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a b s t r a c t

We study the behavior of the 2-rank of the adjacency matrix of a graph under Seidel and
Godsil–McKay switching, and apply the result to graphs coming from graphical Hadamard
matrices of order 4m. Starting with graphs from known Hadamard matrices of order 64,
we find (by computer) many Godsil–McKay switching sets that increase the 2-rank. Thus
we find strongly regular graphs with parameters (63, 32, 16, 16), (64, 36, 20, 20), and
(64, 28, 12, 12) for almost all feasible 2-ranks. In addition we work out the behavior of the
2-rank for a graph product related to the Kronecker product for Hadamardmatrices, which
enables us to find many graphical Hadamard matrices of order 4m for which the number
of related strongly regular graphs with different 2-ranks is unbounded as a function of m.
The paper extends results from the article ‘Switched symplectic graphs and their 2-ranks’
by the first and the last author.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The 2-rank of a graph is the rank of its adjacency matrix over F2. It is a well-studied and useful graph parameter (see for
example [3,11]). Sometimes the 2-rank can be used to distinguish cospectral graphs, such as strongly regular graphs (SRGs)
with the same parameters (and therefore the same spectrum). An important fact is that the 2-rank of a graph is an even
number (see [3], or [6]).

Godsil–McKay switching (GM-switching) is an operation on graphs that does not change the spectrum of the adjacency
matrix. For GM-switching to work, one needs a vertex subset with special properties, called a GM-set. However, GM-
switching can change the 2-rank, in which case the switched graph is obviously non-isomorphic to the original one. This
idea was a starting point of an earlier paper [1] by two of the present authors. They gave switching sets in the symplectic
graph Sp(2m, 2), a famous SRG with parameters

P0(m) = (22m
− 1, 22m−1, 22m−2, 22m−2),

which increase the 2-rank after switching. In addition, repeated GM-switching was applied for the case m = 3, and many
new strongly regular graphs with parameters P0(3) = (63, 32, 16, 16) were found and the 2-ranks vary from 6 to 18. In this
paper we use an improved computer search and obtain examples with 2-rank 20, 22 and 24. In addition we apply the same
idea to SRGs with parameters

P±(m) = (22m, 22m−1
± 2m−1, 22m−2

± 2m−1, 22m−2
± 2m−1).
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For m = 3 we found such SRGs for all 2-ranks in {8, 10, . . . , 26}. SRGs with parameter sets P0(m) and P±(m) correspond to
graphical Hadamard matrices of order 4m. For these Hadamard matrices there is a recursive construction using Kronecker
products. We find the behavior of the 2-rank of the corresponding graphs for this construction. Using this we obtain
SRGs with parameters P0(m) and 2-ranks 2m, 2m + 2, . . . , 2m + 18⌊m/3⌋ and SRGs with parameters P±(m) and 2-ranks
2m+2, 2m+4, . . . , 2m+2+18⌊m/3⌋. It is known that the 2-ranks of SRGs with parameter sets P0(m) and P±(m) lie in the
intervals

[
2m , 22m−1

− 2m−1
− 2

]
, and

[
2m + 2 , 22m−1

− 2m−1
]
, respectively (see [6,1]). For m = 2, the upper and lower

bounds coincide, and for m = 3 there are ten possible 2-ranks for each parameter set, of which only one value is still open
(26 for P0(3), and 28 for P±(3)).

We only consider undirected graphswithout loops ormultiple edges. For the relevant background on graphs andmatrices
we refer to [4]. The m × n all-ones matrix is denoted by Jm,n, or just J , and 1 is the all-ones vector. We denote the column
space of a matrixM over F2 by Col2(M). If G is a graph with adjacency matrix A, then we sometimes write Col2(G) instead of
Col2(A).

2. Seidel switching

Consider a graph G = (V , E) of order n and let X be a subset of V of cardinalitym (0 < m < n). Seidel switching in Gwith
respect to X is an operation on E defined as follows: All edges from E between X and V \X are deleted, and all possible edges
between X and V \X which are not in E are inserted (edges with both vertices inside X , or outside X remain unchanged). If A
is the adjacencymatrix of G, then S = J −2A− I is the Seidel matrix of G. So the off-diagonal entries of S are±1, and Si,j = −1
if and only if i and j are adjacent. In terms of the Seidel matrix, Seidel switching with respect to X means that the rows and
columns corresponding to X are multiplied by −1. This implies that Seidel switching does not change the spectrum of the
Seidel matrix S.

