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a b s t r a c t

For a polynomial f ∈ R[X, Y ], we define a bipartite graph ΓR(f ) where each partite set is a
copy of R2. Furthermore, (a1, a2) in the first partite set is adjacent to [x1, x2] in the second
if and only if a2 + x2 = f (a1, x1). The main result of this paper is that every graph ΓR(f ) has
girth 4 or 6, and moreover we classify infinite families of such graphs by girth.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

An algebraically defined graph ΓR(f2(X, Y ), f3(X, Y ), . . . , fn(X, Y )) is constructed using a ring R and functions fi(X, Y ),
where 2 ≤ i ≤ n for an integer n ≥ 2. These graphs are bipartite where each partite set is a copy of Rn. We label the
vertices in the first partite set (a1, a2, . . . , an) and in the second [x1, x2, . . . , xn]. In order for two vertices to be adjacent,
denoted (a1, a2, . . . , an) ∼ [x1, x2, . . . , xn], their coordinates must satisfy the equations ai + xi = fi(a1, x1) for all i such that
2 ≤ i ≤ n.

ConsideringΓR(f2(X, Y ), f3(X, Y )), Dmytrenko, Lazebnik, andWilliford [2] studied the casewhereR is a finite field of odd
order Fq and f2 and f3 are monomials. They conjectured that all such monomial graphs of girth at least 8 are isomorphic to
ΓFq (XY , XY 2). This work was expanded upon by Kronenthal [4], and the conjecture was ultimately proven by Hou, Lappano,
and Lazebnik [3]. In addition, Kronenthal and Lazebnik [5] and Kronenthal, Lazebnik, and Williford [6] studied graphs over
algebraically closed fields of characteristic zero and applied some of their techniques to graphs over finite fields.

The study of two-dimensional algebraically defined graphs, and in particular their girth, can be motivated by the
construction of projective planes. Indeed, it is known (see Dmytrenko [1] and Lazebnik and Thomason [7]) that every graph
ΓFq (f ) with girth greater than 4 can be completed to a projective plane of order q (although not all projective planes of order
q can be constructed in this way). This construction further motivates the study of two-dimensional algebraically defined
graphs ΓR(f2(X, Y )) over R = R. For ease of notation, we call this graph ΓR(f ) with vertices of the form (a, a2) and [x, x2].
Our main result is as follows:

Theorem 1. For all f (X, Y ) ∈ R[X, Y ], the girth of ΓR(f ) is either 4 or 6.
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Moreover, we can explicitly state the girth of infinite families of algebraically defined graphs over R. Before presenting
our theorem, we need to make a few comments. We will use the notation N to represent the positive integers, with
2N = {2n | n ∈ N} and 2N − 1 = {2n − 1 | n ∈ N}. Note that a polynomial f (X, Y ) =

∑
i,j∈N

αi,jX iY j
∈ R[X, Y ] can

have only finitely many nonzero terms. In this paper, a term αi,jX iY j is defined to be mixed when i and j are of opposite
parity. Finally, a few conditions in Theorem 2 involve considering the minimum or maximum of a set; if the set is empty
then that specific condition would not yield a girth 4 graph.

Theorem 2. Let f (X, Y ) =

∑
i,j∈N

αi,jX iY j
∈ R[X, Y ]. If i and j are odd for all nonzero αi,j , and all αi,j ≥ 0 or all αi,j ≤ 0, then ΓR(f )

has girth 6 (see Proposition 7). Moreover, ΓR(f ) has girth 4 in each of the following cases:

1. At least one of
∑
i,j∈N

αi,jai+j ,
∑

i,j∈2N−1

αi,jai+j ,
∑
i,j∈N

αi,j(−1)iai+j ,
∑
i,j∈N

αi,j(−1)jai+j ,
∑

i∈2N−1

∑
j∈N

αi,jai+j , or
∑
i∈N

∑
j∈2N−1

αi,jai+j is

zero for some nonzero real number a.
2. At least one ofmax{i | αi,j ̸= 0 for some j} ormax{j | αi,j ̸= 0 for some i} is even.
3. At least one ofmin{i | αi,j ̸= 0 for some j} ormin{j | αi,j ̸= 0 for some i} is even.

