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a b s t r a c t

We construct infinite families of graphs in which pretty good state transfer can be induced
by adding a potential to the nodes of the graph (i.e. adding a number to a diagonal entry
of the adjacency matrix). Indeed, we show that given any graph with a pair of cospectral
nodes, a simple modification of the graph, along with a suitable potential, yields pretty
good state transfer between the nodes. This generalizes previous work, concerning graphs
with an involution, to asymmetric graphs.
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1. Introduction

Transfer of quantum information with high fidelity through networks of locally coupled spin particles is an important
problem in quantum information processing. Information can be considered as excitation in the network initiated at an input
node, which then spreads according to the action of a Hamiltonian. The quality of the transfer depends on how strongly the
excitation can then be concentrated at a given target node. The transfer is perfect if there is a time t at which the probability
of the excitation being at the target node is 1. Initiated by Bose [3], perfect state transfer has been extensively studied for
various networks, both from the physical [13] and the mathematical [8] point of view. It turns out that perfect state transfer
is notoriously difficult to achieve. All known constructions involve very special networks and/or very special, highly non-
uniform coupling strengths. In particular, it has been shown in [14] that for uniformly coupled chains of length at least four
there can never be perfect state transfer between endpoints, not even in the presence of magnetic fields.

There is a somewhat less restrictive notion of a pretty good state transfer, also referred to as ‘‘almost perfect state transfer’’.
This requires the transfer probability to get arbitrarily close to 1 as time passes. While pretty good state transfer is a close
approximation to perfect state transfer, it is somewhat easier to achieve. The first examples of spin chains admitting pretty
good state transfer appeared in [17]. However, as demonstrated in [10,2,5,16], even pretty good state transfer is relatively
rare in unmodulated spin chains with uniform couplings.

In this paper we study pretty good state transfer in the single-excitation subspace of a spin network with XX couplings,
in the presence of a magnetic field. We will use graph theoretic terminology throughout the paper. We denote the network
by G, the set of nodes (vertices) by V (G), and the set of links (edges) by E(G). The evolution of such a system is given by its
Hamiltonian

HXX =
1
2

∑
(i,j)∈E(G)

Jij(XiXj + YiYj) +

∑
i∈V (G)

Qi · Zi,
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Fig. 1. Asymmetric, irregular graphs with cospectral nodes. In each graph, the cospectral vertices are labeled u and v.

where Xi, Yi, Zi denote the action of the standard Pauli matrices on the particle at node i, Jij denotes the strength of the XX
coupling between nodes i and j, and the Qi’s give the strength of the magnetic field yielding an energy potential at each
node.

It has been shown [3,4] that the restriction of this Hamiltonian to the single-excitation subspace is modeled by a
continuous-time quantum walk on a graph with transition matrix, U(t), given by

U(t) = exp(itA)

where A is the (possibly weighted) adjacency matrix of the graph.

Definition 1.1. Let G be a graph with vertices u and v.

1. We say that G admits perfect state transfer (PST) from u to v if there is some time t > 0 such that

|U(t)u,v| = 1.

2. We say G admits pretty good state transfer (PGST) from u to v if, for any ϵ > 0, there is a time t > 0 such that

|U(t)u,v| > 1 − ϵ.

Our primary focus in this paperwill be the effect of adding a potential induced by amagnetic field (theQi above). Previous
work in [15] showed that in graphs with an involutional symmetry, one can often induce pretty good state transfer between
a pair of nodes by appropriately choosing a potential on the vertex set. In [9], it is shown that a potential can induce pretty
good state transfer in strongly regular graphs as well. The contribution of this paper is to show how to construct asymmetric,
non-regular graphs that admit PGST between a pair of nodes u, v if a suitably chosen potential is added to the adjacency
matrix at u and v. The novelty of our constructions is that we do not require any symmetry or regularity in the graph. In
addition, our results apply to arbitrary real symmetric matrices (not just adjacency matrices). We note that PST has been
exhibited in asymmetric simple unweighted graphs in [1].

A necessary condition for both PST and PGST between vertices u and v of a graph is that u and v must be cospectral
(see [8,2]), that is G \ u and G \ v have the same spectrum. One motivation for our previous work [15] is that symmetry
in a graph always naturally leads to cospectral vertices. It also holds that pairs of vertices in strongly regular graphs are
cospectral. However, cospectral pairs can arise in irregular graphs without any symmetry. Two relatively small examples
are shown in Fig. 1.

Our constructions come in two types, based on the following two observations concerning cospectral vertices. First, in
a graph with an equitable partition (defined in Section 4.1) with a part containing exactly two vertices, those two vertices
are cospectral (see Fig. 2 for an example). Second, given two graphs with a cospectral pair, the vertices remain cospectral
in the graph obtained by ‘‘gluing" the two graphs together along those vertices (see Lemma 4.6). We are able to show that
given any graph with a pair of cospectral vertices, a simple modification of the graph, together with an appropriately chosen
potential on the vertex set, yields PGST between those vertices. See Corollary 4.3, and Theorems 4.5, 4.12 and 4.13 for the
precise details.

The key tool in our analysis is Theorem 2.11, which takes advantage of the fact that the characteristic polynomial of the
adjacency matrix for a graph with cospectral nodes has a factorization. We give a simple, efficiently computable condition
on the factors that implies PGST. Note, however, that the converse of Theorem 2.11 does not hold in general. Another critical
piece in our proofs, of independent interest, is Lemma 3.2, which shows that adding a transcendental potential to a pair of
cospectral nodes actually makes them strongly cospectral (see Section 2 for the definition).

