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1. Introduction

Transfer of quantum information with high fidelity through networks of locally coupled spin particles is an important
problem in quantum information processing. Information can be considered as excitation in the network initiated at an input
node, which then spreads according to the action of a Hamiltonian. The quality of the transfer depends on how strongly the
excitation can then be concentrated at a given target node. The transfer is perfect if there is a time t at which the probability
of the excitation being at the target node is 1. Initiated by Bose [3], perfect state transfer has been extensively studied for
various networks, both from the physical [ 13] and the mathematical [8] point of view. It turns out that perfect state transfer
is notoriously difficult to achieve. All known constructions involve very special networks and/or very special, highly non-
uniform coupling strengths. In particular, it has been shown in [14] that for uniformly coupled chains of length at least four
there can never be perfect state transfer between endpoints, not even in the presence of magnetic fields.

There is a somewhat less restrictive notion of a pretty good state transfer, also referred to as “almost perfect state transfer”.
This requires the transfer probability to get arbitrarily close to 1 as time passes. While pretty good state transfer is a close
approximation to perfect state transfer, it is somewhat easier to achieve. The first examples of spin chains admitting pretty
good state transfer appeared in [17]. However, as demonstrated in [10,2,5,16], even pretty good state transfer is relatively
rare in unmodulated spin chains with uniform couplings.

In this paper we study pretty good state transfer in the single-excitation subspace of a spin network with XX couplings,
in the presence of a magnetic field. We will use graph theoretic terminology throughout the paper. We denote the network
by G, the set of nodes (vertices) by V(G), and the set of links (edges) by E(G). The evolution of such a system is given by its
Hamiltonian

1
oo =5 D XX +Y¥)+ Y G-z,

(i.,j)€E(G) ieV(G)
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Fig. 1. Asymmetric, irregular graphs with cospectral nodes. In each graph, the cospectral vertices are labeled u and v.

where X;, Y;, Z; denote the action of the standard Pauli matrices on the particle at node i, J;; denotes the strength of the XX
coupling between nodes i and j, and the Q;'s give the strength of the magnetic field yielding an energy potential at each
node.

It has been shown [3,4] that the restriction of this Hamiltonian to the single-excitation subspace is modeled by a
continuous-time quantum walk on a graph with transition matrix, U(t), given by

U(t) = exp(itA)
where A is the (possibly weighted) adjacency matrix of the graph.

Definition 1.1. Let G be a graph with vertices u and v.
1. We say that G admits perfect state transfer (PST) from u to v if there is some time t > 0 such that
[U(t)ul = 1.
2. We say G admits pretty good state transfer (PGST) from u to v if, for any € > 0, there is a time t > 0 such that
[U(t)yn] > 1—€.

Our primary focus in this paper will be the effect of adding a potential induced by a magnetic field (the Q; above). Previous
work in [15] showed that in graphs with an involutional symmetry, one can often induce pretty good state transfer between
a pair of nodes by appropriately choosing a potential on the vertex set. In [9], it is shown that a potential can induce pretty
good state transfer in strongly regular graphs as well. The contribution of this paper is to show how to construct asymmetric,
non-regular graphs that admit PGST between a pair of nodes u, v if a suitably chosen potential is added to the adjacency
matrix at u and v. The novelty of our constructions is that we do not require any symmetry or regularity in the graph. In
addition, our results apply to arbitrary real symmetric matrices (not just adjacency matrices). We note that PST has been
exhibited in asymmetric simple unweighted graphs in [1].

A necessary condition for both PST and PGST between vertices u and v of a graph is that u and v must be cospectral
(see [8,2]), that is G \ u and G \ v have the same spectrum. One motivation for our previous work [15] is that symmetry
in a graph always naturally leads to cospectral vertices. It also holds that pairs of vertices in strongly regular graphs are
cospectral. However, cospectral pairs can arise in irregular graphs without any symmetry. Two relatively small examples
are shown in Fig. 1.

Our constructions come in two types, based on the following two observations concerning cospectral vertices. First, in
a graph with an equitable partition (defined in Section 4.1) with a part containing exactly two vertices, those two vertices
are cospectral (see Fig. 2 for an example). Second, given two graphs with a cospectral pair, the vertices remain cospectral
in the graph obtained by “gluing” the two graphs together along those vertices (see Lemma 4.6). We are able to show that
given any graph with a pair of cospectral vertices, a simple modification of the graph, together with an appropriately chosen
potential on the vertex set, yields PGST between those vertices. See Corollary 4.3, and Theorems 4.5, 4.12 and 4.13 for the
precise details.

The key tool in our analysis is Theorem 2.11, which takes advantage of the fact that the characteristic polynomial of the
adjacency matrix for a graph with cospectral nodes has a factorization. We give a simple, efficiently computable condition
on the factors that implies PGST. Note, however, that the converse of Theorem 2.11 does not hold in general. Another critical
piece in our proofs, of independent interest, is Lemma 3.2, which shows that adding a transcendental potential to a pair of
cospectral nodes actually makes them strongly cospectral (see Section 2 for the definition).