4. At least one of min

⎧⎨⎩i

⏐⏐⏐⏐⏐⏐
∑
j∈N

αi,j ̸= 0

⎫⎬⎭, max

⎧⎨⎩i

⏐⏐⏐⏐⏐⏐
∑
j∈N

αi,j ̸= 0

⎫⎬⎭, min

{
j

⏐⏐⏐⏐⏐∑
i∈N

αi,j ̸= 0

}
, or max

{
j

⏐⏐⏐⏐⏐∑
i∈N

αi,j ̸= 0

}
is

even.
5. (a) Let n = min{i ∈ 2N | αi,j ̸= 0 for some j}. There exists a nonzero term αn,jXnY j that is mixed, and for p < n, all

nonzero terms αp,jXpY j are mixed.
(b) Let n = min{j ∈ 2N | αi,j ̸= 0 for some i}. There exists a nonzero term αi,nX iY n that is mixed, and for p < n, all

nonzero terms αi,pX iY p are mixed.
6. (a) Let k = max{i | αi,j ̸= 0 for some j} and ℓ = min{i | αi,j ̸= 0 for some j}. Let p = max{j | αk,j ̸= 0},

m = min{j | αk,j ̸= 0}, q = max{j | αℓ,j ̸= 0}, and n = min{j | αℓ,j ̸= 0}. Either m and n are of opposite
parity or p and q are of opposite parity.

(b) Let k = max{j | αi,j ̸= 0 for some i} and ℓ = min{j | αi,j ̸= 0 for some i}. Let p = max{i | αi,k ̸= 0},
m = min{i | αi,k ̸= 0}, q = max{i | αi,ℓ ̸= 0}, and n = min{i | αi,ℓ ̸= 0}. Either m and n are of opposite
parity or p and q are of opposite parity.

7. (a) The sums
∑
j∈N

αp,j and
∑
j∈N

αq,j have opposite signs, where p = min

⎧⎨⎩i

⏐⏐⏐⏐⏐⏐
∑
j∈N

αi,j ̸= 0

⎫⎬⎭ and

q = max

⎧⎨⎩i

⏐⏐⏐⏐⏐⏐
∑
j∈N

αi,j ̸= 0

⎫⎬⎭.

(b) The sums
∑
i∈N

αi,p and
∑
i∈N

αi,q have opposite signs, where p = min

{
j

⏐⏐⏐⏐⏐∑
i∈N

αi,j ̸= 0

}
and

q = max

{
j

⏐⏐⏐⏐⏐∑
i∈N

αi,j ̸= 0

}
.

We will now briefly discuss how the rest of this paper is organized. In Section 2, we introduce important notation and
tools that we will use throughout this paper. In Section 3, we prove Theorems 1 and 2. In Section 4, we apply some results
to other rings and fields of characteristic zero. We end with a conjecture on the girth of algebraically defined graphs ΓR(f )
where f ∈ R[X, Y ] is a trinomial.

2. Preliminary tools & notation

We will begin by discussing restrictions on the first coordinates in a 4-cycle. The following lemma is discussed on
page 2 of [7].

Lemma 3. Let ΓR(f ) contain a 4-cycle (a, a2) ∼ [x, x2] ∼ (b, b2) ∼ [y, y2] ∼ (a, a2). Then a ̸= b and x ̸= y.

We now state a necessary and sufficient condition for the existence of a 4-cycle (a, a2) ∼ [x, x2] ∼ (b, b2) ∼ [y, y2] ∼

(a, a2) in ΓR(f ).

Lemma 4 ([1]). A 4-cycle exists in ΓR(f ) if and only if there exist a, b, x, y ∈ R such that a ̸= b, x ̸= y, and

0 = f (a, x) − f (b, x) + f (b, y) − f (a, y). (1)
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Since (1) appears repeatedly throughout this paper, we will introduce the following notation used, e.g., in [1,2,5,6]:

∆2(f )(a, b; x, y) = f (a, x) − f (b, x) + f (b, y) − f (a, y).

Observe that when f (X, Y ) =

∑
i,j∈N

αi,jX iY j,

∆2(f )(a, b; x, y) =

∑
i,j∈N

αi,j(ai − bi)(xj − yj).

Of particular interest, ∆2(f )(a, b; x, y) depends only on the first coordinates of the vertices in the cycle. Moreover, note that
there will be many 4-cycles with the same first coordinates as a given 4-cycle (a, a2) ∼ (x, x2) ∼ (b, b2) ∼ (y, y2) ∼ (a, a2),
and we say that they are all of type (a, b; x, y).