2. Preliminaries

Let F be a subfield of the real numbers. Let M be a symmetric matrix with entries F . We use φM ∈ F[t] to denote its
characteristic polynomial. The rows and columns of M will typically be indexed by the nodes of a finite graph. We will use
V (M) to denote the set of row/column indices of M , so we can think of M ∈ RV (M)×V (M). If S ⊂ V (M), we write MS for the
symmetric submatrix obtained fromM by removing the rows and columns indexed by S.
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Fig. 2. A graph with an equitable partition with a part of size 2 (vertices u and v), and hence a cospectral pair (but no involution swapping u and v).

Definition 2.1. For any vector z, let W (M, z) = ⟨z,Mz,M2z, . . .⟩ denote the M-invariant subspace generated by z. Let us
denote by ρz = ρz,M ∈ F[t] the minimal polynomial of M relative to z, that is, the smallest degree monic polynomial such
that ρz(M)z = 0. It is well-known that ρz divides the usual minimal polynomial of M and that the degree of ρz equals the
dimension ofW (M, z).

2.1. Cospectral nodes

Definition 2.2. LetM be a symmetric matrix. Two indices u, v ∈ V (M) are cospectral if φ(Mu) = φ(Mv).

Lemma 2.3 (Theorem 3.1 of [11]). Let M be a symmetric matrix, and let u, v ∈ V (M). Let M =
∑

λ λEλ be the spectral
decomposition of M. Here Eλ denotes the orthogonal projection onto the eigenspace of M corresponding to the eigenvalue λ. We
denote the characteristic vectors of u and v by eu, ev respectively. The following are equivalent:

1. u and v are cospectral.
2. (Eλ)u,u = (Eλ)v,v for all λ.
3. Mk(u, u) = Mk(v, v) for all k.
4. W (M, eu + ev) is orthogonal to W (M, eu − ev).

Definition 2.4. We define P+ to be the minimal polynomial of M relative to eu + ev , and P− to be the minimal polynomial
ofM relative to eu − ev .

Lemma 2.5. Given a symmetric matrix M and cospectral indices u, v ∈ V (M), the characteristic polynomial of M decomposes as

φM = P+ · P− · P0,

where P+ and P− have no multiple roots, and there is an orthonormal basis of eigenvectors of M such that:

1. for each root λ of P+ the basis contains a unique eigenvector ϕ with eigenvalue λ and ϕ(u) = ϕ(v) ̸= 0,
2. for each root λ of P− the basis contains a unique eigenvector ϕ with eigenvalue λ and ϕ(u) = −ϕ(v) ̸= 0,
3. for each root λ of P0 with multiplicity k the basis contains exactly k eigenvectors with eigenvalue λ all of which vanish on

both u and v.

In particular the degree of P± is the same as the dimension of the space W (M, eu ± ev).

Proof. Since M is diagonalizable, its minimal polynomial does not have multiple roots, and hence neither does P+ nor P−.
The roots of P+ are exactly those eigenvalues λ for which Eλ(eu + ev) ̸= 0, and for such λ the eigenvector ϕ = Eλ(eu + ev)
satisfies that ϕ(u) = ϕ(v). Similarly for P−. By cospectrality of u and v, the eigenvectors obtained for P+ and for P− are
pairwise orthogonal. Finally, extending to an orthogonal basis for M , it is clear that each remaining eigenvector satisfies
ϕ(u) = ϕ(v) = 0. □

Remark 2.6. Since the coefficients of P+ give the unique linear dependency among eu + ev,M(eu + ev), . . . ,Mk(eu + ev),
they belong to the same field as the entries ofM . The same is true for P−, and thus for P0.

Definition 2.7. The indices u, v ∈ V (M) are strongly cospectral if ϕ(u) = ±ϕ(v) for every eigenvector ϕ ofM .

Lemma 2.8. The following are equivalent:

1. u and v are strongly cospectral.
2. u and v are cospectral, and P+ and P− do not have any common roots.
3. Eλeu = ±Eλev for all λ.
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2.2. Pretty good state transfer

The discrete Schrödinger equation, for an n × nmatrixM , is given by

∂tψt = iMψt ,

where ψt ∈ Cn for t ∈ [0,∞). The solution of this equation can be written in the form

ψt = eitMψ0.

Definition 2.9. We say that M has PGST from u to v if ψ0 = eu implies that lim supt→∞ |ψt (v)| = 1, or equivalently, that
lim supt→∞ |eitM (u, v)| = 1.

The following is a characterization of PGST (see Theorem 2 in [2]).

Lemma 2.10. Let u, v ∈ V (M) for the symmetric matrix M. Then pretty good state transfer from u to v occurs if and only if the
following two conditions are satisfied:

1. The indices u and v are strongly cospectral.
2. Let {λi} be the roots of P+, and {µj} the roots of P−. Then for any choice of integers ℓi, mj such that∑

i

ℓiλi +
∑

j

mjµj = 0∑
i

ℓi +
∑

j

mj = 0,

we have∑
i

mi is even.

Note that the first condition could be weakened to just cospectral, since the second condition implies that P+ and P− do
not share any roots, so this implies strongly cospectral if the nodes are cospectral.

The following theorem generalizes a result from [15] and a lemma from [9].

Theorem 2.11. Let M be a symmetric matrix with entries in F with strongly cospectral indices u, v ∈ V (M), and assume that
P+ and P− are irreducible polynomials over F . Then if

Tr(P+)
deg(P+)

̸=
Tr(P−)
deg(P−)

,

where Tr denotes the trace (i.e. the sum of roots) of a polynomial, then there is PGST from u to v.

Proof. Our proof uses a technique from [15].
Suppose we have integers ℓi,mj satisfying∑

i

ℓiλi +
∑

j

mjµj = 0∑
i

ℓi +
∑

j

mj = 0.