Assume that the subset X corresponds to the first rows and columns of A, and let AX denote the adjacency matrix of the
switched graph GX . Then

AX = A + K (mod 2), where K =

[
O Jm,n−m

Jn−m,m O

]
.

We know that 2-rank(A) is even, and since rank(K ) = 2 (over any field), it follows that 2-rank(AX ) ∈ {2-rank(A) − 2,
2-rank(A), 2-rank(A) + 2}.

Lemma 2.1. Suppose GX is obtained from G by Seidel switching with respect to the set X of neighbors of a vertex x of G. Then x is
an isolated vertex of GX , and 2-rank(GX ) = 2-rank(G) − 2 if 1 ∈ Col2(G), and 2-rank(GX ) = 2-rank(G) otherwise.

Proof. The first claim is obvious. Let x be the characteristic vector of X . Then clearly x ∈ Col2(A), and since 1 and x span
Col2(K ), we have

Col2([AX 1 x]) = Col2([A 1 x]) = Col2([A 1]).

Suppose 1 ∈ Col2(A). Then Col2(A) = Col2([A 1]) = Col2([AX 1 x]). The switched graph GX has an isolated vertex, therefore
1 /∈ Col2(AX ). Hence Col2(AX ) is a proper subspace of Col2(A), from which it follows that 2-rank(A) = 2-rank(AX ) + 2.

If 2-rank(AX ) = 2-rank(A) − 2, then Col2([AX 1 x]) = Col2([A 1 x]) implies that x, 1 ̸∈ Col2(AX ) and x, 1 ∈ Col2(A). □

Note that Lemma 2.1 also holds if X is the empty set, in which case GX = G.

3. Godsil–McKay switching

Godsil and McKay introduced the following switching operation that leaves the spectrum of the adjacency matrix
invariant.

Theorem 3.1. Let G be a graph and let W be a subset of the vertex set of G which induces a regular subgraph. Assume that each
vertex outside W is adjacent to |W |, 1

2 |W | or 0 vertices of W. Make a new graph GW from G as follows. For each vertex v outside
W with 1

2 |W | neighbors in W, delete the 1
2 |W | edges between v and W, and join v instead to the 1

2 |W | other vertices in W. Then
G and GW have the same adjacency spectrum.

The operation that changes G into GW is called Godsil–McKay switching (GM-switching). Notice that if all vertices outside
W have 1

2 |W | neighbors inW , then GM-switching is a special case of Seidel switching.
It is well-known that if a graph GW has the same spectrum as a SRG G, then GW is also strongly regular with the same

parameters as G. Therefore GM-switching provides a tool to construct new SRGs from known ones. However, GW may be
isomorphic with G, but if GM-switching changes the 2-rank, this is obviously not the case.

Similar to Seidel switching, GM-switching can be described in terms of the adjacency matrices A and AW of G and GW .
Indeed, AW = A+ L (mod 2), where L is defined by Li,j = 1 if i ∈ W , j ̸∈ W and j has 1

2 |W | neighbors inW ; otherwise Li,j = 0.
Then 2-rank(L) = 2 and therefore 2-rank(GW ) ∈ {2-rank(G) − 2, 2-rank(G), 2-rank(G) + 2} (see also [1]). Moreover, in the
case 2-rank(G) increases, we have Col2(A) ⊂ Col2(AW ), and therefore 1 ∈ Col2(A) implies 1 ∈ Col2(AW ).



Please cite this article as: A. Abiad, S. Butler andW.H. Haemers, Graph switching, 2-ranks, and graphical Hadamardmatrices, DiscreteMathematics (2018),
https://doi.org/10.1016/j.disc.2018.11.022.