2. Preliminaries

Let F be a subfield of the real numbers. Let M be a symmetric matrix with entries 7. We use ¢y € F[t] to denote its
characteristic polynomial. The rows and columns of M will typically be indexed by the nodes of a finite graph. We will use
V(M) to denote the set of row/column indices of M, so we can think of M € RVM>*VM) [f§ « V(M), we write Ms for the
symmetric submatrix obtained from M by removing the rows and columns indexed by S.
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Fig. 2. A graph with an equitable partition with a part of size 2 (vertices u and v), and hence a cospectral pair (but no involution swapping u and v).

Definition 2.1. For any vector z, let W(M, z) = (z, Mz, Mz, . ..) denote the M-invariant subspace generated by z. Let us
denote by p, = p,m € F[t] the minimal polynomial of M relative to z, that is, the smallest degree monic polynomial such
that po,(M)z = 0. It is well-known that p, divides the usual minimal polynomial of M and that the degree of p, equals the
dimension of W(M, z).

2.1. Cospectral nodes
Definition 2.2. Let M be a symmetric matrix. Two indices u, v € V(M) are cospectral if (M) = ¢p(M,).

Lemma 2.3 (Theorem 3.1 of [11]). Let M be a symmetric matrix, and let u,v € V(M). Let M = Y, AE, be the spectral
decomposition of M. Here E; denotes the orthogonal projection onto the eigenspace of M corresponding to the eigenvalue A. We
denote the characteristic vectors of u and v by ey, e, respectively. The following are equivalent:

1. uand v are cospectral.

2. (Ek)u,u = (Ek)u,v fOT all A

3. M*(u, u) = M*(v, v) for all k.

4. W(M, e, + e,) is orthogonal to W(M, e, — e,).

Definition 2.4. We define P, to be the minimal polynomial of M relative to e, + e,, and P_ to be the minimal polynomial
of M relative to e, — e,,.

Lemma 2.5. Given a symmetric matrix M and cospectral indices u, v € V(M), the characteristic polynomial of M decomposes as
¢m =Py -P_- Py,
where P, and P_ have no multiple roots, and there is an orthonormal basis of eigenvectors of M such that:

1. for each root A of P the basis contains a unique eigenvector ¢ with eigenvalue A and ¢(u) = ¢(v) # 0,

2. for each root A of P_ the basis contains a unique eigenvector ¢ with eigenvalue A and p(u) = —¢(v) # 0,
3. for each root A of Py with multiplicity k the basis contains exactly k eigenvectors with eigenvalue A all of which vanish on
both u and v.

In particular the degree of P.. is the same as the dimension of the space W(M, e, *+ e,).

Proof. Since M is diagonalizable, its minimal polynomial does not have multiple roots, and hence neither does P, nor P_.
The roots of P, are exactly those eigenvalues A for which E; (e, + e,) # 0, and for such A the eigenvector ¢ = E, (e, + e,)
satisfies that ¢(u) = ¢(v). Similarly for P_. By cospectrality of u and v, the eigenvectors obtained for P, and for P_ are
pairwise orthogonal. Finally, extending to an orthogonal basis for M, it is clear that each remaining eigenvector satisfies

pu)=p(v)=0. O

Remark 2.6. Since the coefficients of P, give the unique linear dependency among e, + e,, M(e, + e,), ..., M*(e, + e,),
they belong to the same field as the entries of M. The same is true for P_, and thus for P,.

Definition 2.7. The indices u, v € V(M) are strongly cospectral if p(u) = +¢(v) for every eigenvector ¢ of M.

Lemma 2.8. The following are equivalent:

1. uand v are strongly cospectral.
2. uand v are cospectral, and P, and P_ do not have any common roots.
3. E;ey, = *Ee, forall A.

Please cite this article as: Or Eisenberg, M. Kempton and G. Lippner, Pretty good quantum state transfer in asymmetric graphs via potential, Discrete
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2.2. Pretty good state transfer

The discrete Schrédinger equation, for an n x n matrix M, is given by
0 Yr = iM Y,
where i/, € C" for t € [0, oo). The solution of this equation can be written in the form
Yr = ei[Ml/f0~
Definition 2.9. We say that M has PGST from u to v if 4o = e, implies that lim sup,_, ., [¥:(v)| = 1, or equivalently, that
limsup,_, o, [e™M(u, v)] = 1.
The following is a characterization of PGST (see Theorem 2 in [2]).
Lemma 2.10. Let u, v € V(M) for the symmetric matrix M. Then pretty good state transfer from u to v occurs if and only if the
following two conditions are satisfied:

1. The indices u and v are strongly cospectral.
2. Let {);} be the roots of P, and {u;} the roots of P_. Then for any choice of integers £;, m; such that

D kit ) miy =0
i j
S+ Ym=o,
i j
we have

E m; is even.
i

Note that the first condition could be weakened to just cospectral, since the second condition implies that P, and P_ do
not share any roots, so this implies strongly cospectral if the nodes are cospectral.
The following theorem generalizes a result from [15] and a lemma from [9].

Theorem 2.11. Let M be a symmetric matrix with entries in F with strongly cospectral indices u, v € V(M), and assume that
P, and P_ are irreducible polynomials over F. Then if

Tr(P,) Tr(P_)
deg(Py) "~ deg(P_)’

where Tr denotes the trace (i.e. the sum of roots) of a polynomial, then there is PGST from u to v.

