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1. Introduction

A fundamental question in incidence geometry is about the subplane structure of projective planes. There are relatively
few results concerning when a projective plane of order k is a subplane of a projective plane of order n. Neumann [9] found
Fano subplanes in certain Hall planes, which led to the conjecture that every finite non-desarguesian plane contains PG(2, 2)
as a subplane (this conjecture is widely attributed to Neumann, though it does not appear in her work).

Johnson [7] and Fisher and Johnson [4] showed the existence of Fano subplanes in many translation planes. Petrak [10]
showed that Figueroa planes contain PG(2, 2) and Caliskan and Petrak [3] showed that Figueroa planes of odd order contain
PG(2, 3). Caliskan and Moorhouse [2] showed that all Hughes planes contain PG(2, 2) and that the Hughes plane of order g°
contains PG(2, 3)ifg = 5 (mod 6). We prove the following.

Theorem 1. Let IT be a finite projective plane of even order n which admits an orthogonal polarity. Then IT contains §2 (n3)
Fano subplanes.

Ganley [5] showed that a finite semifield plane admits an orthogonal polarity if and only if it can be coordinatized by a
commutative semifield. A result of Kantor [8] implies that the number of nonisomorphic planes of order n a power of 2 that
can be coordinatized by a commutative semifield is not bounded above by any polynomial in n. Thus, Theorem 1 applies to
many projective planes (in fact, almost all planes which have been described [8]).

2. Proof of Theorem 1

The proof of Theorem 1 is graph theoretic, and we collect some definitions and results first. Let [T = (P, £,Z) be a
projective plane of order n. We write p € lor say pison lif (p,I) € Z. Let & be a polarity of I1. That is, 7 maps points to
lines and lines to points, 2 is the identity function, and 7 respects incidence. Then one may construct the polarity graph
G2 as follows. V(G2) = P and p ~ qif and only if p € m(q). That is, the neighborhood of a vertex p is the line (p) that p
gets mapped to under the polarity. If p € 7(p), then p is an absolute point and the vertex p will have a loop on it. A polarity is
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Fig. 1. ER).

orthogonal if exactly n 4 1 points are absolute. We note that as neighborhoods in the graph represent lines in the geometry,
each vertex in G2 has exactly n 4+ 1 neighbors (if v is an absolute point, it has exactly n neighbors other than itself). We
provide proofs of the following preliminary observations for completeness.

Lemma 1. Let IT be a projective plane with polarity 7, and G2 be the associated polarity graph.

(a) Forallu, v € V(G2), u and v have exactly 1 common neighbor.
(b) G2 is C4-free.
(c) Ifu and v are two absolute points of G2, then u # v.
(d) If v € V(GY), then the neighborhood of v induces a graph of maximum degree at most 1.
(e) Let e = uv be an edge of G2 such that neither u nor v is an absolute point. Then e lies in a unique triangle in G2.
Proof. To prove (a), let u and v be an arbitrary pair of vertices in V(G2 ). Because IT is a projective plane, 7(u) and 7 (v) meet
in a unique point. This point is the unique vertex in the intersection of the neighborhood of u and the neighborhood of v. (b)
and (c) follow from (a).

To prove (d), if there is a vertex of degree at least 2 in the graph induced by the neighborhood of v, then G2 contains a
4-cycle, a contradiction by (b).

Finally, let u ~ v and neither u nor v an absolute point. Then by (a) there is a unique vertex w adjacent to both u and v.
Now uvw is the purported triangle, proving (e). O

Proof of Theorem 1. We will now assume I7 is a projective plane of even order n, that iz is an orthogonal polarity, and that
G2 is the corresponding polarity graph (including loops). Since n is even and 7 is orthogonal, a classical theorem of Baer [1],
see also Theorem 12.6 in [6] says that the n + 1 absolute points under = all lie on one line. Let a4, .. ., a,41 be the set of
absolute points and let I be the line containing them. Then there is some p € P such that 7(I) = p. This means that in G,
the neighborhood of p is exactly the set of points {ay, ..., a;+1}. For 1 <i < n+ 1, let N; be the neighborhood of a;. Then by
Lemma 1(b), N; N N; = {p} if i # j. Further, counting gives that

n+1 n+1
V(G2) = (U{ai}> U (U Nl) ) (1)
i=1 i=1

Let ERS be the graph on 7 points which is the polarity graph (with loops) of PG(2, 2) under the orthogonal polarity (see Fig. 1).

Lemma 2. IfER] is a subgraph of G2, then IT contains a Fano subplane.
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Proof. Let vy, ..., v; be the vertices of a subgraph ERS of G). Let [; = m(v;) for 1 < i < 7. Then the lines Iy, ...,I; in
IT restricted to the points vy, ..., v; form a point-line incidence structure, and one can check directly that it satisfies the
axioms of a projective plane. [

Thus, it suffices to find ERS in G2. To find ER] it suffices to find distinct i, j, k such that there are v; € N; \ {p, a;},
vj € Nj\ {p,qj}, and vy € Ni \ {p, vi} where v;vjv forms a triangle in G2, for then the points p, a;, g;, ax, v, vj, vk yield
the subgraph ERS. Now note that for all i, and for v € N;\ {p, a;}, v has exactly n neighbors that are not absolute points. There
are n + 1 choices for i and n — 1 choices for v. As each edge is counted twice, this yields

nn—1)(n+1)

2
edges with neither end in {p, ay, ..., a,41}. By Lemma 1(e), there are at least
n®—n
6
triangles in G2. By Lemma 1(c), there are no triangles incident with p. By Lemma 1(a) there are no triangles that have more
than one vertex in N;, and therefore there are no triangles incident with {p, a1, . .., a,+1} (we note that this also shows that

there are exactly (n® — n)/6 triangles in G°). Since the absolute points form a line, each vertex not equal to p has a unique
absolute neighbor. Thus for any triangle, the triangle along with its absolute neighbors and p form a copy of ER. Therefore
we have found

n3

—-n
6

copies of ER) in G2. We note that this expression is positive for all even natural numbers n. O

3. Concluding remarks

First, we note that Theorem 1 says that there are many copies of PG(2, 2) in any plane satisfying the hypotheses, and
echoing Petrak [10], perhaps one could find subplanes of order 4 for n large enough. We also note that it is crucial in the
proof that the absolute points form a line. When n is odd, the proof fails (as it must, since our proof does not detect if IT is
desarguesian or not and PG(2, q) does not contain PG(2, 2) when q is odd).
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