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Edit distance In this paper, we address the edit distance function for the hereditary property
Colored regularity graphs Forb (C}), where C} denotes the t™ power of the cycle of length h. For h > 2¢(t+1)+ 1and
Powers of cycles h not divisible by t + 1, we determine the function for all values of p. For h > 2t(t + 1)+ 1

and h divisible by t + 1, the function is obtained for all but small values of p. We also obtain
edit distance functions for some smaller values of h.
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1. Introduction

The edit distance in graphs was introduced independently by Axenovich, Kézdy, and Martin [2] and by Alon and Stav [1].
The question considered is “Given a class of graphs # what is the minimum number m = m(n) such that for every graph
on n vertices, there is a set of m edge-additions plus edge-deletions that ensure the resultant graph is a member of #?” A
hereditary property is a family of graphs that is closed under isomorphism and the taking of induced subgraphs. For every
hereditary property #, there is a p = p(#) such that the Erdés-Rényi random graph G(n, p) is asymptotically extremal [1].

The edit distance function of a hereditary property # is a function of p € [0, 1] that measures, in the limit, the
maximum normalized edit distance between a graph of density p and H. A principal hereditary property, denoted Forb(H), is
a hereditary property that consists of the graphs with no induced copy of a single graph H. Most of the known edit distance
functions concern principal hereditary properties. These include the cases where H is a split graph [7] (including cliques and
independent sets), complete bipartite graphs K> ; [8] and K3 3 [5] and cycles C, where h < 10 [6]. In this paper, we compute
the edit distance function for powers of cycles.

For positive integers t and h, the tth power of a cycle of length h is denoted C} and has vertex set {1, . .., h}, where two
vertices are adjacent in C,§ if and only if their distance is at most t in Cp,.

The notation in this paper primarily comes from Martin [8]. The edit distance between graphs G and G’ on the same labeled
vertex set is denoted dist(G, G') = |E(G) A E(G')|. The edit distance between a graph G and a hereditary property # is

dist(G, #) = min{dist(G, G') : V(G) = V(G'), G’ € H}.
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The edit distance function of a hereditary property # measures the maximum distance of a density p graph from H, i.e.
edy(p) = lim max{dist(G. #) : [V(G)| = n. [E(G)| = [p(;)1}/(3)-

Balogh and Martin [3] showed that this limit exists and is equal to lim E[dist(G(n, p), #)], with an argument similar to
n—-oo
one by Alon and Stav in [1]. The function has a number of interesting properties:

Proposition 1 (Balogh-Martin [3]). If H is a hereditary property, then ed4(p) is continuous and concave down over p € [0, 1].

By the proposition above, the function ed; achieves its maximum in [0, 1]. We denote this maximum value by d3,, and
the set of all values of p for which the maximum is achieved by p3,.

Alon and Stav [1] defined the following: A colored regularity graph (CRG), K, is a complete graph with a partition of the
vertices into white VW(K) and black VB(K), and a partition of the edges into white EW(K), gray EG(K), and black EB(K).
We say that a graph H embeds in K, denoted H +— K, if there is a function ¢ : V(H) — V(K) so that if h1h, € E(H), then
either ¢(hy) = ¢(hy) € VB(K) or ¢(hq)p(hy) € EB(K) U EG(K), and if h1h, ¢ E(H), then either ¢(h;) = ¢(hy) € VW(K) or
@(hy)p(hy) € EW(K) U EG(K).

Given a hereditary property #, it is easy to see that it can be expressed as # = [ |{Forb(H) : H € F(#)} for some
family of graphs F(#). We denote () to be the subset of CRGs such that no forbidden graph embeds into them, i.e.
K(H) = {K : H v/ K,YH € F(H)}. In our case, K(H) = {K : H v/ K} for # = Forb(H). We define a CRG K to be a
sub-CRG of K if K can be obtained by deleting vertices of K.

For every CRG K we associate a function g on [0, 1] defined by

gk(p) = min{x'My(p)x : x'1=1,x > 0}, (1)
where
p, if ViV € EW(K) orv; =vj € VW(K),
[M(p)l; = 41 —p, ifv € EB(K)orv; = v; € VB(K); (2)
0, if Vivj € EG(K)

The g function of CRGs can be used to compute the edit distance function. Balogh and Martin [3] proved that ed(p) =
inf {gk(p) : K € K(H)} and Marchant and Thomason [5] further proved that the infimum is achieved by some K, i.e. ed+(p) =
min {gx(p) : K € K(#)}. So, for every p € [0, 1], there is a CRG K € () such that edy(p) = gk(p). It is also shown in that
paper that in order to find such CRG we only need to look at so called p-core CRGs. A CRG K is p-core if gz(p) < gk(p) for
every sub-CRG K of K.

The CRG with r white vertices, s black vertices and all edges gray is denoted K(r, s). The clique spectrum of the hereditary
property H = Forb(H), denoted I'(#), is the set of all pairs (r, s) such that H v/ K(r, s). It is easy to see that, for any
hereditary property # its clique spectrum I = I'(#) can be expressed as a Ferrers diagram. That is, ifr > 1and (r,s) € I',
then(r—1,s) € I'and ifs > 1and(r,s) € I',then(r,s— 1) € I'". An extreme point of a clique spectrum I" is a pair (r,s) € I
such that (r + 1, s) and (r, s + 1) do not belong to I'". The set of all extreme points of I" is denoted by I'*.

Define the function yy,(p) = min{gks(p) : (r,s) € I'(#)}. Clearly, ed4(p) < yx(p). Moreover, one only need consider
the extreme points rather than all of I" itself, that is, y3,(p) = min{gk s)(p) : (r, s) € I'*(#H)}.

In this paper, the hereditary properties we consider are of the form # = Forb(C} ). Since Martin [6] gives edpormk,)(P) =
p/(h — 1), we will assume that h > 2t 4 2. For convenience, we denote ¢, —| forr € {0, ..., t}. We also denote
pe = £, . The motivation for these values will be discussed in Section 5.

The main results of this paper are Theorems 2 and 3.

= [mm

Theorem 2. Lett > 1and h > max({t(t + 1), 4} be integers, and forr € {0, 1,..., t}, let ¢, = [ == and let # = Forb(C}).
Ifp € [0, 1], then

, p(1—p) .
= min , if(e+1)| h;
yulp)= _min { rA—p)+ & —1Dp ACa
. p p(1—p) .
= min , , if(t+ 1) Jh
vulp) rE(O,L-u,r}{t—i-l r(1—p)+ (&, — 1)p e+ 1/
. _ p(1—p) — p(1-p) ; : 1-p —
Note: If r = 0, then TP —Tp = (to=Tp’ which we define to be oiatp = 0.

