + 1. Because we need nonconsecutive sets Ci and Ci′ to have no edge between them, each must be of size t . Using Fact 14,
we see that these conditions are satisfied because ⌈h/(t + 1)⌉ ≤ k ≤ ⌊h/t⌋.
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Fact 14. A set of size h can be partitioned into sets of size t or t + 1 as long as h ≥ t(t − 1). Moreover, for any k ∈

{⌈h/(t + 1)⌉, . . . , ⌊h/t⌋}, such a partition exists with exactly k parts.

The proof of Fact 14 is in Section 6.
Now we will assume r ≥ 1 and choose r ′

∈ {⌈h/k⌉ − (t + 1), ⌊h/k⌋ − t} provided 0 ≤ r ′
≤ r . Note that this consists of

only one such value for r ′ if k |̸ h. Thus, it is required that both (i) 0 ≤ ⌊h/k⌋ − t and (ii) ⌈h/k⌉ − (t + 1) ≤ r . As long as
k ≤ ⌊h/t⌋, (i) is satisfied and as long as k ≥ ⌈h/(t + r + 1)⌉, (ii) is satisfied. Thus, such a choice for r ′ is possible.

If r ′
= 0, then again let Ci = Si for i = 1, . . . , k.

If r ′
≥ 1, then for j ∈ {1, . . . , r ′

}, let Aj consist of the jth vertex of each of S1, . . . , Sk and let Ci = Si − ∪
r ′
j=1Aj. Observe that

for r ′
≥ 1, we have |Si| ≥ t + 1 and so there are at least t vertices between each pair of vertices in every Aj. Therefore, Aj is

an independent set for j = 1, . . . , r ′. We have |Ci| ≤ t + 1 so Ci is a clique for i = 1, . . . , k. In addition, |Ci| ≥ t and so there
are no edges between Ci and Ci′ unless |i − i′| = 1 (mod k).

We now have a contradiction because this partition shows that C t
h embeds in K̃ . The map is as follows: map each Aj to a

different white vertex and Ci to vi for i = 1, . . . , k. The only edges between parts of the given partition of V (C t
h) are incident

to an Aj or are between Ci and Ci′ , where |i − i′| = 1 (mod k). Each such pair has a gray edge and so the mapping witnesses
C t
h ↦→ K̃ .

Case (b).
In this case, we use a similar partition to that of Case (a). Let k = ⌈h/(2t + 1)⌉ − 1 and ρ = h − (k − 1)(2t + 1). Since

h ≥ 2t + 2, we have k ≥ 1. Partition V (C t
h) into k + 1 consecutive parts, S1, . . . , Sk+1, where |S1| = · · · = |Sk−1| = 2t + 1,

|Sk| = ⌈ρ/2⌉ and |Sk+1| = ⌊ρ/2⌋. Note that t + 1 ≤ |Sk+1| ≤ |Sk| ≤ 2t + 1.
For j = 1, . . . , t , let Aj consist of the jth vertex in each Si and let Ci = Si − ∪

t
j=1Aj for i = 1, . . . , k + 1.

For every Ci, there is a set of t vertices before and after Ci that belong to ∪
t
j=1Aj. Hence, there is no edge between any

distinct Ci and Ci′ .
Therefore, K̃ has at most k = ⌈h/(2t + 1)⌉ − 1 black vertices; otherwise, A1, . . . , At can be mapped arbitrarily to each of

the t white vertices and C1, . . . , Ck+1 can be mapped arbitrarily to k + 1 different black vertices in K̃ .

Case (c).
If (t + 1) | h, then χ (C t

h) = t + 1 and K̃ having at least t + 1 white vertices means that C t
h ↦→ K̃ , a contradiction.

If (t + 1) |̸ h, then partition V (C t
h) into k = ⌊h/(t + 1)⌋ + 1 parts S1, . . . , Sk of consecutive vertices with |S1| = · · · =

|Sk−1| = t + 1 and |Sk| = h − (k − 1)(t + 1) ≤ t . For j = 1, . . . , t + 1, let Aj consist of the jth vertex in each of S1, . . . , Sk−1.
The graph induced by V (C t

h) − ∪
t+1
j=1Aj forms a clique of size at most t in Sk.

Therefore, K̃ cannot have a black vertex; otherwise, A1, . . . , At+1 can be mapped arbitrarily to each of the t + 1 white
vertices and V (C t

h) − ∪
t+1
j=1Aj can be mapped to the black vertex.

5. Proof of Theorem 3 : edH = γH

We will use Lemma 13 to prove Theorem 3. Recall that h ≥ 2t(t + 1) + 1 ≥ t(t + 1). By Proposition 10, this means
χ (C t

h) = t + 1 if (t + 1) | h and χ (C t
h) = t + 2 if (t + 1) |̸ h.

Proof (Theorem 3). By definition edH(p) ≤ γH(p) for all p ∈ [0, 1], so we need to show equality.

Case 1: p ∈ [1/2, 1].
First we will show that γH(p) is linear for p ∈ [1/2, 1]. Second, we show that edH(1/2) = γH(1/2) and edH(1) = γH(1).