Proof. Our proof uses a technique from [15].
Suppose we have integers ¢;, m; satisfying

Z(,‘)\,‘-I-ij,uj =0
i J
ZZ,-—}—ij =0.
i j

To use Lemma 2.10, we wish to show Zi £ is even.
We will use a tool from Galois theory called the field trace of a field extension. For a Galois field extension K of F, we
define Tri,» : K — F by

Trerl@) = Y gla).

geGal(K/F)

The field trace is the trace of the linear map taking x — ax. In Lemma A.1 of the Appendix we record a few basic facts about
the field trace that we will use.

Now, let F be the base field (the field containing all the entries of M), let £/ F be the splitting field for P, 7/ F the splitting
field for P_, and K/ F the smallest field extension containing both £ and 7. Let us denote r = deg(P,.) and s = deg(P_). Since
P, and P_ are irreducible, then by Lemma A.1,

L:F
Tre 7(Ai) = [ ] Z)»k-
k

r
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Note further that ), A, = Tr(Py ), so we have shown

[£: F]
Tre/r(Ai) = (Tr(P+))
for any i. In a similar way, by examining P_ we obtain
[J @ F]
Try,7(uj) = S (Tr(P-))
for any j.

Now apply the field trace to our linear combination of the A; and y;, and using the properties above we have,
0="Trg,7 (Z Liki + Z ijj)
=Tresz () €ihe) + Tris= (Z miu )
= 21 Treyr (30 0) + 165 21T (3 iy )
=[K:L]Y GTrez(M) + 1K 71Y_ miTry =)

[K: It : F] [C:J1T : F]
= T TP Y bk TP Yy

S
=[K:F] <Tr(f+) > i+ Tr(f*) > mj>

This, along with our assumption at the beginning gives us

Tr(Py) Tr(P_) _
T ZEI + S Z m; = 0

Zﬁi—i—ij:O.

This is a system of two equations in the variable " A;, > u;, and so if
Tr(Py) , Tr(P-)

r N

s

then these two equations are linearly independent, and we obtain

ZA,-:ij:O.

In particular, each sum is even, so Lemma 2.10 implies that we get pretty good state transfer. O
3. Diagonal perturbation

In this section we investigate how, given a symmetric matrix M with cospectral indices u, v € V(M), adding a diagonal
matrix D to M can be used to achieve strong cospectrality of u, v and irreducibility of P, and P_. We are going to do this
by choosing D to have two non-zero values only. To establish notation, for any set of indices S C V(M), let Ds denote the
diagonal matrix with 1s in the positions belonging to S and Os elsewhere. Let Q be a real number and D = Q - Dy ,.

Lemma 3.1. Ifu, v € V(M) are cospectral indices for M, then they are also cospectral for M + D.
Proof.

oMby, = O, — Q - dmy, = M, — Q - Pmy, = M), O
3.1. Achieving strong cospectrality

The benefit of adding such a diagonal perturbation is that we can actually turn a pair of cospectral indices into strongly
cospectral ones.

Let us say that a matrix M has connected support if for any two indices u, v € V(M) thereisak > 0 such that M*(u, v) # 0.
In case of a matrix with non-negative entries this is equivalent to the underlying graph being connected.

Lemma 3.2. Let M be a symmetric matrix with connected support whose entries are in a field 7 < R, and assume u, v € V(M)
are cospectral. Suppose Q is transcendental over F, and D = Q - Dy, ., then u and v are strongly cospectral for M + D.

Please cite this article as: Or Eisenberg, M. Kempton and G. Lippner, Pretty good quantum state transfer in asymmetric graphs via potential, Discrete
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Proof. By simple expansion, and using that cospectrality means ¢y, = ¢u,, We can write

Pup = du +2Q¢m, + Q¢ - (0
By [11, Lemma 8.4] it is sufficient to show that ¢y, /¢m+p has only simple poles. We prove this by contradiction. First, we
can assume that ¢y,p has multiple roots, and thus it is reducible over 7(Q ). However, since Q is transcendental over F, it
has to factor over 7[Q]. So we can either write

dm+p = h - (Qfi +fo) - (Qg1 + &),
or possibly

dmip = h-(Q2f, + Qfi + fo),

where f;, g;, h € F[x], and all the factors but h are irreducible over F[Q]. In both cases it follows from (1) that h is a factor
@m,, thus there is a polynomial ¢ € F[x] such that

Py 14

omsp  (Qf1 +fo) - (Qg1 + o)

or
Pmay _ 14
duip  (Q%f+Qfi +fo)

The second option immediately implies that all poles are simple since the denominator is irreducible and thus has simple
roots. In order to have non-simple poles in the first case, the two irreducible factors in the denominator must have a common
root, but then they must have a common factor. However, they are irreducible over F(Q), so the only factors they can have
are themselves, and since they are monic, they must coincide. This means that ¢y = hf02 oMy = dm, = hfifo, oM, = hflz.
Thus ¥y, = oM, M, — PMPm,, = 050, by [7, Lemma 1.1, Chapter 4.1], we get (E;, )y, = O for all 4, so MX(u, v) = 0 for all k.
This contradicts the assumption that M has connected support, so u, v must be strongly cospectral for M. O

3.2. Trace

We see from Theorem 2.11 that the trace of P, and P_ can be useful in proving that there is PGST between two cospectral
nodes. In this section we prove some important properties of Tr P, under diagonal perturbation.

Lemma 3.3. Let M be a symmetric matrix whose elements are in a field 7 < R. Suppose u, v € V(M) are cospectral for M and
let D = Q - Dy,,,y where Q € R is transcendental over F. Let ¢pr.p = Py - P_ - Py as in Lemma 2.5. Then TrP, — Q € F and
TrP_ —Q € F.