To use Lemma 2.10, we wish to show
∑

i ℓi is even.
We will use a tool from Galois theory called the field trace of a field extension. For a Galois field extension K of F , we

define TrK/F : K → F by

TrK/F (α) =

∑
g∈Gal(K/F)

g(α).

The field trace is the trace of the linear map taking x ↦→ αx. In Lemma A.1 of the Appendix we record a few basic facts about
the field trace that we will use.

Now, letF be the base field (the field containing all the entries ofM), letL/F be the splitting field for P+,J /F the splitting
field for P−, andK/F the smallest field extension containing bothL and J . Let us denote r = deg(P+) and s = deg(P−). Since
P+ and P− are irreducible, then by Lemma A.1,

TrL/F (λi) =
[L : F]

r

∑
k

λk.
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Note further that
∑

k λk = Tr(P+), so we have shown

TrL/F (λi) =
[L : F]

r
(Tr(P+))

for any i. In a similar way, by examining P− we obtain

TrJ /F (µj) =
[J : F]

s
(Tr(P−))

for any j.
Now apply the field trace to our linear combination of the λi and µj, and using the properties above we have,

0 = TrK/F
(∑

ℓiλi +
∑

mjµj

)
= TrK/F

(∑
ℓiλi

)
+ TrK/F

(∑
mjµj

)
= [K : L] TrL/F

(∑
ℓiλi

)
+ [K : J ] TrJ /F

(∑
mjµj

)
= [K : L]

∑
ℓi TrL/F (λi) + [K : J ]

∑
mj TrJ /F (µj)

=
[K : L][L : F]

r
Tr(P+)

∑
ℓi +

[K : J ][J : F]

s
Tr(P−)

∑
mj

= [K : F]

(
Tr(P+)

r

∑
ℓi +

Tr(P−)
s

∑
mj

)
This, along with our assumption at the beginning gives us

Tr(P+)
r

∑
ℓi +

Tr(P−)
s

∑
mj = 0∑

ℓi +
∑

mj = 0.

This is a system of two equations in the variable
∑
λi,

∑
µj, and so if

Tr(P+)
r

̸=
Tr(P−)

s
,

then these two equations are linearly independent, and we obtain∑
λi =

∑
mj = 0.

In particular, each sum is even, so Lemma 2.10 implies that we get pretty good state transfer. □

3. Diagonal perturbation

In this section we investigate how, given a symmetric matrix M with cospectral indices u, v ∈ V (M), adding a diagonal
matrix D to M can be used to achieve strong cospectrality of u, v and irreducibility of P+ and P−. We are going to do this
by choosing D to have two non-zero values only. To establish notation, for any set of indices S ⊂ V (M), let DS denote the
diagonal matrix with 1s in the positions belonging to S and 0s elsewhere. Let Q be a real number and D = Q · D{u,v}.

Lemma 3.1. If u, v ∈ V (M) are cospectral indices for M, then they are also cospectral for M + D.

Proof.

φ(M+D)u = φMu − Q · φMuv = φMv − Q · φMuv = φ(M+D)v . □

3.1. Achieving strong cospectrality

The benefit of adding such a diagonal perturbation is that we can actually turn a pair of cospectral indices into strongly
cospectral ones.

Let us say that amatrixM has connected support if for any two indices u, v ∈ V (M) there is a k ≥ 0 such thatMk(u, v) ̸= 0.
In case of a matrix with non-negative entries this is equivalent to the underlying graph being connected.

Lemma 3.2. Let M be a symmetric matrix with connected support whose entries are in a field F ≤ R, and assume u, v ∈ V (M)
are cospectral. Suppose Q is transcendental over F , and D = Q · D{u,v}, then u and v are strongly cospectral for M + D.
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Proof. By simple expansion, and using that cospectrality means φMu = φMv , we can write

φM+D = φM + 2QφMv + Q 2φMuv . (1)

By [11, Lemma 8.4] it is sufficient to show that φMuv/φM+D has only simple poles. We prove this by contradiction. First, we
can assume that φM+D has multiple roots, and thus it is reducible over F(Q ). However, since Q is transcendental over F , it
has to factor over F[Q ]. So we can either write

φM+D = h · (Qf1 + f0) · (Qg1 + g0),

or possibly

φM+D = h · (Q 2f2 + Qf1 + f0),

where fi, gj, h ∈ F[x], and all the factors but h are irreducible over F[Q ]. In both cases it follows from (1) that h is a factor
φMuv , thus there is a polynomial ψ ∈ F[x] such that

φMuv

φM+D
=

ψ

(Qf1 + f0) · (Qg1 + g0)
or

φMuv

φM+D
=

ψ

(Q 2f2 + Qf1 + f0)
.

The second option immediately implies that all poles are simple since the denominator is irreducible and thus has simple
roots. In order to have non-simple poles in the first case, the two irreducible factors in the denominatormust have a common
root, but then they must have a common factor. However, they are irreducible over F(Q ), so the only factors they can have
are themselves, and since they are monic, they must coincide. This means that φM = hf 20 , φMu = φMv = hf1f0, φMu,v = hf 21 .
Thus ψu,v = φMuφMv − φMφMu,v = 0 so, by [7, Lemma 1.1, Chapter 4.1], we get (Eλ)u,v = 0 for all λ, soMk(u, v) = 0 for all k.
This contradicts the assumption thatM has connected support, so u, v must be strongly cospectral forM . □

3.2. Trace

We see from Theorem 2.11 that the trace of P+ and P− can be useful in proving that there is PGST between two cospectral
nodes. In this section we prove some important properties of Tr P± under diagonal perturbation.

Lemma 3.3. Let M be a symmetric matrix whose elements are in a field F ≤ R. Suppose u, v ∈ V (M) are cospectral for M and
let D = Q · D{u,v} where Q ∈ R is transcendental over F . Let φM+D = P+ · P− · P0 as in Lemma 2.5. Then Tr P+ − Q ∈ F and
Tr P− − Q ∈ F .

