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a b s t r a c t

For n ≥ k ≥ 4, let ARk
X+Y=Z+T (n) be the maximum number of rainbow solutions to the

Sidon equation X + Y = Z + T over all k-colorings c : [n] → [k]. It can be shown that
the total number of solutions in [n] to the Sidon equation is n3/12+O(n2) and so, trivially,
ARk

X+Y=Z+T (n) ≤ n3/12 + O(n2). We improve this upper bound to

ARk
X+Y=Z+T (n) ≤

(
1
12

−
1

24k

)
n3

+ Ok(n2)

for all n ≥ k ≥ 4. Furthermore, we give an explicit k-coloring of [n] with more rainbow
solutions to the Sidon equation than a random k-coloring, and gives a lower bound of(

1
12

−
1
3k

)
n3

− Ok(n2) ≤ ARk
X+Y=Z+T (n).

When k = 4, we use a different approach based on additive energy to obtain an upper
bound of 3n3/96 + O(n2), whereas our lower bound is 2n3/96 − O(n2) in this case.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Most of the notation we use is standard. For a positive integer n, let [n] = {1, 2, . . . , n}. If X is a set and m ≥ 0 is an
integer, then

(X
m

)
is the set of all subsets of X of size m. A k-coloring of a set X is a function c : X → [k]. The function c need

not be onto. A subset Y ⊂ X ismonochromatic under c if c(y) = c(y′) for all y, y′
∈ Y . The set Y is rainbow if no two elements

of Y have been assigned the same color.
The hypergraph Ramsey Theorem states that for any positive integers s, k, and m, there is an N = N(s, k,m) such that

for all n ≥ N the following holds: if c is any k-coloring of
(
[n]
m

)
, then there is a set S ⊂ [n] such that

( S
m

)
is monochromatic

under c. This theorem is one of the most important theorems in combinatorics. Today, Ramsey Theory is a cornerstone in
combinatorics and there is a vast amount of literature on Ramsey type problems. Here wewill focus on a Ramsey problem in
the integers and recommend Landman and Robertson [5] for a more comprehensive introduction to this area. The problem
we consider is inspired by the investigations of two recent papers.

In [7], Saad and Wolf introduced an arithmetic analog of some problems in graph Ramsey Theory. In particular, given a
graph H , let RMk(H, n) be the minimum number of monochromatic copies of H over all k-colorings c : E(Kn) → [k]. The
parameter RMk(H, n) is the Ramsey multiplicity of H and has been studied for different graphs H . The arithmetic analog
from [7] replaces graphs with linear equations, and sets up a general framework where these ideas from graph theory
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(Sidorenko property, Ramsey multiplicity) have natural counterparts. Fix an abelian group Γ . If L is a linear equation with
integer coefficients, one can look at the minimum number of monochromatic solutions to L over all k-colorings c : Γ → [k].
One of the first examples given in [7] (see Example 1.1) concerns the Sidon equation X + Y = Z + T . This famous equation
has a rich history in combinatorics. A Sidon set in an abelian group Γ is a set having only trivial solutions to X + Y = Z + T .
If A ⊂ Γ is a Sidon set and Γ is finite, then a simple counting argument gives |A| ≤ 2|Γ |

1/2
+ 1. The constant 2 can be

improved in many cases, but what concerns us here is that when A is much larger, say |A| = α|Γ | for some α > 0, then A
will certainly contain nontrivial solutions to the Sidon equation. Thus, a natural question is given a k-coloring c : Γ → [k], at
least howmany solutions to the Sidon equation must be monochromatic. This question, and several others including results
on X + Y = Z (Schur triples) and X + Y = 2Z (3 term a.p.’s), is answered by the results of [7]. For more in this direction, we
refer the reader to that paper.

Recently, De Silva, Si, Tait, Tunçbilek, Yang, and Young [2] studied a rainbow version of Ramsey multiplicity. Instead of
looking at the minimum number of monochromatic copies of H over all k-colorings c : E(Kn) → [k], De Silva et al. look
at the maximum number of rainbow copies of H . One must consider rainbow copies of H since giving every edge of Kn the
same color clearlymaximizes the number ofmonochromatic copies. Define rbk(H; n) to be themaximumnumber of rainbow
copies ofH over all k-colorings c : E(Kn) → [k]. This parameter is called the anti-Ramseymultiplicity ofH , and [2] investigates
the behavior of this function for different graphs H .

In this paper, we consider an arithmetic analog of anti-Ramsey multiplicity thereby combining the problems raised in
[2] with the arithmetic setting of [7]. We will focus entirely on the Sidon equation X + Y = Z + T . The Sidon equation
measures the additive energy of a set. The additive energy of a set A ⊂ Γ is the number of four tuples (a, b, c, d) ∈ A4 such
that a + b = c + d. Typically it is written as

E(A) = |{(a, b, c, d) ∈ A4
: a + b = c + d}|.