Finally, the continuity and concavity of the edit distance function establishes that edH(p) = γH(p) for all p ∈ [1/2, 1].
Fact 15 establishes that γH(p) =

1−p
ℓ0−1 for p ∈ [1/2, 1]. Recall that ℓr =

⌈ h
t+r+1

⌉
for all r ∈ {0, 1, . . . , t}.

Fact 15. Let h and t be positive integers and let p ∈ [1/2, 1]. If h ≥ (t + 1)2 + 1, then

1 − p
ℓ0 − 1

≤
p

t + 1
.

For r ∈ {1, . . . , t} if h ≥ (t + 1)(t + r) + 1, then

1 − p
ℓ0 − 1

≤
p(1 − p)

r(1 − p) + (ℓr − 1)p
.

The proof of Fact 15 is in Section 6. Note: The condition h ≥ 2t(t + 1) + 1 suffices to achieve all of the conclusions in
Fact 15.

A previous result establishes that, for H = Forb(C t
h), edH(p) = γH(p) for p ∈ {1/2, 1}.

Proposition 16 (Balogh–Martin [3]). IfH is a hereditary property, then edH(1/2) = γH(1/2). Moreover, if every complete graph
is in H, then edH(1) = γH(1) = 0 and if every empty graph is in H, then edH(0) = γH(0) = 0.
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Finally, by Proposition 1, edH(p) is continuous and concave down, so we may conclude that edH(p) = γH(p) =
1−p
ℓ0−1 for

p ∈ [1/2, 1]. This concludes Case 1.

Case 2: p ∈ [0, 1/2).
Proposition 16 gives edH(0) = γH(0) = 0.
Now let p ∈ (0, 1/2) and choose a p-core CRG K̃ such that edH(p) = gK̃ (p) and C t

h ̸ ↦→ K̃ . (The existence of such a K̃ is
guaranteed by Marchant and Thomason [5].) Recall that, by Proposition 7, each edge incident to white vertices is gray and
the edges between black vertices are either white or gray.

By way of contradiction, assume that gK̃ (p) < γH(p). Suppose K̃ has r white vertices. Recall that for any t ≥ 1, h ≥ 2t +2.
We consider several cases and show that we arrive at a contradiction in each case.

Case 2a: p ∈ (0, 1/2) and r ≥ t + 1.
By Lemma 13(c), (t + 1) |̸ h and K̃ has no black vertices. As long as h ≥ max{t(t + 1), 3}, Proposition 10 gives that if

(t + 1) |̸ h, then χ (C t
h) = t + 2. Thus C t

h embeds in t + 2 white vertices and so this case reduces to K̃ having r = t + 1 white
vertices and no black vertices. Eq. (4) gives that gK̃ (p) = p/(t +1), a contradiction to the assumption that gK̃ (p) < γK̃ (p). This
concludes Case 2a.

Case 2b: p ∈ (0, 1/2) and r = t .
Since r = t , Case (b) of Lemma 13 gives that K̃ has at most ℓt − 1 black vertices. As a result, because K is the sub-CRG

of K̃ induced by the black vertices, the smallest value gK (p) can achieve is when all edges are gray and the number of black
vertices is as large as possible. From (4), gK (p) ≥ (1 − p)/(ℓt − 1).

Using Proposition 6 we conclude that

g−1
K̃

(p) ≤ tp−1
+

(
1 − p
ℓt − 1

)−1

gK̃ (p) ≥
p(1 − p)

t(1 − p) + (ℓt − 1)p
Hence, edH(p) ≥ γH(p), a contradiction. This concludes Case 2b.

Case 2c: p ∈ (0, 1/2) and r ≤ t − 2.
Since K̃ is a CRG with r white vertices, and K is the sub-CRG induced by the black vertices, Proposition 6 gives that

gK̃ (p)
−1

= rp−1
+ g−1

K (p). Therefore,

g−1
K (p) = g−1

K̃
(p) − rp−1

>

(
min

r ′∈{0,1,...,t}

{(
r ′

p
+

ℓr ′ − 1
1 − p

)−1
})−1

−
r
p

gK (p) <

(
max

r ′∈{0,1,...,t}

{
r ′

− r
p

+
ℓr ′ − 1
1 − p

})−1

=: g0(r, t; p). (5)

Given (5), Lemma 17 gives lower bounds on the gray degree of vertices and the codegree of pairs of vertices. Recall that
degG(v) denotes the number of gray neighbors of v ∈ V (K ).

Lemma 17. Let t ≥ 1 be an integer, r ∈ {0, 1, . . . , t − 1}, and p ∈ (0, 1/2). Let pt = ℓ−1
t =

⌈ h
2t+1

⌉−1
. Let K be a p-core CRG

with all black vertices such that gK (p) < g0(r, t; p). Then

(a) for every v ∈ V (K ), we have degG(v) ≥ ℓr+1, and
(b) for every v, w ∈ V (K ),

degG(v, w) ≥

{
ℓr+2, if r ≤ t − 2;
1, if r = t − 1 and p ≥ pt .