Proof. Let us recall that P are the minimal polynomials of M + D relative to e, + e,, and that ¢p.p = P, - P_ - Py. Since Q
is transcendental over 7, we have to have P, P_, Py € F[Q, t].

First we show that both P, and P_ are at least linear in Q. To see this, observe that the u and v coordinates of
(M + D)(e, + e,) contain a single term Q¥ and no higher power of Q shows up elsewhere in (M + D)(e, + e,), nor in
(M +DY(e,+e,)foranyj < k. Hence if P, (t) = t*+c,_1t*"1 +- - - where ¢; € F[Q], then we have 0 = P, (M +D)(e, +e,) =
(M + DY(ey, + e,) + Z]":ol G(M + D) (e, + e,). This can only happen if the Q¥ coming from the first term is canceled by
something. This can only be if at least some of the ¢; coefficients are in Z[Q ]\ F. Thus P, needs to be at least linear in Q. The
same argument shows this for P_ as well.

Note that ¢y p is quadratic in Q, which implies that both P, and P_ have to be exactly linear in Q. Going back to the
cancellation of the Q¥ term in (M + D)¥(e, + e,), we see that since the coefficients ¢j are at most linear in Q, only the
cr—1(M 4+ D)*~(e, + e,) has a chance to cancel the Q¥ term, and for this it has to be that c;_; + Q € F.But —¢;_; = Tr P,
so this implies Tr P, — Q € F. That the same holds for P_ follows the exact same way. O

We can prove a similar result for diagonal perturbations at a single vertex. This will be useful in some of our constructions
in Section 4.

Lemma 3.4. Let M be a symmetric matrix with connected support whose elements are in a field 7 < R. Suppose u, v € V(M)
are cospectral for M, and let w € V(M) be another index such that there is an integer d > 0 for which (e,,, M9(e, + e,)) # 0. Let
D = Q - D,y where Q € Ris transcendental over F, and suppose u and v are also cospectral for M + D. Let ¢yp = P - P_ - Py
asinLemma2.5. ThenTrPy — Q € F.

Proof. The argument is almost identical to the previous one. Let d be the smallest power for which (e,,, M%(e, + e,)) # 0.
From the setup it follows that ¢y p € F[Q, t]is linear in Q, thus the polynomial P, € F[Q, t] can be at most linear. But it
also has to be at least linear, since in (M +D)*(e, +e, ) there will be a Q*~¢ term appearing that would only cancel if one of the
¢; coefficients of P, contains Q. This coefficient then can only be ¢, and, as previously, it can only happenifc_1 +Q € F,
and thusTrP, —Q € 7. O

Please cite this article as: Or Eisenberg, M. Kempton and G. Lippner, Pretty good quantum state transfer in asymmetric graphs via potential, Discrete
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Remark 3.5. Note that since ¢y p is only linear in Q, then Q does not show up in P_. This implies in particular that,
(ew, M9(e, — e,)) = 0 forall d.

3.3. Achieving irreducibility

Lemma 3.6. Let M be a symmetric matrix whose entries are in a field 7 < R. Assume u,v € V(M) are strongly cospectral
indices for M. If Q is transcendental over 7 and D = Q - Dy, then the polynomials P, (M + D) and P_(M + D) are irreducible
over F(Q).

Proof. By Lemma 3.2 the indices u, v are also strongly cospectral for M + D. Then ¢y,p factors as ¢py.p = Py - P_ - Py
by Lemma 2.5. Since such a factorization exists for all values of Q, it has to be a factorization in F[Q, t]. By expanding the
determinant we also have

b = dm — 2Qébu, + Qb - (2)

Thus we see that ¢y, p is quadraticin Q, and thus P, P_, and Py can all be at most quadraticin Q. By Lemma 3.3, TrP,. —Q € F
and Tr P_ — Q € F.Thus there are non-zero polynomials S, Ry € F[t] such that P = S1 + Q - R4, and hence by comparing
the degrees in Q, we get that Py € F[t].

Comparing to (2) we see that

¢m =Po-Sy-S_
ém, = Po - (S+R- +RyS-)
¢Muv =P0’R+’R*'

Now suppose that P, is not irreducible. For transcendental Q, this implies that P, factors in F[t, Q], but since it is linear in
Q, the only way for this to happen is that there is some factor T € F[t] that divides both S and R,. If this is the case, then
T - Py divides all three of ¢u, dum,, dmy, -

Let (t — A)¥ be a factor of T - Py. Then by Lemma A.2, there are k eigenvectors that vanish on u. By strong cospectrality of u
and v, these must vanish on v simultaneously, so there are k eigenvectors for A that vanish on both u and v. This means that
(t — 1) is already a factor of Py. Since this holds for all factors of T - Py and hence T = 1. Thus P, is irreducible. The same
argument gives that P_ is also irreducible. O

4. Constructions

In this section we explain how to obtain graphs with a pair of cospectral nodes u, v where adding a potential Q at nodes
u and v, and possibly at a third node w results in PGST between u and v. The significance of these constructions is that they
yield examples without symmetries, in particular without an involution mapping u to v.

4.1. Equitable partitions

Our first construction is based on equitable partitions. These can be thought of as direct generalizations of graphs with
an involution.

