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1. Introduction

The 2-rank of a graph is the rank of its adjacency matrix over FF,. It is a well-studied and useful graph parameter (see for
example [3,11]). Sometimes the 2-rank can be used to distinguish cospectral graphs, such as strongly regular graphs (SRGs)
with the same parameters (and therefore the same spectrum). An important fact is that the 2-rank of a graph is an even
number (see [3], or [6]).

Godsil-McKay switching (GM-switching) is an operation on graphs that does not change the spectrum of the adjacency
matrix. For GM-switching to work, one needs a vertex subset with special properties, called a GM-set. However, GM-
switching can change the 2-rank, in which case the switched graph is obviously non-isomorphic to the original one. This
idea was a starting point of an earlier paper [1] by two of the present authors. They gave switching sets in the symplectic
graph Sp(2m, 2), a famous SRG with parameters

Po(m) — (22m _ -17 22m—1, 22m—2’ 22m—2)7
which increase the 2-rank after switching. In addition, repeated GM-switching was applied for the case m = 3, and many
new strongly regular graphs with parameters Po(3) = (63, 32, 16, 16) were found and the 2-ranks vary from 6 to 18. In this

paper we use an improved computer search and obtain examples with 2-rank 20, 22 and 24. In addition we apply the same
idea to SRGs with parameters

Pi(m) — (22m’ 22111—] :tzm—l’ 22m—2 :tzm—1’ 22m—2 :l:zm—l).
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For m = 3 we found such SRGs for all 2-ranks in {8, 10, ..., 26}. SRGs with parameter sets Po(m) and P.(m) correspond to
graphical Hadamard matrices of order 4™. For these Hadamard matrices there is a recursive construction using Kronecker
products. We find the behavior of the 2-rank of the corresponding graphs for this construction. Using this we obtain
SRGs with parameters Py(m) and 2-ranks 2m, 2m + 2, ...,2m + 18|m/3] and SRGs with parameters P.(m) and 2-ranks
2m+2,2m+4,...,2m+ 2+ 18| m/3]. It is known that the 2-ranks of SRGs with parameter sets Po(m) and P..(m) lie in the
intervals [2m, 22m~1 —2m=1 — 2] and [2m + 2, 22"~ — 2], respectively (see [6,1]). For m = 2, the upper and lower
bounds coincide, and for m = 3 there are ten possible 2-ranks for each parameter set, of which only one value is still open
(26 for Py(3), and 28 for P-(3)).

We only consider undirected graphs without loops or multiple edges. For the relevant background on graphs and matrices
we refer to [4]. The m x n all-ones matrix is denoted by Jn, », or just J, and 1 is the all-ones vector. We denote the column
space of a matrix M over [, by Coly(M). If G is a graph with adjacency matrix A, then we sometimes write Col,(G) instead of
COIQ(A).

2. Seidel switching

Consider a graph G = (V, E) of order n and let X be a subset of V of cardinality m (0 < m < n). Seidel switching in G with
respect to X is an operation on E defined as follows: All edges from E between X and V \ X are deleted, and all possible edges
between X and V \ X which are not in E are inserted (edges with both vertices inside X, or outside X remain unchanged). If A
is the adjacency matrix of G, then S = | — 2A —I is the Seidel matrix of G. So the off-diagonal entries of S are £1,and §;; = —1
if and only if i and j are adjacent. In terms of the Seidel matrix, Seidel switching with respect to X means that the rows and
columns corresponding to X are multiplied by —1. This implies that Seidel switching does not change the spectrum of the
Seidel matrix S.

Assume that the subset X corresponds to the first rows and columns of A, and let Ay denote the adjacency matrix of the
switched graph Gx. Then

Ax =A+ K (mod 2), where K = O Jmnm )
]n—m,m O
We know that 2-rank(A) is even, and since rank(K) = 2 (over any field), it follows that 2-rank(Ax) € {2-rank(A) — 2,
2-rank(A), 2-rank(A) + 2}.

Lemma 2.1. Suppose Gy is obtained from G by Seidel switching with respect to the set X of neighbors of a vertex x of G. Then x is
an isolated vertex of Gx, and 2-rank(Gy ) = 2-rank(G) — 2 if 1 € Coly(G), and 2-rank(Gy) = 2-rank(G) otherwise.