The proof of Lemma 17 is in Section 6. Note: Since h ≥ 2t + 2, it is the case that ℓr+1 ≥ 2 for r ≤ t − 1 and ℓr+2 ≥ 2 for
r ≤ t − 2.

Now we consider the derived graph F with vertex set V (K ) and edge set EG(K ). From Lemma 17, we have a lower bound
on both the minimum degree of F and the minimum codegree of F . From Lemma 13, the graph F has no cycle with lengths
between ℓr =

⌈ h
t+r+1

⌉
and L :=

⌊ h
t

⌋
.

Lemma 18 shows that F has no cycles with length larger than ℓr .

Lemma 18. Let t ≥ 1, r ∈ {0, 1, . . . , t − 1} and h ≥ max{t(t − 1), 2t + 2} be integers. Recall that ℓr = ⌈h/(t + r + 1)⌉ and
L = ⌊h/t⌋.

Let F be a graph with no cycle with length in {ℓr , . . . , L} and every pair of vertices either has at least ℓr+2 ≥ 2 common
neighbors if r ≤ t − 2 or has at least 1 common neighbor if r = t − 1.

Then F has no cycle of length more than ℓr − 1.
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The proof of Lemma 18 is in Section 6.
In the graph F , consider a maximum-length path. (In this paper, the length of a path is the number of vertices.) If any

such a path can be made into a cycle, then Proposition 19 gives that F must be Hamiltonian. By Lemma 18, this means that
|V (K )| ≤ ℓr − 1 and, as such, gK (p) ≥

1−p
ℓr−1 , which is the g function for the CRG on ℓr − 1 black vertices with all edges gray.

This is a contradiction to our assumption in (5) by setting r ′
= r .

Proposition 19 is a common argument in proofs of Hamiltonian cycle results, including classical proofs of the theorems
of Dirac [4] and Ore [9].

Proposition 19. Let F be a connected graph. If some path of maximum length forms a cycle, then F is Hamiltonian.

The proof of Proposition 19 is in Section 6.
So wemay assume that every maximum-length path in F is not a cycle. Let v1 · · · vℓ be such a maximum length path. The

common neighbors of v1 and vℓ in F must be on this path, otherwise F has a longer path. From Lemma 17, it follows that v1
and vℓ have at least ℓr+2 ≥ 2 common neighbors on this path. However, Lemma 20 gives that there can only be one such
neighbor, a contradiction.

Lemma 20. Let t ≥ 1, r ∈ {0, 1, . . . , t − 1}, and h ≥ 2t + 2 be integers. Recall that ℓr = ⌈h/(t + r + 1)⌉. Let F be a graph with
no cycle of length longer than ℓr − 1, with every vertex having degree at least ℓr+1 ≥ 2 and with every pair of vertices having at
least one common neighbor. Furthermore, let F have the property that no maximum length path forms a cycle.

Let v1 · · · vℓ be a path of maximum length in F . Then v1 and vℓ have exactly one common neighbor vc on this path. Furthermore,
N(v1) ⊆ {v2, . . . , vc} and N(vℓ) ⊆ {vc, . . . , vℓ}.

The proof of Lemma 20 is in Section 6. This concludes Case 2c.
Recall that pt = ℓ−1

t =
⌈ h

2t+1

⌉−1
.

Case 2d: p ∈ [pt , 1/2) and r = t − 1.
The CRG K̃ has r = t − 1 white vertices. By Proposition 6, g−1

K̃
(p) = (t − 1)p−1

+ g−1
K (p) and we arrive at a similar bound

as in (5). That is,

gK (p) < g0(t − 1, t; p) =

(
max

r ′∈{0,1,...,t}

{
r ′

− (t − 1)
p

+
ℓr ′ − 1
1 − p

})−1

≤
1 − p

ℓt−1 − 1
.

Again, we consider the graph F with vertex set V (K ) and edge set EG(K ). By Lemma 17, every vertex in F has degree
at least ℓt and every pair of vertices has at least one common neighbor. By Lemma 18, F has no cycle of length more than
ℓt−1 − 1. If there is a maximum-length path that is a cycle, then Proposition 19 gives that F is Hamiltonian, which means
|V (K )| ≤ ℓt−1 − 1. In that case gK (p) ≥

1−p
ℓt−1−1 , a contradiction.

So wemay assume that everymaximum-length path in F is not a cycle. Let v1 . . . vℓ be such amaximum-length path such
that, in K , the sum x(v1) + x(vℓ) is the largest among all such paths. Let vc be the unique common neighbor of v1 and vℓ as
given by Lemma 20.

Let v1 have d neighbors in F . Since v1 cannot have neighbors outside of this path, the sum of the weights, in K , of the
neighbors of v1 satisfy dG(v1) ≤ x(v2)+· · ·+x(xc). Notice that if vi ∈ {v1, . . . , vc−1} is a predecessor of a neighbor of v1, then
it is an endpoint of a path containing the same ℓ vertices, namely vivi−1 · · · v1vi+1vi+2 · · · vc · · · vℓ. Hence all d predecessors
of gray neighbors of v1 (including v1 itself) have weight at most x(v1). From Proposition 9, all other vertices have weight at
most gK (p)

1−p . Proposition 8 gives

p − gK (p)
p

+
1 − p
p

x(v1) = x(v1) + dG(v1) ≤ x(v1) + · · · + x(vc)

≤ dx(v1) + (c − d)
gK (p)
1 − p

.