This fundamental parameter measures the additive structure of A, and for more on additive energy, see Tao and Vu [8].
Additive energy is perhaps one of the reasons why the Sidon equation is used as a first example in [7]. We would also like
to remark that rainbow solutions to the Sidon equation were studied by Fox, Mahdian, and Radoičić [3]. They proved that in
every 4-coloring of [n]where the smallest color classes has size at least n+1

6 , there is at least one rainbow solution to the Sidon
equation. This result is also discussed in [4] which surveys several problems on conditions ensuring a rainbow solution to an
equation. Lastly, Bevilacqua et al. [1] investigated the minimum number of colors required to guarantee a rainbow solution
to x1 + x2 ≡ kx3(mod n) where k is a fixed integer.

Since we are interested in the maximum number of rainbow solutions to X + Y = Z + T , we must take a moment
to carefully describe how solutions are counted. First, since we are only counting rainbow solutions, we only care about
solutions to X + Y = Z + T in which all of the terms are distinct. Additionally, we want to count solutions that can be
obtained by interchanging values on the same side of the equation as being the same. With this in mind, we define a set of
four distinct integers {x1, x2, x3, x4} ∈

(
[n]
4

)
a Sidon 4-set if these integers form a solution to the Sidon equation X+Y = Z+T .

Given a Sidon 4-set {x1, x2, x3, x4}, we can determine exactly which pairs appear on each side of X +Y = Z +T . Without loss
of generality, we may assume that x1 is the largest among the xi’s and x4 is the smallest. It follows that x1 + x4 = x2 + x3 and
again without loss of generality, we may assume x2 > x3 so x1 > x2 > x3 > x4. In short, given a Sidon 4-set {x1, x2, x3, x4},
the two extreme values appear on one side of X + Y = Z + T , and the two middle values appear on the other side.

Now we are ready to define the Ramsey function that is the focus of this work. Let n ≥ k ≥ 4 be integers. We define

ARk
X+Y=Z+T (n)

to be the maximum number of rainbow Sidon 4-sets over all colorings c : [n] → [k]. It can be shown that the total number
of Sidon 4-sets in [n] is exactly

n3

12
−

3n2

8
+

5n
12

− θ

where θ = 0 if n is even, and θ =
1
8 if n is odd. This immediately implies the upper bound

ARk
X+Y=Z+T (n) ≤

n3

12
−

3n2

8
+

5n
12

for n ≥ k ≥ 4. A First Moment Method argument gives a lower bound of(
1
12

−
1
2k

+ O
(

1
k2

))
n3

− Ok(n2) ≤ ARk
X+Y=Z+T (n).

Our first theorem improves both of these bounds.

Theorem 1.1. For integers n ≥ k ≥ 4,(
1
12

−
1
3k

+
θ

k2

)
n3

− Ok(n2) ≤ ARk
X+Y=Z+T (n) ≤

(
1
12

−
1

24k

)
n3

+ Ok(n2)

where θ =
1
3 if k is even, and θ =

1
4 if k is odd.
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When k = 4, we can improve the upper bound using a different argument.

Theorem 1.2. For n ≥ 4,

2n3

96
− O(n2) ≤ AR4

X+Y=Z+T (n) ≤
3n3

96
+ O(n2).

The lower bound in Theorem 1.2 is a consequence of Theorem 1.1. Finding an asymptotic formula for ARk
X+Y=Z+T (n) is an

open problem.
The rest of this paper is organized as follows. In Sections 2 and 3, we prove the upper bounds of Theorems 1.1 and 1.2,

respectively. The lower bound is proved in Section 4. Some concluding remarks and further discussion are given in Section 5.

2. An upper bound for k colors

Key to our upper bound for k > 4 is the following lemma. It gives a lower bound for the number of Sidon 4-sets that
contain a fixed pair. It will be applied to pairs that are monochromatic under a given coloring c .

Lemma 2.1. Let n be a positive integer and let {b < a} ∈
(
[n]
2

)
. Define fn({b < a}) to be the number of Sidon 4-sets

{x1, x2, x3, x4} ∈
(
[n]
4

)
with {a, b} ⊂ {x1, x2, x3, x4}. Then fn satisfies

fn({b < a}) ≥
n
2

− 4.

Proof. We will consider two possibilities depending on the positioning of a and bwithin the equation x1 + x4 = x2 + x3.

Claim 1. If a + b = xi + xj, then the number of xi, xj ∈ [n] with xi < xj that satisfy this equation is at least{
⌊
a+b−1

2 ⌋ − 1 if a + b ≤ n + 1,

n − ⌊
a+b−1

2 ⌋ − 1 if a + b > n + 1.

Proof of Claim 1. First suppose a + b ≤ n + 1. Let xi = m and xj = a + b − mwhere 1 ≤ m ≤ ⌊
a+b−1

2 ⌋. Since a + b ≤ n + 1,
the integers xi and xj are in [n] for all m in the specified range. Since we must exclude xi = b, xj = a (a, b, xi, and xj must all
be distinct to be a Sidon 4-set), we obtain that the total amount of possible values for xi, xj is at least ⌊

a+b−1
2 ⌋ − 1.