A. Abiad, S. Butler and W.H. Haemers / Discrete Mathematics xxx (xxxx) xxxx 3

4. Hadamard matrices

A square (+1,−1)-matrix H of order n is a Hadamard matrix whenever HH⊤
= nI . If a row or a column of a Hadamard

matrix is multiplied by −1, it remains a Hadamard matrix. We can apply this operation a number of times such that the
first row and column consist of all ones. Such a Hadamard matrix is called normalized. A Hadamard matrix H is said to be
graphical if H is symmetric and it has constant diagonal, and H is regular if all row and column sums are equal. We assume
that the diagonal entries of a graphical Hadamard matrix H are equal to 1 (otherwise consider −H). Then AH =

1
2 (J − H) is

the adjacency matrix of a graph, say GH . Note that H − I is the Seidel matrix of GH . If H is normalized, then GH has an isolated
vertex, and it is well-known that for n > 4 the graph on the remaining n − 1 vertices is strongly regular with parameters
(n − 1, n

2 ,
n
4 ,

n
4 ). If H is graphical and regular, then the row and column sums are equal to ϵ

√
n where ϵ = ±1, and GH is

strongly regular graph with parameters (n, n
2 −

ϵ
2

√
n, n

4 −
ϵ
2

√
n, n

4 −
ϵ
2

√
n). Conversely, any strongly regular graph with one

of the above parameters comes from a Hadamard matrix in the described way.
It is well known that if H1 and H2 are Hadamard matrices, then so is the Kronecker product H1 ⊗ H2. Moreover, if H1 and

H2 are normalized, then so is H1 ⊗ H2, if H1 and H2 are graphical, then so is H1 ⊗ H2, and if H1 and H2 are regular then so is
H1 ⊗ H2. For example

H1 =

⎡⎣ 1 −1 1 1
−1 1 1 1
1 1 1 −1
1 1 −1 1

⎤⎦ and H2 =

⎡⎣ 1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

⎤⎦
are regular graphical Hadamard matrices, and so are H1 ⊗H1, H1 ⊗H2, and H2 ⊗H2. Note that GH1 = 2K2 and GH2 = K4. The
SRGs GH1⊗H1 and GH2⊗H2 are isomorphic with parameters P−(2). The graph is known as the lattice graph L(4). The SRG GH1⊗H2
has parameters P+(2), and is knownas theClebsch graph. For later usewedefineG−(3) = GH1⊗H1⊗H1 , andG+(3) = GH1⊗H1⊗H2 ,
which are SRGs with parameters P−(3) and P+(3), respectively.

For a recent survey on graphical Hadamard matrices, we refer to [2].

5. A graph product and its 2-rank behavior

Inspired by the Kronecker product for Hadamard matrices we define the graph product denoted by ⊗ as follows. For
i = 1, 2 let Gi be a graph of order ni with vertex set Vi, Seidel matrix Si and adjacency matrix Ai. Then G1 ⊗ G2 is the graph
with vertex set V1 × V2, where two vertices (x1, x2) and (y1, y2) are adjacent if and only if either {x1, y1} is an edge in G1 and
{x2, y2} is not an edge in G2, or {x2, y2} is an edge in G2 and {x1, y1} is not an edge in G1. Thus the Seidel matrix of G1 ⊗ G2
equals (S1 + I) ⊗ (S2 + I) − I . So if H1 and H2 are graphical Hadamard matrices, then GH1 ⊗ GH2 = GH1⊗H2 .

The graph product G1 ⊗ G2 is closely related to the modular product (see [8]), which gives the complement of G1 ⊗ G2.

Theorem 5.1. For two graphs G1 and G2 the following hold:

(i) 1 ∈ Col2(G1 ⊗ G2) if and only if 1 ∈ Col2(G1) or 1 ∈ Col2(G2),

(ii) if 1 ∈ Col2(G1) and 1 ∈ Col2(G2) then

2-rank(G1 ⊗ G2) = 2-rank(G1) + 2-rank(G2) − 2,

(iii) if 1 ̸∈ Col2(G1) or 1 ̸∈ Col2(G2) then

2-rank(G1 ⊗ G2) = 2-rank(G1) + 2-rank(G2).