Rearranging the terms, we obtain

gK (p)
(
c − d
1 − p

+
1
p

)
≥ 1 − x(v1)

(
d −

1 − p
p

)
.

Since p−1
≤ p−1

t = ℓt and ℓt < d+1,wemay, by Lemma 17, lower bound the right-hand side by again using x(v1) ≤
gK (p)
1−p ,

gK (p)
(
c − d
1 − p

+
1
p

)
≥ 1 −

gK (p)
1 − p

(
d −

1 − p
p

)
gK (p)

(
c

1 − p

)
≥ 1.
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Lemma 18 bounds the size of the longest cycle, so c ≤ ℓt−1 − 1. Thus, gK (p) ≥
1−p
c ≥

1−p
ℓt−1−1 ≥ g0(t − 1, t; p), a

contradiction. This concludes Case 2d.

Case 2e: p ∈ (0, pt ) and r = t − 1.
Because in the case of p ∈ (0, pt ), the theorem only addresses the case where (t + 1) |̸ h, we assume this is the case.

Fact 21 establishes that, in the range 0 < p < pt , γH(p) is linear.

Fact 21. Let t ≥ 1 and h ≥ 2t + 2 be positive integers. Let pt = ℓ−1
t =

⌈ h
2t+1

⌉−1
and recall that

γH(p) = min
r∈{0,...,t}

{
p

t + 1
,

p(1 − p)
r(1 − p) + (ℓr − 1)p

}
.

Then γH(p) = p/(t + 1) for p ∈ [0, pt ].

By Proposition 16, for H = Forb(C t
h), edH(0) ≤ γH(0) = 0 and by Case 2d, edH(pt ) ≤ γH(pt ). By Fact 21, the function

γH(p) is linear over p ∈ [0, pt ] for h ≥ 2t+2. By Proposition 1, edH(p) is continuous and concave down, so wemay conclude
that edH(p) = γH(p) =

p
t+1 for p ∈ [0, pt ]. This concludes Case 2e and completes the proof of Theorem 3.

6. Proofs of lemmas and facts

Proof (Corollary 5). The case of t = 1 is covered by Corollary 4. So, assume t ≥ 2.
Let r ∈ {1, . . . , t − 1}.

If p ≥
r

r + ℓ0 − ℓr
, then

p(1 − p)
r(1 − p) + (ℓr − 1)p

≥
1 − p
ℓ0 − 1

.

If p ≤
t − r

t − r + ℓr − ℓt
, then

p(1 − p)
r(1 − p) + (ℓr − 1)p

≥
p(1 − p)

t(1 − p) + (ℓt − 1)p
.

Therefore, it suffices to show
t − r

t − r + ℓr − ℓt
≥

r
r + ℓ0 − ℓr

(ℓ0 − ℓr )(t − r) ≥ (ℓr − ℓt )r. (6)

To that end,

(ℓ0 − ℓr )(t − r) − (ℓr − ℓt )r = (t − r)ℓ0 + rℓt − tℓr

>
(t − r)h
t + 1

+
rh

2t + 1
−

th
t + r + 1

− t

=
rt(t − r)h

(t + 1)(t + r + 1)(2t + 1)
− t

≥
t(t − 1)h

(t + 1)(2t)(2t + 1)
− t.

If h ≥ 4t2 + 10t + 12 +
12
t−1 , then (6) is satisfied and the corollary follows.

Proof (Fact 11).We only need to prove one direction because x and y are arbitrary. In both cases, we will prove the forward
implication.

(a) Let ⌊h/x⌋ ≥ y and h = qx+ρ, whereρ ∈ {0, . . . , x−1}. Then y ≤ ⌊h/x⌋ = q, so h ≥ xy+rρ. Thus ⌊h/y⌋ ≥ x+⌊ρ/y⌋ ≥ x.
(b) Let ⌈h/x⌉ ≤ y and h = qx−ρ, where ρ ∈ {0, . . . , x−1}. Then y ≥ ⌈h/x⌉ = q, so h ≤ yx−ρ. Thus ⌈h/y⌉ ≤ x−⌊ρ/y⌋ ≤ x.

Proof (Fact 12). Clearly, if r ∈ {0, . . . , t − 1}, then
⌈ h

t+r+1

⌉
≤
⌈ h

t+1

⌉
so it suffices to prove this fact for r = 0. Let h = qt + ρ

with ρ ∈ {0, . . . , t − 1}. Since h ≥ t(t − 1), we have q ≥ t − 1 ≥ ρ. Then⌈
h

t + 1

⌉
= q +

⌈
ρ − q
t + 1

⌉
≤ q =

⌊
h
t

⌋
,

proving the fact.

