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1. Introduction and definitions

We begin with various definitions of regularity. A v-vertex graph I" is called k-regular if there exists a k such that each
vertex of I" has degree k. A v-vertex, k-regular non-empty graph is called edge-regular with parameters (v, k, A) if every
pair of adjacent vertices x ~ y have A common neighbours. A (v, k, A)-edge-regular graph is called strongly regular with
parameters (v, k, A, ) if every pair of distinct nonadjacent vertices x ¢ y have © common neighbours. A clique C is called
regular (or e-regular) if every vertex not in C is adjacent to a constant number e > 0 of vertices in C.

Recently, the authors [7] provided an infinite family of non-strongly-regular, edge-regular graphs having regular cliques,
thus answering a question of Neumaier [8, Page 248]. The smallest graph in this family has parameters (28, 9, 2). In this
note we offer a new construction that gives rise to a non-strongly-regular, edge-regular graph G with parameters (24, 8, 2)
having a 1-regular clique. In fact, G is isomorphic to one of the four examples found by Goryainov and Shalaginov [6]. Recently,
however, Evans et al. [4] discovered an edge-regular, but not strongly regular graph on 16 vertices that has 2-regular cliques
with order 4, and proved that, up to isomorphism, this is the unique edge-regular, but not strongly regular graph on at most
16 vertices having a regular clique.

A graph I of diameter d is called a-antipodal if the relation of being at distance d or distance 0 is an equivalence relation
on the vertices of I" with equivalence classes of size a. A set of cliques of a graph I" that partition the vertex set of I" is called
a spread in I". Distance regular graphs and generalised quadrangles are edge-regular graphs satisfying further regularity
conditions, for their definitions, see Brouwer and Haemers [3] (see below for the definition of a distance regular graph).
Brouwer [1] gave a construction for antipodal distance regular graphs from generalised quadrangles having a spread of
regular cliques. Inspired by Brouwer, our construction is a generalisation of the other direction, i.e., we construct graphs
from antipodal distance-regular graphs of diameter three.

In Section 2 we present our construction and in Section 3 we show that non-strongly-regular, edge-regular graphs having
1-regular cliques must have at least 24 vertices.
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2. Construction

Let I" be a graph with diameter d. We call I" distance-regular if, for any two vertices x, y € V(I"), the number of vertices
at distance i from x and distance j from y depends only on i, j, and the distance from x to y. It is clear that distance regular
graphs are edge-regular.

Let I" be a graph of diameter d. For a given t, make t copies 'V, ..., I'© of I". For each vertex x € V(I"), denote by Ij(x)
the set of vertices at distance i from x and denote by x; the corresponding copy of x in the graph 0, Define the sets

Ei(I")={{xi,y;} : xeV(I"), y € I'y(x), andi,je{1,...,t}}
Ex(I') = {{xi,x} : xe V(I')andi # j}.

LetAIA“ denote the disjoint union of the graphs 'V, ..., I'©, Then define F;(I") to be the graph with vertex set V(F.(I")) =
V(I') and edge set

E(F(I")) = E(I") U Ey(I") U Ey(T").

Theorem 2.1. Let I" be an a-antipodal distance-regular graph of diameter 3 with edge-regular parameters (v, k, 1) such that a
is a proper divisor of > + 2. Then

1. Fua2(I") has a spread of 1-regular cliques each of size A + 2;
2. FQ(F) is (v(A +2)/a, k+ X+ 1, L)-edge-regular;
3. Fitz (I") is not strongly regular.

a

Proof. Lett = (A + 2)/a.

1. Since I' is a-antipodal, its vertex set can be partitioned into v/a a-subsets of V(I") such that each subset contains a
vertex and all its antipodes. For each part P in the partition, take a vertex x € P and define the set

Co={x :ie{l,...tpuU |J i :iefl,....0}} CVF(I)).
yers(x)

It is clear that each C, is a clique in F(I") of size A + 2 and that these cliques partition the vertex set of F(I"). To
see that these cliques are 1-regular, consider a vertex z not in the clique ¢,. Let ' be the copy of I" containing
z. Since I is distance-regular and has diameter 3, the vertex z must be adjacent to precisely one vertex in the set
{xi} U{y; : y e I'35(x)}. Therefore C, is 1-regular.

2. It is clear that F(I") has vt = v(A + 2)/a vertices. Let x be a vertex of F(I") inside the ith copy I") of I". Then x is
adjacent to k + a — 1 vertices inside "V and x is adjacent to the vertices x; and y; for all j # i and y € I'3(x). Hence x
has valency k+a — 1+ a(t — 1) = k+ A 4+ 1. Now suppose that y is adjacent to x. If y is in the clique C, then, since Cy
is 1-regular, y and x have A common neighbours. Otherwise y must be a vertex of ", where the number of common
neighbours of y and x are equal to the number of common neighbours of adjacent vertices in I", which is A.