Proof. Let us recall that P± are the minimal polynomials ofM + D relative to eu ± ev , and that φM+D = P+ · P− · P0. Since Q
is transcendental over F , we have to have P+, P−, P0 ∈ F[Q , t].

First we show that both P+ and P− are at least linear in Q . To see this, observe that the u and v coordinates of
(M + D)k(eu + ev) contain a single term Q k and no higher power of Q shows up elsewhere in (M + D)k(eu + ev), nor in
(M+D)j(eu +ev) for any j < k. Hence if P+(t) = tk +ck−1tk−1

+· · ·where cj ∈ F[Q ], thenwe have 0 = P+(M+D)(eu +ev) =

(M + D)k(eu + ev) +
∑k−1

j=0 cj(M + D)j(eu + ev). This can only happen if the Q k coming from the first term is canceled by
something. This can only be if at least some of the cj coefficients are in F[Q ] \F . Thus P+ needs to be at least linear in Q . The
same argument shows this for P− as well.

Note that φM+D is quadratic in Q , which implies that both P+ and P− have to be exactly linear in Q . Going back to the
cancellation of the Q k term in (M + D)k(eu + ev), we see that since the coefficients cj are at most linear in Q , only the
ck−1(M + D)k−1(eu + ev) has a chance to cancel the Q k term, and for this it has to be that ck−1 + Q ∈ F . But −ck−1 = Tr P+,
so this implies Tr P+ − Q ∈ F . That the same holds for P− follows the exact same way. □

We can prove a similar result for diagonal perturbations at a single vertex. This will be useful in some of our constructions
in Section 4.

Lemma 3.4. Let M be a symmetric matrix with connected support whose elements are in a field F ≤ R. Suppose u, v ∈ V (M)
are cospectral for M, and letw ∈ V (M) be another index such that there is an integer d ≥ 0 for which ⟨ew,Md(eu + ev)⟩ ̸= 0. Let
D = Q · D{w} where Q ∈ R is transcendental over F , and suppose u and v are also cospectral for M + D. Let φM+D = P+ · P− · P0
as in Lemma 2.5. Then Tr P+ − Q ∈ F .

Proof. The argument is almost identical to the previous one. Let d be the smallest power for which ⟨ew,Md(eu + ev)⟩ ̸= 0.
From the setup it follows that φM+D ∈ F[Q , t] is linear in Q , thus the polynomial P+ ∈ F[Q , t] can be at most linear. But it
also has to be at least linear, since in (M+D)k(eu+ev) therewill be aQ k−d term appearing that would only cancel if one of the
cj coefficients of P+ contains Q . This coefficient then can only be ck−1 and, as previously, it can only happen if ck−1 + Q ∈ F ,
and thus Tr P+ − Q ∈ F . □
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Remark 3.5. Note that since φM+D is only linear in Q , then Q does not show up in P−. This implies in particular that,
⟨ew,Md(eu − ev)⟩ = 0 for all d.

3.3. Achieving irreducibility

Lemma 3.6. Let M be a symmetric matrix whose entries are in a field F ≤ R. Assume u, v ∈ V (M) are strongly cospectral
indices for M. If Q is transcendental over F and D = Q · D{u,v}, then the polynomials P+(M + D) and P−(M + D) are irreducible
over F(Q ).

Proof. By Lemma 3.2 the indices u, v are also strongly cospectral for M + D. Then φM+D factors as φM+D = P+ · P− · P0
by Lemma 2.5. Since such a factorization exists for all values of Q , it has to be a factorization in F[Q , t]. By expanding the
determinant we also have

φM+D = φM − 2QφMu + Q 2φMuv . (2)

Thuswe see thatφM+D is quadratic inQ , and thus P+, P−, and P0 can all be atmost quadratic inQ . By Lemma3.3, Tr P+−Q ∈ F
and Tr P− −Q ∈ F . Thus there are non-zero polynomials S±, R± ∈ F[t] such that P± = S± +Q ·R±, and hence by comparing
the degrees in Q , we get that P0 ∈ F[t].

Comparing to (2) we see that

φM = P0 · S+ · S−

φMu = P0 · (S+R− + R+S−)
φMuv = P0 · R+ · R−.

Now suppose that P+ is not irreducible. For transcendental Q , this implies that P+ factors in F[t,Q ], but since it is linear in
Q , the only way for this to happen is that there is some factor T ∈ F[t] that divides both S+ and R+. If this is the case, then
T · P0 divides all three of φM , φMu , φMuv .

Let (t −λ)k be a factor of T · P0. Then by Lemma A.2, there are k eigenvectors that vanish on u. By strong cospectrality of u
and v, these must vanish on v simultaneously, so there are k eigenvectors for λ that vanish on both u and v. This means that
(t − λ)k is already a factor of P0. Since this holds for all factors of T · P0 and hence T = 1. Thus P+ is irreducible. The same
argument gives that P− is also irreducible. □

4. Constructions

In this section we explain how to obtain graphs with a pair of cospectral nodes u, v where adding a potential Q at nodes
u and v, and possibly at a third node w results in PGST between u and v. The significance of these constructions is that they
yield examples without symmetries, in particular without an involution mapping u to v.

4.1. Equitable partitions

Our first construction is based on equitable partitions. These can be thought of as direct generalizations of graphs with
an involution.

Definition 4.1. An equitable partition of a symmetric matrix M is a partition P = {P1, . . . , Pk} of its index set V (M) such
that for any Pi, Pj ∈ P and any v1, v2 ∈ Pi, one has∑

u∈Pj

M(v1, u) =

∑
u∈Pj

M(v2, u).