Proof. The first claim is obvious. Let x be the characteristic vector of X. Then clearly x € Col,(A), and since 1 and x span
Coly(K), we have

Coly([Ax 1x]) = Coly([A 1x]) = Col([A 1]).

Suppose 1 € Col,(A). Then Col,(A) = Coly([A 1]) = Coly([Ax 1 x]). The switched graph Gx has an isolated vertex, therefore
1 ¢ Col,(Ax). Hence Col,(Ay) is a proper subspace of Col,(A), from which it follows that 2-rank(A) = 2-rank(Ax) + 2.
If 2-rank(Ax) = 2-rank(A) — 2, then Col,([Ax 1X]) = Col,([A 1x]) implies that x, 1 € Col,(Ax) and x, 1 € Col;(A). O

Note that Lemma 2.1 also holds if X is the empty set, in which case Gy = G.
3. Godsil-McKay switching

Godsil and McKay introduced the following switching operation that leaves the spectrum of the adjacency matrix
invariant.

Theorem 3.1. Let G be a graph and let W be a subset of the vertex set of G which induces a regular subgraph. Assume that each
vertex outside W is adjacent to |W|, %|W| or 0 vertices of W. Make a new graph Gy from G as follows. For each vertex v outside
W with %|W| neighbors in W, delete the %|W| edges between v and W, and join v instead to the %|W| other vertices in W. Then
G and Gy have the same adjacency spectrum.

The operation that changes G into Gy is called Godsil-McKay switching (GM-switching). Notice that if all vertices outside
W have %|W| neighbors in W, then GM-switching is a special case of Seidel switching.

It is well-known that if a graph Gy, has the same spectrum as a SRG G, then Gyy is also strongly regular with the same
parameters as G. Therefore GM-switching provides a tool to construct new SRGs from known ones. However, Gy, may be
isomorphic with G, but if GM-switching changes the 2-rank, this is obviously not the case.

Similar to Seidel switching, GM-switching can be described in terms of the adjacency matrices A and Ay, of G and Gy.
Indeed, Ay = A+L(mod 2), where Lis defined by L;j = 1ifi € W,j ¢ W andj has %|W| neighbors in W; otherwise L;j = 0.
Then 2-rank(L) = 2 and therefore 2-rank(Gy ) € {2-rank(G) — 2, 2-rank(G), 2-rank(G) + 2} (see also [1]). Moreover, in the
case 2-rank(G) increases, we have Col,(A) C Coly(Aw ), and therefore 1 € Coly(A) implies 1 € Coly(Aw ).

Please cite this article as: A. Abiad, S. Butler and W.H. Haemers, Graph switching, 2-ranks, and graphical Hadamard matrices, Discrete Mathematics (2018),
https://doi.org/10.1016/j.disc.2018.11.022.
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4. Hadamard matrices

A square (+1, —1)-matrix H of order n is a Hadamard matrix whenever HH'™ = nl. If a row or a column of a Hadamard
matrix is multiplied by —1, it remains a Hadamard matrix. We can apply this operation a number of times such that the
first row and column consist of all ones. Such a Hadamard matrix is called normalized. A Hadamard matrix H is said to be
graphical if H is symmetric and it has constant diagonal, and H is regular if all row and column sums are equal. We assume
that the diagonal entries of a graphical Hadamard matrix H are equal to 1 (otherwise consider —H). Then Ay = %([ —H)is
the adjacency matrix of a graph, say G. Note that H — I is the Seidel matrix of Gy. If H is normalized, then Gy has an isolated
vertex, and it is well-known that for n > 4 the graph on the remaining n — 1 vertices is strongly regular with parameters
(n—1, % %, %). If H is graphical and regular, then the row and column sums are equal to €/n where ¢ = +1, and Gy is
strongly regular graph with parameters (n, § — gﬁ h- gﬁ i %ﬁ). Conversely, any strongly regular graph with one
of the above parameters comes from a Hadamard matrix in the described way.