Theorem 3. Lett > 1and h > 2t(t + 1) + 1 be positive integers, let p; = [#Tl, and let # = Forb(C}). If (t + 1) f h and
O<p<1lor(t+1)|handp; <p <1, then

edy(p) = yu(p)- (3)
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Corollary 4. Let h > 5 be a positive integer and let H = Forb(Cy,).
e Ifhiseven, then for [h/3]7' <p <1,
p(1—p) 1-p }
1—p+(Th/31=1)p’ [h/2] -1
e Ifhisodd, thenforO <p <1,
b p(1—p) 1-p
edy(p) = min | -, , :
2 1=p+([h/31=1p [h/2] -1
It was shown by Martin [6] and by Marchant and Thomason [5], respectively, that

edy(p) = min {

edrorbcy)(P) =p/2  and  edgomc,)(P) = p(1 — p).

It follows from this and the above corollary that when t = 1, the furthest graph from Forb(C;) is a graph which has density
p* = 1/(Th/21 — Th/3]1 + 1)when h > 3and h ¢ {3,4,7,8, 10, 16}, and has density p* = 1/(1 + /[h/3] — 1) when
h € {3,4,7,8, 10, 16}. Observe that the maximum value of the edit distance function can be an irrational number.

Our proof techniques often require us to compare the g function of a CRG to one of the individual functions that are given
in Theorem 2. However, when h is large enough at most 3 of these functions are necessary to define .

Corollary 5. Lett > 2 andh > 4t>+10t+24 be positive integers. Let £y = [Hillgt — [ﬁlpt _ Et”,and let % = Forb(Ct),
e If(t+ 1) /h, thenfor0 <p <1,
p p(1—p) 1—p}
t+1t(1—p)+ & —1)p L —1]"
o If(t+ 1) | h, thenforp, <p <1,
p(1—p) 1—p}
(A=p)+—1p L—1)"

We prove this in Section 6.

The rest of the paper is organized as follows: Section 2 provides some definitions and basic results, Section 3 gives the
proof of Theorem 2, Section 4 gives Lemma 13 which is the key lemma for the proof of Theorem 3, Section 5 gives the proof
of Theorem 3, Section 6 gives the proofs of some helpful lemmas and facts, and Section 7 gives some concluding remarks.

edy(p) = min {

edy(p) = min { ;

2. Definitions and tools

All graphs considered in this paper are simple. For standard graph theory notation please see West [11], for the edit
distance notation please see Martin [6]. A sub-CRG K’ of a CRG K is a component if it is maximal with respect to the property
that, for all distinct v, w € V(K’), there exists a path consisting of white and black edges entirely within K’. It is easy to
compute the g function of a CRG given the g function of its components:

Proposition 6 ([6]). Let K be a CRG with components KV, ..., K and p € [0, 1]. Then (gk(p)) ' = Y_._, (gKu)(p))fl

Note that by Proposition 6,

-1
r S
gK(r,s)(p) = (B + 1_ p) . (4)

Let K be aCRG, v € V(K), and let x be an optimal solution to the quadratic program (1). The weight of v, denoted x(v), is the
entry of the vector x that corresponds to v. We will often refer to x as the optimal weight function of K. We say that w € V(K)
is a gray neighbor of v € V(K)if w is adjacent to v via a gray edge. White and black neighbors are defined analogously. The set
of all gray neighbors of v is denoted by N¢(v) and the number of vertices adjacent to v via gray edges is denoted by deg(v),
i.e. deg:(v) = |Ng(v).

In contrast, the gray degree of v, denoted d¢(v), is the sum of the weights of gray neighbors of v, i.e. dg(v) = > {x(w) :
w € Ng(v)}. Similarly, the white degree of v, denoted dy(v), is the sum of the weights of the white neighbors of v plus the
weight of v if and only if it is a white vertex. The black degree of v, denoted dg(v), is the sum of the weights of the black
neighbors of v plus the weight of v if and only if it is a black vertex. So, dg(v) 4+ dw(v) + dg(v) = 1 for all v € V(K).

The number of common gray neighbors of vertices v and w is denoted by deg.(v, w). The gray codegree of vertices v and
w, denoted dg(v, w), is the sum of the weights of the common gray neighbors of v and w. For a set of vertices {vq, va, ..., v¢},
we say viv; - - - g is a gray path if vjviq € EG(K) fori = 1,...,¢ — 1. Analogously, we say vqv, - - - vevq is a gray cycle if
v1vg € EG(K) and vjvirq € EG(K) fori=1,...,¢ — 1.

Please cite this article in press as: Z. Berikkyzy, et al, On the edit distance of powers of cycles, Discrete Mathematics (2018),
https://doi.org/10.1016/j.disc.2018.09.018.




4 Z. Berikkyzy et al. / Discrete Mathematics I (11EE) HNE-EEE

Proposition 7 gives a structural classification of p-core CRGs and this is an essential tool that is the basis of the proof of
Theorem 3. We note that, in particular, the proposition ensures that all edges between white and black vertices of a p-core
CRG must be gray.

Proposition 7 (Marchant-Thomason [5]). Let K be a p-core CRG.

e Ifp = 1/2, then all of the edges of K are gray.
e Ifp < 1/2, then EB(K) = () and there are no white edges incident to white vertices.
e Ifp > 1/2, then EW(K) = ¢} and there are no black edges incident to black vertices.

Proposition 8 gives a formula for d¢(v) for all v € V(K) and Proposition 9 uses this to give a bound on the weight of
each v.
Proposition 8 ([6]). Let p € (0, 1) and K be a p-core CRG with optimal weight function x.
e Ifp <1/2, thenx(v) = gk(p)/(1 — p) for all v € VW(K), and
— 1-2
de(v) = P8 (P) p

+ X(v), forallv € VB(K).
e Ifp > 1/2, then x(v) = gx(p)/p for all v € VB(K), and

P p
1-p— 2p—1
_ p — &gk(p) n P x(v), forallv € VW(K).
1-p 1-»p

dg(v)

Proposition 9 ([6]). Let p € (0, 1) and K be a p-core CRG with optimal weight function X.
e Ifp < 1/2, then x(v) < gx(p)/(1 — p) for all v € VB(K).
e Ifp > 1/2, then x(v) < gk(p)/p for all v € VW(K).

3. Proof of Theorem 2 : Computation of the y;;, function

In this section we compute the y;, function, which gives an upper bound for the edit distance function for the tth power

of the h cycle, denoted Cﬁ. Recall that foranyt > 1,h > 2t +2andr € {0, ..., t}, we denote £, = [Hfﬂ .

Proof (Theorem 2). First, we state the value of the chromatic number of C}, denoted x (Cj).