Now suppose a + b > n + 1. Let xi = a + b − n + m and xj = n − m where 0 ≤ m ≤ n − ⌊
a+b−1

2 ⌋. Since a + b > n + 1,
we have n − m ≤ xi < xj ≤ n for all m in the specified range. As before, the solution xi = b and xj = a must be excluded.
Here we obtain that the total amount of possible values for xi and xj is at least

n −

⌈
a + b − 1

2

⌉
≥ n −

⌊
a + b − 1

2

⌋
− 1.

Claim 2. If a + xi = b + xj, then the number of xi, xj ∈ [n] with xi < xj that satisfy this equation is at least n − (a − b) − 3.

Proof of Claim 2. Note that a + xi = b + xj implies a − b = xj − xi. Since b < a, we have that a − b > 0. Let xi = m and
xj = a − b + m. The range of m for which we have a valid solution is 1 ≤ m ≤ n − (a − b). However, we also require that
{a, b} ∩ {xi, xj} = ∅ and so the solutions (xi, xj) = (2b − a, b), (xi, xj) = (b, a), and (xi, xj) = (a, 2a − b) must all be excluded.
Thus, we obtain the number xi, xj that satisfy the equation a+ xi = b+ xj and all other constraints is at least n− (a− b)− 3.

These two possibilities (a+b = xi +xj and a+xi = b+xj) are disjoint and cover all possible positions for a and b. A lower
bound on the number of Sidon 4-sets {x1, x2, x3, x4} ∈

(
[n]
4

)
with {a, b} ⊂ {x1, x2, x3, x4} is obtained by combining these two

cases. So we have that if a + b ≤ n + 1, then the amount of Sidon 4-sets that contain a and b is at least⌊
a + b − 1

2

⌋
− 1 + n − (a − b) − 3 ≥ n −

a
2

+
3b
2

−
11
2

≥
n
2

− 4.

If a + b > n + 1, then the amount of Sidon 4-sets that contain a and b is at least

n −

⌊
a + b − 1

2

⌋
− 1 + n − (a − b) − 3 ≥ 2n −

3a
2

+
b
2

−
9
2

≥
n
2

− 4. ■

Theorem 2.2. For integers n ≥ k ≥ 4,

ARk
X+Y=Z+T (n) ≤

(
1
12

−
1

24k

)
n3

+ Ok(n2).
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Proof. Let c : [n] → [k] be a k-coloring of [n]. Let Xi be the integers assigned color i by c . LetM ⊂
(
[n]
2

)
be the set of all pairs

{b < a} which are monochromatic under c , i.e., c(a) = c(b). Then

|M| =

k∑
i=1

(
|Xi|

2

)
=

1
2

k∑
i=1

|Xi|
2
−

1
2

k∑
i=1

|Xi| ≥
1
2
k
(n
k

)2
−

n
2

=
n2

2k
−

n
2
. (1)

Let fn({b < a}) be the number of Sidon 4-sets in [n] that contain {b < a}. By Lemma 2.1,

fn({b < a}) ≥
n
2

− 4. (2)

The sum
∑

{b<a}∈M fn({b < a}) counts the number of Sidon 4-sets that contain at least one monochromatic pair. A given
Sidon 4-set is counted at most six times by this sum since there are

(4
2

)
ways to choose a pair from a Sidon 4-set. In fact, the

only Sidon 4-sets that will be counted six times in this sum are those which are monochromatic under c . All others will be
counted at most three times. Regardless, we have that the number of Sidon 4-sets that are not rainbow under c is at least

1
6

∑
{b<a}∈M

fn({b < a}) ≥
1
6

∑
{b<a}∈M

(n
2

− 4
)

≥
1
6

(
n2

2k
−

n
2

)(n
2

− 4
)

=
n3

24k
− Ok(n2)

where we have used both (1) and (2). ■

3. An upper bound for four colors

For k = 4, the upper bound of Theorem 2.2 gives

AR4
X+Y=Z+T (n) ≤

(
1
12

−
1
96

)
n3

+ O(n2).

In the special case that k = 4, we can obtain a better upper bound with a different argument based on additive energy.
Let A1, A2, . . . , At be finite sets of integers and define

Et (A1, A2, . . . , At ) = |{(a1, a2, . . . , at ) ∈ A1 × A2 × · · · × At : a1 + a2 + · · · + at = 0}|.

For integers n ≤ m, write [n,m] for the interval

{n, n + 1, n + 2, . . . ,m}.

For a finite set J ⊂ Zwith j elements, let

I(J) = [−⌈j/2⌉, ⌈j/2⌉].

Note that I(J) depends only on the cardinality of J .
A key ingredient in the proof of our upper bound is the following result of Lev [6].

Theorem 3.1 (Lev [6]). Let t ≥ 2 be an integer. For any finite sets A1, A2, . . . , At ⊂ Z,

Et (A1, A2, . . . , At ) ≤ Et (I(A1), I(A2), . . . , I(At )).

Themain idea is to apply Theorem 3.1 with t = 4, where A1, A2, A3, A4 are color classes of a coloring c : [n] → [4]. Before
using Theorem 3.1, we need a few lemmas.

For finite sets A, B ⊂ Z and an integerm, let

rA+B(m) = |{(a, b) ∈ A × B : a + b = m}|.