Definition 4.1. An equitable partition of a symmetric matrix M is a partition P = {Pq, ..., P} of its index set V(M) such
that for any P;, P; € P and any vy, v, € P;, one has

ZM(U1, u) = ZM(vz, ).

uep; uep;

Theorem 4.2. Let M be a symmetric matrix with connected support whose elements are in a field ¥ < R. Suppose M admits
an equitable partition P such that Py = {u, v} and P, = {w}, then for algebraically independent numbers Qq, Q, that are
transcendental over F and for D = Q; - Dyy,v) + Q2 - Dy the matrix M + D admits PGST between u and v.

Corollary 4.3. Ifa connected graph has an equitable partition with a part consisting of u, v and another part consisting of w only,
then by adding suitable potentials at u, v, and w one can guarantee PGST between u and v.

Proof. We proceed step-by-step as follows: first we show that u and v are cospectral in both M and M + Q, - Dy,. Then
we show that u and v are strongly cospectral in M + D, and furthermore that the corresponding P, and P_ are irreducible.
Finally, we show that Tr P, /deg P, # TrP_/deg P_ hence by Theorem 2.11 there is PGST between u and v.

Let us start by proving cospectrality of u and v. First, let ITp denote the partition matrix corresponding to P. That is, the
columns of ITp are indexed by 1, 2, ..., k, and the rows are indexed by V(M), and IT5(j, x) is 1 if x € P; and O otherwise.

Please cite this article as: Or Eisenberg, M. Kempton and G. Lippner, Pretty good quantum state transfer in asymmetric graphs via potential, Discrete
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Second, let Mp denote the quotient matrix, given as Mp(i, j) = Zyepj M(x, y) for some fixed x € P;. As P is equitable, the
value Mp(i, j) does not depend on the particular choice of x. Note, that M is a k x k matrix, though not necessarily symmetric.

Asimple computation shows that M- ITp» = ITp-Mp. Note that, since P; = {u, v}, we can write e, +e, as IT5(1,0, ..., 0)".
Now we can compute

(ey — €y, M™(ey +€,)) = (ey — €,)' M™1p(1,0,...,0)" = (e, —e,) [TpM2(1,0,...,0) =0,

since (e, — e,)" ITp» = 0. This shows that W(M, e, + e,) is orthogonal to W(M, e, — e,) and hence u and v are cospectral.

As P is also an equitable partition for M 4+ Q, - Dy, it follows that u and v are also cospectral for M + Q. - Dy,;. Let us write
Q1 = A + B where A, B, Q, are all algebraically independent of each other and of F. This can be done by choosing A to be
independent of Q1, Q, and transcendental over F and then setting B = Q; — A. Then, by Lemma 3.2 and the assumption that
Ais transcendental over 7(Q,), we find that u and v are strongly cospectral for M + Q, - Dy,; +A- Dyy ). Then, by Lemmas 3.6
and 3.2, u and v are not only strongly cospectral for M +D = (M 4 Q- Dy} +A - Dy v)) + B - Dy v}, but also the corresponding
P, and P_ are irreducible.

Now, by Lemmas 3.3 and 3.4, we find that Tr P, — Q; € F(Q;) and since ¢y p is linear in Q, this implies Tr P_ € F(Q1).
Then surely Tr P, /deg P, cannot equal Tr P_ /deg P_ since that would imply Q, € F(Q), a contradiction.

Finally, by Theorem 2.11 we get that there is PGST between u and v. O

Remark 4.4. Given any graph with an equitable partition with a part of size two (and thus a cospectral pair) it is
straightforward to add a single vertex and attach it to the vertices of one of the parts of the partition to produce a graph
satisfying the conditions of the corollary.

4.2. Gluing

Our second construction is based on an arbitrary graph G with a pair of cospectral nodes u, v € V(G). We will show that
either simply adding a transcendental potential Q at the nodes u and v induces PGST between them, or else one can modify
G in a relatively simple way: by gluing a long path to G with u and v being its endpoints, and then adding a transcendental
potential Q at u and v we get PGST between u and v.

Theorem 4.5. Let G be a graph with u, v € V(G) cospectral, and such that 0 is not an eigenvalue of the adjacency matrix of
G\ {u, v}. Fix an integer q > 0. Construct Gy by gluing a path of length q to G by attaching its endpoints to u and v. In other
words, by adding ¢ — 1 new nodes x1, Xz, ..., Xq—1 to G together with the edges uxi, X1Xz, XoX3, .. ., Xq—2Xq—1, Xg—1v. (Forq =0
we simply take Gy = G.)

Let Q € R be a transcendental number, and put a potential Q at the nodes u and v in Gq. Then either the potential induces
PGST between u and v in G or there is an infinite set of integers S C Z such that this potential induced PGST between u and v in
Gqforallq € S.

Again, the main novelty of this construction is that it does not require the graph to admit any kind of symmetry. In fact,
one can start from any graph with a pair of cospectral nodes, of which many examples have been described in the literature.
We give the proof at the end of this section.