It is well known that if H; and H, are Hadamard matrices, then so is the Kronecker product H; ® H,. Moreover, if H; and
H, are normalized, then so is H; ® Hj, if H; and H, are graphical, then so is H; ® H,, and if H; and H, are regular then so is
Hi ® H,. For example

11 11 1 -1 -1 -1
101 11 11 -1 41
11 -1 [adHy=| o g
1 -1

1 -1 -1 -1 1

H, =

1

are regular graphical Hadamard matrices, and so are H; ® Hy, H; ® H,, and H, ® H,. Note that Gy, = 2K; and Gy, = K. The
SRGs Gy, gn, and Gy, g, are isomorphic with parameters P_(2). The graph is known as the lattice graph L(4). The SRG Gy, gH,
has parameters P(2), and is known as the Clebsch graph. For later use we define G_(3) = Gu, gn, @H;,and G(3) = Gy, gH,oH,

which are SRGs with parameters P_(3) and P,(3), respectively.
For a recent survey on graphical Hadamard matrices, we refer to [2].

5. A graph product and its 2-rank behavior

Inspired by the Kronecker product for Hadamard matrices we define the graph product denoted by ® as follows. For
i = 1, 2 let G; be a graph of order n; with vertex set V;, Seidel matrix S; and adjacency matrix A;. Then G; ® G, is the graph
with vertex set V; x V5, where two vertices (X1, X») and (y1, y») are adjacent if and only if either {x;, y1} is an edge in G; and
{x2, y2} is not an edge in G, or {x,, -} is an edge in G, and {x1, y1} is not an edge in G;. Thus the Seidel matrix of G; ® G,
equals (S; +1) ® (S; + 1) — 1. So if H; and H, are graphical Hadamard matrices, then Gy, ® Gu, = G, eH,-

The graph product G; ® G, is closely related to the modular product (see [8]), which gives the complement of G; ® G.

Theorem 5.1. For two graphs G, and G, the following hold:
(i) 1 € Coly(G1 ® Gy)ifand only if 1 € Coly(Gy1) or 1 € Coly(Gy),
(ii) if 1 € Coly(Gy) and 1 € Coly(G,) then
2-rank(Gy ® Gy) = 2-rank(Gq) + 2-rank(G,) — 2,
(iii) if 1 & Coly(Gq) or 1 & Coly(G,) then
2-rank(G; ® Gy) = 2-rank(Gy) + 2-rank(G;).

Proof. Let n; be the number of vertices of G; fori = 1, 2, and let A;, A;, and A, , be the adjacency matrix of Gy, G; and G; ® G,
respectively. Then over F, the matrix A , satisfies

A],Z =A ®Jn2,n2 +_]n1,n1 ® Ay. (1)
(i) Assume 1 € Col;(A1), then A;v = 1 for some v in Fgl.The weight of vis equal to 1Tv = v' A;v = 0 (mod 2), because A;
is symmetric with zero diagonal. If e is a unit vector, and v' = v ® e, then (1) implies that (over I,)

AV =(A1Q))(vee)+(JRA)(vee)=AvR 1+ v Ae=1+0.

Therefore 1 € Coly(A;2). Conversely, assume 1 € Coly(A;2). Then (1) implies that there exist v; € Fgl andv; € IE‘;Z such
that1 = A1vi ® 1+ 1 ® Ayv,. Therefore Ajv; = o;1 with «; € F, fori = 1, 2. Clearly a1 or «; is nonzero, so 1 € Col(A1) or
1e COlz(Az )

To prove (ii) and (iii), we first assume that G; and G, both have an isolated vertex. Then clearly 1 ¢ Coly(A;) and
1 ¢ Coly(Ay). Fori = 1,2, let r; be 2-rank(A;), and let V; be a n; x r; submatrix of A;, such that its columns are a basis
for Coly(A;). Consider the matrix

V1,2 = [ Vi ®]n2.r2 ‘ ]nl,rl Vs, ]

Please cite this article as: A. Abiad, S. Butler and W.H. Haemers, Graph switching, 2-ranks, and graphical Hadamard matrices, Discrete Mathematics (2018),
https://doi.org/10.1016/j.disc.2018.11.022.
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Since A; and A, have a zero column, the columns of V; , are columns of A 3, and by (1) they span Col,(A1 ;). Also the
columns of V; , are independent, since Coly(Vy ® Ju,,r,) and Coly(Js, -, ® V) have no nonzero vector in common. Therefore
2-rank(A1) =11+ 12.

