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a b s t r a c t

A conjecture widely attributed to Neumann is that all finite non-desarguesian projective
planes contain a Fano subplane. In this note, we show that any finite projective plane
of even order which admits an orthogonal polarity contains many Fano subplanes. The
number of planes of order less than n previously known to contain a Fano subplane was
O(log n), whereas the number of planes of order less than n that our theorem applies to is
not bounded above by any polynomial in n.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A fundamental question in incidence geometry is about the subplane structure of projective planes. There are relatively
few results concerning when a projective plane of order k is a subplane of a projective plane of order n. Neumann [9] found
Fano subplanes in certain Hall planes, which led to the conjecture that every finite non-desarguesian plane contains PG(2, 2)
as a subplane (this conjecture is widely attributed to Neumann, though it does not appear in her work).

Johnson [7] and Fisher and Johnson [4] showed the existence of Fano subplanes in many translation planes. Petrak [10]
showed that Figueroa planes contain PG(2, 2) and Caliskan and Petrak [3] showed that Figueroa planes of odd order contain
PG(2, 3). Caliskan and Moorhouse [2] showed that all Hughes planes contain PG(2, 2) and that the Hughes plane of order q2
contains PG(2, 3) if q ≡ 5 (mod 6). We prove the following.

Theorem 1. Let Π be a finite projective plane of even order n which admits an orthogonal polarity. Then Π contains Ω
(
n3
)

Fano subplanes.

Ganley [5] showed that a finite semifield plane admits an orthogonal polarity if and only if it can be coordinatized by a
commutative semifield. A result of Kantor [8] implies that the number of nonisomorphic planes of order n a power of 2 that
can be coordinatized by a commutative semifield is not bounded above by any polynomial in n. Thus, Theorem 1 applies to
many projective planes (in fact, almost all planes which have been described [8]).

2. Proof of Theorem 1

The proof of Theorem 1 is graph theoretic, and we collect some definitions and results first. Let Π = (P,L, I) be a
projective plane of order n. We write p ∈ l or say p is on l if (p, l) ∈ I. Let π be a polarity of Π . That is, π maps points to
lines and lines to points, π2 is the identity function, and π respects incidence. Then one may construct the polarity graph
Go

π as follows. V (Go
π ) = P and p ∼ q if and only if p ∈ π (q). That is, the neighborhood of a vertex p is the line π (p) that p

gets mapped to under the polarity. If p ∈ π (p), then p is an absolute point and the vertex pwill have a loop on it. A polarity is
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Fig. 1. ERo
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orthogonal if exactly n + 1 points are absolute. We note that as neighborhoods in the graph represent lines in the geometry,
each vertex in Go

π has exactly n + 1 neighbors (if v is an absolute point, it has exactly n neighbors other than itself). We
provide proofs of the following preliminary observations for completeness.

Lemma 1. Let Π be a projective plane with polarity π , and Go
π be the associated polarity graph.

(a) For all u, v ∈ V (Go
π ), u and v have exactly 1 common neighbor.

(b) Go
π is C4-free.

(c) If u and v are two absolute points of Go
π , then u ̸∼ v.

(d) If v ∈ V (Go
π ), then the neighborhood of v induces a graph of maximum degree at most 1.

(e) Let e = uv be an edge of Go
π such that neither u nor v is an absolute point. Then e lies in a unique triangle in Go

π .

Proof. To prove (a), let u and v be an arbitrary pair of vertices in V (Go
π ). Because Π is a projective plane, π (u) and π (v) meet

in a unique point. This point is the unique vertex in the intersection of the neighborhood of u and the neighborhood of v. (b)
and (c) follow from (a).

To prove (d), if there is a vertex of degree at least 2 in the graph induced by the neighborhood of v, then Go
π contains a

4-cycle, a contradiction by (b).
Finally, let u ∼ v and neither u nor v an absolute point. Then by (a) there is a unique vertex w adjacent to both u and v.

Now uvw is the purported triangle, proving (e). □

Proof of Theorem 1. Wewill now assume Π is a projective plane of even order n, that π is an orthogonal polarity, and that
Go

π is the corresponding polarity graph (including loops). Since n is even and π is orthogonal, a classical theorem of Baer [1],
see also Theorem 12.6 in [6] says that the n + 1 absolute points under π all lie on one line. Let a1, . . . , an+1 be the set of
absolute points and let l be the line containing them. Then there is some p ∈ P such that π (l) = p. This means that in Go

π ,
the neighborhood of p is exactly the set of points {a1, . . . , an+1}. For 1 ≤ i ≤ n+ 1, let Ni be the neighborhood of ai. Then by
Lemma 1(b), Ni ∩ Nj = {p} if i ̸= j. Further, counting gives that

V (Go
π ) =

(
n+1⋃
i=1

{ai}

)
∪

(
n+1⋃
i=1

Ni

)
. (1)

Let ERo
2 be the graph on 7 points which is the polarity graph (with loops) of PG(2, 2) under the orthogonal polarity (see Fig. 1).

Lemma 2. If ERo
2 is a subgraph of Go

π , then Π contains a Fano subplane.
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Proof. Let v1, . . . , v7 be the vertices of a subgraph ERo
2 of Go

π . Let li = π (vi) for 1 ≤ i ≤ 7. Then the lines l1, . . . , l7 in
Π restricted to the points v1, . . . , v7 form a point-line incidence structure, and one can check directly that it satisfies the
axioms of a projective plane. □

Thus, it suffices to find ERo
2 in Go

π . To find ERo
2 it suffices to find distinct i, j, k such that there are vi ∈ Ni \ {p, ai},

vj ∈ Nj \ {p, aj}, and vk ∈ Nk \ {p, vk} where vivjvk forms a triangle in Go
π , for then the points p, ai, aj, ak, vi, vj, vk yield

the subgraph ERo
2. Now note that for all i, and for v ∈ Ni \ {p, ai}, v has exactly n neighbors that are not absolute points. There

are n + 1 choices for i and n − 1 choices for v. As each edge is counted twice, this yields
n(n − 1)(n + 1)

2
edges with neither end in {p, a1, . . . , an+1}. By Lemma 1(e), there are at least

n3
− n
6

triangles in Go
π . By Lemma 1(c), there are no triangles incident with p. By Lemma 1(a) there are no triangles that have more

than one vertex in Ni, and therefore there are no triangles incident with {p, a1, . . . , an+1} (we note that this also shows that
there are exactly (n3

− n)/6 triangles in Go
π ). Since the absolute points form a line, each vertex not equal to p has a unique

absolute neighbor. Thus for any triangle, the triangle along with its absolute neighbors and p form a copy of ERo
2. Therefore

we have found
n3

− n
6

copies of ERo
2 in Go

π . We note that this expression is positive for all even natural numbers n. □

3. Concluding remarks

First, we note that Theorem 1 says that there are many copies of PG(2, 2) in any plane satisfying the hypotheses, and
echoing Petrak [10], perhaps one could find subplanes of order 4 for n large enough. We also note that it is crucial in the
proof that the absolute points form a line. When n is odd, the proof fails (as it must, since our proof does not detect if Π is
desarguesian or not and PG(2, q) does not contain PG(2, 2) when q is odd).
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