Lemma 3.2. Let 1 ≤ α ≤ β be integers. If A = [−α, α] and B = [−β, β], then

rA+B(m) =

{2α + 1 if |m| ≤ β − α,

β + α + 1 − |m| if β − α ≤ |m| ≤ α + β,

0 otherwise.

In particular, rA+B(m) ≤ β + α + 1 − |m| whenever |m| ≤ α + β .

Proof. For anymwith |m| ≤ β−α, we canwritem = j+(m− j) where j ∈ [−α, α]. The termm− j is in B since if |m| ≤ β−α

and |j| ≤ α, then

|m − j| ≤ |m| + |j| ≤ β − α + α = β.

This shows that rA+B(m) = 2α + 1 whenever |m| ≤ β − α.
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Now suppose β − α ≤ m ≤ α + β , saym = β − α + l for some l ∈ {0, 1, . . . , 2α}. Then

m = β − α + l = (−α + l + t) + (β − t) (3)

for t ∈ {0, 1, . . . , 2α − l}. We now check that for each such t , we have −α + l + t ∈ A and β − t ∈ B. Since α ≤ β and
0 ≤ l ≤ 2α,

−β ≤ β − 2α ≤ β − 2α + l = β − (2α − l) ≤ β − t ≤ β

so |β − t| ≤ β hence β − t ∈ B. Similarly,

−α ≤ −α + l + t ≤ −α + l + 2α − l = α

so −α + l + t ∈ A. Therefore, in (3), the term −α + l + t belongs to A and β − t belongs to B. Furthermore, this is all
of the ways to write m as a sum of an integer in A and an integer in B. We conclude that for β − α ≤ m ≤ α + β ,
rA+B(m) = β + α + 1 − m. The proof is completed by noting that if m > α + β , then rA+B(m) = 0, and A and B are
symmetric about 0 so that rA+B(m) = rA+B(−m).

As for the assertion that rA+B(m) ≤ β + α + 1− |m| for |m| ≤ α + β , it is enough to check that β + α + 1− |m| ≥ 2α + 1
for |m| ≤ β − α. An easy computation shows that these two inequalities are equivalent. ■

Lemma 3.3. If α is a positive integer and J = [−α, α], then

rJ+J (m) =

{
2α + 1 − |m| if |m| ≤ 2α,

0 otherwise.

Proof. Apply Lemma 3.2 with α = β . ■

Lemma 3.4. Let α1, α2, α3, α4 be positive integers such that α := α1 + α2 + α3 + α4 is divisible by 4. If Ai = [−αi, αi] and
J = [−α/4, α/4], then for any integer m with |m| ≤ α/2,

rA1+A2 (m) + rA3+A4 (m) ≤ 2rJ+J (m).

Proof. Letm be an integer with |m| ≤
α
2 . By Lemma 3.2,

rA1+A2 (m) + rA3+A4 (m) ≤ α1 + α2 + 1 − |m| + α3 + α4 + 1 − |m|

= 2(α/2 + 1 − |m|) = 2rJ+J (m).

For the last equality, we have used Lemma 3.3 with J = [−α/4, α/4]. ■

Lemma 3.5. Let α1, α2, α3, α4 be positive integers such that α := α1 + α2 + α3 + α4 is divisible by 4. If Ai = [−αi, αi] and
J = [−α/4, α/4], then

∑
m∈Z

rA1+A2 (m)rA3+A4 (m) ≤

α
2∑

m=−
α
2

rJ+J (m)2.

Proof. First we show that if |m| > α
2 , then the product

rA1+A2 (m)rA3+A4 (m)

must be 0. If rA1+A2 (m) ̸= 0 and rA3+A4 (m) ̸= 0, then by Lemma 3.2,

|m| ≤ α1 + α2 and |m| ≤ α3 + α4.

Adding the two inequalities together gives |m| ≤
α1+α2+α3+α4

2 and so |m| ≤
α
2 . Thus,∑

m∈Z

rA1+A2 (m)rA3+A4 (m) =

α
2∑

m=−
α
2

rA1+A2 (m)rA3+A4 (m).

By Lemma 3.4, for any m with |m| ≤
α
2 , we have rA1+A2 (m) + rA3+A4 (m) ≤ 2rJ+J (m). Thus, the product rA1+A2 (m)rA3+A4 (m) is

at most rJ+J (m)2. Since this holds for allm with |m| ≤
α
2 ,∑

m∈Z

rA1+A2 (m)rA3+A4 (m) =

α
2∑

m=−
α
2

rA1+A2 (m)rA3+A4 (m) ≤

α
2∑

m=−
α
2

rJ+J (m)2

which completes the proof of the lemma. ■
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Lemma 3.6. If α is a positive integer and J = [−α, α], then

E4(J, J, J, J) =
16α3

3
+ 8α2

+
14α
3

+ 1.

Proof. Wemust count the number of 4-tuples (x1, x2, x3, x4) with −α ≤ xi ≤ α and

x1 + x2 + x3 + x4 = 0.