Proof (Fact 14). As long as tk ≤ h ≤ (t + 1)k, the set {1, . . . , k} can be partitioned into k sets, each of which has size t or
t + 1. Thus, we need⌈

h
t + 1

⌉
≤ k ≤

⌊
h
t

⌋
.
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To ensure that such a k exists, it suffices to find values of h for which ⌈h/(t + 1)⌉ ≤ ⌊h/t⌋. Setting h = qt + ρ with
ρ ∈ {0, 1, . . . , t − 1}, this simplifies to⌈

qt + ρ

t + 1

⌉
≤ q H⇒ 0 ≤

⌊
q − ρ

t + 1

⌋
.

If q ≥ t − 1 ≥ ρ (hence h ≥ t(t − 1)), then this inequality holds and there is a k ∈ {⌈h/(t + 1)⌉, . . . , ⌊h/t⌋} that admits the
desired partition.

Proof (Fact 15). If h ≥ (t + 1)2 + 1, then t + 2 ≤ ⌈h/(t + 1)⌉ = ℓ0. Then,

t + 1 ≤
1
2
(ℓ0 + t) ≤ p(ℓ0 + t)

and so 1−p
ℓ0−1 ≤

p
t+1 .

For r ∈ {1, . . . , t}, let h = q(t + 1) + ρ, where ρ ∈ {1, . . . , t + 1}. The bound h ≥ (t + 1)(t + r) + 1 ensures q ≥ t + r .
Then,

r +

⌈
h

t + r + 1

⌉
= r +

⌈
q(t + r + 1) + ρ − qr

t + r + 1

⌉
= q +

⌈
r(t + r + 1) + ρ − qr

t + r + 1

⌉
≤ q +

⌈
r(t + r + 1) + t + 1 − (t + r)r

t + r + 1

⌉
≤ q + 1 =

⌈
h

t + 1

⌉
and so 1−p

ℓ0−1 ≤
p(1−p)

r(1−p)+(ℓr−1)p . This proves the fact.

Proof (Lemma 17).

(a) Let v ∈ V (K ). Using Proposition 8,

degG(v) ≥

⌈
dG(v)

max{x(u)}

⌉
≥

⌈ p−gK (p)
p +

1−2p
p x(v)

gK (p)
1−p

⌉

≥
(p − gK (p))(1 − p)

p gK (p)
=

1 − p
gK (p)

−
1 − p
p

> max
r ′∈{0,1,...,t}

{
(r ′

− r)(1 − p) + (ℓr ′ − 1) p
p

−
1 − p
p

}
= max

r ′∈{0,1,...,t}

{
(r ′

− r − 1)(1 − p)
p

+ ℓr ′ − 1
}

≥ ℓr+1 − 1.

The last inequality is obtained by choosing r ′
= r + 1.

(b) By inclusion–exclusion,

dG(v, w) ≥ dG(v) + dG(w) − 1

= 2
p − gK (p)

p
+

1 − 2p
p

(x(v) + x(w)) − 1 >
p − 2gK (p)

p
.

Therefore,

degG(v, w) ≥

⌈
dG(v, w)
max{x(u)}

⌉
≥

⌈ p−2gK (p)
p

gK (p)
1−p

⌉
=

⌈
1 − p
gK (p)

−
2(1 − p)

p

⌉
> max

r ′∈{0,1,...,t}

{
(r ′

− r)(1 − p) + (ℓr ′ − 1) p
p

−
2(1 − p)

p

}
= max

r ′∈{0,1,...,t}

{
(r ′

− r − 2)(1 − p)
p

+ ℓr ′ − 1
}

.

If r ≤ t − 2, then we choose r ′
= r + 2. Then degG(v, w) > ℓr+2 − 1, and because degG(v, w) is an integer,

degG(v, w) ≥ ℓr+2.
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If r = t − 1, then we choose r ′
= t . Then degG(v, w) > −

1−p
p + ℓt − 1 = ℓt − p−1

≥ 0, since p ≥ pt = ℓ−1
t . Because

degG(v, w) is an integer, degG(v, w) ≥ 1.

Proof (Lemma 18). Recall L = ⌊h/t⌋ and ℓr = ⌈h/(t + r +1)⌉ for r ∈ {0, 1, . . . , t −1}. The condition h ≥ t(t −1) is sufficient
to ensure that ℓr ≤ L and so the range of excluded cycles is not empty. The condition h ≥ 2t + 2 is sufficient to ensure that
ℓr+2 ≥ 2 in the case where r ≤ t − 2. We leave verification of these to the reader.

We say that a long cycle is a cycle of length at least L + 1. The objective of this proof is to show that there are no long
cycles. Let v1 · · · vℓ be a smallest cycle in F among all those of length at least L + 1.

Case 1: 0 ≤ r ≤ t − 2.
Observe that this case requires t ≥ 2. Consider the path v1 · · · vℓr−1 on the cycle v1 · · · vℓv1. There is no cycle of length

ℓr and so the common neighbors of v1 and vℓr−1 are all in {v2, . . . , vℓr−2}. Note that Lemma 17 establishes that v1 and vℓr−1
have at least ℓr+2 ≥ 2 common neighbors.