Proposition 10 (Prowse-Woodall [10]). Lett > 1 and h > max{t + 1, 3} be positive integers, and for p € {0, 1, ..., t}, let
h=q(t + 1)+ p where p € {0, ..., t}. Then, x(C}) =t + [p/q] + 1. In particular, if h > max({t(t + 1), 3}, then

o [t+2 ifeEph
X(Ch)—{t+1, if(t+1)] h.

Let h > max{t(t + 1),2t + 2} and x = x(C}). Denote the vertices of C} by {1, ..., h} such that distinct i and j
are adjacent if and only if [i —j| < t (mod h). For eachr € {0, 1,...,t}, we first show that (r,¢, — 1) € I', where
I = F(Forb(C,f)) is the clique spectrum of Forb(C,g). We then show that (r, ¢,) ¢ I'. We will also show thatif x > t + 1
then {(t +1,0),...,(x —1,0)} C I"butthat(t +1,1) ¢ I'.

This will imply that I"*, the extreme points of I", satisfy

r“c{r, & —1):r=0,1,...,t} U{(x — 1,0)},
which, together with (4), will complete the proof of Theorem 2.

Case1:r € {0,1,...,t}.

First, we show that (r, ¢, — 1) € I'. By way of contradiction, assume there is a partition of V(C,g) into r independent
sets and £, — 1 cliques. Let k = ¢, — 1, and let Cy, ..., C; be the cliques. We may assume that the vertices in each C; are
consecutive. This is because if vertices j; and j, are in the same clique, then by the nature of adjacency in the power of a
cycle, every vertex between j; and j; is adjacent to every member of the clique, and hence can be added to the clique. Thus,
Gl <t+1fori=1,...,k

Fori=1,...,k — 1,let B; be the set of vertices between C; and C; 1, and let By be the set of vertices between C; and C;.
The sets B; might or might not be empty. If some |B;| > r + 1, then the first r + 1 < t 4 1 vertices form a clique and so
must be in different independent sets, which is not possible since there are only r independent sets. Therefore, |B;| < r for
i=1,...,k

Consequently, we need k(t + r + 1) > h in order to cover C} with r independent sets and k cliques. Hence, k > ¢,, a
contradiction to our choice of k. Thus (r, ¢, — 1) € ' forr =0, ..., ¢t.

Next, we show that (r, £,) ¢ I'. Again,letk = ¢, — 1. Fori = 1,...,k, let S; be the vertex set {(i — 1)(t +r + 1) +
1,...,i(t +r+ 1)} and let Sg y = {1,...,h} — u;;lsi. Fori = 1,...,k, let G be the first t + 1 vertices of S; and let Cy ¢
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be the first min{t + 1, [Sy1]} vertices of Sy41. Forj =1, ..., r,let A; consist of the (¢ 4 1 + j)th vertex of Sy, ..., S¢ and the
(t + 1+ j)th vertex of Spyq if [Spr1| =t + 14

The sets (A4, ..., Ar, C, ..., Cky1) form a partition of V(C,g). Clearly each G;,i = 1,...,k, is a clique of size t + 1 and
since there is a clique of size t 4- 1 between pairs of vertices in each A;, each 4; is an independent set. Thus (r, ;) ¢ I" for
r=0,...,t.

Case2:r>t+1.

If (t + 1) | h, then Proposition 10 gives that C} can be partitioned into t + 1 independent sets and so (t + 1,0) & I'.

If (t + 1) / h, then Proposition 10 gives that x > ¢ + 2 and since C} cannot be partitioned into fewer than yx independent
sets, we have (t +1,0),...,(x — 1,0) € I'. Since C} can be partitioned into x independent sets, (x, 0) ¢ I'. Finally, let
k=Th/t+1)]—=1Forj=1,...,t+1LletAi={(i—-1)(t+1)+j:i=1,...,k}.Let Co = {k(t + 1)+ 1, ..., h}. The sets

(A1, ..., A1, Go) form a partition of V(Cf). Clearly, Cy is a clique of size at most t + 1 and since there are at least t vertices
between pairs of vertices in each A;, each A; is an independent set. Thus (t + 1, 1) € I".
Summarizing, the extreme points of the clique spectrum, I", are a subset of {(r, ¢, — 1) : r € {0, 1, ..., t}}if(t +1) | h

and are a subset of {(r, £, — 1):r € {0,1,...,t}}U{x — 1,0} if(t + 1) f h.
Using Proposition 6, if h = q(t + 1) 4+ p where p € {0, ..., t}, then

o p(1—p) o0
yu(p) = scmnin {r(l ST 1)p} , if p =0;
- m p p(1—p) ,
7P = i { t+p/q1" r(1—=p)+ (¢, — )p } ’ o #0.

Restricting to the case h > max{t(t + 1), 4}, we have the result in the statement of the theorem.
4. Forbidden cycles

Recall that we may assume h > 2t + 2. Before we can prove Theorem 3, we need to study the properties of the p-core
CRGs into which C}, does not embed. According to Proposition 7, if we have a p-core CRG, then the part of the CRG induced
on the black vertices has only gray or white edges (and only gray edges if p > 1/2). An important property of a p-core CRG,
K such that C} v/ K is that the set of lengths of gray cycles on black vertices is restricted, as is shown in Lemma 13. Its proof
needs the technical inequalities in Facts 11 and 12. For completeness, we give the proofs of these facts in Section 6.

Fact 11. Let h, x, y be positive integers. Then

(a) Lh/x] = yifandonlyif lh/y] = x.
(b) Th/x1 <yifandonlyif [h/y] < x.

Fact12. Lett > 1, h > max{t(t — 1), 2t + 2}, andr € {0, ..., t — 1} be positive integers. Then |_[+f+l-| < LH

Lemma 13 is a key lemma in proving our main result of Theorem 3.

Lemma 13. Letp € (0, 1/2] and lett > 1 and h > 2t + 2 be integers. Let K be a p-core CRG with exactly r white vertices such
that C,ﬁ /> K. Let K be the sub-CRG of K induced by the set of all black vertices of K. Then:

(a) Ifr €{0,....t — 1} and h > t? — t, then K has no gray cycle that has lengthin {[ —1..... [ ]}.

(b) Ifr = t, then |V(K)| < £; — 1. t
(c) Ifr >t+1,then(t+ 1) fhand V(K) = 0.

Note: We interpret a gray cycle of length 2 to be a gray edge.
Proof (Lemma 13). By Proposition 7, K has only white and gray edges. Denote the vertices of Cf by {1, ..., h} such that
distinct i and j are adjacent if and only if |i — j| <t (mod h).

Case (a).
Note that Fact 12 establishes that the range of forbidden cycle lengths is nonempty.
Letr € {0,...,t — 1} and h > t? — t. By way of contradiction, for some k € {[h/(t +r + 1)], ..., |h/t]}, let K have a

gray cycle on a set of black vertices {vq, ..., vy} such that v;v;, 1 is a gray edge, where the indices are taken modulo k. Note
thatk > 1becauset > 1,0 <r <t — 1,and h > max{t> — t, 2t + 2}.