If G; or G, has no isolated vertex, we apply Seidel switching. Suppose that fori = 1, 2 G} is obtained from G; by Seidel
switching with respect to the neighbors of a vertex x;. Then x; is an isolated vertex of G}, and (x4, x,) is isolated in G} ® G,.
We claim that G} ® G, = (G; ® G,), where (G; ® G,) is obtained from G; ® G, by Seidel switching with respect to the
neighbors of (x1, ;). Indeed, if Sy, S5, S}, S} and S} , are the Seidel matrices of G1, G, G}, G, and (G ® G, ), respectively, then
there exist diagonal matrices D and D, with diagonal entries &1, such that S} +1 = D;(S; +1)D; and S +1 = D5(S; +1)D;.
By use of the mixed-product property of the Kronecker product we get

S1+D@ S+ =D1®D:)(S1 + N ® (S + N)D1 ®D2) =S, +1,

which proves the claim. Now we use Lemma 2.1. If 1 € Coly(A;) and 1 € Coly(A;) then 1 € Coly(A;2), 2-rank(G;) =
2-rank(Gy) — 2, 2-rank(G},) = 2-rank(G,) — 2 and 2-rank(G; ® G,) = 2-rank(G; ® G,) + 2. Therefore 2-rank(G; ® G;) =
2-rank(G) + 2-rank(G,) — 2, which proves (ii). The cases of statement (iii) go similarly. O

6. SRGs with parameters Py(3) and P.(3)

In this section, we report the result of a computer search for GM-switching sets in SRGs with parameters Py(3) =
(63, 32, 16, 16), P(3) = (64, 36, 20, 20),and P_(3) = (64, 28, 12, 12). We start with known SRGs with the smallest possible
2-rank and search for GM-switching sets of size 4 that increase the 2-rank after switching. We switch, and then continue the
search with the newly obtained SRGs. However, unlike in the preceding paper [ 1], we do not stop if we find no switching set
that increases the 2-rank. Instead, we also consider switching sets that do not change the 2-rank, switch and then continue
the search. A complete search considering all suitable switching sets of size 4 in each step is far out of reach, so we stop the
search if we have not found a switching set that increases the 2-rank in several thousand iterations.

For more details about the computational aspects, see the SAGE worksheet! or,”> where graph strings and series of
switching sets (following SAGE vertex labeling) are provided in order to reproduce the results shown in this section.

A SRG with parameters Py(3) has a minimal possible 2-rank of 6 and there is a unique such SRG (see [11]): the symplectic
graph Sp(6, 2). The vertex set V of Sp(6, 2) consists of the nonzero vectors in Fg, and two vertices X = (x1,...,Xg) and
y = (y1, ..., Ys)are adjacent if X1y, + X2y1 + X3Ya + X4Y3 + X5¥6 + X6ys = 1.In Table 1, the first row gives a GM-switching set
in Sp(6, 2), and each subsequent row gives a GM-switching set in the SRG corresponding to the resulting graph from carrying
out GM-switching on the previous row. The last column gives the 2-rank after switching. Note that at some stages we use
switching sets that do not increase the 2-rank. Here the upper bound for the 2-rank is 26. Unfortunately our search found
no such graph, so the existence of a SRG with 2-rank 26 and parameters Py(3) remains open.

Table 1

Increasing 2-ranks by repeated GM-switching in Sp(6, 2).
GM-switching set 2-rank
{(100000), (010000), (101000), (011000)} 8
{(000010), (000001), (001010), (001001)} 10
{(100010), (101010), (110011), (111011)} 12
{(000100), (010100), (001111),(011111)} 14
{(000110), (000101), (010110), (010101)} 16
{(001000), (100001), (110010), (011011)} 18
{(110100), (111100), (100111), (101111)} 18
{(110100), (111100), (110101), (111101)} 20
{(010100), (110110), (101101), (001111)} 20
{(100100), (110100), (101100), (111100)} 22
{(000011), (110001), (001011), (111001)} 22
{(000001), (001001), (110001), (111001)} 22
{(010000), (000001), (010010), (000011)} 24

In this regard, Ihringer’s recent construction [7] also uses GM-switching. We did test computationally the graphs from [7]
with parameters Py(3), but they did not provide new 2-ranks. In fact, Ihringer’s graphs with parameters Py(3) can also be
constructed by our approach. Another construction of SRGs with parameters Py(m) by Kantor [9] uses a symplectic spread in
the projective geometry PG(2m — 1, 2). However, only if the spread is non-Desarguesian, Kantor’s graph is nonisomorphic
with Sp(2m, 2), and according to [ 10], there exists no non-Desarguesian spread in PG(5, 2).

