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for alln > k > 4. Furthermore, we give an explicit k-coloring of [n] with more rainbow
solutions to the Sidon equation than a random k-coloring, and gives a lower bound of

1 1
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When k = 4, we use a different approach based on additive energy to obtain an upper
bound of 3n3/96 4 0(n?), whereas our lower bound is 2n* /96 — O(n?) in this case.
© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Most of the notation we use is standard. For a positive integer n, let [n] = {1,2,...,n}.If X isasetand m > 0 is an
integer, then (2) is the set of all subsets of X of size m. A k-coloring of a set X is a function ¢ : X — [k]. The function c need
not be onto. A subset Y C X is monochromatic under c if c(y) = c¢(y’) forally,y’ € Y. The set Y is rainbow if no two elements
of Y have been assigned the same color.

The hypergraph Ramsey Theorem states that for any positive integers s, k, and m, there is an N = N(s, k, m) such that
foralln > N the following holds: if c is any k-coloring of (")), then there is a set S C [n] such that () is monochromatic
under c. This theorem is one of the most important theorems in combinatorics. Today, Ramsey Theory is a cornerstone in
combinatorics and there is a vast amount of literature on Ramsey type problems. Here we will focus on a Ramsey problem in
the integers and recommend Landman and Robertson [5] for a more comprehensive introduction to this area. The problem
we consider is inspired by the investigations of two recent papers.

In [7], Saad and Wolf introduced an arithmetic analog of some problems in graph Ramsey Theory. In particular, given a
graph H, let RM(H, n) be the minimum number of monochromatic copies of H over all k-colorings ¢ : E(K,;) — [k]. The
parameter RMy(H, n) is the Ramsey multiplicity of H and has been studied for different graphs H. The arithmetic analog
from [7] replaces graphs with linear equations, and sets up a general framework where these ideas from graph theory
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(Sidorenko property, Ramsey multiplicity) have natural counterparts. Fix an abelian group I". If L is a linear equation with
integer coefficients, one can look at the minimum number of monochromatic solutions to L over all k-coloringsc : I" — [k].
One of the first examples given in [7] (see Example 1.1) concerns the Sidon equation X + Y = Z + T. This famous equation
has a rich history in combinatorics. A Sidon set in an abelian group I" is a set having only trivial solutionsto X +Y =Z + T.
IfA C I'is a Sidon set and I' is finite, then a simple counting argument gives |A| < 2|I"|"/? + 1. The constant 2 can be
improved in many cases, but what concerns us here is that when A is much larger, say |A| = «|I"| for some « > 0, then A
will certainly contain nontrivial solutions to the Sidon equation. Thus, a natural question is given a k-coloring c : I — [k], at
least how many solutions to the Sidon equation must be monochromatic. This question, and several others including results
onX + Y = Z (Schur triples) and X + Y = 2Z (3 term a.p.’s), is answered by the results of [7]. For more in this direction, we
refer the reader to that paper.

Recently, De Silva, Si, Tait, Tungbilek, Yang, and Young [2] studied a rainbow version of Ramsey multiplicity. Instead of
looking at the minimum number of monochromatic copies of H over all k-colorings ¢ : E(K,) — [k], De Silva et al. look
at the maximum number of rainbow copies of H. One must consider rainbow copies of H since giving every edge of K;, the
same color clearly maximizes the number of monochromatic copies. Define rby(H; n) to be the maximum number of rainbow
copies of H over all k-colorings ¢ : E(K,) — [k]. This parameter is called the anti-Ramsey multiplicity of H, and [2] investigates
the behavior of this function for different graphs H.

In this paper, we consider an arithmetic analog of anti-Ramsey multiplicity thereby combining the problems raised in
[2] with the arithmetic setting of [7]. We will focus entirely on the Sidon equation X + Y = Z 4+ T. The Sidon equation
measures the additive energy of a set. The additive energy of a set A C I' is the number of four tuples (a, b, c, d) € A* such
that a + b = c + d. Typically it is written as

E(A)=[{(a,b,c,d) e A*:a+b=c+d}.

This fundamental parameter measures the additive structure of A, and for more on additive energy, see Tao and Vu [8].
Additive energy is perhaps one of the reasons why the Sidon equation is used as a first example in [7]. We would also like
to remark that rainbow solutions to the Sidon equation were studied by Fox, Mahdian, and Radoici¢ [3]. They proved that in
every 4-coloring of [n] where the smallest color classes has size at least % there is at least one rainbow solution to the Sidon
equation. This result is also discussed in [4] which surveys several problems on conditions ensuring a rainbow solution to an
equation. Lastly, Bevilacqua et al. [ 1] investigated the minimum number of colors required to guarantee a rainbow solution
to x1 + x2 = kxs(mod n) where k is a fixed integer.

