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1. Introduction

An algebraically defined graph I'r(f2(X, Y), f3(X,Y), ..., fu(X, Y)) is constructed using a ring R and functions f;(X, Y),
where 2 < i < n for an integer n > 2. These graphs are bipartite where each partite set is a copy of R". We label the

vertices in the first partite set (a;, a3, ..., a,;) and in the second [x1, X2, ..., X,]. In order for two vertices to be adjacent,
denoted (a;, az, ..., ay) ~ [X1, X2, . . ., Xp], their coordinates must satisfy the equations a; + x; = fi(ay, x1) for all i such that
2<i<n.

Considering I'z (f2(X, Y), f3(X, Y)), Dmytrenko, Lazebnik, and Williford [2] studied the case where R is a finite field of odd
order F; and f, and f; are monomials. They conjectured that all such monomial graphs of girth at least 8 are isomorphic to
Iy, (XY, XY?). This work was expanded upon by Kronenthal [4], and the conjecture was ultimately proven by Hou, Lappano,
and Lazebnik [3]. In addition, Kronenthal and Lazebnik [5] and Kronenthal, Lazebnik, and Williford [6] studied graphs over
algebraically closed fields of characteristic zero and applied some of their techniques to graphs over finite fields.

The study of two-dimensional algebraically defined graphs, and in particular their girth, can be motivated by the
construction of projective planes. Indeed, it is known (see Dmytrenko [ 1] and Lazebnik and Thomason [7]) that every graph
I, (f) with girth greater than 4 can be completed to a projective plane of order g (although not all projective planes of order
q can be constructed in this way). This construction further motivates the study of two-dimensional algebraically defined
graphs I'z (f>(X, Y)) over R = R. For ease of notation, we call this graph I'z(f) with vertices of the form (a, a;) and [x, x,].
Our main result is as follows:

Theorem 1. Forallf(X,Y) € R[X, Y], the girth of I'r(f) is either 4 or 6.
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Moreover, we can explicitly state the girth of infinite families of algebraically defined graphs over R. Before presenting
our theorem, we need to make a few comments. We will use the notation N to represent the positive integers, with
2N = {2n | n € N}Jand 2N — 1 = {2n — 1 | n € N}. Note that a polynomial f(X,Y) = Zai,inYf € R[X, Y] can

i,jeN
have only finitely many nonzero terms. In this paper, a term o;;X'Y’ is defined to be mixed when i and j are of opposite
parity. Finally, a few conditions in Theorem 2 involve considering the minimum or maximum of a set; if the set is empty
then that specific condition would not yield a girth 4 graph.

Theorem 2. Letf(X,Y) = Z oc,»,jX"Yj € R[X, Y].Ifiand j are odd for all nonzero c; j, and all o; j > O or all o j < 0, then I'n(f)
ijeN

has girth 6 (see Proposition 7). Moreover, I'w(f) has girth 4 in each of the following cases:

1. At least one on a;ats, Z a;at, Z a;j(—1)d™, Z a;j(—1Ya¥, Z Za,-,ja"“ ,or Z Z a;ja™ is

i,jeN i,je2N—1 i,jeN ijeN i€e2N—1 jeN ieN je2N—-1
zero for some nonzero real number a.
2. At least one of max{i | o j # 0 for some j} or max{j | o j # O for some i} is even.
3. At least one of min{i | «;; 7 O for some j} or min{j | «;j # O for some i} is even.

ZO"'J #0 ] or max {j

ieN

ZO[,'J ;ﬁ 0} is

ieN

4. At least one of min { i Z‘XU #0 ¢, max yi Z‘XU # 0 ¢, min [j
JjeN JjeN
even.

5. (a) Letn = min{i € 2N | o;; # 0 for some j}. There exists a nonzero term o, ;X"Y? that is mixed, and for p < n, all
nonzero terms o ;XPY/ are mixed.

(b) Let n = min{j € 2N | «;; # O for some i}. There exists a nonzero term i X'Y" that is mixed, and for p < n, all
nonzero terms o; ,X'Y? are mixed.

