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a b s t r a c t

A homeomorphically irreducible spanning tree (HIST) of a connected graph is a spanning
tree without vertices of degree two. The determination of the existence problem of a
homeomorphically irreducible spanning tree in a plane cubic graph is NP-complete. A
hexangulation of a surface is a cubic graph embedded on a surface such that every face is
boundedby a hexagon. It is a problemasked byHoffmann-Ostenhof andOzeki thatwhether
there are finitely or infinitely many hexangulations of torus with homeomorphically
irreducible spanning trees. In this paper, we show that a family of hexangulations of
surfaces, denoted by H(m, n), have a homeomorphically irreducible spanning tree if and
only if it has an odd number of faces, which answers the problem of Hoffmann-Ostenhof
and Ozeki for hexangulations of surfaces.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite and simple. A cycle is a connected 2-regular graph and a tree is a connected
graph without a cycle. Let G be a connected graph. A spanning tree T of G is a connected subgraph containing all vertices of
G but no cycles. A spanning tree T is homeomorphically irreducible if T does not have vertices of degree two.

Homeomorphically irreducible spanning tree (HIST) was first studied by Hill [7] who conjectured that every triangulation
of the spherewith at least 4 vertices contains a HIST. A stronger conjecturewas proposed byMalkevitch [13] that every near-
triangulation of the sphere with at least 4 vertices has a HIST. In 1990, Albertson, Berman, Hutchinson and Thomassen [1]
provedMalkevitch’s conjecture, and they further showed that it is NP-complete to decidewhether a graph G contains a HIST.
It is an open problem raised by Albertson et al. [1] that whether a connected graph in which every edge is contained in at
least two triangles contains a HIST, whichwas settled by Chen and Shan [5]. Chen, Ren and Shan proved that every connected
and locally connected graph with at least 4 vertices has a HIST [4].

A decomposition of a graph G is a partition of G into edge-disjoint subgraphs whose union is the graph G. If a cubic graph
G has a HIST, denoted by T , then G − E(T ) consists of disjoint cycles and some isolated vertices. So, a cubic graph has a
HIST if and only if it admits a decomposition into a spanning tree and a family of cycles. It is known that it is NP-complete
to determine whether a plane cubic graph has a HIST or not [6]. For cubic graphs on surfaces with bounded size of face,
Malkevitch [13] asked for a characterization of fullerenes with a HIST, which are plane cubic graphs such that a face is either
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Fig. 1. A rectangular hexagon lattice L(6, 3) and the hexangulation T (6, 3) on the torus.

hexagonal or pentagonal. Recently, Hoffmann-Ostenhof, Noguchi and Ozeki [9] showed that there exist cyclically k-edge-
connected cubic graphs without a HIST for every positive integer k, which settles a problem of Albertson et al. [1]. The result
of Hoffmann-Ostenhof et al. [9] demonstrates that the cyclic edge-connectivity is not a sufficient condition for a cubic graph
to have a HIST. In fact, so far, there is no known sufficient conditions for cubic graphs with a HIST. Hoffmann-Ostenhof and
Ozeki proposed the following question in [10].

Problem 1.1. Are there finitely or infinitely many 3-regular hexangulations of the torus with a HIST?

A hexangulation of a surface is a cubic graph embedded in the surface such that every face is a hexagon. A simple calculation
by applying Euler’s formula to a hexangulation of a surfaceΣ shows that the surfaceΣ must be the torus or the Klein bottle.
A k-prism (k > 3) is the Cartesian product of a cycle Ck and K2, which does not have a HIST. If k is even, then a k-prism
can be embedded in the torus such that every face is a hexagon. Hence, a hexangulation of the torus may not have a HIST.
In [9], Hoffman-Ostenhof, Noguchi and Ozeki constructed infinitely many hexangulations of the torus with a HIST, which
have small face-width. The face-width of a graph G embedded in a surface is the smallest number of closed faces (including
boundaries) whose union contains a non-contractible curve.

In this paper, we show that there are infinitely many hexangulations of the torus and the Klein bottle with arbitrarily
large face-width which have a decomposition into a spanning tree and a cycle, and hence have a HIST. On the other hand,
combining the results of [9] (Corollary 3) and [3,15], we can show that there are infinitely many hexangulations of the torus
and the Klein bottle with arbitrarily large face-width without a HIST. These results settle Problem 1.1 for hexangulations of
surfaces.