We will partition V(C},) into at most r independent sets and exactly k cliques Cy, . . ., G, such that there is no edge between
nonconsecutive cliques. First partition V(C,ﬁ) into k sets of consecutive vertices Sy, . . ., Sg, with each set S; of size either [h/k]
or [h/k].

If r = 0, then simply let G; = S; fori = 1, ..., k. Because we need the sets C; to be cliques, each must be of size at most

t + 1. Because we need nonconsecutive sets C; and Cy to have no edge between them, each must be of size t. Using Fact 14,
we see that these conditions are satisfied because [h/(t + 1)] < k < [h/t].
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Fact 14. A set of size h can be partitioned into sets of size t or t + 1 as long as h > t(t — 1). Moreover, for any k €
{Th/(t + 1)1, ..., Lh/t]}, such a partition exists with exactly k parts.

The proof of Fact 14 is in Section 6.

Now we will assume r > 1 and choose r’ € {[h/k] — (t + 1), Lh/k] — t} provided O < r’ < r. Note that this consists of
only one such value for r" if k / h. Thus, it is required that both (i) 0 < |h/k] — t and (ii) [h/k] — (t + 1) < r. As long as
k < |h/t], (i) is satisfied and as long as k > [h/(t + r + 1)], (ii) is satisfied. Thus, such a choice for 1’ is possible.

Ifr' = 0, then againlet G; = S;fori=1, ..., k.

Ifr' > 1,thenforj € {1, ..., r'}, let A consist of the jth vertex of each of Sy, ..., Sy and let GG = S; — U};]Aj. Observe that
forr’ > 1, we have |S;| > t + 1 and so there are at least t vertices between each pair of vertices in every A;. Therefore, A; is
an independent set forj = 1,...,r.We have |G;| <t + 1so0 Gjisaclique fori = 1, ..., k. In addition, |G;| > t and so there

are no edges between C; and Cy unless |[i — i'| = 1 (mod k). _

We now have a contradiction because this partition shows that C} embeds in K. The map is as follows: map each A; to a
different white vertex and C; to v; fori = 1, ..., k. The only edges between parts of the given partition of V(C}) are incident
to an A; or are between C; and Cy, where |i —i’| = 1 (mod k). Each such pair has a gray edge and so the mapping witnesses
Cf — K.

Case (b).

In this case, we use a similar partition to that of Case (a). Let k = [h/(2t + 1)] — 1and p = h — (k — 1)(2t + 1). Since
h > 2t 4+ 2, we have k > 1. Partition V(C}) into k 4+ 1 consecutive parts, Si, ..., Sg+1, Where |Sq| = -+ = |S,_q| = 2t + 1,
ISk] = [p/2] and |Sky1] = [p/2]). Note thatt + 1 < [Spy1] < |Sk] < 2t + 1.

Forj =1, ...,t, let Aj consist of the jth vertex in each S; and let G; = S§; — UJFI]A,' fori=1,...,k+ 1.

For every G, there is a set of t vertices before and after C; that belong to U;:1Aj- Hence, there is no edge between any
distinct G; and Gy.

Therefore, K has at most k = [h/(2t + 1)] — 1 black vertices; otherwise, Ay, ..., A; can be mapped arbitrarily to each of
the t white vertices and Cy, .. ., Ci4+1 can be mapped arbitrarily to k + 1 different black vertices in K.

Case (c).

If(t + 1) | h,then x(C})=t+ 1and K having at least t + 1 white vertices means that C} K, a contradiction.

If (t + 1) } h, then partition V(C}) into k = |h/(t + 1)] + 1 parts Sy, ..., S of consecutive vertices with |S;| = --- =
ISk—1] =t+Tand |S| =h—(k—1)(t+ 1) <t.Forj=1,...,t+ 1, let Aj consist of the jth vertex in each of Sy, ..., S _1.
The graph induced by V(C}) — U;L]Aj forms a clique of size at most t in Sj.

Therefore, K cannot have a black vertex; otherwise, A1, . .. , At+1 can be mapped arbitrarily to each of the t 4+ 1 white
vertices and V(Cf) — UiZ}A; can be mapped to the black vertex.

5. Proof of Theorem 3:edy; = y3

We will use Lemma 13 to prove Theorem 3. Recall that h > 2t(t + 1) + 1 > t(t + 1). By Proposition 10, this means
x(Cy=t+1if(t+1) | hand x(C}) =t +2if(t + 1)/ h.

Proof (Theorem 3). By definition ed(p) < y(p) for all p € [0, 1], so we need to show equality.

Case1:p € [1/2, 1].

First we will show that y4(p) is linear for p € [1/2, 1]. Second, we show that edy(1/2) = y4(1/2) and ed« (1) = y/(1).
Finally, the continuity and concavity of the edit distance function establishes that ed(p) = y»/(p) forallp € [1/2, 1].

Fact 15 establishes that y5,(p) = -2 for p € [1/2, 1]. Recall that ¢, = [ | forallr € {0, 1, ... t}.

= To—1

Fact 15. Let h and t be positive integers and let p € [1/2, 1]. Ifh > (t + 1)® + 1, then

1-p P '
lo—1 " t+1

Forr e {1,...,t}ifh > (t + 1)t + 1)+ 1, then
1-p _ p(1-p)

bo—1 " r(1=p)+ & —1p’

The proof of Fact 15 is in Section 6. Note: The condition h > 2t(t 4+ 1) + 1 suffices to achieve all of the conclusions in
Fact 15.
A previous result establishes that, for # = Forb(C}), edy(p) = yx(p) forp € {1/2, 1}.

Proposition 16 (Balogh-Martin [3]). If H is a hereditary property, then ed4,(1/2) = y3,(1/2). Moreover, if every complete graph
is in H, then edy (1) = y%(1) = 0 and if every empty graph is in H, then ed4(0) = y4(0) = 0.
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Finally, by Proposition 1, ed4(p) is continuous and concave down, so we may conclude that edy(p) = yx(p) = 0;_” for
p € [1/2, 1]. This concludes Case 1.

Case2:p € [0, 1/2).

Proposition 16 gives ed(0) = y3(0) = 0. _ ~ ~

Now let p € (0, 1/2) and choose a p-core CRG K such that edy(p) = gz(p) and C} v» K. (The existence of such a K is
guaranteed by Marchant and Thomason [5].) Recall that, by Proposition 7, each edge incident to white vertices is gray and
the edges between black vertices are either white or gray. _

By way of contradiction, assume that gz (p) < y(p). Suppose K has r white vertices. Recall thatforany t > 1,h > 2t 4 2.
We consider several cases and show that we arrive at a contradiction in each case.