Lemmas 3 and 4 can be extended to a 6-cycle (a, a2) ∼ [x, x2] ∼ (b, b2) ∼ [y, y2] ∼ (c, c2) ∼ [z, z2] ∼ (a, a2), which is
contained in ΓR(f ) if and only if there exist distinct a, b, c and distinct x, y, z such that

∆3(f )(a, b, c; x, y, z) = f (a, x) − f (b, x) + f (b, y) − f (c, y) + f (c, z) − f (a, z) = 0.

Furthermore, when f (X, Y ) =

∑
i,j∈N

αi,jX iY j,

∆3(f )(a, b, c; x, y, z) =

∑
i,j∈N

αi,j
[
xj(ai − bi) + yj(bi − c i) + z j(c i − ai)

]
. (2)

Again, this expression depends only on the first coordinates of the vertices in the cycle. There will also be many 6-cycles
with the same first coordinates, so we say that they are all of type (a, b, c; x, y, z).

We end this section with the following isomorphisms of the graph ΓF(f ), where F is a field; see, e.g., [7] for proofs. First
note that for a function f = f (X, Y ), we define f ∗

= f (Y , X).

Lemma 5. Let F be a field and f ∈ F[X, Y ]. Then

ΓF(f ) ∼= ΓF(f ∗), (I1)

ΓF(f ) ∼= ΓF(cf ), for all c ∈ F\{0}, and (I2)

ΓF(f ) ∼= ΓF(f + g + h), for all g ∈ F[X] and h ∈ F[Y ]. (I3)

We will use (I1) to assume, when analyzing terms of a polynomial, a given condition applies to X instead of Y . By (I2),
we can choose a leading coefficient by multiplying through by an appropriate c-value. Finally, as a consequence of (I3), we
are able to assume that every term in our polynomial is a scalar multiple of X iY j for i, j ∈ N.

3. Proofs of Theorems 1 and 2

We begin with a lemma used frequently throughout the remainder of this paper.

Lemma 6. Let f (X, Y ) ∈ R[X, Y ]. If there exists a real numberm ̸= 0 such that at least one of f (X,m) and f (m, Y ) is not injective,
then ΓR(f ) has girth 4.

Proof. Let f (X, Y ) =

∑
i,j∈N

αi,jX iY j
∈ R[X, Y ]. Without loss of generality by (I1), we will assume there exists a real number

m ̸= 0 such that f (X,m) is not injective. Then we can fix a ̸= b such that f (a,m) = f (b,m), and so

∆2(f )(a, b;m, 0) =

∑
i,j∈N

αi,j(ai − bi)mj
= f (a,m) − f (b,m) = 0.

Hence, by Lemma 4, a 4-cycle exists, and so ΓR(f ) has girth 4. □

In addition to Lemma 6, another tool we will use in this section is end behavior. In other words, for a univariate
polynomial f (X) of even degree (respectively odd degree), lim

X→∞

f (X) = lim
X→−∞

f (X) = ±∞ (respectively lim
X→∞

f (X) =

− lim
X→−∞

f (X) = ±∞).
We will prove Theorem 2 by considering its seven parts individually; we will denote part 1 by Theorem 2.1, and so on.

To begin, we will consider when particular combinations of the polynomial’s coefficients sum to zero.
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Theorem 2.1. Let f (X, Y ) =

∑
i,j∈N

αi,jX iY j
∈ R[X, Y ]. If at least one of

∑
i,j∈N

αi,jai+j ,
∑

i,j∈2N−1

αi,jai+j ,
∑
i,j∈N

αi,j(−1)iai+j ,∑
i,j∈N

αi,j(−1)jai+j ,
∑

i∈2N−1

∑
j∈N

αi,jai+j , or
∑
i∈N

∑
j∈2N−1

αi,jai+j is zero for some nonzero real number a, then ΓR(f ) has girth 4.

Proof. Let f (X, Y ) =

∑
i,j∈N

αi,jX iY j
∈ R[X, Y ] such that

∑
i,j∈N

αi,jai+j
= 0. Then, by Lemma 4, the graph ΓR(f ) contains a 4-cycle

of type (a, 0; a, 0) since

∆2(f )(a, 0; a, 0) =

∑
i,j∈N

αi,j(ai − 0i)(aj − 0j) =

∑
i,j∈N

αi,jai+j
= 0.