We begin by describing a general gluing construction that preserves cospectrality. This has been independently discov-
ered by Godsil [6]. As we have done so far, we will prove everything in the general context of symmetric matrices, but we
are still primarily interested in the case where the matrices in question are the adjacency matrices of graphs. L

Let M; and M, be symmetric matrices such that V(M) N V(M;) = {u, v}. We can extend them to matrices M, M,
on V(M;) U V(M,) by declaring them to be 0 wherever they were not previously defined. Then we define their sum
M; & My = M; + Ms, in particular V(M; & M) = V(M;) U V(M;). When M; is the adjacency matrix of the graph G;
(i=1,2),then M = M; & M, is the adjacency matrix of G = G; Uy, G, sometimes referred to as the 2-sum of G; and G, that
is obtained by gluing the two u nodes together and the two v nodes together. Note that G may have multiple edges.

Lemma 4.6. Ifu,v € V(M;); (i = 1, 2) are cospectral pairs for both My and My, then they are also cospectral in My & M.

Proof. Let M = M; & M,. We can compute ¢y, by expanding the determinant along the column corresponding to v:

¢Mu = ¢M1u¢M2uv + ¢M2u¢M1uv - t¢M1uv¢M2uv'

By cospectrality ¢y; = ¢ . and thus the right hand side does not change when exchanging the roles of u and v. Hence
ém, = Pum, as claimed. O

In what follows we assume that u and v are indeed cospectral in M; and in M; and let M = M; @ M,. Let us introduce
the notation ¢y, = P} - PL - Pj (j = 1,2) and ¢y = Py - P_ - Py, according to Lemma 2.5.

Lemma4.7. degP, < degP! + degP? — 1and degP_ < degP! + degP? — 1
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Proof. We know, by Definitions 2.4 and 2.1 that deg P, = dim W(M, e, + e,) and deg P’+ = dim W(1\~/Ij, ey, + e,). We will
show that W(M, e, + e,) < W(I\:/Il, e, +e,) + W(l\712, e, + e,). From this, the first part of the lemma will follow since
(eu + ev) = W(Mh ey + ev) N W(M27 ey + ev)‘

Let us denote by IT, IT,, and [T, the “natural” projection operators from R¢ to R, R, and R} respectively. First
note that, by cospectrality, euMk(~eL, +e) = e,M¥(e, + e,) for any k. In other words, e, + e, is an eigenvector of~170M"
for any k. The same is true with M; or M, in place of M. Also note that a simple computation gives M{M, = M;IIoM, and
MzM] = MznoMl. 5 5

It is then sufficient to prove that IT;M*(e, + e,) € W(My, e, + e,) and ILM*(e, + e,) € W(M,, e, + e, ). Without loss of
generality it is sufficient to prove the first one. Using M = M; + M, we can compute

k
k _ v YUYV VL
M_E M; E M, MMy M7 ...
j=0 0<jq.jg-r
JHihtiz =k

and so

k
MM e, +e) =Y [ MM, > ToM} oM oM oMy’ ... (e, +€,)
Jj=0 0<j] 4200
JH1H =k
Here, each term in the sum is just a multiple of (e, + e, ) since it is an eigenvector of each 1'[01\7I£ : € = 1,2. Hence there are
constants ¢; depending only on j and k such that
k ) k ) )
MM, +e,) = Y G, +e) = 3 6 (WM(ew +en) — Mol e +e,)) € Wil e, +e.),
j=0 j=0
and this is what we wanted to show.
The argument for P_ is analogous. O

Remark 4.8. Any eigenvector of M or M, that vanishes on u, v can be extended to V(M) by zeros to obtain an eigenvector
of M with the same eigenvalue. Thus P, is divisible by P} - P2.

Lemma 4.9. Let k; > 0 denote the multiplicity of A in P(’) (j = 1, 2). Suppose the multiplicity of A in Py is strictly bigger than
k1 + ko. Then A is an eigenvalue of My, and My,,,.

Proof. By the assumption on the multiplicity there has to be an eigenvector of M with eigenvalue A vanishing on both u and
v that is not identically zero on either M; or M,. The restriction of this vector to V(M) \ {u, v} and to V(M) \ {u, v} then
yield eigenvectors showing that A is indeed an eigenvalue of both of these matrices. O

Corollary 4.10. If My, and M>,, do not share any eigenvalues, then Py = P} - PZ.

Theorem 4.11. If My, and M,,, do not share any eigenvalues, then degP, = degP}L + dengr — 1 and degP_ =
degP! + degpP? — 1.

Proof. By Corollary 4.10 and by Lemma 4.7 we have

[V(M)| = degPy + degP; 4+ degP_ <
< degP; + degP§ + degP| + degP} — 1+ degP! +degP? — 1= [V(M;)| + [V(My)] — 2 = V(M)

Since the left and right hand sides are equal, there must be equality in the middle, finishing the proof. O

Proof of Theorem 4.5. Let A denote the adjacency matrix of G. By assumption u and v are cospectral for A. The matrix
H¢ = A+ Q - D,y is the Hamiltonian for the graph G together with the potential. By Lemmas 3.2 and 3.6 we know that
u and v are strongly cospectral for Hg and the corresponding Pﬁc and pHe polynomials are irreducible, and by Lemma 3.3
we know that Tr Pﬁc — Q and TrP™ — Q are both rational. (To show irreducibility we need to apply the same trick as in
the proof of Theorem 4.2: adding the potential in two steps, first ensuring strong cospectrality, then irreducibility.) So by
Theorem 2.11, the only way there could be no PGST between u and v is if

deg Pﬁc = degP"c.
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Let now P, denote the path graph on g+ 1 nodes, and let A; denote its adjacency matrix. Let us call the endpoints u and v.
It is clear that u and v are cospectral in Py, for instance because P; admits an equitable partition, each part consisting of a
pair of symmetric nodes, or the single node in the middle.