For an integer m with 0 ≤ |m| ≤ 2α, we have rJ+J (m) = 2α + 1 − |m| by Lemma 3.3. The number of 4-tuples (x1, x2, x3, x4)
with −α ≤ xi ≤ α and x1 + x2 + x3 + x4 = 0 is

2α∑
m=−2α

rJ+J (m)rJ+J (−m) = rJ+J (0)2 + 2
2α∑

m=1

rJ+J (m)2

= (2α + 1)2 + 2
2α∑

m=1

(2α + 1 − m)2

=
16α3

3
+ 8α2

+
14α
3

+ 1. ■

Theorem 3.7. The function AR4
X+Y=Z+T (n) satisfies

AR4
X+Y=Z+T (n) ≤

3n3

96
+ O(n2).

Proof. First we assume that n is divisible by 8. An easy monotonicity argument will complete the proof for all n.
Suppose c : [n] → {1, 2, 3, 4} is a 4-coloring of [n]. Let Xi be the integers assigned color i by c and |Xi| = cin. The number

of rainbow solutions to X + Y = Z + T is exactly

N(c) := E4(X1, X2, −X3, −X4) + E4(X1, X3, −X2, −X4) + E4(X1, X4, −X2, −X3).

By Theorem 3.1,

N(c) ≤ E4(I(X1), I(X2), I(−X3), I(−X4)) + E4(I(X1), I(X3), I(−X2), I(−X4))
+ E4(I(X1), I(X4), I(−X2), I(−X3)).

We will show that each of the terms on the right hand side is at most n3
96 + O(n2).

For 1 ≤ i ≤ 4,

I(±Xi) = [−⌈cin/2⌉, ⌈cin/2⌉].

We also have that c1 + c2 + c3 + c4 ≤ 1. Assume that each cin
2 is an integer. Let A1 = I(X1), A2 = I(X2), A3 = I(−X3),

A4 = I(−X4), and J = [−n/8, n/8]. By Lemmas 3.5 and 3.6

E4(A1, A2, A3, A4) =

∑
m∈Z

rA1+A2 (m)rA3+A4 (−m) =

∑
m∈Z

rA1+A2 (m)rA3+A4 (m)

≤

n/4∑
m=−n/4

rJ+J (m)2 = E4(J, J, J, J) =
n3

96
+ O(n2).

We apply this same estimate to E4(X1, X3, −X2, −X4) and E4(X1, X4, −X2, −X3) to obtain

N(c) ≤
3n3

96
+ O(n2).

If the cin
2 are not integers, we can still apply the above argument but now J must be replaced with J = [−n/8 − 1, n/8 + 1].

Nevertheless, we still have E4(J, J, J, J) ≤
n3
96 + O(n2) as E4(J, J, J, J) increases by O(n2) when the interval J increases from

[−n/8, n/8] to [−n/8 − 1, n/8 + 1].
If n is not divisible by 8, then let l be the smallest integer for which n+ l is divisible by 8 (so 1 ≤ l ≤ 7). By monotonicity,

AR4
X+Y=Z+T (n) ≤ AR4

X+Y=Z+T (n + l) ≤
3(n + l)3

96
+ O((n + l)2) =

3n3

96
+ O(n2). ■
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4. A lower bound for k colors

In this section we prove a lower bound on ARk
X+Y=S+T (n) for k ≥ 4. We will need two lemmas before proving the lower

bound, and continue to write

rA+B(m) = |{(a, b) ∈ A × B : a + b = m}|.

Lemma 4.1. Let 1 ≤ i < j ≤ k be integers and let n be a positive integer that is divisible by k. If Xi = {m ∈ [n] : m ≡ i(mod k)}
and Xj = {m ∈ [n] : m ≡ j(mod k)}, then

rXi+Xj (i + j + tk) ≥

{
t + 1 if 0 ≤ t ≤

n
k − 1,

2n
k − 1 − t if n

k ≤ t ≤
2n
k − 2.

If l ̸≡ i + j(mod k), then rXi+Xj (l) = 0.

Proof. First note that since k divides n,

Xi = {i, i + k, i + 2k, . . . , i + n − k} and Xj = {j, j + k, j + 2k, . . . , j + n − k}.

If l = a + b for some a ∈ Xi and b ∈ Xj, then l ≡ i + j(mod k). Thus, rXi+Xj (l) = 0 whenever l ̸≡ i + j(mod k). This proves
the last assertion of the lemma.

Let t be an integer with 0 ≤ t ≤
n
k − 1. We claim that for each α ∈ {0, 1, . . . , t}, we get

i + j + tk = (i + αk) + (j + (t − α)k)

where i + αk ∈ Xi and j + (t − α)k ∈ Xj. The inequality

i ≤ i + αk ≤ i + tk ≤ i +
(n
k

− 1
)
k = i + n − k

shows that i + αk ∈ Xi for each α ∈ {0, 1, . . . , t}. Similarly,

j ≤ j + (t − α)k ≤ j + tk ≤ j +
(n
k

− 1
)
k = j + n − k

shows that j + αk ∈ Xj for each α ∈ {0, 1, . . . , t}. Consequently,

rXi+Xj (i + j + tk) ≥ t + 1

whenever t ∈ {0, 1, . . . , n
k − 1}.