Since we are interested in the maximum number of rainbow solutions to X + Y = Z + T, we must take a moment
to carefully describe how solutions are counted. First, since we are only counting rainbow solutions, we only care about
solutions to X + Y = Z + T in which all of the terms are distinct. Additionally, we want to count solutions that can be
obtained by interchanging values on the same side of the equation as being the same. With this in mind, we define a set of
four distinct integers {x1, X2, X3, X4} € (lZJ) a Sidon 4-set if these integers form a solution to the Sidon equationX+Y = Z+T.
Given a Sidon 4-set {x1, X2, X3, X4}, we can determine exactly which pairs appear on each side of X + Y = Z 4+ T. Without loss
of generality, we may assume that x; is the largest among the x;’s and x4 is the smallest. It follows that x; + x4 = x + x3 and
again without loss of generality, we may assume x, > X3 S0 X; > X > X3 > X4. In short, given a Sidon 4-set {x1, X2, X3, X4},
the two extreme values appear on one side of X + Y = Z + T, and the two middle values appear on the other side.

Now we are ready to define the Ramsey function that is the focus of this work. Let n > k > 4 be integers. We define

I
ARy y_z,1(n)

to be the maximum number of rainbow Sidon 4-sets over all colorings ¢ : [n] — [k]. It can be shown that the total number
of Sidon 4-sets in [n] is exactly

n®  3n® 5n
28 127
where 6 = 0if nis even,and 6 = % if n is odd. This immediately implies the upper bound
w5
~ 12 8 12
for n > k > 4. A First Moment Method argument gives a lower bound of

11 1
(E — 5 +0 <172>) n® — Ox(n®) < ARYy_y.1(n).

Our first theorem improves both of these bounds.

X
ARy y_z,7(n)

Theorem 1.1. Forintegersn > k > 4,

11 0\, , ) 1T 1), ,
— — — + —= | n° = 0(n") < AR n<|{—-—1|n O(n
(12 3k+k2) W) = ARy —zor(M) = | 15 = g |1+ Ol

where § = 1 ifkis even, and 6 =  ifk is odd.
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When k = 4, we can improve the upper bound using a different argument.

Theorem 1.2. Forn > 4,

2n3 ) 4 3n3 )
% - O(n ) =< ARx+yzz+T(n) =< % + O(n )
The lower bound in Theorem 1.2 is a consequence of Theorem 1.1. Finding an asymptotic formula for AR§+Y:Z+T(n) isan

open problem.
The rest of this paper is organized as follows. In Sections 2 and 3, we prove the upper bounds of Theorems 1.1 and 1.2,
respectively. The lower bound is proved in Section 4. Some concluding remarks and further discussion are given in Section 5.

2. An upper bound for k colors

Key to our upper bound for k > 4 is the following lemma. It gives a lower bound for the number of Sidon 4-sets that
contain a fixed pair. It will be applied to pairs that are monochromatic under a given coloring c.

Lemma 2.1. Let n be a positive integer and let (b < a} € ([;J). Define fy({b < a}) to be the number of Sidon 4-sets
{X1, X2, X3, X4} € ([ZJ) with {a, b} C {x1, X2, X3, X4}. Then f,, satisfies

fullb < a}) > g —a

Proof. We will consider two possibilities depending on the positioning of a and b within the equation x; + x4 = x5 + X3.

Claim 1. If a + b = x; + x;, then the number of x;, X; € [n] with x; < x; that satisfy this equation is at least

|=t]—1 ifa+b<n+1,
b—1 .
n— =1 —-1 ifa+b>n+1.

Proof of Claim 1. First supposea+b <n+ 1.Letx; = mandx; =a+b —mwhere1 <m < L%J. Sincea+b <n+1,
the integers x; and x; are in [n] for all m in the specified range. Since we must exclude x; = b, x; = a (a, b, x;, and x; must all
be distinct to be a Sidon 4-set), we obtain that the total amount of possible values for x;, x; is at least L%J -1

Now supposea+b >n+ 1.Letx; =a+b—n+mandx; =n—mwhere0 <m <n— L“‘L;;]J.Sincea—i-b >n+1,
we haven —m < x; < x; < n for all m in the specified range. As before, the solution x; = b and x; = a must be excluded.
Here we obtain that the total amount of possible values for x; and x; is at least

(a—i—b—l—‘ {a—i—b—lJ
n—-|—— |>n—| — | — 1.
2 2

Claim 2. If a + x; = b + x;, then the number of x;, X; € [n] with x; < x; that satisfy this equation is at least n — (a — b) — 3.

Proof of Claim 2. Note that a + x; = b + x; impliesa — b = X; — x;. Since b < a, we have thata — b > 0. Letx; = m and
X; = a — b 4+ m. The range of m for which we have a valid solutionis 1 < m < n — (a — b). However, we also require that
{a, b} N {x;, x;} = ¥ and so the solutions (x;, x;) = (2b — a, b), (x;, x;) = (b, a), and (x;, x;) = (a, 2a — b) must all be excluded.
Thus, we obtain the number x;, x; that satisfy the equation a +x; = b + x; and all other constraints is at least n — (a — b) — 3.