6. (a)Letk = max{i | «;;j # 0forsomej} and £ = min{i | o;; # Oforsomej}. Let p = max{j | ax; # 0},
m = min{j | axj # 0}, ¢ = max{j | a¢j # 0}, andn = min{j | a,; # 0}. Either m and n are of opposite
parity or p and q are of opposite parity.

(b) Let k = max{j | a;j # Oforsomei} and £ = min{j | a;; # 0forsomei}. Let p = max{i | o;x # 0},
m = min{i | o # 0}, q = max{i | ai¢ # 0}, andn = min{i | oy # 0}. Either m and n are of opposite
parity or p and q are of opposite parity.

7. (a) The sums ZO‘PJ and ZO“” have opposite signs, where p = min 1 i Za,-,j #0 and

jeN JjeN JjeN

g =max{i Zai,j;/:o

jeN

ZO[,’J # 0 ] and

(b) The sums Z““’ and Zai,q have opposite signs, where p = min [j
ieN

ieN ieN

Za,-ﬂéo}.

ieN

q:max{j

We will now briefly discuss how the rest of this paper is organized. In Section 2, we introduce important notation and
tools that we will use throughout this paper. In Section 3, we prove Theorems 1 and 2. In Section 4, we apply some results
to other rings and fields of characteristic zero. We end with a conjecture on the girth of algebraically defined graphs I'z(f)
where f € R[X, Y] is a trinomial.

2. Preliminary tools & notation

We will begin by discussing restrictions on the first coordinates in a 4-cycle. The following lemma is discussed on
page 2 of [7].

Lemma 3. Let I'z(f) contain a 4-cycle (a, az) ~ [x, x2] ~ (b, by) ~ [y, y2] ~ (a, az). Thena # band x # y.

We now state a necessary and sufficient condition for the existence of a 4-cycle (a, a;) ~ [X, x2] ~ (b, b)) ~ [y, y2] ~
(a, @) in I’z (f).

Lemma 4 ([1]). A 4-cycle exists in I'r(f) if and only if there exist a, b, x, y € R such thata # b, x # y, and
0 =f(a,x) — f(b,x)+f(b,y) — f(a,y). (1)
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Since (1) appears repeatedly throughout this paper, we will introduce the following notation used, e.g., in [1,2,5,6]:
Ay(f)a, b; x,y) = f(a,x) — f(b,x) + f(b, y) — f(a, y).
Observe that when f(X, Y) Z ai XY,

ijeN
Ayf Y@, bixy) =Y aijlad —b)¥ —y).
ijeN
Of particular interest, A,(f)(a, b; x, y) depends only on the first coordinates of the vertices in the cycle. Moreover, note that
there will be many 4-cycles with the same first coordinates as a given 4-cycle (a, a;) ~ (x, x) ~ (b, by) ~ (v, y2) ~ (a, az),
and we say that they are all of type (a, b; X, y).

Lemmas 3 and 4 can be extended to a 6-cycle (a, a;) ~ [x, x2] ~ (b, b2) ~ [y, y2] ~ (¢, &2) ~ [z, z2] ~ (a, az), which is
contained in I'z (f) if and only if there exist distinct a, b, ¢ and distinct x, y, z such that

As(f)a, b,c:x,y,z) = f(a,x) — f(b, x) + f(b,y) — f(c,y) + f(c.2) — f(a,2) = 0.
Furthermore, when f(X, Y) Za, XY
i,jeN
As(f)a,b,cix,y,z2) =Y aij[¥(d —b)+ Y(b' - ')+ 2(c' — a)]. )
ijeN

Again, this expression depends only on the first coordinates of the vertices in the cycle. There will also be many 6-cycles
with the same first coordinates, so we say that they are all of type (a, b, c; X, y, z).

We end this section with the following isomorphisms of the graph I'z(f), where F is a field; see, e.g., [7] for proofs. First
note that for a function f = f(X, Y), we define f* = f(Y, X).