We know two nonisomorphic SRGs with parameters P_(3) and 2-rank 8. One is G_(3) = 2K, ® 2K, ® 2K;, which was
defined in Section 4. We easily have 2-rank(2K;) = 4, and 1 € Col,(2K5), so Theorem 5.1(ii) gives 2-rank(G_(3)) = 8. Let
{1, 2, 3, 4} be the vertex set of 2K3, and let {1, 2} and {3, 4} be the edges. Then each vertex of G_(3) can be represented by
atriplein {1, 2, 3, 4}3. With this notation the GM-switching sets that lead to a SRG with parameter set P_(3) and 2-rank 26
are given in the left part of Table 2.

1 https://cocalc.com/projects/57b6e497-d392-406¢c-aa9c-80221136762¢/files.
2 https://orion.math.iastate.edu/butler/Abiad_Butler_Haemers.txt.
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Table 2

Increasing 2-ranks by repeated GM-switching in G_(3) (left) and G’_(3) (right).
GM-switching sets 2-rk GM-switching sets 2-rk
{(1,1,1),(1,1,3),(2,2,1),(2,2,3) } 10 {(1,1,1),(3,2,2),(4,4,1),(2,3,2)} 10
{(1,1,1),(1,1,3),(2,1,1),(2,1,3) } 12 {(3,3,1),(2,2,1),(3,3,2),(2,2,2)} 12
{(1,1,2),(2,2,4),(4.2,1),(3,1,3) } 14 {(2,2,4),(3,3,4),(2,3,4),(3,2,4)} 14
{(4,4,4),(1,2,2),(2,3,2),(3,1,4)} 16 {(3,2,2),(2,3,2),(4,4,4),(1,1,4)} 16
{(4,3,4),(3,3,2),(3,2,4),(4,2,2) } 18 {(1,4,2),(1,1,2),(4,1,3),(4,4,3)} 18
{(4,4,2),(3,4.2),(3,1,1),(4,1,1) } 20 {(4,2,2),(2,4,2),(3,1,3),(1,3,3)} 20
{(1,1,2),(1,1,4),(2,2,2),(2,2,4) } 20 {(1,3,2),(4,3,2),(4,2,3),(1,2,3)} 20
{(4,4,1),(3,3,3),(1,3,2),(2,4,4) } 22 {(1,2,1),(2,4,1),(4,3,4),(3,1,4)} 22
{(1,3,2),(1,3,4),(2,4,2),(2,4,4) } 22 {(4,3,1),(2,4,1),(1,2,4),(3,1,4)} 22
{(4,3,3),(3,3,1),(4,2,3),(3,2,1) } 24 {(4,2,1),(3,4,2),(1,3,1),(2,1,2)} 24
{(2,1,2),(4,3,2),(3,2,2),(1,4,2)} 24 {(1,4,1),(4,1,1),(2,2,4),(3,3,4)} 24
{(3,4,4),(1,2,4),(2,3,4),(4,1,4) } 26 {(3,2,2),(3,3,1),(2,2,4),(2,3,3)} 26