These two possibilities (a4 b = x; +x; and a+x; = b+ x;) are disjoint and cover all possible positions for a and b. A lower

bound on the number of Sidon 4-sets {x1, X», X3, X4} € ([ZJ) with {a, b} C {x1, X2, X3, X4} is obtained by combining these two

cases. So we have thatif a + b < n + 1, then the amount of Sidon 4-sets that contain a and b is at least
a+b-—1 a 3b 11 n
——|-14n—(a=b)—3>n— -+ — — — > - —4,
{ 2 J + ( ) - 2 + 2 2 72
Ifa+ b > n+ 1, then the amount of Sidon 4-sets that contain a and b is at least

a+b-1 3a b 9 n
=1 —(a=b)—-3>2n—-—4-—->—-—4. n
n L 5 J +n—(a—>b) >2n 2+2 523

Theorem 2.2. Forintegersn > k > 4,

1 1
k 3 2
ARy yy—z,7(N) = (12 - 24k> n” 4 Ok(n).
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[n]

Proof. Letc : [n] — [k] be a k-coloring of [n]. Let X; be the integers assigned coloriby c. Let M C ( 2

{b < a} which are monochromatic under c, i.e., c(a) = c(b). Then

) be the set of all pairs

k 2

|M|_2k: [Xi] —IZ|X~|2—1i|X-|>lk(ﬁ)z—ﬂ—l—g (1)
- 2] 2 ' 2 =2 \k 27 2k 2

i=1 i=1 i=1

Let f,({b < a}) be the number of Sidon 4-sets in [n] that contain {b < a}. By Lemma 2.1,
fllb <a) =2 -4 2)

The sum Z{b<a]eM fa({b < a}) counts the number of Sidon 4-sets that contain at least one monochromatic pair. A given

Sidon 4-set is counted at most six times by this sum since there are (‘21) ways to choose a pair from a Sidon 4-set. In fact, the

only Sidon 4-sets that will be counted six times in this sum are those which are monochromatic under c. All others will be
counted at most three times. Regardless, we have that the number of Sidon 4-sets that are not rainbow under c is at least

1 1 n 1/n* n\/n n3
5 “K%j"“b =g (M%M CROE <ﬂ B 5) (5-4) = 25 ~ O

where we have used both (1)and (2). ®
3. An upper bound for four colors
For k = 4, the upper bound of Theorem 2.2 gives

1 1
AR?(+Y:Z+T(”) < <§ - %> n® 4+ 0(n?).

In the special case that k = 4, we can obtain a better upper bound with a different argument based on additive energy.
Let A1, Ay, ..., A; be finite sets of integers and define

Ei(A1, Ay, ... A) = {(ar,az,...,a;) €Ay XAy X -+ XA a1 +ay+---+a, =0}.
For integers n < m, write [n, m] for the interval

{n,n+1,n+2,...,m}
For a finite setJ] C Z with j elements, let

1) = [-13/21, Ti/211.

Note that I(J) depends only on the cardinality of J.
A key ingredient in the proof of our upper bound is the following result of Lev [6].

Theorem 3.1 (Lev [6]). Let t > 2 be an integer. For any finite sets A1, Az, ..., A: C Z,
Ei(A1, Ay, .. Ar) < Ec(I(A1), I(A), . .., I(A)).

The main idea is to apply Theorem 3.1 with t = 4, where A1, A;, A3, A4 are color classes of a coloring ¢ : [n] — [4]. Before
using Theorem 3.1, we need a few lemmas.
For finite sets A, B C Z and an integer m, let

Targ(m) = |{(a,b) e AXx B:a+b=m}|.

Lemma 3.2. Let1 < o < f beintegers. IfA = [—«, a] and B = [—8, B], then

20+ 1 ifim <8 —a,
Tapgm)={B+a+1—|ml iff—a<|m<a+p,
0 otherwise.

In particular, ra g(m) < B + o + 1 — |m| whenever |m| < o + B.

Proof. For any m with |m| < 8 —«, we can write m = j+(m—j)wherej € [—«, «]. The term m—jisin Bsince if |m| < —«
and |j| < «, then
m—jl<Im+ll<B—-—a+a=8.

This shows that r4,g(m) = 2o + 1 whenever |m| < 8 — «.