Lemma 5. Let T be a field and f € F[X, Y]. Then

I%(f) = Ix(f7), (71)
Tw(f) = Iw(cf), for all c € F\{0}, and (T2)
Tv(f) = I(f + g + h), forallg € F[X] and h € F[Y]. (Z5)

We will use (Z;) to assume, when analyzing terms of a polynomial, a given condition applies to X instead of Y. By (7,),
we can choose a leading coefficient by multiplying through by an appropriate c-value. Finally, as a consequence of (73), we
are able to assume that every term in our polynomial is a scalar multiple of X'Y for i, j € N.

3. Proofs of Theorems 1 and 2
We begin with a lemma used frequently throughout the remainder of this paper.

Lemma6. Letf(X,Y) € R[X, Y]. Ifthere exists a real number m # 0 such that at least one of f (X, m) and f (m, Y) is not injective,
then I'r(f) has girth 4.

Proof. Let f(X,Y) = Z o ]-Xin € R[X, Y]. Without loss of generality by (Z;), we will assume there exists a real number

ijeN
m # 0 such that f(X, m) is not injective. Then we can fix a # b such that f(a, m) = f(b, m), and so

Ay(f)a, b;m,0) =" aij(a’ — b = f(a, m)— (b, m) = 0.
i,jeN
Hence, by Lemma 4, a 4-cycle exists, and so Iz(f) has girth4. O
In addition to Lemma 6, another tool we will use in this section is end behavior. In other words, for a univariate
polynomial f(X) of even degree (respectively odd degree), Xlim fX) :Xlim f(X) = foo (respectively Xlim fx) =
—00 ——00 —00
— 111‘1‘1 f( ) = £00).

We w1ll prove Theorem 2 by considering its seven parts individually; we will denote part 1 by Theorem 2.1, and so on.
To begin, we will consider when particular combinations of the polynomial’s coefficients sum to zero.
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Theorem 2.1. Let f(X,Y) = Za,»,jx"Yj € RIX, Y] If at least one of Za,-’ja’*f Z a;jat Z“’J Ya't
i,jeN i,jeN i,je2N—1 ijeN
Z aij(—1Ya ™, Z Z a;jat, or Z Z a; ja' is zero for some nonzero real number a, then I'x(f) has girth 4.

ijeN i€2N—1 jeN ieN je2N—1

Proof. Letf(X,Y) = Z a,»’jX"Yj € R[X, Y] such that Z ai,ja”j = 0. Then, by Lemma 4, the graph I'z(f) contains a 4-cycle
i,jeN i,jeN
of type (a, O; a, 0) since
Ay(f)a, 0;a,0) = Za”a—o Yd —0) = Za at =o.

ijeN ijeN

Similarly, in the cases where f(X, Y)is a polynomial such that at least one of Z a,»,ja"“. Z a;j(—1 )iai+j, Z aij(—1 )iaf+j'
ije2N—1 ijeN ijeN
Z Zozi,ja"““j, or Z Z oz,»,ja"“ is zero for some nonzero real number a, the graphs I'z(f) contain a 4-cycle of type
i€e2N—1 jeN ieN je2N—1
(a, —a; a, —a), (—a, 0;a,0), (a, 0; —a, 0), (a, —a; a, 0), or (a, 0; a, —a), respectively, and hence
have girth4. O

Note that the sums in Theorem 2.1 are a few of many combinations we could have chosen; however, we did not
discuss more general sums because in so doing, we would essentially be considering our original condition (1). Moreover,

the results of Theorem 2.1 are especially easy to apply when we specify a = =£1. In particular, if f is chosen so

that at least one of Zai-f , Z oij Zai_j(—l)’ , ZO‘U(_U] , Z Za,-,j , or Z Z wjj is zero, then I'g(f)
i,jeN i,je2N—1 i,jeN i,jeN i€e2N—1 jeN ieN je2N—-1

has girth 4.

We next consider families of polynomials in which the largest (Theorem 2.2) or smallest (Theorem 2.3) exponent with
respect to X or with respect to Y is even.