Table 3

Increasing 2-ranks by repeated GM-switching in G, (3) (left) and G/, (3) (right).
GM-switching sets 2-rk GM-switching sets 2-rk
{(1,1,1),(1,1,3),(1,2,1),(1,2,3)} 10 {(1,1,1),(2,1,2),(4,4,4),(3,4,3)} 10
{(2,1,3),(1,3,1),(3,4,3),(4,2,1)} 12 {(1,1,2),(2,1,1),(2,2,2),(1,2,1)} 12
{(2,1,1),(3,3,4),(2,4,2),(3,2,3)} 14 {(1,2,3),(4,4,1),(1,4,1),(4,2,3)} 14
{(2,1,2),(2,1,4),(4.4,2), (4, 4,4)} 16 {(1,2,4),(3,3,2),(1,1,3),(3,4, 1)} 16
{(2,3,3),(4,3,2),(1,4,4),(3,4,1)} 18 {(3,3,1),(2,1,3),(3,2,2),(2,4,4)} 18
{(3,4,4),(4,4,3),(2,4,1),(1,4,2)} 20 {(2,2,3),(4,4,2),(2,3,4),(4 1,1)} 20
{(3,1,2),(4,3,2),(1,4,4),(2,2,4)} 20 {(3,1,3),(4,2,1),(1,4,3),(2,3, 1)} 20
{(1,1,4),(4,3,1),(1,4,3),(4,2,2)} 20 {(2,4,1),(4,2,2),(1,4,4),(3,2,3)} 22
{(4,1,1),(3,3,3),(1,4,1),(2,2,3)} 22 {(2,2,4),(3,4,2),(4,2,1),(1,4,3)} 22
{(4,1,3),(3,1,1),(4,3,3), (3,3, 1)} 22 {(1,1,2),(3,4,4),(2,2,2),(4,3,4)} 22
{(2,1,1),(4,1,4),(3,2,3),(1,2,2)} 24 {(4,3,2),(1,1,4),(2,3,3),(3, 1, 1)} 22
{(2,3,3),(4,3,2),(1,4,4),(3,4,1)} 24 {(1,1,2),(4,3,2), (4, 4,3), (2, 1,3)} 24
{(1,3,3),(3,3,2),(2,4,4), (4,4, 1)} 24 {(1,1,1),(3,4,3),(2,2, 1), (4,3,3)} 24
{(2,4,4),(3,4,3),(42,1),(3,2,3)} 24 {(2,2,4),(3,4,2),(1,3,4),(4 1,2)} 24
{(2,1,2),(2,1,4),(4,3,4),(1,4,4)} 26 {(2,4,2),(2,3,3),(1,4,1),(1,3,4)} 26

As mentioned before, 2K, ® 2K; is an SRG with parameters P_(2) known as the lattice graph L(4). However there is one
other SRG with parameters P_(2), known as the Shrikhande graph, which can be obtained from L(4) by Seidel switching
with respect to any 4-coclique (in this particular case, Seidel switching and GM-switching are the same). We easily have
2-rank(Shrikhande) = 6 and 1 € Coly(Shrikhande). Define G'_(3) = Shrikhande ® 2K5. Then G’_(3) is another SRG with
parameters P_(3), 2-rank(G"_(3)) = 8 and 1 € Coly(G’_(3)). We have also searched for GM-switching sets in G'_(3). The
outcome is given in the right part of Table 2, where we use the same vertex set as for G_(3), but replaced 2K, ® 2K; by the
Shrikhande graph obtained by switching with respect to {(1, 1), (2, 2), (3, 3), (4, 4)}.

We also considered two nonisomorphic SRGs with parameter sets P, (3) and 2-rank 8. The first one is G (3) = 2K; 2K, ®
K4, which was defined in Section 4. The other one is G, (3) = Shrikhande ® Kj. Again the vertex set is given by {1, 2, 3, 4)3,
The sequence of GM-switching sets leading to SRGs with parameters P, (3) and 2-rank 26 is given in Table 3.

The upper bound for the 2-rank of a graph with parameters P.(3) is 28. So only the existence of one with 2-rank 28 is
unsolved. If G is a SRG with parameters P.(3) with 2-rank(G) = 26, and 1 ¢ Col,(G), then from Lemma 2.1 it follows that
isolating a vertex by Seidel switching gives an SRG G’ with parameter set Py(3) and 2-rank(G') = 26, the only open case for
Po(3). Unfortunately, it turns out that 1 € Col,(G) for every graph G in Tables 2 and 3. This is not very surprising, since we
know that 1 € Col,(G+(3)) and 1 € Coly(G/.(3)), and in Section 3 we observed that 1 remains in the column space of the
adjacency matrix if GM-switching increases the 2-rank.

7. SRGs with parameters Py(m) and P..(m)
The computer result from the previous section and the graph product introduced in Section 5 lead to the following result.

Theorem 7.1.