Please cite this article as: V.Taranchuk and C.Timmons, The anti-Ramsey problem for the Sidon equation, Discrete Mathematics (2018),
https://doi.org/10.1016/j.disc.2018.12.004.
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Now suppose 8 —a <m <a + B,saym=f —a +Ilforsomel € {0, 1, ..., 2«}. Then

m=p—a+l=(—a+Il+t)+(B—1t) (3)
fort € {0,1,..., 20 — I}. We now check that for each such t, we have —a« + 1+t € Aand 8 —t € B.Since « < 8 and
0<I<2a,

—B=p-20=Pp-2a+l=—-(20-0)<p-t=<p
so | —t| < Bhence B —t € B. Similarly,
—a<—-a+l+t<—-a+l+2a-Il=«

so —a + | + t € A. Therefore, in (3), the term —« + [ 4 t belongs to A and 8 — t belongs to B. Furthermore, this is all
of the ways to write m as a sum of an integer in A and an integer in B. We conclude thatfor 8 —a < m < a + 8,
Targ(m) = B + o + 1 — m. The proof is completed by noting that if m > « + S, then ry 5(m) = 0, and A and B are
symmetric about 0 so that rag(m) = rap(—m).

As for the assertion that 14 g(m) < B+« + 1 — |m| for |m| < « + B, itis enough to checkthat 8+ o« +1—|m| > 20 + 1
for |m| < B — «. An easy computation shows that these two inequalities are equivalent. H

Lemma 3.3. If« is a positive integer and ] = [—«, «], then

20 +1—|m| if|m| < 2a,
0

j+(m) = otherwise.

Proof. Apply Lemma 3.2 witha =8. &
Lemma 3.4. Let o, a3, a3, a4 be positive integers such that « := a1 + ay + a3 + a4 is divisible by 4. If A; = [—a;, o] and
J = [—a/4, a /4], then for any integer m with |m| < «/2,

Ta+a, (M) + Tayya, (M) < 2174,(m).

Proof. Let m be an integer with [m| < 7. By Lemma 3.2,

Tay+a, (M) +Tazpa,(M) <oy +az +1—|m|+az3+ag+1—|m|
2(a/2+1—|m|) = 2ry(m).

For the last equality, we have used Lemma 3.3 with] = [—«/4,a/4]. ®

Lemma 3.5. Let oy, oz, a3, a4 be positive integers such that « := a1 + ay + a3 + a4 is divisible by 4. If A; = [—a, o] and
J =[—a/4, a/4], then

2

ZrA1+A2(m)rA3+A4(m)§ Z T4y (m)?.

—_a
mez m=—9

o

Proof. First we show that if |m| > £, then the product
Ta;+a, M)Az 14, (M)

must be 0. If ra, 44,(m) # 0 and r4,44,(m) # 0, then by Lemma 3.2,
Im| < ay+a; and |m| < as + as.

Adding the two inequalities together gives [m| < #122223%%4 and 5o |m| < <. Thus,

o
2
ZrA1+A2(m)rA3+A4(m): Z rA1+A2(m)rA3+A4(m)'

Z -2
me m= 2

By Lemma 3.4, for any m with |m| < $, we have ra,4a,(m) + ray44,(m) < 2174,(m). Thus, the product ra, a,(mM)ra,+a,(m) is
at most r]H(m)z. Since this holds for all m with |m| < %,

o

2

ZrA1+A2(m)rA3+A4(m): Z A +4, (M)a51a,(M) < Z ry4y(m)*

7 —_a __a
me m=-3 m=-=3

which completes the proof of the lemma. =

Please cite this article as: V.Taranchuk and C.Timmons, The anti-Ramsey problem for the Sidon equation, Discrete Mathematics (2018),
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Lemma 3.6. If « is a positive integer and ] = [—«, «], then

1603

E4Ua.]v.’7]) =

5, 14
+8(1 +T+l

Proof. We must count the number of 4-tuples (x1, x2, X3, x4) wWith —a < x; < o and
X1+ X2+ X3+X%x4 = 0.

For an integer m with 0 < |m| < 2«, we have rj;(m) = 2« + 1 — |m| by Lemma 3.3. The number of 4-tuples (X1, X2, X3, X4)
with —o < x; <aandx; +x, + X3+ x4 =0is

2a 2a
D nagminy(=m) = 102 +2 " 1y4(m)?
m=—2ua m=1
2a
= Qa+1)*+2) a+1-m)
m=1

1603

+8M4~Eg+1 ]
3 )

Theorem 3.7. The function ARy ,_, () satisfies

4 3n® 2
ARy yy—z r(n) < 96 + O(n%).

Proof. First we assume that n is divisible by 8. An easy monotonicity argument will complete the proof for all n.
Suppose ¢ : [n] — {1, 2, 3, 4} is a 4-coloring of [n]. Let X; be the integers assigned color i by ¢ and |X;| = ¢;n. The number
of rainbow solutionsto X + Y = Z + T is exactly

N(c) := E4a(X1, X2, —X3, —X4) + Ea(Xq, X3, —Xa, —X4) + E4(X1, X4, — X3, —X3).
By Theorem 3.1,
N(c) < E4(I(X1), I(X2), I(—=X3), I(—X4)) + E4(I(X1), I(X3), [(—X2), [(—Xa4))
+ E4(I(X1), I(X4), I(=X2), I(—X3)).