Similarly, in the caseswhere f (X, Y ) is a polynomial such that at least one of
∑

i,j∈2N−1

αi,jai+j,
∑
i,j∈N

αi,j(−1)iai+j,
∑
i,j∈N

αi,j(−1)jai+j,∑
i∈2N−1

∑
j∈N

αi,jai+j, or
∑
i∈N

∑
j∈2N−1

αi,jai+j is zero for some nonzero real number a, the graphs ΓR(f ) contain a 4-cycle of type

(a, −a; a, −a), (−a, 0; a, 0), (a, 0; −a, 0), (a,−a; a, 0), or (a, 0; a, −a), respectively, and hence
have girth 4. □

Note that the sums in Theorem 2.1 are a few of many combinations we could have chosen; however, we did not
discuss more general sums because in so doing, we would essentially be considering our original condition (1). Moreover,
the results of Theorem 2.1 are especially easy to apply when we specify a = ±1. In particular, if f is chosen so
that at least one of

∑
i,j∈N

αi,j ,
∑

i,j∈2N−1

αi,j ,
∑
i,j∈N

αi,j(−1)i ,
∑
i,j∈N

αi,j(−1)j ,
∑

i∈2N−1

∑
j∈N

αi,j , or
∑
i∈N

∑
j∈2N−1

αi,j is zero, then ΓR(f )

has girth 4.
We next consider families of polynomials in which the largest (Theorem 2.2) or smallest (Theorem 2.3) exponent with

respect to X or with respect to Y is even.

Theorem 2.2. Let f (X, Y ) =

∑
i,j∈N

αi,jX iY j
∈ R[X, Y ]. If max{i | αi,j ̸= 0 for some j} is even or max{j | αi,j ̸= 0 for some i} is

even, then ΓR(f ) has girth 4.

Proof. Let f (X, Y ) =

∑
i,j∈N

αi,jX iY j
∈ R[X, Y ] where, without loss of generality by (I1), n = max{i | αi,j ̸= 0 for some j} is

even. Note that there exists a natural number k such that f (X, Y ) contains the term Xn
k∑

j=1

αn,jY j with not all αn,j = 0 and

αn,ℓ = 0 for all ℓ > k. Then there exists m ∈ R such that
k∑

j=1

αn,jmj is nonzero. Since the degree of f (X,m) is even, end

behavior implies that f (X,m) is not injective. Hence, ΓR(f ) has girth 4 by Lemma 6. □

Theorem 2.3. Let f (X, Y ) =

∑
i,j∈N

αi,jX iY j
∈ R[X, Y ]. Ifmin{i | αi,j ̸= 0 for some j} is even ormin{j | αi,j ̸= 0 for some i} is even,

then ΓR(f ) has girth 4.

Proof. Let f (X, Y ) ∈ R[X, Y ]. Without loss of generality by (I1), we will assumem = min{i | αi,j ̸= 0 for some j} is even.

Let n = max{i | αi,j ̸= 0 for some j}; thus f (X, Y ) =

n∑
i=m

∑
j∈N

αi,jX iY j. Choose x ̸= 0 to be a real number such that
∑
j∈N

αm,jxj

is nonzero. Then, for that value of x,

∆2(f )(a, b; x, 0) =

n∑
i=m

∑
j∈N

αi,j(ai − bi)xj

= g(a) − g(b),

where we define g(a) =

n∑
i=m

∑
j∈N

αi,jaixj. Observe that

g ′(a) =

n∑
i=m

∑
j∈N

αi,jiai−1xj = am−1
n∑

i=m

∑
j∈N

αi,jiai−mxj.
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By our definition of x,
∑
j∈N

αm,jamxj and
∑
j∈N

αm,jmam−1xj are nonzero for all a ̸= 0. Sincem is even, g ′(a) has the root a = 0 of

odd multiplicity. Therefore, g(a) has a local extremum and is not injective. Thus, by Lemma 6, ΓR(f ) has girth 4. □

Theorems 2.2 and 2.3 immediately imply the following:

Theorem 2.4. Let f (X, Y ) =

∑
i,j∈N

αi,jX iY j
∈ R[X, Y ]. If at least one of min

⎧⎨⎩i

⏐⏐⏐⏐⏐⏐
∑
j∈N

αi,j ̸= 0

⎫⎬⎭, max

⎧⎨⎩i

⏐⏐⏐⏐⏐⏐
∑
j∈N

αi,j ̸= 0

⎫⎬⎭,

min

{
j

⏐⏐⏐⏐⏐∑
i∈N

αi,j ̸= 0

}
, or max

{
j

⏐⏐⏐⏐⏐∑
i∈N

αi,j ̸= 0

}
is even, then ΓR(f ) has girth 4.