Theorem 2.2. Letf(X,Y) = ZaUX"YJ € R[X, Y] Ifmax{i | a;; # O for some j} is even or max{j | c;; # O for some i} is
ijeN
even, then I'x(f) has girth 4.
Proof. Let f(X,Y) = Za,-,inYj € R[X, Y] where, without loss of generality by (7;), n = max{i | «;; # 0 for some j} is
ijeN
k
even. Note that there exists a natural number k such that f(X, Y) contains the term X"Z ap ;Y with not all @, j = 0 and

j=1
k

an¢ = Oforall £ > k. Then there exists m € R such that Zan,jm" is nonzero. Since the degree of f(X, m) is even, end

j=1
behavior implies that f(X, m) is not injective. Hence, I'z(f) has girth 4 by Lemma 6. O

Theorem 2.3. Letf(X,Y)= Z af,inYj € RIX, Y]. If min{i | «;; # O for some j} is even or min{j | «;; 7 0 for some i} is even,
ijeN
then I'x(f) has girth 4.

Proof. Let f(X,Y) € R[X, Y]. Without loss of generality by (Z1), we will assume m = min{i | «;; # 0 for some j} is even.

Letn = max{i | «;; 7 0 for some j}; thus f(X, Y) Z Z a; X 'y, Choose x # 0 to be a real number such that Z am]

i=m jeN jeN
is nonzero. Then, for that value of x,

Ay(f)a b x,0)= Y > aij(a — bW

i=m jeN
= g(a) — g(b),
n
where we define g(a) Z Z a;ja'x. Observe that

i=m jeN

g'a)= Z > ajjia TN =am! Z > aijia

i=m jeN i=m jeN
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By our definition of x, Z am,ja'"xj and Z am,jma'"_lx" are nonzero for all a # 0. Since m is even, g’(a) has the root a = 0 of

jeN jeN
odd multiplicity. Therefore, g(a) has a local extremum and is not injective. Thus, by Lemma 6, I'z(f) has girth4. O

Theorems 2.2 and 2.3 immediately imply the following:

Theorem 2.4. Let f(X,Y) = Zai,inYj € R[X, Y]. If at least one of min { i Zau £0}, max i ZO‘"J £07%,

ijeN jeN JjeN
min {j

Zai,j #0 } or max {j Za,-,j #0 } is even, then I'x(f) has girth 4.
ieN ieN
Proof. By (7;), we may assume either min { i Za,;j #0p ormax {i ZO"?J’ # 0 ¢ is even. Then this proof follows
JjeN JjeN
directly from Theorem 2.2 or Theorem 2.3 using a cycle of type (a, b; 1,0). O

Recall that we defined a term o; jX 'Y/ to be mixed when i and j are of opposite parity.

Theorem 2.5. Letf(X,Y)= Z ai,ijYj € R[X, Y]. If either of the following hold then I'z(f) has girth 4.
i,jeN
(a) Letn = min{i € 2N | oy; # 0 for some j}. There exists a nonzero term an,jX”W’ that is mixed, and for p < n, all nonzero
terms o ;XPY? are mixed.

(b) Let n = min{j € 2N | o;; # 0 for some i}. There exists a nonzero term i X'Y™ that is mixed, and for p < n, all nonzero
terms o pX'YP are mixed.

Proof. Without loss of generality by (Z;), we will only prove (a). To satisfy the criteria in the theorem, we represent f as the
sum of three polynomials such that the degree of X in f is greater than, equal to, or less than
n = min{i € 2N | «;; # 0 for some j}, respectively. Thus, ordering from largest to smallest by the degree of X, we write

FOCY)Y=XDY oV 4 4 XY VA XY o VA XY SV A+ XYY,
JjeN jeN JjeN je2N je2N

Note thatj € 2N in all terms ap,jXij with p < n due to (a).