We will show that each of the terms on the right hand side is at most % + 0(n?).

For1 <i <4,
1(£X;) = [—Tcn/2], [cn/27].

We also have that ¢c; + ¢; + ¢35 + ¢4 < 1. Assume that each % is an integer. Let Ay = I(X1), A, = I(X3), A3 = I(—X3),

Ay =1(—Xy4),and ] = [—n/8, n/8]. By Lemmas 3.5 and 3.6

E4(A17A29A3’A4) = ZrA1+A2(m)rA3+A4(_m) = Z rA]+A2(m)rA3+A4(m)

mezZ meZ
n/4 n3
2 2
< ri(m) =Es(J,],],]) = — + O(n®).
< mzm (M) 4U.1,1.1) o6 T (n°)

We apply this same estimate to E4(X1, X3, —X2, —X3) and E4(X1, X4, —X3, —X3) to obtain

3n3
N(c) < =— 4+ 0(n?).
()_96+( )

If the % are not integers, we can still apply the above argument but now ] must be replaced with ] = [—-n/8 — 1, n/8 + 1].

Nevertheless, we still have E4(J,],],]) < g + 0(n?) as E4(J,J,],]) increases by O(n?) when the interval J increases from
[-n/8,n/8]to[—n/8 —1,n/8 + 1].

If n is not divisible by 8, then let | be the smallest integer for which n + [ is divisible by 8 (so 1 < | < 7). By monotonicity,
3(n+1)3 3n3

+0(n+0)?)="=+0n%. =

4 4
ARy —z+1(n) = ARy oy (N +1) = = ul

Please cite this article as: V.Taranchuk and C.Timmons, The anti-Ramsey problem for the Sidon equation, Discrete Mathematics (2018),
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4. A lower bound for k colors

In this section we prove a lower bound on AR§ ., ;(n) for k > 4. We will need two lemmas before proving the lower
bound, and continue to write

rarp(m) = |{(a,b) e Ax B:a+b=m}|.

Lemma4.1. Let 1 <i < j < k be integers and let n be a positive integer that is divisible by k. If X; = {m € [n] : m = i(mod k)}
and X; = {m € [n] : m = j(mod k)}, then
fo<t<?®-—1,

— k

1—t iff<t<2-2

L t+1
rX,'+Xj(l +] + tk) 2 2n
' k

k
Ifl # i+ j(mod k), then rxi+)(j(l) =0.
Proof. First note that since k divides n,

Xi={i,i+ki+2k ....i+n—k} and X;={j,j+kj+2k ...,j+n—k}.

Ifl =a+ bforsomea € X;and b € X;, then! = i + j(mod k). Thus, rx,-+xj(1) = 0 whenever | # i + j(mod k). This proves
the last assertion of the lemma.
Let t be an integer with0 <t < % — 1. We claim that foreach o € {0, 1, ..., t}, we get

i+j+tk=>{+ak)+ G+ (t —a)k)

where i + ak € X; and j + (t — o)k € X;. The inequality
i§i—i—ak§i+tk§i+(%—1)k:i+n—k

shows thati+ ak € X; foreacho € {0, 1, ..., t}. Similarly,
jitE—ak<i+tksi+(;—1)k=j+n—k

shows that j + ok € X; foreacha € {0, 1, ..., t}. Consequently,

rxi+)(j(i+j+ fk) >t + 1

whenevert € {0,1,..., 7 — 1}.
Now let t be an integer with § <t < 2 — 2. Writet = 2! — Bwhere2 < B < #.Foreacha € {1,2,..., 8 — 1}, we can
write

i+j+tk=i+j+<2?n—ﬁ>k:(i+(%—a)k)+(j+<%—(ﬁ—a))k)-

We claim thati+ (} — )k € X;jandj + (§ — (B — ) k € X;. Now
n

i+k:i+n—(%—l)kfi—l—n—(ﬁ—l)ksi—}—(T—oc)kfi—kn—k
K

where we have used the inequalities § < % o < B —1,and ¢ > 1. We conclude that for each o € {1,2,..., 8 — 1}, the
termi+ (} — &) kis in X;. Similarly,

. . n n . n . n
]+I<=]+(7—(f—1)>k§]+(7—(ﬂ—1))k§]+<7—(ﬂ—a))k
k k k k
§j+<%—l)k=j+n—k
shows thatj + (} — (B — a)) kisinX; for eacha € {1,2, ..., B — 1}. Therefore,
(i +j+thk) > g — 1.
Since t = 27” —B,wehave 8 — 1= %” — t — 1 and this completes the proof of the lemma. ®

For the next lemma we will count Sidon 4-sets in Z. A Sidon 4-set in Z; is a set of four distinct elements «, 8, y, 8 € Z
such that « + 8 = y + §(mod k). We will denote such a 4-set by {& + 8 = y + §}. The reason we cannot simply write
{a, B, y, 8} is that in Zy, four distinct residues may lead to more than one solution to the Sidon equation. For example, in Z,,

1+2=3+4(mod4) and 1+ 4 = 2 + 3(mod 4).