Theorem 4.2. Let M be a symmetric matrix with connected support whose elements are in a field F ≤ R. Suppose M admits
an equitable partition P such that P1 = {u, v} and P2 = {w}, then for algebraically independent numbers Q1,Q2 that are
transcendental over F and for D = Q1 · D{u,v} + Q2 · D{w} the matrix M + D admits PGST between u and v.

Corollary 4.3. If a connected graph has an equitable partition with a part consisting of u, v and another part consisting ofw only,
then by adding suitable potentials at u, v, and w one can guarantee PGST between u and v.

Proof. We proceed step-by-step as follows: first we show that u and v are cospectral in both M and M + Q2 · D{w}. Then
we show that u and v are strongly cospectral in M + D, and furthermore that the corresponding P+ and P− are irreducible.
Finally, we show that Tr P+/deg P+ ̸= Tr P−/deg P− hence by Theorem 2.11 there is PGST between u and v.

Let us start by proving cospectrality of u and v. First, letΠP denote the partition matrix corresponding to P . That is, the
columns of ΠP are indexed by 1, 2, . . . , k, and the rows are indexed by V (M), and ΠP (j, x) is 1 if x ∈ Pj and 0 otherwise.
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Second, let MP denote the quotient matrix, given as MP (i, j) =
∑

y∈Pj
M(x, y) for some fixed x ∈ Pi. As P is equitable, the

valueMP (i, j) does not depend on the particular choice of x. Note, thatMP is a k×kmatrix, though not necessarily symmetric.
A simple computation shows thatM ·ΠP = ΠP ·MP . Note that, since P1 = {u, v}, we canwrite eu+ev asΠP (1, 0, . . . , 0)T .

Now we can compute

⟨eu − ev,Mm(eu + ev)⟩ = (eu − ev)TMmΠP (1, 0, . . . , 0)T = (eu − ev)TΠPMm
P (1, 0, . . . , 0)T = 0,

since (eu − ev)TΠP = 0. This shows thatW (M, eu + ev) is orthogonal toW (M, eu − ev) and hence u and v are cospectral.
AsP is also an equitable partition forM+Q2 ·D{w}, it follows that u and v are also cospectral forM+Q2 ·D{w}. Let us write

Q1 = A + B where A, B,Q2 are all algebraically independent of each other and of F . This can be done by choosing A to be
independent of Q1,Q2 and transcendental over F and then setting B = Q1 −A. Then, by Lemma 3.2 and the assumption that
A is transcendental overF(Q2), we find that u and v are strongly cospectral forM +Q2 ·D{w} +A ·D{u,v}. Then, by Lemmas 3.6
and 3.2, u and v are not only strongly cospectral forM+D = (M+Q2 ·D{w} +A ·D{u,v})+B ·D{u,v}, but also the corresponding
P+ and P− are irreducible.

Now, by Lemmas 3.3 and 3.4, we find that Tr P+ − Q2 ∈ F(Q1) and since φM+D is linear in Q2 this implies Tr P− ∈ F(Q1).
Then surely Tr P+/deg P+ cannot equal Tr P−/deg P− since that would imply Q2 ∈ F(Q1), a contradiction.

Finally, by Theorem 2.11 we get that there is PGST between u and v. □

Remark 4.4. Given any graph with an equitable partition with a part of size two (and thus a cospectral pair) it is
straightforward to add a single vertex and attach it to the vertices of one of the parts of the partition to produce a graph
satisfying the conditions of the corollary.

4.2. Gluing

Our second construction is based on an arbitrary graph G with a pair of cospectral nodes u, v ∈ V (G). We will show that
either simply adding a transcendental potential Q at the nodes u and v induces PGST between them, or else one can modify
G in a relatively simple way: by gluing a long path to G with u and v being its endpoints, and then adding a transcendental
potential Q at u and v we get PGST between u and v.

Theorem 4.5. Let G be a graph with u, v ∈ V (G) cospectral, and such that 0 is not an eigenvalue of the adjacency matrix of
G \ {u, v}. Fix an integer q ≥ 0. Construct Gq by gluing a path of length q to G by attaching its endpoints to u and v. In other
words, by adding q − 1 new nodes x1, x2, . . . , xq−1 to G together with the edges ux1, x1x2, x2x3, . . . , xq−2xq−1, xq−1v. (For q = 0
we simply take G0 = G.)

Let Q ∈ R be a transcendental number, and put a potential Q at the nodes u and v in Gq. Then either the potential induces
PGST between u and v in G or there is an infinite set of integers S ⊂ Z such that this potential induced PGST between u and v in
Gq for all q ∈ S.

Again, the main novelty of this construction is that it does not require the graph to admit any kind of symmetry. In fact,
one can start from any graph with a pair of cospectral nodes, of which many examples have been described in the literature.
We give the proof at the end of this section.

We begin by describing a general gluing construction that preserves cospectrality. This has been independently discov-
ered by Godsil [6]. As we have done so far, we will prove everything in the general context of symmetric matrices, but we
are still primarily interested in the case where the matrices in question are the adjacency matrices of graphs.

Let M1 and M2 be symmetric matrices such that V (M1) ∩ V (M2) = {u, v}. We can extend them to matrices M̃1, M̃2
on V (M1) ∪ V (M2) by declaring them to be 0 wherever they were not previously defined. Then we define their sum
M1 ⊕ M2 = M̃1 + M̃2, in particular V (M1 ⊕ M2) = V (M1) ∪ V (M2). When Mi is the adjacency matrix of the graph Gi
(i = 1,2), thenM = M1 ⊕M2 is the adjacency matrix of G = G1 ∪uv G2 sometimes referred to as the 2-sum of G1 and G2, that
is obtained by gluing the two u nodes together and the two v nodes together. Note that Gmay have multiple edges.