Choose a real value x # 0 such that Z an,jxi is nonzero. Observe,
je2N-1

Ay(f)a. bix, —x) = (a" = b) [ D7 ey (¥ = (—x)) + D ey (¥ — (—x)

je2n-1 Jje2N
4+ (a” — b") Z A j (XJ - (—X)i) + Zan,j (X] - (_X)i)
je2N-1 je2N
+e b (@— b)Y o (¥ — ()
je2N
=@ =) | X o (29)+ Yoy
je2nN-1 je2N
+ ..+ (an —b") Z Un,j (ZX]) +Zan,j (0)
je2nN-1 je2N
+ 4 (@=b)Y e (0)
je2N
=2 (@ =) 3wt (@) Y
jeaN—1 je2n-1
= g(a) — g(b),
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whereg(a) =2 | a* Z oc“xi 4+ 4+a" Z ozn,jx" . Since n is even, the root a = 0 of g(a) is of even multiplicity. Thus,
je2nN-1 je2N—-1
g(a) has a local extremum and is not injective. Therefore, by Lemmas 4 and 6, I'z(f) has girth4. O

An example of a polynomial covered by the previous theorem is f(X,Y) = 7X°Y!' + 3X8Y — 4X®Y3 + 5X°Y“. This
polynomial satisfies both conditions from Theorem 2.5, although that is not necessary: we only require that a polynomial
satisfy one of these conditions. If we consider (a), then n = 6, whereas if we consider (b), then n = 4.

The following theorem accounts for polynomials suchas f(X, Y) = X3Y7 +X3Y>4-X2Y 11 4+ XY®. Note, the largest exponent
with respect to X is 3. Furthermore, considering the X3 terms, the largest Y exponent is 7. Also, the lowest exponent with
respect to X is 1 with a corresponding largest Y exponent of 6. Since these Y exponents have opposite parity, Theorem 2.6
will imply that I'x(f) has girth 4.

Theorem 2.6. [feither m and n or p and q are of opposite parity in the cases below, then I'z(f) has girth 4.

(a) Let f(X,Y) = X (oppY?+ - +am¥™) + o + X(agYI+-+oanY") € RIX,Y] where
k = max{i | aj; # Oforsomej} and £ = min{i | «;; # Oforsomej}. Define p = max{j | ox; # 0},
m = min{j | axj # 0}, ¢ = max{j | apj # 0}, and n = min{j | ¢ ; # 0}.

(b) Let f(X,Y) = Yi(opiXP+ - +amiX™) + o+ 4+ Yi(aqeXT+ - +anX") € R[X,Y] where
k = max{j | «;j # Oforsomei} and ¢ = min{j | «;; # Oforsomei}. Define p = max{i | ajx # 0},

m =min{i | ajx # 0}, q = max{i | «j¢ # 0}, and n = min{i | a; ¢ # 0}.

Proof. By (7,), we will only prove (a). Let f(X, Y) = X* (o pYP + - -+ + agmY™) +- - -+ X" (e g7+ - + oenY") € RIX, Y]
where k, £, p, m, g, and n are as defined in (a). Furthermore, suppose that either m and n or p and q are of opposite parity. By
Theorems 2.2 and 2.3, if k or £ is even, then I'g(f) has girth 4. Thus, we will consider when k and ¢ are odd. Note that

P q
As(f)a, 0; x, 0) = a* ak_‘Zcxk,jxj +- Zcxg,jxj
Jj=m j=n

Therefore, if

p q
ak%zak,ﬁ‘j + -+ Zae‘jx’. =0,
j=m j=n

then by Lemma 4, a 4-cycle of type (a, 0; x, 0) exists.
p q

We claim that there exists a real value x % 0 such that Z ak,jxi and Z ag,jxf are of opposite signs. Indeed, when p and

j=m Jj=n
q are of opposite parity, the existence of such a value x follows by end behavior. When m and n are of opposite parity, then
p q

x = 0is a root with multiplicities of opposite parity in Z ak,jxj and Z ozg,jx", so there exists some x € R such that the sums

j=m j=n
are of opposite signs. Hence, our claim is proven.

p q
Choose x as described in the previous paragraph. Now let g(a) = a"*“Zak,jx’ + -+ Z (X[JXj. Note that lim g(a)
iz pa a— 00
q .
and g(0) = Z oy jx are of opposite signs. Therefore, by the Intermediate Value Theorem there exists an a # 0 such that

J=n
g(a) = 0, and so a 4-cycle exists. Thus, I'z(f) has girth4. O

The following theorem addresses the final family of girth 4 algebraically defined graphs in Theorem 2.