Proof. Let ni be the number of vertices of Gi for i = 1, 2, and let A1, A2, and A1,2 be the adjacencymatrix of G1, G2 and G1 ⊗G2,
respectively. Then over F2 the matrix A1,2 satisfies

A1,2 = A1 ⊗ Jn2,n2 + Jn1,n1 ⊗ A2. (1)

(i) Assume 1 ∈ Col2(A1), then A1v = 1 for some v in Fn1
2 . The weight of v is equal to 1⊤v = v⊤A1v = 0 (mod 2), because A1

is symmetric with zero diagonal. If e is a unit vector, and v′
= v ⊗ e, then (1) implies that (over F2)

A1,2v′
= (A1 ⊗ J)(v ⊗ e) + (J ⊗ A2)(v ⊗ e) = A1v ⊗ 1 + Jv ⊗ A2e = 1 + 0.

Therefore 1 ∈ Col2(A1,2). Conversely, assume 1 ∈ Col2(A1,2). Then (1) implies that there exist v1 ∈ Fn1
2 and v2 ∈ Fn2

2 such
that 1 = A1v1 ⊗ 1 + 1 ⊗ A2v2. Therefore Aivi = αi1 with αi ∈ F2 for i = 1, 2. Clearly α1 or α2 is nonzero, so 1 ∈ Col2(A1) or
1 ∈ Col2(A2).

To prove (ii) and (iii), we first assume that G1 and G2 both have an isolated vertex. Then clearly 1 ̸∈ Col2(A1) and
1 /∈ Col2(A2). For i = 1, 2, let ri be 2-rank(Ai), and let Vi be a ni × ri submatrix of Ai, such that its columns are a basis
for Col2(Ai). Consider the matrix

V1,2 =
[

V1 ⊗ Jn2,r2 Jn1,r1 ⊗ V2
]
.
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Since A1 and A2 have a zero column, the columns of V1,2 are columns of A1,2, and by (1) they span Col2(A1,2). Also the
columns of V1,2 are independent, since Col2(V1 ⊗ Jn2,r2 ) and Col2(Jn1,r1 ⊗ V2) have no nonzero vector in common. Therefore
2-rank(A1,2) = r1 + r2.

If G1 or G2 has no isolated vertex, we apply Seidel switching. Suppose that for i = 1, 2 G′

i is obtained from Gi by Seidel
switching with respect to the neighbors of a vertex xi. Then xi is an isolated vertex of G′

i , and (x1, x2) is isolated in G′

1 ⊗ G′

2.
We claim that G′

1 ⊗ G′

2 = (G1 ⊗ G2)′, where (G1 ⊗ G2)′ is obtained from G1 ⊗ G2 by Seidel switching with respect to the
neighbors of (x1, x2). Indeed, if S1, S2, S ′

1, S
′

2 and S ′

1,2 are the Seidel matrices of G1, G2, G′

1, G
′

2 and (G1 ⊗ G2)′, respectively, then
there exist diagonal matrices D1 and D2 with diagonal entries ±1, such that S ′

1 + I = D1(S1 + I)D1 and S ′

2 + I = D2(S2 + I)D2.
By use of the mixed-product property of the Kronecker product we get

(S ′

1 + I) ⊗ (S ′

2 + I) = (D1 ⊗ D2)((S1 + I) ⊗ (S2 + I))(D1 ⊗ D2) = S ′

1,2 + I,

which proves the claim. Now we use Lemma 2.1. If 1 ∈ Col2(A1) and 1 ∈ Col2(A2) then 1 ∈ Col2(A1,2), 2-rank(G′

1) =

2-rank(G1) − 2, 2-rank(G′

2) = 2-rank(G2) − 2 and 2-rank(G1 ⊗ G2) = 2-rank(G1 ⊗ G2)′ + 2. Therefore 2-rank(G1 ⊗ G2) =

2-rank(G1) + 2-rank(G2) − 2, which proves (ii). The cases of statement (iii) go similarly. □

6. SRGs with parameters P0(3) and P±(3)

In this section, we report the result of a computer search for GM-switching sets in SRGs with parameters P0(3) =

(63, 32, 16, 16), P+(3) = (64, 36, 20, 20), and P−(3) = (64, 28, 12, 12).We startwith known SRGswith the smallest possible
2-rank and search for GM-switching sets of size 4 that increase the 2-rank after switching. We switch, and then continue the
search with the newly obtained SRGs. However, unlike in the preceding paper [1], we do not stop if we find no switching set
that increases the 2-rank. Instead, we also consider switching sets that do not change the 2-rank, switch and then continue
the search. A complete search considering all suitable switching sets of size 4 in each step is far out of reach, so we stop the
search if we have not found a switching set that increases the 2-rank in several thousand iterations.