Proof. By (I1), we may assume either min

⎧⎨⎩i

⏐⏐⏐⏐⏐⏐
∑
j∈N

αi,j ̸= 0

⎫⎬⎭ or max

⎧⎨⎩i

⏐⏐⏐⏐⏐⏐
∑
j∈N

αi,j ̸= 0

⎫⎬⎭ is even. Then this proof follows

directly from Theorem 2.2 or Theorem 2.3 using a cycle of type (a, b; 1, 0). □

Recall that we defined a term αi,jX iY j to be mixedwhen i and j are of opposite parity.

Theorem 2.5. Let f (X, Y ) =

∑
i,j∈N

αi,jX iY j
∈ R[X, Y ]. If either of the following hold then ΓR(f ) has girth 4.

(a) Let n = min{i ∈ 2N | αi,j ̸= 0 for some j}. There exists a nonzero term αn,jXnY j that is mixed, and for p < n, all nonzero
terms αp,jXpY j are mixed.

(b) Let n = min{j ∈ 2N | αi,j ̸= 0 for some i}. There exists a nonzero term αi,nX iY n that is mixed, and for p < n, all nonzero
terms αi,pX iY p are mixed.

Proof. Without loss of generality by (I1), we will only prove (a). To satisfy the criteria in the theorem, we represent f as the
sum of three polynomials such that the degree of X in f is greater than, equal to, or less than
n = min{i ∈ 2N | αi,j ̸= 0 for some j}, respectively. Thus, ordering from largest to smallest by the degree of X , we write

f (X, Y ) = Xℓ
∑
j∈N

αℓ,jY j
+ · · · + Xn+1

∑
j∈N

αn+1,jY j
+ Xn

∑
j∈N

αn,jY j
+ Xn−1

∑
j∈2N

αn−1,jY j
+ · · · + X

∑
j∈2N

α1,jY j.

Note that j ∈ 2N in all terms αp,jXpY j with p < n due to (a).
Choose a real value x ̸= 0 such that

∑
j∈2N−1

αn,jxj is nonzero. Observe,

∆2(f )(a, b; x, −x) =
(
aℓ

− bℓ
)⎛⎝ ∑

j∈2N−1

αℓ,j
(
xj − (−x)j

)
+

∑
j∈2N

αℓ,j
(
xj − (−x)j

)⎞⎠
+ · · · +

(
an − bn

)⎛⎝ ∑
j∈2N−1

αn,j
(
xj − (−x)j

)
+

∑
j∈2N

αn,j
(
xj − (−x)j

)⎞⎠
+ · · · + (a − b)

∑
j∈2N

α1,j
(
xj − (−x)j

)
=
(
aℓ

− bℓ
)⎛⎝ ∑

j∈2N−1

αℓ,j
(
2xj
)
+

∑
j∈2N

αℓ,j (0)

⎞⎠
+ · · · +

(
an − bn

)⎛⎝ ∑
j∈2N−1

αn,j
(
2xj
)
+

∑
j∈2N

αn,j (0)

⎞⎠
+ · · · + (a − b)

∑
j∈2N

α1,j (0)

= 2

⎛⎝(aℓ
− bℓ

) ∑
j∈2N−1

αℓ,jxj + · · · +
(
an − bn

) ∑
j∈2N−1

αn,jxj

⎞⎠
= g(a) − g(b),
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where g(a) = 2

⎛⎝aℓ
∑

j∈2N−1

αℓ,jxj + · · · + an
∑

j∈2N−1

αn,jxj

⎞⎠. Since n is even, the root a = 0 of g(a) is of even multiplicity. Thus,

g(a) has a local extremum and is not injective. Therefore, by Lemmas 4 and 6, ΓR(f ) has girth 4. □

An example of a polynomial covered by the previous theorem is f (X, Y ) = 7X9Y 11
+ 3X8Y − 4X6Y 3

+ 5X5Y 4. This
polynomial satisfies both conditions from Theorem 2.5, although that is not necessary: we only require that a polynomial
satisfy one of these conditions. If we consider (a), then n = 6, whereas if we consider (b), then n = 4.

The following theorem accounts for polynomials such as f (X, Y ) = X3Y 7
+X3Y 5

+X2Y 11
+XY 6. Note, the largest exponent

with respect to X is 3. Furthermore, considering the X3 terms, the largest Y exponent is 7. Also, the lowest exponent with
respect to X is 1 with a corresponding largest Y exponent of 6. Since these Y exponents have opposite parity, Theorem 2.6
will imply that ΓR(f ) has girth 4.