Now let t be an integer with n
k ≤ t ≤

2n
k − 2. Write t =

2n
k − β where 2 ≤ β ≤

n
k . For each α ∈ {1, 2, . . . , β − 1}, we can

write

i + j + tk = i + j +
(
2n
k

− β

)
k =

(
i +

(n
k

− α

)
k
)

+

(
j +

(n
k

− (β − α)
)
k
)

.

We claim that i +
( n
k − α

)
k ∈ Xi and j +

( n
k − (β − α)

)
k ∈ Xj. Now

i + k = i + n −

(n
k

− 1
)
k ≤ i + n − (β − 1)k ≤ i +

(n
k

− α

)
k ≤ i + n − k

where we have used the inequalities β ≤
n
k , α ≤ β − 1, and α ≥ 1. We conclude that for each α ∈ {1, 2, . . . , β − 1}, the

term i +
( n
k − α

)
k is in Xi. Similarly,

j + k = j +
(n
k

−

(n
k

− 1
))

k ≤ j +
(n
k

− (β − 1)
)
k ≤ j +

(n
k

− (β − α)
)
k

≤ j +
(n
k

− 1
)
k = j + n − k

shows that j +
( n
k − (β − α)

)
k is in Xj for each α ∈ {1, 2, . . . , β − 1}. Therefore,

rXi+Xj (i + j + tk) ≥ β − 1.

Since t =
2n
k − β , we have β − 1 =

2n
k − t − 1 and this completes the proof of the lemma. ■

For the next lemma we will count Sidon 4-sets in Zk. A Sidon 4-set in Zk is a set of four distinct elements α, β , γ , δ ∈ Zk
such that α + β ≡ γ + δ(mod k). We will denote such a 4-set by {α + β ≡ γ + δ}. The reason we cannot simply write
{α, β, γ , δ} is that in Zk, four distinct residues may lead to more than one solution to the Sidon equation. For example, in Z4,

1 + 2 ≡ 3 + 4(mod 4) and 1 + 4 ≡ 2 + 3(mod 4).
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This does not occur in Z because of the ordering of the integers. Let S(k) be the collection of all Sidon 4-sets in Zk. Finishing
off the example of k = 4, it is easily seen that

S(4) = {{1 + 2 ≡ 3 + 4}, {1 + 4 ≡ 2 + 3}} (4)

and so |S(4)| = 2.
We are now ready to state and prove the next lemma.

Lemma 4.2. Let k ≥ 4 be an integer. If S(k) is the family of all Sidon 4-sets in Zk, then

|S(k)| =
k3

8
−

k2

2
+ θk

where θ =
1
2 if k is even, and θ =

3
8 if k is odd.

Proof. For this lemma, we will write a ≡ b for a ≡ b(mod k).
Let us first assume that k is even. Where this will come into play is that when k is even, the congruence 2X ≡ bwill have

exactly two solutions when b is even, and no solutions when b is odd. First we choose a pair {x1, x2} ∈
(Zk
2

)
. This can be done

in
(k
2

)
ways and this pair will be one side of the equation X + Y ≡ Z + T . Our counting from this point forward depends on

if x1 + x2 is even or odd when viewed as an integer.

Case 1: x1 + x2 is even
If x1 + x2 is even, then the congruence 2X ≡ x1 + x2 has exactly two solutions, say y1 and y2. Note that no yi can be the

same as an xi for if, say y1 ≡ x1, then from y1 + y1 ≡ x1 + x2 we get x2 ≡ y1 ≡ x1 contradicting the way x1 and x2 have been
chosen. Therefore, in the case that x1 + x2 is even, there are k − 4 choices for x3 for which the unique x4 satisfying

x1 + x2 ≡ x3 + x4

will have the property that all of x1, x2, x3, and x4 are distinct. We conclude that

{x1 + x2 ≡ x3 + x4}

is indeed a Sidon 4-set. This Sidon 4-set is counted exactly four times in this way: we could have chosen x3 or x4 after having
chosen the pair {x1, x2}, and we could have also started by choosing the pair {x3, x4} instead. When k is even, the number of

pairs {x1, x2} for which x1 + x2 is even is exactly
∑ k

2 −1
t=1 2t =

k2
4 −

k
2 (this can be seen by looking at the diagonals in a Cayley

table for Zk). Altogether, we have a count of

( k
2

4 −
k
2 )(k − 4)
4

Sidon 4-sets {x1 + x2 ≡ x3 + x4} where x1 + x2 is even.