For more details about the computational aspects, see the SAGE worksheet1 or,2 where graph strings and series of
switching sets (following SAGE vertex labeling) are provided in order to reproduce the results shown in this section.

A SRGwith parameters P0(3) has a minimal possible 2-rank of 6 and there is a unique such SRG (see [11]): the symplectic
graph Sp(6, 2). The vertex set V of Sp(6, 2) consists of the nonzero vectors in F6

2, and two vertices x = (x1, . . . , x6) and
y = (y1, . . . , y6) are adjacent if x1y2 +x2y1 +x3y4 +x4y3 +x5y6 +x6y5 = 1. In Table 1, the first row gives a GM-switching set
in Sp(6, 2), and each subsequent row gives a GM-switching set in the SRG corresponding to the resulting graph from carrying
out GM-switching on the previous row. The last column gives the 2-rank after switching. Note that at some stages we use
switching sets that do not increase the 2-rank. Here the upper bound for the 2-rank is 26. Unfortunately our search found
no such graph, so the existence of a SRG with 2-rank 26 and parameters P0(3) remains open.

Table 1
Increasing 2-ranks by repeated GM-switching in Sp(6, 2).
GM-switching set 2-rank

{(100000), (010000), (101000), (011000)} 8
{(000010), (000001), (001010), (001001)} 10
{(100010), (101010), (110011), (111011)} 12
{(000100), (010100), (001111), (011111)} 14
{(000110), (000101), (010110), (010101)} 16
{(001000), (100001), (110010), (011011)} 18
{(110100), (111100), (100111), (101111)} 18
{(110100), (111100), (110101), (111101)} 20
{(010100), (110110), (101101), (001111)} 20
{(100100), (110100), (101100), (111100)} 22
{(000011), (110001), (001011), (111001)} 22
{(000001), (001001), (110001), (111001)} 22
{(010000), (000001), (010010), (000011)} 24

In this regard, Ihringer’s recent construction [7] also uses GM-switching.We did test computationally the graphs from [7]
with parameters P0(3), but they did not provide new 2-ranks. In fact, Ihringer’s graphs with parameters P0(3) can also be
constructed by our approach. Another construction of SRGs with parameters P0(m) by Kantor [9] uses a symplectic spread in
the projective geometry PG(2m − 1, 2). However, only if the spread is non-Desarguesian, Kantor’s graph is nonisomorphic
with Sp(2m, 2), and according to [10], there exists no non-Desarguesian spread in PG(5, 2).

We know two nonisomorphic SRGs with parameters P−(3) and 2-rank 8. One is G−(3) = 2K2 ⊗ 2K2 ⊗ 2K2, which was
defined in Section 4. We easily have 2-rank(2K2) = 4, and 1 ∈ Col2(2K2), so Theorem 5.1(ii) gives 2-rank(G−(3)) = 8. Let
{1, 2, 3, 4} be the vertex set of 2K2, and let {1, 2} and {3, 4} be the edges. Then each vertex of G−(3) can be represented by
a triple in {1, 2, 3, 4}3. With this notation the GM-switching sets that lead to a SRG with parameter set P−(3) and 2-rank 26
are given in the left part of Table 2.

1 https://cocalc.com/projects/57b6e497-d392-406c-aa9c-80221136762e/files.
2 https://orion.math.iastate.edu/butler/Abiad_Butler_Haemers.txt.

https://cocalc.com/projects/57b6e497-d392-406c-aa9c-80221136762e/files
https://orion.math.iastate.edu/butler/Abiad_Butler_Haemers.txt
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Table 2
Increasing 2-ranks by repeated GM-switching in G−(3) (left) and G′

−
(3) (right).