Thenif G; = GU, , Pq then M = A@A;, is the adjacency matrix of G4. Finally let H = M 4-Q - Dy, ,; denote the Hamiltonian
of G4 together with the potential. Then H = M; @ M, where M; = A+ Q - Dy,,,j and M, = Aq. It is well-known that the
eigenvalues of Ay, = Ag_q are 2cos(jw/q) = 1,2,...,q — 1).1tis also not hard to show that dengL = [(g+ 1)/2] and
degP? = |(q+ 1)/2].

For any non-zero real number A there is at most one prime p such that A = 2 cos(jx /(2p)) for some 1 <j < 2p — 1, and
since 0 is not an eigenvalue of A,, by assumption. Thus if p is a sufficiently large prime number and q = 2p, then A, and
Ay do not share any eigenvalues. Then, by Theorem 4.11 we find that

Quy

degP! = degPﬂ\:’] + degPi"2 —1= degPiG +[2p+1)/21—1= degPiG +p

and
degP" = degP™" + degP™ — 1 =degP + [(2p + 1)/2] — 1 = degP™ +p—1,

so deg P!  deg PH. At the same time Tr P/ — Q and Tr P — Q are both rational, and u and v are strongly cospectral and P
and PH are irreducible, as before. So by Theorem 2.11 there is PGST between u and v in G,.

We can in fact remove the condition of Theorem 4.5 that 0 not be an eigenvalue of A,, if we allow potential to be placed
on vertices other than u and v (the two cospectral vertices). This is the content of the next two theorems.

Theorem 4.12. Let G be a graph with u, v € V(G) cospectral. Let k be any odd integer and let P, denote the path on q nodes, and
call its endpoints u, v. Add a suitably chosen potential to every vertex of P, so that G \ u, v shares no eigenvalues with Py \ u, v.
Create G’ by gluing the path with potential to the nodes u and v. Then putting a transcendental potential Q on u and v induces
PGST fromutovinG.

Proof. Adding a potential to every vertex of P, simply adds a multiple of the identity to its adjacency matrix, so the
eigenvalues shift by the amount of the potential. Thus clearly a potential can be chosen so that G \ {u, v} and P} \ {u, v}
do not share any eigenvalues. Then the proof proceeds exactly as in the proof of Theorem 4.5 to show that there is PGST. O

Theorem 4.13. Let G be a graph with u, v € V(G) cospectral. Let k be any odd integer and let P, denote the path on q nodes, and
call its endpoints u, v. Denote its central vertex by w. Add a transcendental potential Q' to w and then create G’ by gluing the path
with this potential to the nodes u and v. Then putting a transcendental potential Q algebraically independent from Q' on u and v
induces PGST fromu tov in G'.

Proof. By Lemma 3.4, Q’ appears in Tr(P,.) but not in Tr(P_), but Q' is algebraically independent from any other terms that
could show up in the trace, so it must be that Tr(P,. ) and Tr(P_) are distinct. Then the theorem follows from Theorem 2.11. O

5. Examples, discussion, and further questions

Our results succeed in giving infinite families of graphs for which we can put a potential on the vertices to induce PGST
between two vertices. Furthermore, the potential required can be assumed to be zero on most vertices of the graph. In
addition, the examples produced do not require the symmetry condition of [ 15] and do not require the graph to be strongly
regular as in [9]. We will examine some examples, including the graphs shown in the introduction.

Example 5.1. Let G be the graph below.

Direct computation can show that vertices u and v are cospectral in G (but not strongly cospectral). Putting a transcendental
potential Q on u and v makes these vertices strongly cospectral by Lemma 3.2, and in fact P, and P_ have different degrees
in this case, so this potential is enough to obtain pretty good state transfer. Gluing paths with an even number of vertices
give an infinite family of graphs for which the potential induces pretty good state transfer, and each graph in this family does
not have an automorphism mapping u to v.
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Note that we chose paths of even length simply because we know that these change the degree of P, and P_ by the same
amount, and this graph already has deg(P ) # deg(P_). We could in fact glue any graph with a pair of cospectral vertices as
long as the resulting graph has P, and P_ with distinct degree or trace, and achieve a graph for which the potential induces
pretty good state transfer.

Example 5.2. Let G be the graph shown below.

Here, by direct computation, we have deg(P, ) = deg(P_) and Tr(P,) = Tr(P_) = 0, so in order for our results to give PGST,
we need to use Theorem 4.12 or 4.13.

We pose the natural question: given any pair of cospectral vertices u and v, can we always induce PGST by a potential
placed only on vertices u and v? We can answer this question in the negative with the following example.

Example 5.3. Consider the graph pictured below, with the vertices u, v as labeled.

u

Computation shows that deg(P,) = deg(P_) = 5 and Tr(P,) = Tr(P_) = Q, where Q is the value of the potential on u and
v. So Theorem 2.11 is uninformative. But using Lemma 2.10 directly, since the degrees of P, and P_ are odd, we can simply
take ¢; = 1 for each i and m; = —1 for each j, and we will have an integer linear combination of the eigenvalues equal
to 0 with ) ¢; and ) m; odd. Thus, no matter what value of potential we put at u and v, there cannot be PGST between
uand v.