Case2a:pc(0,1/2)andr >t + 1. _

By Lemma 13(c), (t + 1) } h and K has no black vertices. As long as h > max{t(t + 1), 3}, Proposition 10 gives that if
(t + 1) Y h, then x(C}f) = t + 2. Thus C} embeds in t + 2 white vertices and so this case reduces to K having r = ¢ 4+ 1 white
vertices and no black vertices. Eq. (4) gives that g;(p) = p/(t + 1), a contradiction to the assumption that gz (p) < y(p). This
concludes Case 2a.

Case2b:p € (0,1/2)andr = t. .

Since r = t, Case (b) of Lemma 13 gives that K has at most £; — 1 black vertices. As a result, because K is the sub-CRG
of K induced by the black vertices, the smallest value gx(p) can achieve is when all edges are gray and the number of black
vertices is as large as possible. From (4), gx(p) > (1 — p)/(£; — 1).

Using Proposition 6 we conclude that

1-p !
< tp~!
g ' M=+ (&—1)
p(1—p)

t(1—=p)+ & —1)p

Hence, ed4,(p) > y3(p), a contradiction. This concludes Case 2b.

Case2c:p € (0,1/2)andr <t —2.

Since K is a CRG with r white vertices, and K is the sub-CRG induced by the black vertices, Proposition 6 gives that
gi(p)™' = rp~! + g '(p). Therefore,

&' =g '(p)—m

-1
( . {(r’ Er/—l)1}) r

> min —+ - =
r'e{0,1,...,t} p 1-p p

r—r y—1]\"
g(p) < |  max + = =: go(r. t: p). (5)
r'€{0,1,....t} p 1-p

Given (5), Lemma 17 gives lower bounds on the gray degree of vertices and the codegree of pairs of vertices. Recall that
deg.(v) denotes the number of gray neighbors of v € V(K).

gi(p) =

Lemma 17. Lett > 1beaninteger,r € {0,1,....t —1},andp € (0, 1/2). Letp, = £;' = [%ﬂ—rl. Let K be a p-core CRG
with all black vertices such that gx(p) < go(r, t; p). Then

(a) forevery v € V(K), we have deg;(v) > £,44, and
(b) forevery v, w € V(K),

by, ifr<t-2
degq(v, w) > {1’ ifr=t—1andp > p;.

The proof of Lemma 17 is in Section 6. Note: Since h > 2t + 2, it is the case that ¢,,; > 2forr <t — 1and ¢,,, > 2 for
r<t-—2.

Now we consider the derived graph F with vertex set V(K) and edge set EG(K). From Lemma 17, we have a lower bound
on both the mlnlmum degree of F and the minimum codegree of F. From Lemma 13, the graph F has no cycle with lengths
between ¢, = [ "~ and L :=

Lemma 18 shows that F has no cycles with length larger than ..

Lemma 18. Lett > 1,r € {0,1,...,t — 1} and h > max{t(t — 1), 2t 4 2} be integers. Recall that ¢, = [h/(t +r 4+ 1)] and
L= |h/t].

Let F be a graph with no cycle with length in {{,, ..., L} and every pair of vertices either has at least £,,, > 2 common
neighbors ifr < t — 2 or has at least 1 common neighbor ifr =t — 1.

Then F has no cycle of length more than ¢, — 1.
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The proof of Lemma 18 is in Section 6.

In the graph F, consider a maximum-length path. (In this paper, the length of a path is the number of vertices.) If any
such a path can be made into a cycle, then Proposition 19 gives that F must be Hamiltonian. By Lemma 18, this means that
|V(K)| < £; — 1and, as such, gx(p) > elr%”, which is the g function for the CRG on £, — 1 black vertices with all edges gray.
This is a contradiction to our assumption in (5) by setting r’ = r.

Proposition 19 is a common argument in proofs of Hamiltonian cycle results, including classical proofs of the theorems
of Dirac [4] and Ore [9].

Proposition 19. Let F be a connected graph. If some path of maximum length forms a cycle, then F is Hamiltonian.

The proof of Proposition 19 is in Section 6.

So we may assume that every maximum-length path in F is not a cycle. Let v; - - - v, be such a maximum length path. The
common neighbors of v; and v, in F must be on this path, otherwise F has a longer path. From Lemma 17, it follows that v,
and v, have at least £,,, > 2 common neighbors on this path. However, Lemma 20 gives that there can only be one such
neighbor, a contradiction.

Lemma20. Lett > 1,r € {0, 1,...,t — 1}, and h > 2t + 2 be integers. Recall that £, = [h/(t + 1 + 1)]. Let F be a graph with
no cycle of length longer than ¢, — 1, with every vertex having degree at least £, > 2 and with every pair of vertices having at
least one common neighbor. Furthermore, let F have the property that no maximum length path forms a cycle.

Let v1 - - - v; be a path of maximum length in F. Then v, and v, have exactly one common neighbor v, on this path. Furthermore,
N(v1) C {va,...,vc}and N(ve) C {ve, ..., ve}.

The proof of Lemma 20 is in Section 6. This concludes Case 2c.
Recall that p, = ¢; ' = [ﬁrl.

Case2d:p € [p;, 1/2)andr =t — 1.
The CRG K has r = t — 1 white vertices. By Proposition 6, gk_l(p) =(t—1)p! +g,;1(p) and we arrive at a similar bound
as in (5). That s,

r—t—-1) £—1 -1
gk(p) < glt —1,t;p) = < max { + D
r'€{0,1,...,t} D ]_p

ey
A

Again, we consider the graph F with vertex set V(K) and edge set EG(K). By Lemma 17, every vertex in F has degree
at least ¢; and every pair of vertices has at least one common neighbor. By Lemma 18, F has no cycle of length more than
£;_1 — 1.1f there is a maximum-length path that is a cycle, then Proposition 19 gives that F is Hamiltonian, which means
|V(K)| < £;_1 — 1.In that case gx(p) > 4[1,:111 , a contradiction.

So we may assume that every maximum-length path in F is not a cycle. Let vy . . . vy be such a maximum-length path such
that, in K, the sum x(v1) + X(v,) is the largest among all such paths. Let v, be the unique common neighbor of v; and v, as
given by Lemma 20.