Theorem 2.7. Letf(X,Y)= Z ;X 'yl e R[X, Y). If either of the following hold, then I'x(f) has girth 4.

ijeN

(a) For p = min { i ZO{“ #0; andq=max {i Za"'f #0¢, Z apjand Za‘” have opposite signs.

JjeN JjEN JjeN JEN
(b) For p = min {j Za,-,j * 0} and ¢ = max {j Zai,j * O}, Z a;pand Zai‘q have opposite signs.
ieN ieN ieN ieN
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Proof. By (Z;) we will only prove (a). Let f(X,Y) = Zaf,inY" € R[X,Y] where p = min {i Zai,}» # 0} and
ijeN jenN

g=max{i Z a;j #0¢ . Alsolet Z apjand Z ag,j have opposite signs. Note that
jeN jeN jeN

Ax(f)a, b3 1,0) = ) ayy(a’ — b)

i,jeN
q
=3 Setd v
i=p jeN

If p or q is even, by Theorem 2.4, I'z(f) has girth 4. So, we will consider when p and q are odd. Now, let b = —a. Then

Ay(f)a, —a; 1,0) ZZaua——)

i=p jeN

=2 Z Za,»,jai.

it 1
Hence, by Lemma 4, if there exists a real value a # 0 such that

Z Za”a’ P =0,

p<t<q jeN
odd

then I'z(f) contains a 4-cycle of type (a, —a; 1, 0). Let

gla) = Z Za,;jai_”.

p<i=q jeN
iodd

Note, lim g(a) and g(0) = E apj are of opposite signs. Therefore, by the Intermediate Value Theorem, there exists some
a—
jeN

real value a # 0 such that g( ) = 0. Thus, the graph I'z(f) has girth4. O

Previously, all of our theorems addressed algebraically defined graphs of girth 4. Now, we will present a family of graphs
having girth 6.

Proposition 7. Let f(X,Y) Z o X' 'Y/ e R[X, Y] be a nonzero polynomial such that i and j are odd for all nonzero aij Ifall

i > 0oralla;j <0, then FR(f) hasglrth 6.

Proof. Letf(X,Y) Z ;;X'Y? € R[X, Y] be a nonzero polynomial. We will assume without loss of generality by (7,)

ije2N—1
that €very nonzero «; ; 1S posmve.

First, we will prove I'k(f) does not contain any 4-cycles. Note that
AfNa.bixy)= Y aija — b)Y —y).
ije2N—1
Sincei,j € 2N — 1,ifa > bandx > yora < band x < y, then every «; j(a’ — b")(¥ — /) is positive. Likewise, if a < b and

x > yora > bandx <y, then every o; j(a' — b')(¥ — /) is negative. Thus, A,(f)(a, b; x, y) = Z aijl@ — b)Y —y) #0
ije2N—-1
forall a # b and x # y, and so I'k(f) does not contain a 4-cycle.
Now, note the graph I'z(f) contains a 6-cycle of type (—1, 1, 0; 0, 1, —1), and therefore has girth 6. O
Combined, the above results prove Theorem 2. We will now prove Theorem 1.

Theorem 1. Forall f(X,Y) € R[X, Y], the girth of I'x(f) is either 4 or 6.
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Proof. Letf(X,Y)= ) ;;X'Y’ € RIX, Y]. Note by (2),

i,jeN
As(F)0.1,=1:%,0,1) = Y e [¥ (0" = 1) + 0/ (1 = (=1))) + ¥V ((—1) = 0)]
ijeN
= ZO[,‘J [—X’ + (—])l]
i,jeN

Therefore, by Lemma 4, if we can find some real value x ¢ {0, 1} such that

ZO[,‘J' [—X’ + (_1)i] =0,

i,jeN

n
or equivalently Z ai X = Z a;j(—1), then a 6-cycle of type (0, 1, —1; x, 0, 1) exists. Note that Z a X = Z Z ¥,
ijeN i,jeN i,jeN j=m ieN
Z Qij # 0} and n = max {j Z a;j # 0¢.1fnis even, then I'z(f) has girth 4 by Theorem 2.4.
ieN ieN
Therefore, we Willleonly consider when n is odd, inli/vhich case end behavior and the Intermediate Value Theorem imply
the existence of a real number x such that