GM-switching sets 2-rk GM-switching sets 2-rk

{(1, 1, 1), (1, 1, 3), (2, 2, 1), (2, 2, 3) } 10 {(1, 1, 1), (3, 2, 2), (4, 4, 1), (2, 3, 2)} 10
{(1, 1, 1), (1, 1, 3), (2, 1, 1), (2, 1, 3) } 12 {(3, 3, 1), (2, 2, 1), (3, 3, 2), (2, 2, 2)} 12
{(1, 1, 2), (2, 2, 4), (4, 2, 1), (3, 1, 3) } 14 {(2, 2, 4), (3, 3, 4), (2, 3, 4), (3, 2, 4)} 14
{(4, 4, 4), (1, 2, 2), (2, 3, 2), (3, 1, 4) } 16 {(3, 2, 2), (2, 3, 2), (4, 4, 4), (1, 1, 4)} 16
{(4, 3, 4), (3, 3, 2), (3, 2, 4), (4, 2, 2) } 18 {(1, 4, 2), (1, 1, 2), (4, 1, 3), (4, 4, 3)} 18
{(4, 4, 2), (3, 4, 2), (3, 1, 1), (4, 1, 1) } 20 {(4, 2, 2), (2, 4, 2), (3, 1, 3), (1, 3, 3)} 20
{(1, 1, 2), (1, 1, 4), (2, 2, 2), (2, 2, 4) } 20 {(1, 3, 2), (4, 3, 2), (4, 2, 3), (1, 2, 3)} 20
{(4, 4, 1), (3, 3, 3), (1, 3, 2), (2, 4, 4) } 22 {(1, 2, 1), (2, 4, 1), (4, 3, 4), (3, 1, 4)} 22
{(1, 3, 2), (1, 3, 4), (2, 4, 2), (2, 4, 4) } 22 {(4, 3, 1), (2, 4, 1), (1, 2, 4), (3, 1, 4)} 22
{(4, 3, 3), (3, 3, 1), (4, 2, 3), (3, 2, 1) } 24 {(4, 2, 1), (3, 4, 2), (1, 3, 1), (2, 1, 2)} 24
{(2, 1, 2), (4, 3, 2), (3, 2, 2), (1, 4, 2) } 24 {(1, 4, 1), (4, 1, 1), (2, 2, 4), (3, 3, 4)} 24
{(3, 4, 4), (1, 2, 4), (2, 3, 4), (4, 1, 4) } 26 {(3, 2, 2), (3, 3, 1), (2, 2, 4), (2, 3, 3)} 26

Table 3
Increasing 2-ranks by repeated GM-switching in G+(3) (left) and G′

+
(3) (right).