Let v; have d neighbors in F. Since v, cannot have neighbors outside of this path, the sum of the weights, in K, of the
neighbors of vy satisfy dg(v{) < X(v2)+- - - +X(x.). Notice thatif v; € {vq, ..., v._1} is a predecessor of a neighbor of vy, then
it is an endpoint of a path containing the same ¢ vertices, namely v;v;_1 - - - V1Vi11Viy2 - - - Uc - - - vg. Hence all d predecessors
of gray neighbors of v (including v, itself) have weight at most x(v). From Proposition 9, all other vertices have weight at
most gl’(f(’;). Proposition 8 gives

%K(p) + 1,%17"(111) = X(v1) + dg(v1) = X(v1) + - - +X(vc)
g(p)

§dx(u1)—i-(c—d)1 —p

Rearranging the terms, we obtain

gx(p)<i_d+1> zl—xm)(d—l;p).
-p D p

Sincep™! < Pf] = {;and ¢; < d+1,we may, by Lemma 17, lower bound the right-hand side by again using x(v{) < gx(p)
c—d 1 1-—
gx(ﬁ)( +7>zl—g’<(m(d——p>
1-p p 1-p p

gx(p) (%) > 1.
-p
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Lemma 18 bounds the size of the longest cycle, so ¢ < ¢;,_; — 1. Thus, gk(p) > s 12 > go(t — 1,t;p), a

¢ — -1
contradiction. This concludes Case 2d.

Case2e:p € (0,p;)andr =t — 1.
Because in the case of p € (0, p;), the theorem only addresses the case where (t 4+ 1) / h, we assume this is the case.
Fact 21 establishes that, in the range 0 < p < py, yx(p) is linear.

Fact 21. Lett > 1and h > 2t + 2 be positive integers. Let p; = e;l = [zthﬁ ~" and recall that
() = min { p p(1 —p) }
H nlt+1U r(0=p)+ & —1p| -

Then y3(p) = p/(t + 1) forp € [0, p].

By Proposition 16, for H = Forb(C,ﬁ), edy(0) < y4(0) = 0 and by Case 2d, edy(p:) < yx(p:). By Fact 21, the function

y1(p)is linear over p € [0, p;] for h > 2t + 2. By Proposition 1, ed(p) is continuous and concave down, so we may conclude

thatedy(p) = yu(p) = HL] for p € [0, p¢]. This concludes Case 2e and completes the proof of Theorem 3.

6. Proofs of lemmas and facts

Proof (Corollary 5). The case of t = 1 is covered by Corollary 4. So, assume t > 2.
Letr € {1,...,t — 1}

1-— 1-—
Ifp > ;, then p(1 —p) p
r—+4£€o— £ r(1—p)+ (& —1)p lo—1
t— 1-— 1-—
Ifp < r 7 then p(1—p) . p(1—p) _
t—r+4 — 4 r(1—-p)+ ¢ —1p ~ t(1—p)+ (& —1)p
Therefore, it suffices to show
t—r r
>
t—r4+4b, —4 T r+Lyg—4;
(Lo — &)t —71) = (& — £¢)r. (6)
To that end,
(Lo =L )t —1)— (& —L)r = (t —1)lo + 1L — tL;
(t—=r)h rh th
+ - —t
t+1 2t +1 t+r+1
. rt(t —r)h
(t+1)(t+r+1)R2t+1)
t(t — 1h

T (t+ D)2t +1)

Ifh > 4t> + 10t + 12 + [1—21 then (6) is satisfied and the corollary follows.

Proof (Fact 11). We only need to prove one direction because x and y are arbitrary. In both cases, we will prove the forward
implication.
(a) Let |h/x] > yandh = gx+p,wherep € {0, ...,x—1}.Theny < |h/x] = q,soh > xy+rp.Thus |h/y] > x+|p/y] > x.
(b) Let [h/x] <yandh = gx—p,wherep € {0, ...,x—1}.Theny > [h/x] = q,soh < yx—p.Thus [h/y] < x—|p/y] <x.

Proof (Fact 12). Clearly, ifr € {0, ..., t — 1}, then [ 257 < [ ] so it suffices to prove this fact for r = 0.Leth = gt + p
with p € {0,...,t — 1}.Since h > t(t — 1), wehaveq >t — 1 > p. Then

h p—q h
— | = — < = | —
’7t+1—‘ q+[t+1—‘—q \jJ
proving the fact.

Proof (Fact 14). As long as tk < h < (t + 1)k, the set {1, ..., k} can be partitioned into k sets, each of which has size t or
t + 1. Thus, we need

)
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To ensure that such a k exists, it suffices to find values of h for which [h/(t 4+ 1)] < [h/t]. Setting h = qt + p with
p €{0,1,...,t— 1}, this simplifies to

qt+p q—p
I "< o< | =—Z.
[HJ—Q = _L+1J

Ifg>t— 1> p(henceh > t(t — 1)), then this inequality holds and there is a k € {[h/(t + 1)1, ..., Lh/t]} that admits the
desired partition.

Proof (Fact 15).1fh > (t + 1)> + 1, then t + 2 < [h/(t + 1)] = £o. Then,

1
t+1§5(€o+t)§p(€o+t)
aﬂdSOZO;_plS[%l-
Forre{1,...,t},leth=q(t + 1)+ p,where p € {1,...,t + 1}. Thebound h > (t + 1)(t +r)+ 1 ensuresq >t +r.
Then,
h Mq(t 1 —
ey S gt+r+1)+p—gqr
t+r+1 t+r+1
_r(t+r+1)+,o—qr_‘
t+r+1
[(rt+r+1)+t+1—(t+1)r
<q+
t+r+1
<qg+1= h
S
(1-p) :
and so ;% < m. This proves the fact.

Proof (Lemma 17).

(a) Let v € V(K). Using Proposition 8,

p—gk(p) 1-2p
> T X(v)
gk (p)

dg(v)
degg(v) = [maxc{x(u)}—‘ =
1-p
-1 —-p) _1-p 1-p
- pex(p) ) p
{(r/—r p)+ W —1Dp l—p}
> max
e{0.1,....t} p p
{ r—r—1)(1-p) }
= max + £ =1
r’'e{0,1,...,t}
> EH»I -1

The last inequality is obtained by choosing r’ = r + 1.
(b) By inclusion-exclusion,
dg(v, w) > dg(v) + dg(w) — 1

_, P~ &) L 1= 2p(x(v)+x(w))— 1~ P—28(p)

p p
Therefore,
p—2gk(p)
d — 1— 2(1—
degG(u,w)z( ov,w) 1 o :[ P p)w
max{x(u)} ﬁ «p) P
(r' — p)+ W —Dp 21 —p)}
> max
r'e{0,1,. p
—r—=2)1
~ max TTXP)H,,_l}_
r'e{0,1,...,t} p
Ifr < t — 2, then we choose r' = r + 2. Then deg.(v, w) > ¢, — 1, and because deg.(v, w) is an integer,

degg(v, w) > £y,
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Ifr =t — 1, then we choose r’ = t. Then deg;(v, w) > —]p%p +4 —1=4¢—p!>0,sincep>p, = Eﬂ. Because
deg.(v, w) is an integer, deg.(v, w) > 1.