Please cite this article as: V.Taranchuk and C.Timmons, The anti-Ramsey problem for the Sidon equation, Discrete Mathematics (2018),
https://doi.org/10.1016/j.disc.2018.12.004.
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This does not occur in Z because of the ordering of the integers. Let S(k) be the collection of all Sidon 4-sets in Zj. Finishing
off the example of k = 4, it is easily seen that

S4)={{1+2=3+4},{1+4=2+3}} (4)

and so |S(4)| = 2.
We are now ready to state and prove the next lemma.

Lemma 4.2. Let k > 4 be an integer. If S(k) is the family of all Sidon 4-sets in Zy, then

K k2
Sk)|=— — — + 0l
|S(k)| 3 2+<

where 6 = 1 ifkis even, and 6 = 2 if k is odd.

Proof. For this lemma, we will write a = b for a = b(mod k).
Let us first assume that k is even. Where this will come into play is that when k is even, the congruence 2X = b will have
exactly two solutions when b is even, and no solutions when b is odd. First we choose a pair {x{, x;} € (Zz"). This can be done

in (’2‘) ways and this pair will be one side of the equation X + Y = Z + T. Our counting from this point forward depends on
if x; 4+ x, is even or odd when viewed as an integer.

Case 1: x1 + xy is even

If x; + x5 is even, then the congruence 2X = x; + x, has exactly two solutions, say y; and y,. Note that no y; can be the
same as an x; for if, say y; = xq, then from y; + y; = x; + x, we get x, = y; = x; contradicting the way x; and x, have been
chosen. Therefore, in the case that x; + x, is even, there are k — 4 choices for x5 for which the unique x4 satisfying

X1+ X2 =X3+ X4
will have the property that all of x1, x5, X3, and x4 are distinct. We conclude that

{1+ X2 = X3 + X4}
is indeed a Sidon 4-set. This Sidon 4-set is counted exactly four times in this way: we could have chosen x3 or x4 after having
chosen the pair {x1, x,}, and we could have also staited by choosing the pair {x3, x4} instead. When k is even, the number of
pairs {x1, xo} for which x; + x, is even is exactly Zf:_ll 2t = % - % (this can be seen by looking at the diagonals in a Cayley
table for Z;). Altogether, we have a count of

2
(% — 5)k—4)
4

Sidon 4-sets {x; + x5 = X3 + X4} where x; + x; is even.
Case 2: x1 + x, is odd

If X1 + x5 is odd, then 2X = x; + x, has no solution since gcd(2, k) does not divide x; + x,. Now there will be k — 2 choices
fOI”X3 and the unique x4 satisfying x; + x, = x3 + x4 will have the property that {x1, x5, X3, X4} is a Sidon 4-set. There are

Zf=](2t -1 = % pairs {x1, x,} for which x; + x; is odd. This gives a count of

(£ )k —2)
4
Sidon 4-sets {x{ + x5 = X3 + X4} where x; + x; is odd.
Combining the two cases, there are exactly

k=4 k-2) ¥ Kk
4 + 4 8 2 + 2
Sidon 4-sets in Z;, when k is even.

When k is odd, a similar counting argument can be done. The key difference is that for any pair {1, x,}, the congruence
2X = X1 +x; has exactly one solution since gcd(k, 2) = 1 always divides x; + x,. This unique solution must be avoided when
choosing x3 and so there will be k — 3 choices for x5. The rest of the counting is similar to as before and we obtain

G)k—3) K K L3k
4 8 2 8
Sidon 4-sets in Z, when kisodd. ®

Please cite this article as: V.Taranchuk and C.Timmons, The anti-Ramsey problem for the Sidon equation, Discrete Mathematics (2018),
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Theorem 4.3. Letn > k > 4 be integers and assume that n is divisible by k. If S(k) is the family of all Sidon 4-sets in Zy, then

n3
AR;((+Y:Z+T(H) > 2|5(k)| (3’(3 - Ok(n2)> .