Lemma 4.6. If u, v ∈ V (Mi); (i = 1, 2) are cospectral pairs for both M1 and M2, then they are also cospectral in M1 ⊕ M2.

Proof. LetM = M1 ⊕ M2. We can compute φMu by expanding the determinant along the column corresponding to v:

φMu = φM1uφM2uv + φM2uφM1uv − tφM1uvφM2uv .

By cospectrality φMju
= φMjv

, and thus the right hand side does not change when exchanging the roles of u and v. Hence
φMu = φMv as claimed. □

In what follows we assume that u and v are indeed cospectral in M1 and in M2 and let M = M1 ⊕ M2. Let us introduce
the notation φMj = P j

+ · P j
− · P j

0 (j = 1, 2) and φM = P+ · P− · P0, according to Lemma 2.5.

Lemma 4.7. deg P+ ≤ deg P1
+

+ deg P2
+

− 1 and deg P− ≤ deg P1
−

+ deg P2
−

− 1
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Proof. We know, by Definitions 2.4 and 2.1 that deg P+ = dimW (M, eu + ev) and deg P j
+ = dimW (M̃j, eu + ev). We will

show that W (M, eu + ev) ≤ W (M̃1, eu + ev) + W (M̃2, eu + ev). From this, the first part of the lemma will follow since
⟨eu + ev⟩ ≤ W (M̃1, eu + ev) ∩ W (M̃2, eu + ev).

Let us denote by Π1,Π2, and Π0 the ‘‘natural’’ projection operators from RG to RG1 ,RG2 , and R{u,v} respectively. First
note that, by cospectrality, euMk(eu + ev) = evMk(eu + ev) for any k. In other words, eu + ev is an eigenvector of Π0Mk

for any k. The same is true with M̃1 or M̃2 in place of M . Also note that a simple computation gives M̃1M̃2 = M̃1Π0M̃2 and
M̃2M̃1 = M̃2Π0M̃1.

It is then sufficient to prove thatΠ1Mk(eu + ev) ∈ W (M̃1, eu + ev) andΠ2Mk(eu + ev) ∈ W (M̃2, eu + ev). Without loss of
generality it is sufficient to prove the first one. UsingM = M̃1 + M̃2 we can compute

Mk
=

k∑
j=0

⎛⎜⎜⎝M̃ j
1

∑
0<j1,j2,...

j+j1+j2+···=k

M̃ j1
2 M̃ j2

1 M̃ j3
2 M̃ j4

1 . . .

⎞⎟⎟⎠
and so

Π1Mk(eu + ev) =

k∑
j=0

⎛⎜⎜⎝Π1M̃
j
1

∑
0<j1,j2,...

j+j1+j2+···=k

Π0M̃
j1
2 Π0M̃

j2
1 Π0M̃

j3
2 Π0M̃

j4
1 . . . (eu + ev)

⎞⎟⎟⎠ .

Here, each term in the sum is just a multiple of (eu + ev) since it is an eigenvector of eachΠ0M̃ j
ϵ : ϵ = 1,2. Hence there are

constants cj depending only on j and k such that

Π1Mk(eu + ev) =

k∑
j=0

cjΠ1M̃
j
1(eu + ev) =

k∑
j=0

cj
(
M̃ j

1(eu + ev) −Π0M̃
j
1(eu + ev)

)
∈ W (M̃1, eu + ev),

and this is what we wanted to show.
The argument for P− is analogous. □

Remark 4.8. Any eigenvector of M1 or M2 that vanishes on u, v can be extended to V (M) by zeros to obtain an eigenvector
of M with the same eigenvalue. Thus P0 is divisible by P1

0 · P2
0 .

Lemma 4.9. Let kj ≥ 0 denote the multiplicity of λ in P j
0 (j = 1, 2). Suppose the multiplicity of λ in P0 is strictly bigger than

k1 + k2. Then λ is an eigenvalue of M1uv and M2uv .

Proof. By the assumption on the multiplicity there has to be an eigenvector ofM with eigenvalue λ vanishing on both u and
v that is not identically zero on either M1 or M2. The restriction of this vector to V (M1) \ {u, v} and to V (M2) \ {u, v} then
yield eigenvectors showing that λ is indeed an eigenvalue of both of these matrices. □

Corollary 4.10. If M1uv and M2uv do not share any eigenvalues, then P0 = P1
0 · P2

0 .

Theorem 4.11. If M1uv and M2uv do not share any eigenvalues, then deg P+ = deg P1
+

+ deg P2
+

− 1 and deg P− =

deg P1
−

+ deg P2
−

− 1.

Proof. By Corollary 4.10 and by Lemma 4.7 we have

|V (M)| = deg P0 + deg P+ + deg P− ≤

≤ deg P1
0 + deg P2

0 + deg P1
+

+ deg P2
+

− 1 + deg P1
−

+ deg P2
−

− 1 = |V (M1)| + |V (M2)| − 2 = |V (M)|

Since the left and right hand sides are equal, there must be equality in the middle, finishing the proof. □

Proof of Theorem 4.5. Let A denote the adjacency matrix of G. By assumption u and v are cospectral for A. The matrix
HG = A + Q · D{u,v} is the Hamiltonian for the graph G together with the potential. By Lemmas 3.2 and 3.6 we know that
u and v are strongly cospectral for HG and the corresponding PHG

+ and PHG
− polynomials are irreducible, and by Lemma 3.3

we know that Tr PHG
+ − Q and Tr PHG

− − Q are both rational. (To show irreducibility we need to apply the same trick as in
the proof of Theorem 4.2: adding the potential in two steps, first ensuring strong cospectrality, then irreducibility.) So by
Theorem 2.11, the only way there could be no PGST between u and v is if

deg PHG
+ = deg PHG

− .
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Let now Pq denote the path graph on q+1 nodes, and let Aq denote its adjacencymatrix. Let us call the endpoints u and v.
It is clear that u and v are cospectral in Pq, for instance because Pq admits an equitable partition, each part consisting of a
pair of symmetric nodes, or the single node in the middle.