Proof (Lemma 18).RecallL = |h/t| and £, = [h/(t+r+1)] forr € {0, 1, ..., t — 1}. The condition h > t(t — 1) is sufficient
to ensure that £, < L and so the range of excluded cycles is not empty. The condition h > 2t + 2 is sufficient to ensure that
£;42 > 2 in the case where r <t — 2. We leave verification of these to the reader.

We say that a long cycle is a cycle of length at least L + 1. The objective of this proof is to show that there are no long
cycles. Let vy - - - v be a smallest cycle in F among all those of length at least L + 1.

Case1:0<r<t-—2.
Observe that this case requires t > 2. Consider the path v; - - - v,,_; on the cycle vy - - - vovy. There is no cycle of length

£, and so the common neighbors of v; and vy, _; are allin {v,, ..., v, _2}. Note that Lemma 17 establishes that v; and v, _1
have at least £,,, > 2 common neighbors.
Since all common neighbors of v1 and vy, 7 arein {vy, ..., vy, —2}, we have £, — 3 > £, ,. Hence,

h
< < —-3<—F-2
t+r+3 [t+r+3—‘ L#—r—i—l—‘ t+r+1

andsoh > (t+r+ 1)(t +1r+ 3).

This gives that the number of common neighbors of vy and vy, _1 is at least £,4, = [ﬁ} >t+r+2>4.

Therefore, v; and vy, _1 have at least two common neighbors in {vs, ..., v, —3}. Leti > 2 and j < ¢, — 2 be, respectively,
the smallest and largest indices of vertices in {vs, . .., v,,—3} that are common neighbors of v; and vy, _¢. Thatis,3 <i <j <
£, —3.The cycle v1vjVit1 - - - Ve—1v¢v7 has length £ —i42. The cycle viv; - - - vj_1Vjvg, 1V, - - - Ve—1V haslength £ +j— €, 4 2.

Since these two cycles have length strictly less than ¢, they cannot be long cycles. Hence, their length is at most £, — 1,
giving

b+j—4+2=<¢ —1.

We can add these inequalities and rearrange the terms, 3¢, —2¢ —5 > j — i+ 1. Because the cycle is a long cycle, £ > L+ 1.
Because there are at least ¢, ; — 2 common neighbors of vy and v, _7 in {vs, ..., v;,_3},j —i+ 1 > £, 45 — 2. Consequently,

3¢, —2L—7>36,—20—5>j—i+1>ly—2. (7)

To verify there are no long cycles, we must show that (7) produces a contradiction. Since0 <r <t — 2,

h h
3¢, - 2L-7=3| —— | =-2|-| -7
t+r+1 t
h h
3l ——————+4+1)—-2{--1)-7
t+r+1 t

B h 2h(rt + 1?2 + 4r + 3)

T t+r+3 tt+r+ 1)t +r+3)
— | —2=405-2,

<’7t+r+3-‘ 2

a contradiction forall t > 2,r <t — 2,and h > 2t + 2r + 3. Therefore, for 0 < r < t — 2, F has no cycle of length longer
than ¢, — 1.

Case2:r=t—1.
Consider the path v; - - - v,_, on the cycle v - - - vovq. There is no cycle of length £ — 1 > L > £,_; and so the common

neighbors of vy and vy_5 are all in {v,, ..., vg_3}. Note that Lemma 17 establishes that v; and v,_, have at least 1 common
neighbor.

Leti € {2,...,£ — 3} be an index such that v; is a common neighbor of v; and v,_,. If i = 2, then the cycle
VU3 - - - Vy_3V¢_o Vo has length £ — 3. If i = ¢ — 3, then the cycle viv; - - - vy_4vy_3v7 has length £ — 3. In either case, this

cycle must be of length less than £;_ but this is a contradiction because

rnian a2 (8- [2] ) e

Verifying that |h/t] — [h/(2t)] —2 > 0for h > 5t can be found via setting h = (2t)q — p with 0 < p < 2t — 1 and studying
the cases ¢ > 4 and q = 3. Since 5t < 2t(t + 1) + 1 for all t > 1, the conditions on h verify the contradiction.

If 3 <i < £ —4,then the cycle vyv; - - - v;v1 has length i and the cycle v{v;viyq - - - vg_2vs—_1v,v1 has length £ — i+ 2. Since
these two cycles have length strictly less than ¢, they cannot be long cycles. Hence, their length is at most £;_; — 1, giving

i<4t_q1—1
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U1 Ugo| Vgo+1  Upi—1| |Um Ugr |Vg1+1 Uy
Ay B Ay

Fig. 1. Partition of vertices of the path. Sets A; are iteratively constructed so that they contain consecutive vertices of this path starting with a neighbor of
vy and ending with the last neighbor of v, so that no neighbor of v; appears after neighbors of v, in each set. Sets B; contain consecutive vertices between
sets A;_1 and A;, if there are any. The first vertex is placed in Ay and the last vertex v, in A;.

—i4+2<{_1-1

We can add these inequalities and rearrange the terms, 2¢,_1 — £ — 4 > 0.
This is, however, a contradiction because

20 L—4<2 h h 3<2 h+1 h 1 3=0
=1 R Y: t =\ t e

Proof (Proposition 19). Let vy - - - v, be a longest path in F such that viv, € E(F). If F is not Hamiltonian, there exists a
w € V(F) — {vq, ..., v.}. Because F is connected, there existsi € {1,...,£}and w’ € V(F) — {v1, ..., vy} such that v; is
adjacent to w’. Then there is a longer path: vi1 - - - vevy - - - v;w’, a contradiction.

Proof (Lemma 20). Because vy - - - v is a longest path in F, neither v; nor v, can have neighbors off this path, as that would
yield a longer path. Thus N(v{) U N(v,) C {vq,..., v} inF.

Case1: ¢ < ¢,.
If v; is adjacent to v, then v;_; cannot be adjacent to v,. Thus, the predecessors of N(v{) and the neighbors of v, are
disjoint subsets in {vq, ..., v,_1}. Since both v and v, have degree at least ¢, 1,

2 <l—1<¢ —1.

However,

h h
L — 20 - 1=|—|-2— |1
r T ’7t+r+1—‘ ’7t+r—|—2—‘

h 2h h(t+r1) 0
< — = — <
t+r+1 t4+r+2 (t+r+1)t+r+2)

(8)

Case2:¢ > /¢, + 1.