Since all common neighbors of v1 and vℓr−1 are in {v2, . . . , vℓr−2}, we have ℓr − 3 ≥ ℓr+2. Hence,

h
t + r + 3

≤

⌈
h

t + r + 3

⌉
≤

⌈
h

t + r + 1

⌉
− 3 <

h
t + r + 1

− 2

and so h > (t + r + 1)(t + r + 3).
This gives that the number of common neighbors of v1 and vℓr−1 is at least ℓr+2 =

⌈ h
t+r+3

⌉
≥ t + r + 2 ≥ 4.

Therefore, v1 and vℓr−1 have at least two common neighbors in {v3, . . . , vℓr−3}. Let i > 2 and j < ℓr − 2 be, respectively,
the smallest and largest indices of vertices in {v3, . . . , vℓr−3} that are common neighbors of v1 and vℓr−1. That is, 3 ≤ i ≤ j ≤

ℓr −3. The cycle v1vivi+1 · · · vℓ−1vℓv1 has length ℓ− i+2. The cycle v1v2 · · · vj−1vjvℓr−1vℓr · · · vℓ−1vℓ has length ℓ+ j−ℓr +2.
Since these two cycles have length strictly less than ℓ, they cannot be long cycles. Hence, their length is at most ℓr − 1,

giving

ℓ − i + 2 ≤ ℓr − 1
ℓ + j − ℓr + 2 ≤ ℓr − 1.

We can add these inequalities and rearrange the terms, 3ℓr − 2ℓ − 5 ≥ j− i+ 1. Because the cycle is a long cycle, ℓ ≥ L+ 1.
Because there are at least ℓr+2 − 2 common neighbors of v1 and vℓr−1 in {v3, . . . , vℓr−3}, j− i+ 1 ≥ ℓr+2 − 2. Consequently,

3ℓr − 2L − 7 ≥ 3ℓr − 2ℓ − 5 ≥ j − i + 1 ≥ ℓr+2 − 2. (7)

To verify there are no long cycles, we must show that (7) produces a contradiction. Since 0 ≤ r ≤ t − 2,

3ℓr − 2L − 7 = 3
⌈

h
t + r + 1

⌉
− 2

⌊
h
t

⌋
− 7

< 3
(

h
t + r + 1

+ 1
)

− 2
(
h
t

− 1
)

− 7

=
h

t + r + 3
− 2 −

2h(rt + r2 + 4r + 3)
t(t + r + 1)(t + r + 3)

<

⌈
h

t + r + 3

⌉
− 2 = ℓr+2 − 2,

a contradiction for all t ≥ 2, r ≤ t − 2, and h ≥ 2t + 2r + 3. Therefore, for 0 ≤ r ≤ t − 2, F has no cycle of length longer
than ℓr − 1.

Case 2: r = t − 1.
Consider the path v1 · · · vℓ−2 on the cycle v1 · · · vℓv1. There is no cycle of length ℓ − 1 ≥ L > ℓt−1 and so the common

neighbors of v1 and vℓ−2 are all in {v2, . . . , vℓ−3}. Note that Lemma 17 establishes that v1 and vℓ−2 have at least 1 common
neighbor.

Let i ∈ {2, . . . , ℓ − 3} be an index such that vi is a common neighbor of v1 and vℓ−2. If i = 2, then the cycle
v2v3 · · · vℓ−3vℓ−2v2 has length ℓ − 3. If i = ℓ − 3, then the cycle v1v2 · · · vℓ−4vℓ−3v1 has length ℓ − 3. In either case, this
cycle must be of length less than ℓt−1 but this is a contradiction because

ℓ − 3 ≥ L − 2 =

⌊
h
t

⌋
− 2 =

⌈
h
2t

⌉
+

(⌊
h
t

⌋
−

⌈
h
2t

⌉
− 2

)
≥ ℓt−1.

Verifying that ⌊h/t⌋− ⌈h/(2t)⌉− 2 ≥ 0 for h ≥ 5t can be found via setting h = (2t)q− ρ with 0 ≤ ρ ≤ 2t − 1 and studying
the cases q ≥ 4 and q = 3. Since 5t ≤ 2t(t + 1) + 1 for all t ≥ 1, the conditions on h verify the contradiction.

If 3 ≤ i ≤ ℓ− 4, then the cycle v1v2 · · · viv1 has length i and the cycle v1vivi+1 · · · vℓ−2vℓ−1vℓv1 has length ℓ− i+ 2. Since
these two cycles have length strictly less than ℓ, they cannot be long cycles. Hence, their length is at most ℓt−1 − 1, giving

i ≤ ℓt−1 − 1
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Fig. 1. Partition of vertices of the path. Sets Ai are iteratively constructed so that they contain consecutive vertices of this path starting with a neighbor of
v1 and ending with the last neighbor of vℓ so that no neighbor of v1 appears after neighbors of vℓ in each set. Sets Bi contain consecutive vertices between
sets Ai−1 and Ai , if there are any. The first vertex is placed in A0 and the last vertex vℓ in As .

ℓ − i + 2 ≤ ℓt−1 − 1.