Z Ol,',ij = Z O{,',j(—l)i.

ijeN i,jeN

where m = min {j

If x # 0 and x # 1, then this x produces a cycle of type (0, 1, —1; x, 0, 1). We will now demonstrate that I'z(f) has girth 4
whenx =0orx = 1.
First consider when x = 0. Then
0= Z aj‘j(_])i.
i,jeN
By Theorem 2.1, graphs with a polynomial satisfying this condition have girth 4.
Now, consider when x = 1. Then

Z ojj = Z Oli.j(—‘l)i.

i,jeN ijeN

Since all o ; with i even cancel, this yields Z Z a;;j = 0. Algebraically defined graphs with polynomials satisfying this

i€2N—1 jeN
condition have girth 4 by Theorem 2.1.
Hence, in all cases, I'w(f) has girth either 4 or 6. O

4. Concluding remarks

Some results from Section 3 can be extended to I'z (f) where R # R.In fact, we can extend Theorem 2.1 and Proposition 7
to the following two corollaries.

Corollary 8. Let R be Qor Z. Let f(X.Y) = Y _ oX'Y/ € RIX, Y].
i,jeN

1. If at least one onai,ja’*j ) Z a;ja Za,-,j(—l)"a”j ) Zozi,j(—l)iaiJ’j , Z Zoz,;ja'*j ,or Z Z a;jat

i,jeN i,je2N—1 i,jeN ijeN i€e2N—1 jeN ieN je2N—-1
is zero for some nonzero a € R, then I'r(f) has girth 4.
2. Ifi,j € 2N — 1 for all nonzero «; j, and all ; ; > 0 or all o j < 0, then I'r(f) has girth 6.

Corollary 9. Letf(X,Y)= Y ;XY € KZIX, Y] fork € N.

i,jeN

1. If at least one of i or j is even for all nonzero o; j, then I'iz(f) has girth 4.
2. Ifi,j € 2N — 1 for all nonzero «; j, and all ; ; > 0 or all o j < O, then I'iz(f) has girth 6.

Note that Theorems 2.2, 2.3, 2.7 and Proposition 7 account for all algebraically defined graphs when f(X, Y) is a binomial
with real coefficients. In other words, given any binomial f(X, Y), we can determine whether I'z(f) has girth 4 or girth 6.
However, these results do not account for every trinomial f(X, Y). Investigating trinomials using techniques similar to those
employed previously in this paper (see e.g., Theorem 2.3) informs the following conjecture:
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Conjecture 10. Let f(X,Y) = oy (X¥Y® 4+ ap nX™Y™ + ap ¢XPY? € R[X, Y] be a trinomial where £ > n > q. There are three
cases to consider.

1. Let £ # qand n # q. If there exists some a € R such that

m-k m—k
Za( t=a +k)8l’q + nam,na( n=a +m)8”’q + qorp g0 < 0,
where

_ —n(n—q)
20 —q)
then I'r(f) has girth 4; otherwise it has girth 6.
2. Let ¢ # q,n = q. If there exists some a € R such that

a8 + (o n@™ + ap 4a”)8" < 0,

)

where

1
—1 (ot @™ ¥ + atp ga? ) \ "

8= ,
£

then I'z(f) has girth 4; otherwise it has girth 6.

3. Let& =n=q. Nowf(X,Y) = Yo X* 4+ amnX™ + ap gXP)wherek > m > pand k, p € 2N — 1. If there exists some
a € R such that

ka7 + moty n@™ 1 4 pary 4 < 0,
then I'x(f) has girth 4; otherwise it has girth 6.

Notice that in part 3, we restricted k, p € 2N — 1. This is because if either k or p is even, these cases were already covered
in Theorems 2.2 and 2.3, respectively.
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