Theorem 2.6. If either m and n or p and q are of opposite parity in the cases below, then ΓR(f ) has girth 4.

(a) Let f (X, Y ) = Xk
(
αk,pY p

+ · · · + αk,mYm
)

+ · · · + Xℓ
(
αℓ,qY q

+ · · · + αℓ,nY n
)

∈ R[X, Y ] where
k = max{i | αi,j ̸= 0 for some j} and ℓ = min{i | αi,j ̸= 0 for some j}. Define p = max{j | αk,j ̸= 0},
m = min{j | αk,j ̸= 0}, q = max{j | αℓ,j ̸= 0}, and n = min{j | αℓ,j ̸= 0}.

(b) Let f (X, Y ) = Y k
(
αp,kXp

+ · · · + αm,kXm
)

+ · · · + Y ℓ
(
αq,ℓXq

+ · · · + αn,ℓXn
)

∈ R[X, Y ] where
k = max{j | αi,j ̸= 0 for some i} and ℓ = min{j | αi,j ̸= 0 for some i}. Define p = max{i | αi,k ̸= 0},
m = min{i | αi,k ̸= 0}, q = max{i | αi,ℓ ̸= 0}, and n = min{i | αi,ℓ ̸= 0}.

Proof. By (I1), wewill only prove (a). Let f (X, Y ) = Xk
(
αk,pY p

+ · · · + αk,mYm
)
+· · ·+Xℓ

(
αℓ,qY q

+ · · · + αℓ,nY n
)

∈ R[X, Y ]

where k, ℓ, p,m, q, and n are as defined in (a). Furthermore, suppose that eitherm and n or p and q are of opposite parity. By
Theorems 2.2 and 2.3, if k or ℓ is even, then ΓR(f ) has girth 4. Thus, we will consider when k and ℓ are odd. Note that

∆2(f )(a, 0; x, 0) = aℓ

⎛⎝ak−ℓ

p∑
j=m

αk,jxj + · · · +

q∑
j=n

αℓ,jxj

⎞⎠ .

Therefore, if

ak−ℓ

p∑
j=m

αk,jxj + · · · +

q∑
j=n

αℓ,jxj = 0,

then by Lemma 4, a 4-cycle of type (a, 0; x, 0) exists.

We claim that there exists a real value x ̸= 0 such that
p∑

j=m

αk,jxj and
q∑

j=n

αℓ,jxj are of opposite signs. Indeed, when p and

q are of opposite parity, the existence of such a value x follows by end behavior. When m and n are of opposite parity, then

x = 0 is a root with multiplicities of opposite parity in
p∑

j=m

αk,jxj and
q∑

j=n

αℓ,jxj, so there exists some x ∈ R such that the sums

are of opposite signs. Hence, our claim is proven.

Choose x as described in the previous paragraph. Now let g(a) = ak−ℓ

p∑
j=m

αk,jxj + · · · +

q∑
j=n

αℓ,jxj. Note that lim
a→∞

g(a)

and g(0) =

q∑
j=n

αℓ,jxj are of opposite signs. Therefore, by the Intermediate Value Theorem there exists an a ̸= 0 such that

g(a) = 0, and so a 4-cycle exists. Thus, ΓR(f ) has girth 4. □

The following theorem addresses the final family of girth 4 algebraically defined graphs in Theorem 2.

Theorem 2.7. Let f (X, Y ) =

∑
i,j∈N

αi,jX iY j
∈ R[X, Y ]. If either of the following hold, then ΓR(f ) has girth 4.

(a) For p = min

⎧⎨⎩i

⏐⏐⏐⏐⏐⏐
∑
j∈N

αi,j ̸= 0

⎫⎬⎭ and q = max

⎧⎨⎩i

⏐⏐⏐⏐⏐⏐
∑
j∈N

αi,j ̸= 0

⎫⎬⎭,
∑
j∈N

αp,j and
∑
j∈N

αq,j have opposite signs.