Case 2: x1 + x2 is odd
If x1 + x2 is odd, then 2X ≡ x1 + x2 has no solution since gcd(2, k) does not divide x1 + x2. Now there will be k−2 choices

for x3 and the unique x4 satisfying x1 + x2 ≡ x3 + x4 will have the property that {x1, x2, x3, x4} is a Sidon 4-set. There are∑ k
2
t=1(2t − 1) =

k2
4 pairs {x1, x2} for which x1 + x2 is odd. This gives a count of

( k
2

4 )(k − 2)
4

Sidon 4-sets {x1 + x2 ≡ x3 + x4} where x1 + x2 is odd.
Combining the two cases, there are exactly

( k
2

4 −
k
2 )(k − 4)
4

+
( k

2

4 )(k − 2)
4

=
k3

8
−

k2

2
+

k
2

Sidon 4-sets in Zk when k is even.
When k is odd, a similar counting argument can be done. The key difference is that for any pair {x1, x2}, the congruence

2X ≡ x1 +x2 has exactly one solution since gcd(k, 2) = 1 always divides x1 +x2. This unique solutionmust be avoidedwhen
choosing x3 and so there will be k − 3 choices for x3. The rest of the counting is similar to as before and we obtain(k

2

)
(k − 3)
4

=
k3

8
−

k2

2
+

3k
8

Sidon 4-sets in Zk when k is odd. ■
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Theorem 4.3. Let n ≥ k ≥ 4 be integers and assume that n is divisible by k. If S(k) is the family of all Sidon 4-sets in Zk, then

ARk
X+Y=Z+T (n) ≥ 2|S(k)|

(
n3

3k3
− Ok(n2)

)
.

Proof. Let n ≥ k ≥ 4 be integers where k divides n. Define the coloring c : [n] → [k] by c(i) = i(mod k) where we use
residues in the set {1, 2, . . . , k}. The number of rainbow Sidon 4-sets under c is

2n∑
l=1

∑
1≤i<j<s<t≤k

(
rXi+Xj (l)rXs+Xt (l) + rXi+Xs (l)rXj+Xt (l) + rXi+Xt (l)rXj+Xs (l)

)
(5)

where Xi = {m ∈ [n] : m ≡ i(mod k)}. To see this, observe that if x1 + x2 = x3 + x4 is a Sidon 4-set that is rainbow, then
there are distinct colors 1 ≤ i < j < s < t ≤ kwith

{c(x1), c(x2), c(x3), c(x4)} = {i, j, s, t}.

This rainbow Sidon 4-set is counted exactly once by the sum (5) precisely when l = x1 + x2, and by only one of the terms in
the sum

rXi+Xj (l)rXs+Xt (l) + rXi+Xs (l)rXj+Xt (l) + rXi+Xt (l)rXj+Xs (l). (6)

The unique nonzero term depends on which two colors appear on the same side of the equation x1 + x2 = x3 + x4. For
instance, if colors i and j appear on the same side, then the first term in (6) is the one that counts {x1, x2, x3, x4}.

Fix an l ∈ [n] and four distinct colors i, j, s, t . By Lemma 4.1, the product

rXi+Xj (l)rXs+Xt (l)

is not zero if and only if l ≡ i+ j(mod k) and l ≡ s+ t(mod k). This clearly implies i+ j ≡ s+ t(mod k) and so {i+ j ≡ s+ t}
is Sidon 4-set in Zk. For u ∈ {0, 1, . . . , k − 1}, let

S(k, u)

be the Sidon 4-sets {α + β ≡ γ + δ} ∈ S(k) for which α + β ≡ u(mod k). The collection {S(k, u) : 0 ≤ u ≤ k − 1} forms a
partition of S(k). Since rXi+Xj (l) ̸= 0 if only if l ≡ i + j(mod k), (5) can be rewritten as

S :=

2n
k −1∑
l=0

k∑
u=1

∑
{α+β≡γ+δ}∈S(k,u)

rXα+Xβ
(u + kl)rXγ +Xδ

(u + kl).

In order to use Lemma 4.1, we split this sum into two sums S1 and S2 where S ≥ S1 + S2. Define

S1 :=

n
k −1∑
l=0

k∑
u=1

∑
{α+β≡γ+δ}∈S(k,u)

rXα+Xβ
(u + kl)rXγ +Xδ

(u + kl)

and

S2 :=

2n
k −2∑
l= n

k

k∑
u=1

∑
{α+β≡γ+δ}∈S(k,u)

rXα+Xβ
(u + kl)rXγ +Xδ

(u + kl).

By Lemma 4.1,

S1 ≥

n
k −1∑
l=0

k∑
u=1

∑
{α+β≡γ+δ}∈S(k,u)

(l + 1)2 =

n
k −1∑
l=0

|S(k)|(l + 1)2 = |S(k)|
(

n3

3k3
− Ok(n2)

)
. (7)

A similar application of Lemma 4.1 gives

S2 ≥ |S(k)|
(

n3

3k3
− Ok(n2)

)
. (8)

Combining (7) and (8), we have

S ≥ S1 + S2 ≥ 2|S(k)|
(

n3

3k3
− Ok(n2)

)
(9)

which tells us that the number of rainbow Sidon 4-sets under the coloring c is at least the right hand side of (9). ■
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Corollary 4.4. For integers n ≥ k ≥ 4, the function ARk
X+Y=Z+T (n) satisfies

ARk
X+Y=Z+T (n) ≥

(
1
12

−
1
3k

+
θ

k2

)
n3

− Ok(n2)

where θ =
1
3 if k is even, and θ =

1
4 if k is odd.