Partition the vertices of this path into 2s + 1 consecutive sets Ay, By, A1, ..., As, Bs with s > 0, constructed so that, in
each set A;, neighbors of v; appear before neighbors of v, as follows:

We let neighbors of v, be denoted with v, and neighbors of v, be denoted with v, in this construction. Let Ay contain
vq and add consecutive vertices of this path until we arrive at a neighbor of v,. From this point forward we do not allow
another neighbor of v; to be in A, i.e. we continue adding consecutive vertices until we reach the last neighbor vg, of
v, before another neighbor v,, of vi. Then Ay = {v1,..., v}, and we define By = {vgy41, ..., vp,—1}. Note that this
definition does not preclude By being an empty set. Continuing with this algorithm, we define sets A; = {v,,, ..., vg}
and B, = {vg,+1, ..., vp,—1}, Where vy, is a neighbor of v, on this path, v, is the last neighbor of v, in A; before another
neighbor vp, of vy as shown in Fig. 1. We continue in this way and define sets A; = {vy,, ..., vg;} and B; = {vg,_ 41, ..., Vp;—1}
fori e {1,..., s}, adding the last vertex v, into the set As.

Now we analyze this partition:

e We call thesets B;,i € {1, ..., s}, gaps as they do not contain any neighbors of either v; or v,, but only contain vertices
that succeed a given neighbor of v, and precede a given neighbor of v;. According to the definition, gaps may be empty,
but we will see below that this is not possible in this case.

e EachsetA; i€ {0, ..., s}, contains at most one common neighbor of v{ and v,.
e By construction, neighbors of v; (other than a common neighbor, if exists) precede neighbors of v, in each A;, i €
{o,...,s}.

It will suffice to show that s = 0. This will imply that no neighbor of v, follows the first neighbor of v, on this path, which
further implies that N(v1) entirely precedes N(v,), except possibly for a single common vertex. Since vy and v, have at least
one common neighbor, the lemma will follow.

Please cite this article in press as: Z.Berikkyzy, et al, On the edit distance of powers of cycles, Discrete Mathematics (2018),
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Notice that vq - - vg,veve—1 - - vp,vq is a cycle as seen in Fig. 1. In fact, for any i > 1, removing the gap B; from
vertices {vq, ..., vg} forms a cycle, so by assumption, £ — |B;] < ¢, — 1 and none of the gaps can be empty. Therefore,
YLy 1Bl = s(€— € + 1),

On the other hand, by the degree assumption and since each set A; contains at most one common neighbor of v, and v,
we obtain 24,1 < |[N(v1)| + |N(ve)| < (Z?:o |A,-|) + (s + 1) — 2. Combining these two inequalities we have

N N
C=> 1A+ Y 1Bl = 261 — (s + 1)+ 2+5(¢ — £ + 1)
i=0 i=1
= S(K _er)"f‘ 26,—.{.] + 1

Ifs > 1, then we have £ > ¢ — £, + 24,1 + 1 which simplifies to £, — 2¢,.1 — 1 > 0, which is contradicted by (8).
Therefore s = 0 and the lemma follows.

Proof (Fact 21). We need to show that y3(p;) = p:/(t + 1). Since

) 1—p;
= p;- min ) ’
yu(pe) = pe re(0... r}{t—l—l r(l—pt)—i-(ﬁr—l)Pr}

we need to show that ﬁf:} <t-—r+1forallre{0,...,t —1}.

To do this, leth = q(2t + 1) — pwhere p € {0, ..., 2t} and q > 2 (because h > 2t + 2). Then,

4 —1 1 t—r)—
-1 q—1 trr+1

1 [ t
< 1 (goqpdemnAtr
q—1 t+r+1
t2—r2 42t —q(t? —1r2
=t—-r+1+ ki « )

(q—1)(t+r+1)
which isatmostt —r + 1if g > 3orifr < t —2and g = 2. In the case wherer = t — 1 and q = 2, then

i;:}=1+[%—|§2=t—r+l.

7. Conclusion and open questions

We have obtained the edit distance function over all of its domain for C} when ¢ +1 does not divide hand h > 2t(t+1)+1.

When t + 1divides hand h > 2t(t+ 1)+ 1, we have obtained the function for p € [p;, 1], where p; = [ﬁ—‘ ~' The function,
however, is not known when h < 2t(t 4+ 1) or when t + 1 divides h and p € [0, p;).

Small h: In reducing the lower bound required of h, we note that in the proof of Theorem 3, we required h > 2t(t + 1)+ 1
in Fact 15. This ensured that the y;, function for p € [1/2, 1] was linear and by the concavity and continuity of the edit
distance function (see Proposition 1), this ensures that eds(p) = yx(p) in that interval. So, more careful analysis of the
case p > 1/2 may enable one to reduce the lower bound on h, but these arguments are very different from the case where
p<1/2.

Proposition 10 required a bound of h > t(t + 1) in order to give a simple expression for X(Cﬁ). A more careful analysis of
the chromatic number and of the Vporb(c,g)(P) function may be possible. The bound h > max{t(t — 1), 2t + 2} was required in
Facts 12 and 14 and Lemmas 13 and 18 in order to have a forbidden cycles condition on the CRG. Fact 14, in particular, may
be able to be avoided in some cases, because it is a special case of the Frobenius number. Though it seems possible to reduce
the lower bound of 2t(t 4+ 1) 4+ 1 on h, it seems unlikely that there is a general argument that does not require a quadratic
lower bound on h in terms of t.

Small p: As to the case of p < p;, (t + 1) | h and h sufficiently large, we showed in Section 5 that if K € K(Forb(C})) is a
p-core CRG with p < 1/2 which has r # t — 1 white vertices, then gx(p) = )/Forb(c,g)(P)- Therefore, to solve the problem for
the remaining case when t + 1 divides h, and p is small, one only needs to consider CRGs with exactly t — 1 white vertices
and with no gray cycle with lengths in {[h/(2t)], ..., Lh/t]} in the sub-CRG induced by the black vertices.

Observe that, in the case where (t + 1) / h, the fact that x(C}) = t 4 2 means that yg,,ct)(p) includes the linear function
p/(x — 1) = p/(t + 1). Indeed, we need only to prove that EdForb(Cﬁ)(p) = p/(t + 1) for p € {0, p;} and then the result for
p € [0, p,] follows from the continuity and concavity of the edit distance function.

In the case where (t + 1) | h, however, x(C}) = t + 1 would give the function p/(x — 1) = p/t. Unfortunately,

B> % for all p € [0, 1] and so the function p/t is useless. Indeed, when h sufficiently large,

p(1—p)
1—p)+ (L —1)p’
However, it may be the case thatedy(p) < y3(p) for small p. That is the case for # = Forb(K3 3)[5] and for # = Forb(K; )

(t = 9)[8]. The fact that the edit distance function is less than the gamma function is witnessed by an infinite sequence of
CRGs derived from constructions that produce lower bounds for a certain bipartite Turan problem.

VForb(clg)(P) = q forp € [0, p¢].
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In particular, future work may focus on bipartite Cy, i.e.,, when 2 | h. Any p-core CRG in K € K(Forb(Cp)) on black vertices
has no gray cycle with length in {[h/27, ..., h}. There may be such a CRG that demonstrates edrom(c,)(P) < Vrorb(c,)(P) for
small p.
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