The question remains open if we can induce PGST by putting potential on other vertices as well, since this could in theory
change the degrees of P, and P_.

To create an infinite family of graphs in which PGST occurs, we can glue paths to this graph via Theorem 4.5.

Note that this graph has an involution swapping u and v that fixes no vertices or edges (see [ 15]) and with an odd number
of orbits. This is the only situation we are aware of where there is a cospectral pair, and we can prove that no potential on u
and v can induce PGST. It is an open question if this is the only kind of such graphs.

A further question concerns the algebraic complexity of the potential necessary to induce PGST. In all of our results,
we have used transcendental values of potential. This accomplishes two things: first, we can turn any pair of cospectral
vertices into a strongly cospectral pair (Lemma 3.2), and further, this guarantees that P, and P_ are irreducible polynomials
(Lemma 3.6; note that irreducibility is necessary to apply Theorem 2.11). However, the assumption of a transcendental
potential is a drawback in terms of practical considerations. It is of interest to determine if simpler (algebraic, ideally rational)
potentials might do as well. Another question of note is to determine if any of the examples where we can get PGST can also
have PST.
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Appendix
Here we prove some lemmas used in the paper.

Lemma A.1. The field trace map Tri,» : K — F defined in the proof of Theorem 2.11 satisfies the following properties:

o Tri,F is an F-linear map.
e Fora € F,Trig;r(a) = [K : Fla.
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e ForK > £ > FwehaveTri)r = Trg roTrg .
e If £/ F is the splitting field of a degree r irreducible polynomial over F with roots A1, ..., Ay, then for any i

L:F
Tre r(Ai) = [ ] Zkk.
i

r

Proof. For a field extension K of F, recall the definition of the field trace, for @ € K is

Tre/r(e) = Y gla).

geGal(K/F)

The linearity over F is clear from the definition.

The second property follows since any automorphism in K/ F fixes any element of F.

Recall from the Galois correspondence that Aut(K/£) is a subgroup of Aut(kK/F). The third property follows from splitting
the sum deica,(,c 7 8(a)over cosets of Aut(K/F). . . ' o

Finally, £ is a Galois extension of F since it is the splitting field of an irreducible polynomial. For an individual root ;, we
have

Tre ()= Y. g0u)
geGal(KK/F)

and since £ is a Galois extension, the group acts transitivelyon A1, ..., A;.Let H < Gal(K/F) be the subgroup that fixes 1;. By
the orbit-stabilizer theorem, the cosets of H are in bijection with elements of the orbit of A;, whichisall of A1, ..., A, since
the action of the Galois group is transitive. This implies |H| = |Gal(£/F)|/r.Let g1, ..., g be a set of coset representatives
for H, then we can break up the sum as

D&Y h0) =) gOIH| = < :rf] 2 ke B
=1 J

j=1 heH

Lemma A.2. Let M be any real symmetric n x n matrix, and let u be an index for M. Suppose A is an eigenvalue of multiplicity at
least k of both M and M,,. Then there are k linearly independent eigenvectors of M corresponding to X that vanish at u.

Proof. If A has multiplicity strictly larger than k as an eigenvalue of M, then it is easy to see that we can adjust a basis for
the eigenspace so that at least k of the corresponding eigenvectors vanish at u.

So let us suppose that the multiplicity of A as an eigenvalue of M is exactly k, and as an eigenvalue of M, is at least k.
Let us denote by A; < --- < X, the eigenvalues of M, and by i1 < --- < u,_1 the eigenvalues of M,. Then the interlacing
theorem for symmetric matrices (see for example Theorem 4.3.8 of [ 12]) says we have

A= <A< < Ap1 < Upo1 < g
Then, given the assumption on the multiplicity of A above, we have Aj_1 < A = Aj = Aj;1 = -+ Ajyk—1 < Ajpk. There are
two possibilities for the p-s:

A== = Ujrk—1 or A= i1 =" = Ujrk—2

We will consider the first possibility, the second one can be dealt with in a similar fashion. Let us choose an orthonormal basis
(@i )p— of eigenvectors of M in such a way that ¢, @11, . . ., ¢jrk—2 all vanish on u. This can be done since the multiplicity of
A is k and we are only asking for the first k — 1 corresponding eigenvectors to vanish on u. Then, by the min-max principle,
we have

xT Mx

Aiqk—1 =  min
I+ x#0,xeRN xTx
XL @jpk—2
) xT Mx ) xTMyx
< min = min
X50,xeRN xTx x40, xeRN—1 xTx
XLo1o@jtk—2 XLp1 o Pjrk—2
X(u)=0
) xTMyx
< max min = Mjtk—1 = Ajpk—1.

V1o Yjpk—2 €RT™T x£0,xeRN—1 xTx
XLypoYjrk—2

This implies that the first inequality has to be equality, so there is an x attaining the minimum that is orthogonal to

®1, ..., Pi+k—2 and for which x(u) = 0. This x then has to be an eigenvector with eigenvalue A x_1 = A, so we exhibited k
pairwise orthogonal eigenvectors for A vanishing on u.

The case when A = pj_1 = - -+ = pjrx—2 is done similarly, except we use the characterization of A; as a maximum, and
we fiX ¢j11, ..., @jtk—1 tovanishonu. O
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