GM-switching sets 2-rk GM-switching sets 2-rk

{(1, 1, 1), (1, 1, 3), (1, 2, 1), (1, 2, 3)} 10 {(1, 1, 1), (2, 1, 2), (4, 4, 4), (3, 4, 3)} 10
{(2, 1, 3), (1, 3, 1), (3, 4, 3), (4, 2, 1)} 12 {(1, 1, 2), (2, 1, 1), (2, 2, 2), (1, 2, 1)} 12
{(2, 1, 1), (3, 3, 4), (2, 4, 2), (3, 2, 3)} 14 {(1, 2, 3), (4, 4, 1), (1, 4, 1), (4, 2, 3)} 14
{(2, 1, 2), (2, 1, 4), (4, 4, 2), (4, 4, 4)} 16 {(1, 2, 4), (3, 3, 2), (1, 1, 3), (3, 4, 1)} 16
{(2, 3, 3), (4, 3, 2), (1, 4, 4), (3, 4, 1)} 18 {(3, 3, 1), (2, 1, 3), (3, 2, 2), (2, 4, 4)} 18
{(3, 4, 4), (4, 4, 3), (2, 4, 1), (1, 4, 2)} 20 {(2, 2, 3), (4, 4, 2), (2, 3, 4), (4, 1, 1)} 20
{(3, 1, 2), (4, 3, 2), (1, 4, 4), (2, 2, 4)} 20 {(3, 1, 3), (4, 2, 1), (1, 4, 3), (2, 3, 1)} 20
{(1, 1, 4), (4, 3, 1), (1, 4, 3), (4, 2, 2)} 20 {(2, 4, 1), (4, 2, 2), (1, 4, 4), (3, 2, 3)} 22
{(4, 1, 1), (3, 3, 3), (1, 4, 1), (2, 2, 3)} 22 {(2, 2, 4), (3, 4, 2), (4, 2, 1), (1, 4, 3)} 22
{(4, 1, 3), (3, 1, 1), (4, 3, 3), (3, 3, 1)} 22 {(1, 1, 2), (3, 4, 4), (2, 2, 2), (4, 3, 4)} 22
{(2, 1, 1), (4, 1, 4), (3, 2, 3), (1, 2, 2)} 24 {(4, 3, 2), (1, 1, 4), (2, 3, 3), (3, 1, 1)} 22
{(2, 3, 3), (4, 3, 2), (1, 4, 4), (3, 4, 1)} 24 {(1, 1, 2), (4, 3, 2), (4, 4, 3), (2, 1, 3)} 24
{(1, 3, 3), (3, 3, 2), (2, 4, 4), (4, 4, 1)} 24 {(1, 1, 1), (3, 4, 3), (2, 2, 1), (4, 3, 3)} 24
{(2, 4, 4), (3, 4, 3), (4, 2, 1), (3, 2, 3)} 24 {(2, 2, 4), (3, 4, 2), (1, 3, 4), (4, 1, 2)} 24
{(2, 1, 2), (2, 1, 4), (4, 3, 4), (1, 4, 4)} 26 {(2, 4, 2), (2, 3, 3), (1, 4, 1), (1, 3, 4)} 26

As mentioned before, 2K2 ⊗ 2K2 is an SRG with parameters P−(2) known as the lattice graph L(4). However there is one
other SRG with parameters P−(2), known as the Shrikhande graph, which can be obtained from L(4) by Seidel switching
with respect to any 4-coclique (in this particular case, Seidel switching and GM-switching are the same). We easily have
2-rank(Shrikhande) = 6 and 1 ∈ Col2(Shrikhande). Define G′

−
(3) = Shrikhande ⊗ 2K2. Then G′

−
(3) is another SRG with

parameters P−(3), 2-rank(G′
−
(3)) = 8 and 1 ∈ Col2(G′

−
(3)). We have also searched for GM-switching sets in G′

−
(3). The

outcome is given in the right part of Table 2, where we use the same vertex set as for G−(3), but replaced 2K2 ⊗ 2K2 by the
Shrikhande graph obtained by switching with respect to {(1, 1), (2, 2), (3, 3), (4, 4)}.

We also considered two nonisomorphic SRGswith parameter sets P+(3) and 2-rank 8. The first one isG+(3) = 2K2⊗2K2⊗

K4, which was defined in Section 4. The other one is G′
+
(3) = Shrikhande ⊗ K4. Again the vertex set is given by {1, 2, 3, 4}3.

The sequence of GM-switching sets leading to SRGs with parameters P+(3) and 2-rank 26 is given in Table 3.
The upper bound for the 2-rank of a graph with parameters P±(3) is 28. So only the existence of one with 2-rank 28 is

unsolved. If G is a SRG with parameters P±(3) with 2-rank(G) = 26, and 1 ̸∈ Col2(G), then from Lemma 2.1 it follows that
isolating a vertex by Seidel switching gives an SRG G′ with parameter set P0(3) and 2-rank(G′) = 26, the only open case for
P0(3). Unfortunately, it turns out that 1 ∈ Col2(G) for every graph G in Tables 2 and 3. This is not very surprising, since we
know that 1 ∈ Col2(G±(3)) and 1 ∈ Col2(G′

±
(3)), and in Section 3 we observed that 1 remains in the column space of the

adjacency matrix if GM-switching increases the 2-rank.

7. SRGs with parameters P0(m) and P±(m)

The computer result from the previous section and the graph product introduced in Section 5 lead to the following result.

Theorem 7.1.

(i) There exist SRGs with parameter set P0(m) and 2-rank r for every even r ∈ [2m, 2(m + 9⌊m
3 ⌋)].

(ii) There exist SRGs with parameter set P+(m) and 2-rank r for every even r ∈ [2(m + 1), 2(m + 1 + 9⌊m
3 ⌋)].