3. Let x be a vertex of F;(I") inside the ith copy I"” of I". Form the set u(I") = {v,, : y,z € V(I')andy 7 z}, where
vy, denotes the number of common neighbours of y and z. Since I" is not strongly regular, the set u(I") must have
at least 2 elements. Furthermore, since I" has diameter 3, we see that 0 € u(I"). Let n € u(I") with n # 0. Consider
the vertices y and z, where y is in I'¥ such thaty »# x and vy, = n and z is in I'%) with j # i and z 7 x. The number
of common neighbours of x and y is n + 2 and the number of common neighbours of x and z is 2. Hence F;(I") is not
strongly regular. O

A Taylor graph is a 2-antipodal distance-regular graph of diameter 3 (for a proper definition, see Brouwer, Cohen, and
Neumaier [2, Page 13]).

Example 1. Let I" be a Taylor graph with edge-regular parameters (v, k, A). It is known [2, Theorem 1.5.3] that A is even. By
Theorem 2.1, the graph F; /,41(1") is a non-strongly-regular (v(A 4 2)/2, k+ 1 + 1, A)-edge-regular graph having a 1-regular
clique. The smallest example of this family is the icosahedral graph P, which has parameters (12, 5, 2). The graph F,(P) is a
non-strongly-regular (24, 8, 2)-edge-regular graph having a 1-regular clique, furthermore, F,(7) is isomorphic to one of the
four examples of Goryainov and Shalaginov [6].

We can also use other constructions of antipodal distance-regular graphs of diameter 3 due to Brouwer, Hensel, and
Mathon (see Godsil and Hensel [5] or Brouwer, Cohen, and Neumaier [2, Page 385]). These constructions produce a-antipodal
edge-regular graphs satisfying A +2 = 0 (mod a) witha > 3.

3. At least 24 vertices for 1-regular cliques

In the remainder of this note, we prove the following result.
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Theorem 3.1. Let I" be an edge-regular graph with a 1-regular clique that is not strongly regular. Then I" has at least 24 vertices.

First we establish a lower bound on the vertex degree. For a graph I" and a vertex x € V(I"), let I'(x) denote the set of
neighbours of x. The g x q grid (also known as the square lattice graph) is defined to be the Cartesian product of two complete
graphs of order q. It is well-known [2] that the g x q grid is strongly regular with parameters (g2, 2(q — 1), ¢ — 2, 2).

Lemma 3.2. Let I" be a non-complete k-regular edge-regular graph having a 1-regular clique of order c. Then k > 2(c — 1). In
the case of equality, I is the ¢ x c grid and is thus strongly regular.

Proof. Set m = k/(c — 1).Since I" is not complete, we have m > 1. Let C be a regular clique of order c. Let x be a vertex in
C. Since there are no edges between I"(x) N C and I'(x)\C, we find that A = ¢ — 2.

Now suppose y is a vertex adjacent to x but not in C. Note that x has k — (c — 1) = (m — 1)(c — 1) neighbours outside of
C. Hence the number of common neighbours of x and y is at most (m — 1)(c — 1) — 1. Thereforec — 2 < (m—2)(c — 1) — 1.
Again, since I" is not complete, we have ¢ — 1 > 1. Hence we must have m > 2.

In the case of equality, we see that y is adjacent to every neighbour of x outside C. Furthermore, the subgraph induced
on the neighbourhood of x is the disjoint union of two complete graphs each of order ¢ — 1. Therefore, I" is the Cartesian
product of two complete graphs of order c, i.e., the ¢ x c grid. O

Next, we need a lower bound on the size of a regular clique.

Proposition 3.3 ([7, Proposition 5.2]). Let I" be an edge-regular graph having a regular clique. Suppose that I" is not strongly
regular. Then I" has a regular clique of order at least 4.

The final ingredient is a nonexistence result for a graph on 20 vertices.
Proposition 3.4. There does not exist an edge-regular graph with parameters (20, 7, 2) and a 1-regular clique.

Proof. Suppose, for a contradiction, there does exist such a graph I". By Proposition 3.3, I" must have a regular clique C of
size at least 4. Moreover, since A = 2, the clique C must have size 4. Let x € C. The subgraph induced on I"(x) is the disjoint
union of a 3-cycle T and a 4-cycle C. Set K = {x} UV(T) and let A be the subgraph induced on the vertices V(I")\K. Observe
that, since K is a 1-regular clique of I", the subgraph A is 6-regular. Furthermore, observe that each of the 16 pairs of adjacent
vertices in | J,., I"(x)\K has a common vertex in K. Hence there are 16 edges in A that are each contained in precisely one
triangle and the remaining 32 edges are in precisely 2 triangles. Therefore A has (16 + 2 - 32)/3 triangles. Since this number
is not an integer, we establish a contradiction. O

Now the proof of Theorem 3.1.

Proof of Theorem 3.1. By Proposition 3.3, I' must have a regular clique C of size ¢ > 4. Furthermore, by Lemma 3.2, the
degree of the vertices of I' is at least 7. If k > 8 then, since C is 1-regular, I must have at least 24 vertices. It therefore
suffices to consider the case when k = 7 and ¢ = 4. In this case, I" must be edge-regular with parameters (20, 7, 2). But by
Proposition 3.4, no such graph exists. O

Note added in proof
Rhys Evans and Sergey Goryainov observed that one can generalise the construction given in Section 2. One does not need
an isomorphism between the antipodal graphs, a bijection between the fibre classes suffices.
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