(b) For p = min

{
j

⏐⏐⏐⏐⏐∑
i∈N

αi,j ̸= 0

}
and q = max

{
j

⏐⏐⏐⏐⏐∑
i∈N

αi,j ̸= 0

}
,
∑
i∈N

αi,p and
∑
i∈N

αi,q have opposite signs.
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Proof. By (I1) we will only prove (a). Let f (X, Y ) =

∑
i,j∈N

αi,jX iY j
∈ R[X, Y ] where p = min

⎧⎨⎩i

⏐⏐⏐⏐⏐⏐
∑
j∈N

αi,j ̸= 0

⎫⎬⎭ and

q = max

⎧⎨⎩i

⏐⏐⏐⏐⏐⏐
∑
j∈N

αi,j ̸= 0

⎫⎬⎭ . Also let
∑
j∈N

αp,j and
∑
j∈N

αq,j have opposite signs. Note that

∆2(f )(a, b; 1, 0) =

∑
i,j∈N

αi,j(ai − bi)

=

q∑
i=p

∑
j∈N

αi,j(ai − bi).

If p or q is even, by Theorem 2.4, ΓR(f ) has girth 4. So, we will consider when p and q are odd. Now, let b = −a. Then

∆2(f )(a, −a; 1, 0) =

q∑
i=p

∑
j∈N

αi,j(ai − (−a)i)

= 2
∑
p≤i≤q
i odd

∑
j∈N

αi,jai.

Hence, by Lemma 4, if there exists a real value a ̸= 0 such that∑
p≤i≤q
i odd

∑
j∈N

αi,jai−p
= 0,

then ΓR(f ) contains a 4-cycle of type (a,−a; 1, 0). Let

g(a) =

∑
p≤i≤q
i odd

∑
j∈N

αi,jai−p.

Note, lim
a→∞

g(a) and g(0) =

∑
j∈N

αp,j are of opposite signs. Therefore, by the Intermediate Value Theorem, there exists some

real value a ̸= 0 such that g(a) = 0. Thus, the graph ΓR(f ) has girth 4. □

Previously, all of our theorems addressed algebraically defined graphs of girth 4. Now, we will present a family of graphs
having girth 6.

Proposition 7. Let f (X, Y ) =

∑
i,j∈N

αi,jX iY j
∈ R[X, Y ] be a nonzero polynomial such that i and j are odd for all nonzero αi,j. If all

αi,j ≥ 0 or all αi,j ≤ 0, then ΓR(f ) has girth 6.

Proof. Let f (X, Y ) =

∑
i,j∈2N−1

αi,jX iY j
∈ R[X, Y ] be a nonzero polynomial. We will assume without loss of generality by (I2)

that every nonzero αi,j is positive.
First, we will prove ΓR(f ) does not contain any 4-cycles. Note that

∆2(f )(a, b; x, y) =

∑
i,j∈2N−1

αi,j(ai − bi)(xj − yj).

Since i, j ∈ 2N − 1, if a > b and x > y or a < b and x < y, then every αi,j(ai − bi)(xj − yj) is positive. Likewise, if a < b and

x > y or a > b and x < y, then every αi,j(ai − bi)(xj − yj) is negative. Thus, ∆2(f )(a, b; x, y) =

∑
i,j∈2N−1

αi,j(ai − bi)(xj − yj) ̸= 0

for all a ̸= b and x ̸= y, and so ΓR(f ) does not contain a 4-cycle.
Now, note the graph ΓR(f ) contains a 6-cycle of type (−1, 1, 0; 0, 1, −1), and therefore has girth 6. □

Combined, the above results prove Theorem 2. We will now prove Theorem 1.

Theorem 1. For all f (X, Y ) ∈ R[X, Y ], the girth of ΓR(f ) is either 4 or 6.
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Proof. Let f (X, Y ) =

∑
i,j∈N

αi,jX iY j
∈ R[X, Y ]. Note by (2),

∆3(f )(0, 1, −1; x, 0, 1) =

∑
i,j∈N

αi,j
[
xj
(
0i

− 1i)
+ 0j (1i

− (−1)i
)
+ 1j ((−1)i − 0i)]

=

∑
i,j∈N

αi,j
[
−xj + (−1)i

]
.

Therefore, by Lemma 4, if we can find some real value x /∈ {0, 1} such that∑
i,j∈N

αi,j
[
−xj + (−1)i

]
= 0,

or equivalently
∑
i,j∈N

αi,jxj =

∑
i,j∈N

αi,j(−1)i, then a 6-cycle of type (0, 1, −1; x, 0, 1) exists. Note that
∑
i,j∈N

αi,jxj =

n∑
j=m

∑
i∈N

αi,jxj,

wherem = min

{
j

⏐⏐⏐⏐⏐∑
i∈N

αi,j ̸= 0

}
and n = max

{
j

⏐⏐⏐⏐⏐∑
i∈N

αi,j ̸= 0

}
. If n is even, then ΓR(f ) has girth 4 by Theorem 2.4.