We can add these inequalities and rearrange the terms, 2ℓt−1 − ℓ − 4 ≥ 0.
This is, however, a contradiction because

2ℓt−1 − ℓ − 4 ≤ 2
⌈

h
2t

⌉
−

⌊
h
t

⌋
− 3 < 2

(
h
2t

+ 1
)

−

(
h
t

− 1
)

− 3 = 0.

Proof (Proposition 19). Let v1 · · · vℓ be a longest path in F such that v1vℓ ∈ E(F ). If F is not Hamiltonian, there exists a
w ∈ V (F ) − {v1, . . . , vℓ}. Because F is connected, there exists i ∈ {1, . . . , ℓ} and w′

∈ V (F ) − {v1, . . . , vℓ} such that vi is
adjacent to w′. Then there is a longer path: vi+1 · · · vℓv1 · · · viw

′, a contradiction.

Proof (Lemma 20). Because v1 · · · vℓ is a longest path in F , neither v1 nor vℓ can have neighbors off this path, as that would
yield a longer path. Thus N(v1) ∪ N(vℓ) ⊆ {v1, . . . , vℓ} in F .

Case 1: ℓ ≤ ℓr .
If vi is adjacent to v1, then vi−1 cannot be adjacent to vℓ. Thus, the predecessors of N(v1) and the neighbors of vℓ are

disjoint subsets in {v1, . . . , vℓ−1}. Since both v1 and vℓ have degree at least ℓr+1,

2ℓr+1 ≤ ℓ − 1 ≤ ℓr − 1.

However,

ℓr − 2ℓr+1 − 1 =

⌈
h

t + r + 1

⌉
− 2

⌈
h

t + r + 2

⌉
− 1

<
h

t + r + 1
−

2h
t + r + 2

= −
h(t + r)

(t + r + 1)(t + r + 2)
< 0. (8)

Case 2: ℓ ≥ ℓr + 1.
Partition the vertices of this path into 2s + 1 consecutive sets A0, B1, A1, . . . , As, Bs with s ≥ 0, constructed so that, in

each set Ai, neighbors of v1 appear before neighbors of vℓ as follows:
We let neighbors of v1 be denoted with vpi and neighbors of vℓ be denoted with vqi in this construction. Let A0 contain

v1 and add consecutive vertices of this path until we arrive at a neighbor of vℓ. From this point forward we do not allow
another neighbor of v1 to be in A0, i.e. we continue adding consecutive vertices until we reach the last neighbor vq0 of
vℓ before another neighbor vp1 of v1. Then A0 = {v1, . . . , vq0}, and we define B1 = {vq0+1, . . . , vp1−1}. Note that this
definition does not preclude B1 being an empty set. Continuing with this algorithm, we define sets A1 = {vp1 , . . . , vq1}

and B2 = {vq1+1, . . . , vp2−1}, where vp1 is a neighbor of v1 on this path, vq1 is the last neighbor of vℓ in A1 before another
neighbor vp2 of v1 as shown in Fig. 1.We continue in this way and define sets Ai = {vpi , . . . , vqi} and Bi = {vqi−1+1, . . . , vpi−1}

for i ∈ {1, . . . , s}, adding the last vertex vℓ into the set As.
Now we analyze this partition:

• We call the sets Bi, i ∈ {1, . . . , s}, gaps as they do not contain any neighbors of either v1 or vℓ, but only contain vertices
that succeed a given neighbor of vℓ and precede a given neighbor of v1. According to the definition, gapsmay be empty,
but we will see below that this is not possible in this case.

• Each set Ai, i ∈ {0, . . . , s}, contains at most one common neighbor of v1 and vℓ.
• By construction, neighbors of v1 (other than a common neighbor, if exists) precede neighbors of vℓ in each Ai, i ∈

{0, . . . , s}.

It will suffice to show that s = 0. This will imply that no neighbor of v1 follows the first neighbor of vℓ on this path, which
further implies that N(v1) entirely precedes N(vℓ), except possibly for a single common vertex. Since v1 and vℓ have at least
one common neighbor, the lemma will follow.
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Notice that v1 · · · vq0vℓvℓ−1 · · · vp1v1 is a cycle as seen in Fig. 1. In fact, for any i ≥ 1, removing the gap Bi from
vertices {v1, . . . , vℓ} forms a cycle, so by assumption, ℓ − |Bi| ≤ ℓr − 1 and none of the gaps can be empty. Therefore,∑s

i=1 |Bi| ≥ s(ℓ − ℓr + 1).
On the other hand, by the degree assumption and since each set Ai contains at most one common neighbor of v1 and vℓ,

we obtain 2ℓr+1 ≤ |N(v1)| + |N(vℓ)| ≤
(∑s

i=0 |Ai|
)
+ (s + 1) − 2. Combining these two inequalities we have

ℓ =

s∑
i=0

|Ai| +

s∑
i=1

|Bi| ≥ 2ℓr+1 − (s + 1) + 2 + s(ℓ − ℓr + 1)

= s(ℓ − ℓr ) + 2ℓr+1 + 1.