2. Constructions of hexangulations of surfaces

The characterization of hexangulations of the torus was obtained by Altschuler [3] and independently by Thomassen [15]
who also presented a characterization for hexangulations of the Klein bottle. A simple description for the characterizations
of hexangulations of the torus and Klein bottle can be found in [17].

Let R(m, n) be the integer rectangle of a 2-dimensional Euclidean plane R2 consisting of all points in {(x, y) : x, y ∈

N and 0 ≤ x ≤ m − 1, 0 ≤ y ≤ n − 1} where N is the set of all non-negative integers. Let vi,j be a vertex corresponding to
the point (i, j) ∈ R2. A rectangular hexagon lattice L(m, n) is a graph with vertex set V = {vi,j|(i, j) ∈ R(m, n)} and edge set
E = {vi,jvi+1,j|0 ≤ i ≤ m − 2, 0 ≤ j ≤ n − 1} ∪ {vi,jvi,j+1|0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 2 and i ≡ j (mod 2)}. For example,
see Fig. 1 (left). Color all vertices vi,j by black if i ≡ j (mod 2) and by gray if i ̸≡ j (mod 2). Then a such coloring is a proper
coloring of L(m, n).

Take L(m, n) such that m ≡ 0 (mod 2). To construct a hexangulation of the torus, add edges to L(m, n) to join v0,i and
vm−1,i for all i ∈ {0, 1, . . . , n−1}, and edges to join vi,0 and vi,n−1 if n is even or vi−1,n−1 if n is odd for all i ∈ {1, 3, . . . ,m−1}.
Denote a such hexangulation of the torus by T (m, n) (see Fig. 1). To construct a hexangulation of the Klein bottle, add edges
to join v0,i and vm−1,i for all i ∈ {0, 1, . . . , n − 1} and edges to join vi,0 to vm−1−i,n−1 if n is odd or vm−i,n−1 if n is even, for all
i ∈ {1, 3, . . . ,m − 1}. Denote this hexangulation by K (m, n). A hexangulation H(m, n) of a surface means either T (m, n) for
the torus or K (m, n) for the Klein bottle. From the above constructions, to form a hexangulation,m is always an even integer.
SinceH(m, n) is simple,m ≥ 4 is even and n ≥ 2. The 2-coloring of L(m, n) given above is also a proper 2-coloring ofH(m, n).
It has been proved in [17] (see Theorem 19) that the face width of K (m, n) satisfies fw(K (m, n)) = min{m/2, n}, which has
been generalized to H(m, n) as follows.

Lemma 2.1. A hexangulation H(m, n) of a surface has fw(H(m, n)) = min{m/2, n}.

Proof. By a result (Theorem 19) of [17], it suffices to show that T (m, n) has fw(T (m, n)) = min{m/2, n}. Denote the torus by
Σ , and let h(x, y) be the closed hexagonal face centered at (x+1, y+

1
2 ) with x ≡ y (mod 2). Let R(y) be the union of all h(x, y)

with the same y-coordinate, and let C(x) be the union of all hexagons in {h(x, y)|y ∈ {0, 1, . . . , n−1} is even}∪{h(x+1, y)|y ∈

{0, 1, . . . , n − 1} is odd} for x ∈ {0, 2, . . . ,m − 2}. Then both R(y) and C(x) contain a non-contractible simple closed curve.
So fw(T (m, n)) ≤ min{m/2, n}.

Let α be a non-contractible simple closed curve in C(x). Then Σ − α is a tube and every non-contractible simple closed
curve ofΣ contained inΣ −α is homotopic to α, which implies that a non-contractible simple closed curve ℓ not homotopic
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Fig. 2. A hexangulation of the torus with an odd number of faces but no HIST.

to α intersects with every C(x) for each x ∈ {0, 2, . . . ,m − 2}. Therefore, the minimum number of hexagons of T (m, n)
required to contain a simple closed curve not homotopic to α is at least m/2. On the other hand, a non-contractible simple
closed curve homotopic to α intersects with at least n hexagons, i.e., at least each from R(y) for every y ∈ {0, 1, . . . , n − 1}.
So the number of hexagons of T (m, n) whose union contains a non-contractible simple closed curve homotopic to α is at
least n. Since the fundamental group of the torus is Z2, a non-contractible simple closed curve is either homotopic to α or
non-homotopic to α. Therefore, fw(T (m, n)) ≥ min{m/2, n}. This completes the proof. □

The following is our main result.

Theorem 2.2. A hexangulation H(m, n) of a surface has a homeomorphically irreducible spanning tree if and only if it has an odd
number of faces.