(i) There exist SRGs with parameter set Po(m) and 2-rank r for every evenr € [2m, 2(m + QL%J )]
(ii) There exist SRGs with parameter set P, (m) and 2-rank r for every evenr € [2(m 4+ 1),2(m+ 1+ 9L%J ).
(iii) There exist SRGs with parameter set P_(m) and 2-rank r for every evenr € [2(m +1),2(m + 1+ 93 |)].

Proof. Put ¢ = | ¥],and let Gy, ..., G, be graphs coming from normalized graphical Hadamard matrices of order 64, which
are given in Table 1 (so G; is a SRG with parameters Py(3) extended with an isolated vertex), and let G, be the graph of a

Please cite this article as: A. Abiad, S. Butler and W.H. Haemers, Graph switching, 2-ranks, and graphical Hadamard matrices, Discrete Mathematics (2018),
https://doi.org/10.1016/j.disc.2018.11.022.




6 A. Abiad, S. Butler and W.H. Haemers / Discrete Mathematics xxx (XXxx) XXxx

normalized Hadamard matrix of order 4™ —3¢. Putr; = 2-rank(G;)fori = 0, ..., ¢,and define G = Gy®G®- - -®G,.ThenGisa
SRG with parameters Py(m), extended with an isolated vertex, and Theorem 5.1(iii) implies that 2-rank(G) = ro+r;+- - - +17.
Now by the results in the previous section, fori = 1, ..., £, we can choose for r; any even number in [6, 24]. This proves (i).

The proofs of (ii) and (iii) go similarly. Let Gy, ..., G, be SRGs with parameters P..(3) given in Tables 2 and 3 (so G; comes
from a regular graphical Hadamard matrices of order 64). For Go we take Ky if m —3¢ = 0, 2K, if m— 3¢ = 1, and 2K, ® 2K; if
m—3¢=2.AgainG =Gy ®G; ®---® Gy, and r; = 2-rank(G;) fori = 0, ..., £. Then G is a SRG with parameters P.(m), and
for each of ry, ..., r, we can take any even value in [8, . . ., 26]. We have seen that 1 € Col,(G;) for each G;, unless i = 0 and
m = 3. Therefore Theorem 5.1 gives 2-rank(G) = ro+ry +-- -+ 1, —2¢if m > 3¢,and 2-rank(G) = r{+---+r, — 20 + 2if
m = 3£. So 2-rank(G) can become any even number in [2(m + 1), 2(m + 1+ QL%J )]. If an odd number of graphs Gy, ..., G,
have parameters P (3), then G has parameters P (m), otherwise G has parameters P_(m). O

By Lemma 2.1, isolating by Seidel switching a vertex of a SRG G with parameters P.(m) and 2-rank r, gives a SRG with
parameters Pop(m) and 2-rank r — 2 if 1 € Col,(G), and r otherwise. Since each graph G from Tables 2 and 3 has 1 € Col,(G),
case (i) of Theorem 7.1 can also be obtained from case (ii), or (iii).

Two Hadamard matrices are equivalent if one can be obtained from the other by row and column permutation and
multiplication of rows and columns by —1. Clearly each graphical Hadamard matrix is equivalent to a normalized graphical
Hadamard matrix, and by Lemma 2.1, the SRGs from equivalent normalized graphical Hadamard matrices have the same
2-rank. So case (i) of Theorem 7.1 gives:

Corollary 7.2. The function f(m) which gives the number of nonequivalent graphical Hadamard matrices of order 4™ is
unbounded.

Lemma 2.1 implies that the 2-ranks of graphs from equivalent graphical Hadamard matrices differ by at most 2. Therefore
Theorem 7.1 also implies that the statement of Corollary 7.2 remains true if we restrict to regular graphical Hadamard
matrices. We remark that for Corollary 7.2 we do not need the full strength of Theorem 7.1. It already follows from the
weaker version in [ 1], and allows a simple direct proof. Also the result is not very surprising. For several values of m there
exist a large number of nonequivalent (regular graphical) Hadamard matrices of order 4™, and by taking Kronecker products
this leads to many different constructions. However, we are not aware of another result that proves the nonequivalence of
an unbounded number of these constructions.

SRGs with parameters P, (m) are known as max energy graphs, see [5]. So Theorem 7.1(ii) implies that the function giving
the number of nonisomorphic max energy graphs of order 4™ is unbounded.
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