Then if Gq = G∪u,v Pq thenM = A⊕Aq is the adjacencymatrix of Gq. Finally letH = M+Q ·D{u,v} denote the Hamiltonian
of Gq together with the potential. Then H = M1 ⊕ M2 where M1 = A + Q · D{u,v} and M2 = Aq. It is well-known that the
eigenvalues of Aquv = Aq−1 are 2 cos(jπ/q) (j = 1, 2, . . . , q − 1). It is also not hard to show that deg P2

+
= ⌈(q + 1)/2⌉ and

deg P2
−

= ⌊(q + 1)/2⌋.
For any non-zero real number λ there is at most one prime p such that λ = 2 cos(jπ/(2p)) for some 1 ≤ j ≤ 2p − 1, and

since 0 is not an eigenvalue of Auv by assumption. Thus if p is a sufficiently large prime number and q = 2p, then Aquv and
Auv do not share any eigenvalues. Then, by Theorem 4.11 we find that

deg PH
+

= deg PM1
+ + deg PM2

+ − 1 = deg PHG
+ + ⌈(2p + 1)/2⌉ − 1 = deg PHG

+ + p

and

deg PH
−

= deg PM1
− + deg PM2

− − 1 = deg PHG
− + ⌊(2p + 1)/2⌋ − 1 = deg PHG

− + p − 1,

so deg PH
+

̸= deg PH
−
. At the same time Tr PH

+
−Q and Tr PH

−
−Q are both rational, and u and v are strongly cospectral and PH

+

and PH
−
are irreducible, as before. So by Theorem 2.11 there is PGST between u and v in Gq.

We can in fact remove the condition of Theorem 4.5 that 0 not be an eigenvalue of Auv if we allow potential to be placed
on vertices other than u and v (the two cospectral vertices). This is the content of the next two theorems.

Theorem 4.12. Let G be a graph with u, v ∈ V (G) cospectral. Let k be any odd integer and let Pk denote the path on q nodes, and
call its endpoints u, v. Add a suitably chosen potential to every vertex of Pk so that G \ u, v shares no eigenvalues with Pk \ u, v.
Create G′ by gluing the path with potential to the nodes u and v. Then putting a transcendental potential Q on u and v induces
PGST from u to v in G′.

Proof. Adding a potential to every vertex of Pk simply adds a multiple of the identity to its adjacency matrix, so the
eigenvalues shift by the amount of the potential. Thus clearly a potential can be chosen so that G \ {u, v} and Pk \ {u, v}
do not share any eigenvalues. Then the proof proceeds exactly as in the proof of Theorem 4.5 to show that there is PGST. □

Theorem 4.13. Let G be a graph with u, v ∈ V (G) cospectral. Let k be any odd integer and let Pk denote the path on q nodes, and
call its endpoints u, v. Denote its central vertex byw. Add a transcendental potential Q ′ tow and then create G′ by gluing the path
with this potential to the nodes u and v. Then putting a transcendental potential Q algebraically independent from Q ′ on u and v
induces PGST from u to v in G′.

Proof. By Lemma 3.4, Q ′ appears in Tr(P+) but not in Tr(P−), but Q ′ is algebraically independent from any other terms that
could showup in the trace, so itmust be that Tr(P+) and Tr(P−) are distinct. Then the theorem follows fromTheorem2.11. □

5. Examples, discussion, and further questions

Our results succeed in giving infinite families of graphs for which we can put a potential on the vertices to induce PGST
between two vertices. Furthermore, the potential required can be assumed to be zero on most vertices of the graph. In
addition, the examples produced do not require the symmetry condition of [15] and do not require the graph to be strongly
regular as in [9]. We will examine some examples, including the graphs shown in the introduction.

Example 5.1. Let G be the graph below.

u

v

Direct computation can show that vertices u and v are cospectral in G (but not strongly cospectral). Putting a transcendental
potential Q on u and v makes these vertices strongly cospectral by Lemma 3.2, and in fact P+ and P− have different degrees
in this case, so this potential is enough to obtain pretty good state transfer. Gluing paths with an even number of vertices
give an infinite family of graphs for which the potential induces pretty good state transfer, and each graph in this family does
not have an automorphism mapping u to v.
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Note that we chose paths of even length simply because we know that these change the degree of P+ and P− by the same
amount, and this graph already has deg(P+) ̸= deg(P−). We could in fact glue any graph with a pair of cospectral vertices as
long as the resulting graph has P+ and P− with distinct degree or trace, and achieve a graph for which the potential induces
pretty good state transfer.

Example 5.2. Let G be the graph shown below.

u v

Here, by direct computation, we have deg(P+) = deg(P−) and Tr(P+) = Tr(P−) = 0, so in order for our results to give PGST,
we need to use Theorem 4.12 or 4.13.

We pose the natural question: given any pair of cospectral vertices u and v, can we always induce PGST by a potential
placed only on vertices u and v? We can answer this question in the negative with the following example.

Example 5.3. Consider the graph pictured below, with the vertices u, v as labeled.

u

v

Computation shows that deg(P+) = deg(P−) = 5 and Tr(P+) = Tr(P−) = Q , where Q is the value of the potential on u and
v. So Theorem 2.11 is uninformative. But using Lemma 2.10 directly, since the degrees of P+ and P− are odd, we can simply
take ℓi = 1 for each i and mj = −1 for each j, and we will have an integer linear combination of the eigenvalues equal
to 0 with

∑
ℓi and

∑
mj odd. Thus, no matter what value of potential we put at u and v, there cannot be PGST between

u and v.
The question remains open if we can induce PGST by putting potential on other vertices as well, since this could in theory

change the degrees of P+ and P−.
To create an infinite family of graphs in which PGST occurs, we can glue paths to this graph via Theorem 4.5.
Note that this graph has an involution swapping u and v that fixes no vertices or edges (see [15]) andwith an odd number

of orbits. This is the only situation we are aware of where there is a cospectral pair, and we can prove that no potential on u
and v can induce PGST. It is an open question if this is the only kind of such graphs.