If s ≥ 1, then we have ℓ ≥ ℓ − ℓr + 2ℓr+1 + 1 which simplifies to ℓr − 2ℓr+1 − 1 ≥ 0, which is contradicted by (8).
Therefore s = 0 and the lemma follows.

Proof (Fact 21).We need to show that γH(pt ) = pt/(t + 1). Since

γH(pt ) = pt · min
r∈{0,...,t}

{
1

t + 1
,

1 − pt
r(1 − pt ) + (ℓr − 1) pt

}
,

we need to show that ℓr−1
ℓt−1 ≤ t − r + 1 for all r ∈ {0, . . . , t − 1}.

To do this, let h = q(2t + 1) − ρ where ρ ∈ {0, . . . , 2t} and q ≥ 2 (because h ≥ 2t + 2). Then,

ℓr − 1
ℓt − 1

=
1

q − 1

(
q − 1 +

⌈
q(t − r) − ρ

t + r + 1

⌉)
≤

1
q − 1

(
q − 1 +

q(t − r) + t + r
t + r + 1

)
= t − r + 1 +

t2 − r2 + 2t − q(t2 − r2)
(q − 1)(t + r + 1)

,

which is at most t − r + 1 if q ≥ 3 or if r ≤ t − 2 and q = 2. In the case where r = t − 1 and q = 2, then
ℓr−1
ℓt−1 = 1 +

⌈ 2−r
2t

⌉
≤ 2 = t − r + 1.

7. Conclusion and open questions

Wehave obtained the edit distance function over all of its domain for C t
h when t+1 does not divide h and h ≥ 2t(t+1)+1.

When t+1 divides h and h ≥ 2t(t+1)+1, we have obtained the function for p ∈ [pt , 1], where pt =
⌈ h

2t+1

⌉−1
. The function,

however, is not known when h ≤ 2t(t + 1) or when t + 1 divides h and p ∈ [0, pt ).
Small h: In reducing the lower bound required of h, we note that in the proof of Theorem 3, we required h ≥ 2t(t +1)+1

in Fact 15. This ensured that the γH function for p ∈ [1/2, 1] was linear and by the concavity and continuity of the edit
distance function (see Proposition 1), this ensures that edH(p) = γH(p) in that interval. So, more careful analysis of the
case p ≥ 1/2 may enable one to reduce the lower bound on h, but these arguments are very different from the case where
p < 1/2.

Proposition 10 required a bound of h ≥ t(t + 1) in order to give a simple expression for χ (C t
h). A more careful analysis of

the chromatic number and of the γForb(C t
h)
(p) function may be possible. The bound h ≥ max{t(t − 1), 2t + 2} was required in

Facts 12 and 14 and Lemmas 13 and 18 in order to have a forbidden cycles condition on the CRG. Fact 14, in particular, may
be able to be avoided in some cases, because it is a special case of the Frobenius number. Though it seems possible to reduce
the lower bound of 2t(t + 1) + 1 on h, it seems unlikely that there is a general argument that does not require a quadratic
lower bound on h in terms of t .

Small p: As to the case of p < pt , (t + 1) | h and h sufficiently large, we showed in Section 5 that if K ∈ K(Forb(C t
h)) is a

p-core CRG with p < 1/2 which has r ̸= t − 1 white vertices, then gK (p) = γForb(C t
h)
(p). Therefore, to solve the problem for

the remaining case when t + 1 divides h, and p is small, one only needs to consider CRGs with exactly t − 1 white vertices
and with no gray cycle with lengths in {⌈h/(2t)⌉, . . . , ⌊h/t⌋} in the sub-CRG induced by the black vertices.

Observe that, in the case where (t + 1) |̸ h, the fact that χ (C t
h) = t + 2 means that γForb(C t

h)
(p) includes the linear function

p/(χ − 1) = p/(t + 1). Indeed, we need only to prove that edForb(C t
h)
(p) = p/(t + 1) for p ∈ {0, pt} and then the result for

p ∈ [0, pt ] follows from the continuity and concavity of the edit distance function.
In the case where (t + 1) | h, however, χ (C t

h) = t + 1 would give the function p/(χ − 1) = p/t . Unfortunately,
p
t ≥

p(1−p)
t(1−p)+(ℓt−1)p for all p ∈ [0, 1] and so the function p/t is useless. Indeed, when h sufficiently large,

γForb(C t
h)
(p) =

p(1 − p)
t(1 − p) + (ℓt − 1)p

, for p ∈ [0, pt ].

However, itmay be the case that edH(p) < γH(p) for small p. That is the case forH = Forb(K3,3) [5] and forH = Forb(K2,t )
(t ≥ 9) [8]. The fact that the edit distance function is less than the gamma function is witnessed by an infinite sequence of
CRGs derived from constructions that produce lower bounds for a certain bipartite Turán problem.
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In particular, future work may focus on bipartite Ch, i.e., when 2 | h. Any p-core CRG in K ∈ K(Forb(Ch)) on black vertices
has no gray cycle with length in {⌈h/2⌉, . . . , h}. There may be such a CRG that demonstrates edForb(Ch)(p) < γForb(Ch)(p) for
small p.
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