Proof. Let n > k > 4 be integers where k divides n. Define the coloring ¢ : [n] — [k] by c(i) = i(mod k) where we use

residues in the set {1, 2, ..., k}. The number of rainbow Sidon 4-sets under c is
2n
DD (e (D + i (D (D) + g (g, (1) (5)

=1 1<i<j<s<t<k

where X; = {m € [n] : m = i(mod k)}. To see this, observe that if x; + X, = X3 + X4 is a Sidon 4-set that is rainbow, then
there are distinct colors 1 <i <j <s <t < kwith

{C(X] )7 C(XZ)! C(X_?,), C(X4)} = {Ljv S, t}

This rainbow Sidon 4-set is counted exactly once by the sum (5) precisely when | = x; + x,, and by only one of the terms in
the sum

T+ (Dxgx (D) = T (D1 x (1) =+ T (D¢ (). (6)

The unique nonzero term depends on which two colors appear on the same side of the equation x; + X, = x3 + x4. For
instance, if colors i and j appear on the same side, then the first term in (6) is the one that counts {x1, X3, X3, X4}.
Fix an [ € [n] and four distinct colors i, j, s, t. By Lemma 4.1, the product

I+ (D, (1)

is not zero if and only if | = i 4 j(mod k) and | = s + t(mod k). This clearly impliesi+j = s+ t(mod k) and so {i+j = s + t}
is Sidon 4-set in Z;. Foru € {0, 1, ...,k — 1}, let

S(k, u)

be the Sidon 4-sets {&« + 8 = y + 8} € S(k) for which « + 8 = u(mod k). The collection {S(k,u): 0 < u < k — 1} forms a
partition of S(k). Since rxl-+xj(l) # 0if only if | = i + j(mod k), (5) can be rewritten as

k
Z Z s (U 4 KD, o, (u + kD).

1=0 u=1 {a+B=y+8}eS(k,u)

In order to use Lemma 4.1, we split this sum into two sums S; and S, where S > S; + S,. Define

S1= 3" > T (u A KD px, (u + k)

and

S, = Z Z Z x5 (U 4 KD, o, (u + kD).

[:% u=1 {a+p=y+8}eS(k,u)

By Lemma 4.1,

k1 ok k1 3
2 _ 2 _ n 2
Si=Y % Y A1 =) IS+ 1) = |S(k)| (ﬁ — Oy(n )) : (7)
=0 u=1 {a+B=y+8}eS(k,u) 1=0
A similar application of Lemma 4.1 gives
n’ )
Sy = |S(K)| 36 Ok(n”) ). (8)
Combining (7) and (8), we have
n3
§ =51 +5 = 2I8(k)| | 5 — Ox(n?) (9)
3k3

which tells us that the number of rainbow Sidon 4-sets under the coloring c is at least the right hand side of (9). ®

Please cite this article as: V.Taranchuk and C.Timmons, The anti-Ramsey problem for the Sidon equation, Discrete Mathematics (2018),
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Corollary 4.4. Forintegersn > k > 4, the function AR;‘( 4y—z4 (1) satisfies

1 1 0
ARY .y 7. p(n) > (— ——+ —) n® — Oy(n?)

12 3k k2
where 0 = L ifkis even, and 6 = § if k is odd.
Proof. First assume that n is divisible by k. By Theorem 4.3 and Lemma 4.2,

. KBk n )
ARx+Y:Z+T(n) 2 2 g - 5 + ]/k % — Ok(n ) .

where y = % ifkisevenand y = 3 ifkis odd.
If n is not divisible by k, then choose r € [k — 1] so that n — r is divisible by k. We then have by monotonicity,

Kk (n—r)
AR;‘HY:Z”(n) > AR;‘HY:Z”(n —r)>2 <§ -3 + yk) ( e ok(n2)> .

The lower order term can be absorbed into the Oy(n?) error term so we get
S n3
ARY y_z (n) = 2 <§ -3 + )’k) (ﬁ - Ole(”2)>

11 0\, ,
=|—=—-——+=]|n —0kn
(12 3k+k2> Kn)

in either case. Here = 1 if kis even,and = ; ifkisodd. m

0| W

5. Concluding remarks

In this paper we studied the anti-Ramsey function AR;‘( +y=z47(1) which concerns colorings of [n]. One could also consider
colorings of Z,. Write AR§+Y52+T(Z,1) for the maximum number of rainbow solutions to X + Y = Z + T(mod n) over all
k-colorings ¢ : Z, — [k]. As in the case of [n], we count solutions that only differ by ordering as the same. This is discussed
in detail prior to Lemma 4.2. Now by Lemma 4.2,

n®  n?
AR§(+YEZ+T(ZH) <———+6n
8 2
where 6 = % if nis even,and 6 = % if n is odd. When k = 4, it is easy to improve this upper bound as follows. Let
¢ : Z, — [4] be a coloring of Z, and let X; be the elements of Z, assigned color i by c. The number of rainbow solutions to
the Sidon equation X + Y = Z + T(mod n) where colors 1 and 2 appear on the same side is at most

min{| Xy [1X2[IX3], [X111X2[1Xal, [X1[1X3]1Xal, [X2[1X3]|X4l}- (10)

Indeed, once we have chosen three values for the four variables X, Y, Z, and T, the last variable is uniquely determined.
Since |X1| + |X2] + |X3| + |X4] = n, (10) is at most g. There are two other possible ways to obtain a rainbow solution to
X +Y = Z + T(mod n). One is where colors 1 and 3 appear on the same side, and the other is where colors 1 and 4 appear
on the same side. This gives the upper bound
3n’
ARY vy—747(Zn) < 64