A further question concerns the algebraic complexity of the potential necessary to induce PGST. In all of our results,
we have used transcendental values of potential. This accomplishes two things: first, we can turn any pair of cospectral
vertices into a strongly cospectral pair (Lemma 3.2), and further, this guarantees that P+ and P− are irreducible polynomials
(Lemma 3.6; note that irreducibility is necessary to apply Theorem 2.11). However, the assumption of a transcendental
potential is a drawback in terms of practical considerations. It is of interest to determine if simpler (algebraic, ideally rational)
potentials might do as well. Another question of note is to determine if any of the examples where we can get PGST can also
have PST.
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Appendix

Here we prove some lemmas used in the paper.

Lemma A.1. The field trace map TrK/F : K → F defined in the proof of Theorem 2.11 satisfies the following properties:

• TrK/F is an F-linear map.
• For α ∈ F , TrK/F (α) = [K : F]α.
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• For K ≥ L ≥ F we have TrK/F = TrL/F ◦ TrK/L.
• If L/F is the splitting field of a degree r irreducible polynomial over F with roots λ1, . . . , λr , then for any i

TrL/F (λi) =
[L : F]

r

∑
j

λk.

Proof. For a field extension K of F , recall the definition of the field trace, for α ∈ K is

TrK/F (α) =

∑
g∈Gal(K/F)

g(α).

The linearity over F is clear from the definition.
The second property follows since any automorphism in K/F fixes any element of F .
Recall from the Galois correspondence that Aut(K/L) is a subgroup of Aut(K/F). The third property follows from splitting

the sum
∑

g∈Gal(K/F) g(α) over cosets of Aut(K/F).
Finally, L is a Galois extension of F since it is the splitting field of an irreducible polynomial. For an individual root λi, we

have

TrL/F (λi) =

∑
g∈Gal(K/F)

g(λi)

and sinceL is a Galois extension, the group acts transitively on λ1, . . . , λr . LetH ≤ Gal(K/F) be the subgroup that fixes λi. By
the orbit–stabilizer theorem, the cosets of H are in bijection with elements of the orbit of λi, which is all of λ1, . . . , λr since
the action of the Galois group is transitive. This implies |H| = |Gal(L/F)|/r . Let g1, . . . , gr be a set of coset representatives
for H , then we can break up the sum as

r∑
j=1

gj
∑
h∈H

h(λi) =

r∑
j=1

gj(λi)|H| =
[L : F]

r

∑
j

λk. □

Lemma A.2. Let M be any real symmetric n× n matrix, and let u be an index for M. Suppose λ is an eigenvalue of multiplicity at
least k of both M and Mu. Then there are k linearly independent eigenvectors of M corresponding to λ that vanish at u.

Proof. If λ has multiplicity strictly larger than k as an eigenvalue of M , then it is easy to see that we can adjust a basis for
the eigenspace so that at least k of the corresponding eigenvectors vanish at u.

So let us suppose that the multiplicity of λ as an eigenvalue of M is exactly k, and as an eigenvalue of Mu is at least k.
Let us denote by λ1 ≤ · · · ≤ λn the eigenvalues of M , and by µ1 ≤ · · · ≤ µn−1 the eigenvalues of Mu. Then the interlacing
theorem for symmetric matrices (see for example Theorem 4.3.8 of [12]) says we have

λ1 ≤ µ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ µn−1 ≤ λn.

Then, given the assumption on the multiplicity of λ above, we have λj−1 < λ = λj = λj+1 = · · · λj+k−1 < λj+k. There are
two possibilities for the µ-s:

λ = µj = · · · = µj+k−1 or λ = µj−1 = · · · = µj+k−2

Wewill consider the first possibility, the second one can be dealtwith in a similar fashion. Let us choose an orthonormal basis
(ϕk)nk=1 of eigenvectors ofM in such a way that ϕj, ϕj+1, . . . , ϕj+k−2 all vanish on u. This can be done since the multiplicity of
λ is k and we are only asking for the first k − 1 corresponding eigenvectors to vanish on u. Then, by the min–max principle,
we have

λj+k−1 = min
x̸=0,x∈Rn

x⊥ϕ1,...,ϕj+k−2

xTMx
xT x

≤ min
x̸=0,x∈Rn

x⊥ϕ1,...,ϕj+k−2
x(u)=0

xTMx
xT x

= min
x̸=0,x∈Rn−1

x⊥ϕ̃1,...,ϕ̃j+k−2

xTMux
xT x

≤ max
y1,...,yj+k−2∈Rn−1

min
x̸=0,x∈Rn−1

x⊥y1,...,yj+k−2
x(u)=0

xTMux
xT x

= µj+k−1 = λj+k−1.

This implies that the first inequality has to be equality, so there is an x attaining the minimum that is orthogonal to
ϕ1, . . . , ϕj+k−2 and for which x(u) = 0. This x then has to be an eigenvector with eigenvalue λj+k−1 = λ, so we exhibited k
pairwise orthogonal eigenvectors for λ vanishing on u.

The case when λ = µj−1 = · · · = µj+k−2 is done similarly, except we use the characterization of λj as a maximum, and
we fix ϕj+1, . . . , ϕj+k−1 to vanish on u. □
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