(iii) There exist SRGs with parameter set P−(m) and 2-rank r for every even r ∈ [2(m + 1), 2(m + 1 + 9⌊m
3 ⌋)].

Proof. Put ℓ = ⌊
m
3 ⌋, and let G1, . . . ,Gℓ be graphs coming from normalized graphical Hadamard matrices of order 64, which

are given in Table 1 (so Gi is a SRG with parameters P0(3) extended with an isolated vertex), and let G0 be the graph of a
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normalizedHadamardmatrix of order 4m−3ℓ. Put ri = 2-rank(Gi) for i = 0, . . . , ℓ, and defineG = G0⊗G1⊗· · ·⊗Gℓ. ThenG is a
SRGwith parameters P0(m), extendedwith an isolated vertex, and Theorem5.1(iii) implies that 2-rank(G) = r0+r1+· · ·+rℓ.
Now by the results in the previous section, for i = 1, . . . , ℓ, we can choose for ri any even number in [6, 24]. This proves (i).

The proofs of (ii) and (iii) go similarly. Let G1, . . . ,Gℓ be SRGs with parameters P±(3) given in Tables 2 and 3 (so Gi comes
from a regular graphical Hadamardmatrices of order 64). For G0 we take K1 ifm−3ℓ = 0, 2K2 ifm−3ℓ = 1, and 2K2 ⊗2K2 if
m− 3ℓ = 2. Again G = G0 ⊗G1 ⊗ · · ·⊗Gℓ, and ri = 2-rank(Gi) for i = 0, . . . , ℓ. Then G is a SRG with parameters P±(m), and
for each of r1, . . . , rℓ we can take any even value in [8, . . . , 26]. We have seen that 1 ∈ Col2(Gi) for each Gi, unless i = 0 and
m = 3ℓ. Therefore Theorem 5.1 gives 2-rank(G) = r0 + r1 +· · ·+ rℓ −2ℓ ifm > 3ℓ, and 2-rank(G) = r1 +· · ·+ rℓ −2ℓ+2 if
m = 3ℓ. So 2-rank(G) can become any even number in [2(m + 1), 2(m + 1 + 9⌊m

3 ⌋)]. If an odd number of graphs G1, . . . ,Gℓ

have parameters P+(3), then G has parameters P+(m), otherwise G has parameters P−(m). □

By Lemma 2.1, isolating by Seidel switching a vertex of a SRG G with parameters P±(m) and 2-rank r , gives a SRG with
parameters P0(m) and 2-rank r − 2 if 1 ∈ Col2(G), and r otherwise. Since each graph G from Tables 2 and 3 has 1 ∈ Col2(G),
case (i) of Theorem 7.1 can also be obtained from case (ii), or (iii).

Two Hadamard matrices are equivalent if one can be obtained from the other by row and column permutation and
multiplication of rows and columns by −1. Clearly each graphical Hadamard matrix is equivalent to a normalized graphical
Hadamard matrix, and by Lemma 2.1, the SRGs from equivalent normalized graphical Hadamard matrices have the same
2-rank. So case (i) of Theorem 7.1 gives:

Corollary 7.2. The function f (m) which gives the number of nonequivalent graphical Hadamard matrices of order 4m is
unbounded.

Lemma 2.1 implies that the 2-ranks of graphs from equivalent graphical Hadamardmatrices differ by atmost 2. Therefore
Theorem 7.1 also implies that the statement of Corollary 7.2 remains true if we restrict to regular graphical Hadamard
matrices. We remark that for Corollary 7.2 we do not need the full strength of Theorem 7.1. It already follows from the
weaker version in [1], and allows a simple direct proof. Also the result is not very surprising. For several values of m there
exist a large number of nonequivalent (regular graphical) Hadamardmatrices of order 4m, and by taking Kronecker products
this leads to many different constructions. However, we are not aware of another result that proves the nonequivalence of
an unbounded number of these constructions.

SRGswith parameters P+(m) are known asmax energy graphs, see [5]. So Theorem 7.1(ii) implies that the function giving
the number of nonisomorphic max energy graphs of order 4m is unbounded.
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