Proof. First assume that n is divisible by k. By Theorem 4.3 and Lemma 4.2,

ARk
X+Y=Z+T (n) ≥ 2

(
k3

8
−

k2

2
+ γ k

)(
n3

3k3
− Ok(n2)

)
.

where γ =
1
2 if k is even and γ =

3
8 if k is odd.

If n is not divisible by k, then choose r ∈ [k − 1] so that n − r is divisible by k. We then have by monotonicity,

ARk
X+Y=Z+T (n) ≥ ARk

X+Y=Z+T (n − r) ≥ 2
(
k3

8
−

k2

2
+ γ k

)(
(n − r)3

3k3
− Ok(n2)

)
.

The lower order term can be absorbed into the Ok(n2) error term so we get

ARk
X+Y=Z+T (n) ≥ 2

(
k3

8
−

k2

2
+ γ k

)(
n3

3k3
− Ok(n2)

)
=

(
1
12

−
1
3k

+
θ

k2

)
n3

− Ok(n2)

in either case. Here θ =
1
3 if k is even, and θ =

1
4 if k is odd. ■

5. Concluding remarks

In this paper we studied the anti-Ramsey function ARk
X+Y=Z+T (n) which concerns colorings of [n]. One could also consider

colorings of Zn. Write ARk
X+Y≡Z+T (Zn) for the maximum number of rainbow solutions to X + Y ≡ Z + T (mod n) over all

k-colorings c : Zn → [k]. As in the case of [n], we count solutions that only differ by ordering as the same. This is discussed
in detail prior to Lemma 4.2. Now by Lemma 4.2,

ARk
X+Y≡Z+T (Zn) ≤

n3

8
−

n2

2
+ θn

where θ =
1
2 if n is even, and θ =

3
8 if n is odd. When k = 4, it is easy to improve this upper bound as follows. Let

c : Zn → [4] be a coloring of Zn and let Xi be the elements of Zn assigned color i by c . The number of rainbow solutions to
the Sidon equation X + Y ≡ Z + T (mod n) where colors 1 and 2 appear on the same side is at most

min{|X1||X2||X3|, |X1||X2||X4|, |X1||X3||X4|, |X2||X3||X4|}. (10)

Indeed, once we have chosen three values for the four variables X , Y , Z , and T , the last variable is uniquely determined.
Since |X1| + |X2| + |X3| + |X4| = n, (10) is at most n3

64 . There are two other possible ways to obtain a rainbow solution to
X + Y ≡ Z + T (mod n). One is where colors 1 and 3 appear on the same side, and the other is where colors 1 and 4 appear
on the same side. This gives the upper bound

AR4
X+Y≡Z+T (Zn) ≤

3n3

64
.

As for a lower bound, a natural idea is to try the same coloring that is used to prove Theorem 4.3. It turns out that this is not
more difficult if we consider arbitrary k ≥ 4, neverthelesswe restrict to k = 4 for simplicity. Define the coloring c : Zn → [4]
by c(i) = i(mod 4) where we use residues in {1, 2, 3, 4} for the colors. If n is not divisible by 4, then this coloring may not
be well defined! A simple example is when n = 5 where c(5) = 1, and c(10) = 2, however, 5 and 10 are the same element
of Z5. An obvious way to fix this is to fix equivalence class representatives, say Zn = {1, 2, . . . , n}. Unfortunately this does
not solve the problem as we still require the arithmetic in Zn when finding solutions to X + Y ≡ Z + T (mod n). To proceed
further, let us now assume that n is divisible by 4 and so the coloring c will be well defined and will not depend on how we
represent the elements of Zn. It is now straightforward to adapt Lemma 4.1 to the Zn case. For 1 ≤ i < j ≤ 4, we would have

rXi+Xj (i + j + 4t) =
n
4

for all t ∈ {0, 1, . . . , n
4 − 1}, and rXi+Xj (l) = 0 if l ̸≡ i + j(mod 4). The proof of this follows along the same lines as the proof

of Lemma 4.1, except now

i + j + 4t ≡ (i + 4α) + (j + 4(t − α))(mod n)
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for all α ∈ {1, . . . , n
4 }. One then obtains the lower bound

AR4
X+Y≡Z+T (Zn) ≥

n
4 −1∑
l=0

4∑
u=1

∑
{α+β≡γ+δ}∈S(4,u)

rXα+Xβ
(u + 4l)rXγ +Xδ

(u + 4l)

=

n
4 −1∑
l=0

rX1+X2 (3 + 4l)rX3+X4 (3 + 4l) + rX1+X4 (1 + 4l)rX2+X3 (1 + 4l)

=

n
4 −1∑
l=0

((n
4

)2
+

(n
4

)2
)

=
n3

32

again, assuming n is divisible by 4.
When k = 4, determining an asymptotic formula for the number of rainbow solutions to the Sidon equation in [n] or Zn

would certainly be interesting. Additionally, improving the upper bound

ARk
X+Y=Z+T (n) ≤

(
1
12

−
1

24k

)
n3

+ Ok(n2)

seems possible. Using themethods of this paper, onemight be able to improve the 1
24k to

1
12k , but we believe the lower bound

is closer to the truth and so any significant improvement may require some new ideas.
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