Therefore, we will only consider when n is odd, in which case end behavior and the Intermediate Value Theorem imply
the existence of a real number x such that∑

i,j∈N

αi,jxj =

∑
i,j∈N

αi,j(−1)i.

If x ̸= 0 and x ̸= 1, then this x produces a cycle of type (0, 1, −1; x, 0, 1). We will now demonstrate that ΓR(f ) has girth 4
when x = 0 or x = 1.

First consider when x = 0. Then

0 =

∑
i,j∈N

αi,j(−1)i.

By Theorem 2.1, graphs with a polynomial satisfying this condition have girth 4.
Now, consider when x = 1. Then∑

i,j∈N

αi,j =

∑
i,j∈N

αi,j(−1)i.

Since all αi,j with i even cancel, this yields
∑

i∈2N−1

∑
j∈N

αi,j = 0. Algebraically defined graphs with polynomials satisfying this

condition have girth 4 by Theorem 2.1.
Hence, in all cases, ΓR(f ) has girth either 4 or 6. □

4. Concluding remarks

Some results from Section 3 can be extended toΓR(f ) whereR ̸= R. In fact, we can extend Theorem2.1 and Proposition 7
to the following two corollaries.

Corollary 8. Let R be Q or Z. Let f (X, Y ) =

∑
i,j∈N

αi,jX iY j
∈ R[X, Y ].

1. If at least one of
∑
i,j∈N

αi,jai+j ,
∑

i,j∈2N−1

αi,jai+j ,
∑
i,j∈N

αi,j(−1)iai+j ,
∑
i,j∈N

αi,j(−1)jai+j ,
∑

i∈2N−1

∑
j∈N

αi,jai+j , or
∑
i∈N

∑
j∈2N−1

αi,jai+j

is zero for some nonzero a ∈ R, then ΓR(f ) has girth 4.
2. If i, j ∈ 2N − 1 for all nonzero αi,j, and all αi,j ≥ 0 or all αi,j ≤ 0, then ΓR(f ) has girth 6.

Corollary 9. Let f (X, Y ) =

∑
i,j∈N

αi,jX iY j
∈ kZ[X, Y ] for k ∈ N.

1. If at least one of i or j is even for all nonzero αi,j, then ΓkZ(f ) has girth 4.
2. If i, j ∈ 2N − 1 for all nonzero αi,j, and all αi,j ≥ 0 or all αi,j ≤ 0, then ΓkZ(f ) has girth 6.

Note that Theorems 2.2, 2.3, 2.7 and Proposition 7 account for all algebraically defined graphs when f (X, Y ) is a binomial
with real coefficients. In other words, given any binomial f (X, Y ), we can determine whether ΓR(f ) has girth 4 or girth 6.
However, these results do not account for every trinomial f (X, Y ). Investigating trinomials using techniques similar to those
employed previously in this paper (see e.g., Theorem 2.3) informs the following conjecture:
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Conjecture 10. Let f (X, Y ) = αk,ℓXkY ℓ
+ αm,nXmY n

+ αp,qXpY q
∈ R[X, Y ] be a trinomial where ℓ ≥ n ≥ q. There are three

cases to consider.

1. Let ℓ ̸= q and n ̸= q. If there exists some a ∈ R such that

ℓa
(
m−k
ℓ−q +k

)
δℓ−q

+ nαm,na
(
m−k
n−q +m

)
δn−q

+ qαp,qap < 0,

where

δ =
−n(n − q)
ℓ(ℓ − q)

,

then ΓR(f ) has girth 4; otherwise it has girth 6.
2. Let ℓ ̸= q, n = q. If there exists some a ∈ R such that

akδℓ
+ (αm,nam + αp,qap)δn < 0,

where

δ =

(
−n

(
αm,nam−k

+ αp,qap−k
)

ℓ

) 1
ℓ−n

,

then ΓR(f ) has girth 4; otherwise it has girth 6.
3. Let ℓ = n = q. Now f (X, Y ) = Y ℓ(αk,ℓXk

+ αm,nXm
+ αp,qXp) where k ≥ m ≥ p and k, p ∈ 2N − 1. If there exists some

a ∈ R such that

kak−q
+ mαm,nam−q

+ pαp,q < 0,

then ΓR(f ) has girth 4; otherwise it has girth 6.

Notice that in part 3, we restricted k, p ∈ 2N− 1. This is because if either k or p is even, these cases were already covered
in Theorems 2.2 and 2.3, respectively.
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