As for a lower bound, a natural idea is to try the same coloring that is used to prove Theorem 4.3. It turns out that this is not
more difficult if we consider arbitrary k > 4, nevertheless we restrict to k = 4 for simplicity. Define the coloringc : Z, — [4]
by c(i) = i(mod 4) where we use residues in {1, 2, 3, 4} for the colors. If n is not divisible by 4, then this coloring may not
be well defined! A simple example is when n = 5 where ¢(5) = 1, and ¢(10) = 2, however, 5 and 10 are the same element
of Zs. An obvious way to fix this is to fix equivalence class representatives, say Z, = {1, 2, ..., n}. Unfortunately this does
not solve the problem as we still require the arithmetic in Z, when finding solutions to X + Y = Z + T(mod n). To proceed
further, let us now assume that n is divisible by 4 and so the coloring ¢ will be well defined and will not depend on how we
represent the elements of Z,,. It is now straightforward to adapt Lemma 4.1 to the Z, case. For 1 < i < j < 4, we would have

L n
Tx+x (i +Jj+4t) = a
forallt € {0,1,...,% —1},and Ix+x (1) = 0if I # i + j(mod 4). The proof of this follows along the same lines as the proof
of Lemma 4.1, except now

i+j+4t =(i+4a)+ ( + 4(t — «))(mod n)

Please cite this article as: V.Taranchuk and C.Timmons, The anti-Ramsey problem for the Sidon equation, Discrete Mathematics (2018),
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foralla € {1, ..., %}. One then obtains the lower bound

1

AR yy=z1(Zn) = Z Z D s (Ut 4D x, (u -+ 4D)

=0 u=1 {a+p=y+s}eS(4,u)

2_1q
)

= D 1463 4 4D (3 + 4D + 1, (14 4D (14 4))
=0
i n\2 n\2 n’

Z;(<4) +(4>>=32

again, assuming n is divisible by 4.
When k = 4, determining an asymptotic formula for the number of rainbow solutions to the Sidon equation in [n] or Z,
would certainly be interesting. Additionally, improving the upper bound

1 1
k 3 2
ARY ;. 1(n) < (—12 - 7241<) + Ok(n”)

seems possible. Using the methods of this paper, one might be able to improve the 5 4k 12k' but we believe the lower bound
is closer to the truth and so any significant improvement may require some new ideas.

Acknowledgments

The authors would like to thank Michael Tait for suggesting the problem that is the focus of this paper and for some
insightful comments.

References

[1] E.Bevilacqua, S. King, J. Kritschgau, M. Tait, S. Tebon, M. Young, Rainbow numbers for x; + x, = kx3 in Z,, 2018, arXiv:1809.04576v1.
[2] ]. De Silva, X. Si, M. Tait, Y. Tungbilek, R. Yang, M. Young, Anti-Ramsey multiplicities, 2018, arXiv:1801:00474v2.

[3] J. Fox, M. Mahdian, R. Radoi™ ci¢, Rainbow solutions to the Sidon equation, Discrete Math. 308 (20) (2008) 4773-4778.

[4] V.]Jungié, ]. Ne” setfil, R. Radoi” ci¢, Rainbow Ramsey theory, Integers 5 (2) (2005) A9.

[5] B.Landman, A. Robertson, Ramsey Theory on the Integers, second ed., American Mathematical Society, Providence, RI, 2014.

[6] V. Lev, On the number of solutions of a linear equation over finite sets, J. Combin. Theory Ser. A 83 (2) (1998) 251-267.

[7] A.Saad,]. Wolf, Ramsey multiplicity of linear patterns in certain finite abelian groups, Q. J. Math. 68 (1) (2017) 125-140.

[8] T.Tao, V. Vu, Additive Combinatorics, Cambridge University Press, Cambridge, 2006.

Please cite this article as: V.Taranchuk and C.Timmons, The anti-Ramsey problem for the Sidon equation, Discrete Mathematics (2018),
https://doi.org/10.1016/j.disc.2018.12.004.



http://arxiv.org/abs/1809.04576v1
http://arxiv.org/abs/1801:00474v2
http://refhub.elsevier.com/S0012-365X(18)30425-4/sb3
http://refhub.elsevier.com/S0012-365X(18)30425-4/sb4
http://refhub.elsevier.com/S0012-365X(18)30425-4/sb5
http://refhub.elsevier.com/S0012-365X(18)30425-4/sb6
http://refhub.elsevier.com/S0012-365X(18)30425-4/sb7
http://refhub.elsevier.com/S0012-365X(18)30425-4/sb8

	The anti-Ramsey problem for the Sidon equation
	Introduction
	An Upper Bound for k colors
	An Upper Bound for four colors
	A Lower Bound for k colors
	Concluding Remarks
	Acknowledgments
	References