By the characterization of hexangulations of the Klein bottle [15] (see also [17]), we have the following direct corollary.

Corollary 2.3. A bipartite hexangulation of the Klein bottle has a homeomorphically irreducible spanning tree if and only if it has
an odd number of faces.

As m → ∞ and n → ∞, then fw(H(m, n)) → ∞. So the following result is a direct corollary of Lemma 2.1 and
Theorem 2.2, which provides an answer to Problem 1.1.

Corollary 2.4. Let Σ be either the torus or Klein bottle. Then there are infinitely many hexangulations of Σ with arbitrarily large
face-width which have a homeomorphically irreducible spanning tree.

Note that a bipartite hexangulation of the Klein bottle is isomorphic to K (m, n) for some integers m and n [17]. Hence
Theorem 2.2 provides a necessary and sufficient condition for bipartite hexangulations of the Klein bottle to have a HIST.
However, it does not hold for the hexangulations of the torus. For example, the graph in Fig. 2 is a hexangulation of the torus
but has no HIST because it has 14 vertices but no cycles of length four or eight. But we are able to show the following result
for hexangulations of the torus.

Theorem 2.5. Let k ≥ 3 be an integer. If k is odd, then there exists a k-face hexangulation of the torus with a HIST. If k is even,
then there is no k-face hexangulation of the torus with a HIST.

The proofs of Theorems 2.2 and 2.5 are given in the next section.

3. Proof of main results

Let G be a cubic graph with a HIST T . Then E(G − T ) induces a family of cycles and |E(G − T )| = |V (G)|/2 + 1 since G has
3|V (G)|/2 edges and T has |V (G)| − 1 edges. If G is a bipartite graph, every cycle in G − E(T ) has even length, which implies
|V (G)|/2 + 1 is even, or equivalently, |V (G)| ≡ 2 (mod 4). Hence we have the following useful lemma, which provides a
necessary condition for a cubic bipartite graph to have a HIST.

Lemma 3.1 ([9]). Let G be a cubic bipartite graph with a HIST. Then |V (G)| ≡ 2 (mod 4).

Let H be a bipartite hexangulation of a surface and let x be the number of faces. Then H has 2x vertices because every face
of H is a hexagon and every vertex belongs to the boundaries of three different faces. If H has a HIST, then it follows from
Lemma 3.1 that x is odd. Hence, we have the following proposition, which establishes the necessity of Theorem 2.2.

Proposition 3.2. Let H be a bipartite hexangulation of a surface. If H has a HIST, then H has an odd number of faces.

In the following, we are going to show the sufficiency of Theorem 2.2, which follows from the following result.

Theorem 3.3. A hexangualation H(m, n) of a surface with an odd number of faces has a decomposition into a spanning tree and
a cycle.



Please cite this article as: S. Zhai, E. Wei, J. He et al., Homeomorphically irreducible spanning trees in hexangulations of surfaces, Discrete Mathematics
(2019), https://doi.org/10.1016/j.disc.2019.01.032.

4 S. Zhai, E. Wei, J. He et al. / Discrete Mathematics xxx (xxxx) xxx

Fig. 3. A decomposition of T (m, 3) into a spanning tree and a cycle.

Fig. 4. A decomposition of K (m, 3) into a spanning tree and a cycle.

Fig. 5. A row-section Rwith width m.

The above theorem will be proved according to different cases, which are handled in following three lemmas. For the
convenience, an edge e is sometimes treated as twohalf-edges e+ and e−, each ofwhich is incidentwith one of the endvertices
of e.

Lemma3.4. A hexangulation H(m, n) of a surfacewithm ≡ 2 (mod 4) and n ≡ 3 (mod 4) has a decomposition into a spanning
tree and a cycle.

Proof. First, note that both T (m, 3) and K (m, 3) with m = 4k + 2 have a decomposition into a spanning tree (HIST) and a
cycle C .

For T (4k+2, 3), the cycle C = v0,0vm−1,0vm−2,0vm−3,0vm−4,2 · · · v4i+1,2v4i,2v4i+1,0v4i,0v4i−1,0v4i−2,2 · · · v1,2v0,2vm−1,2vm−1,1
v0,1v0,0 where i runs through every integer in order from k − 1 = (m − 2)/4 − 1 to 1, as shown in Fig. 3 (the cycle is
demonstrated in dashed lines).

For K (4k+2, 3), the cycle C is slightly different from the cycle of T (4k+2, 3) because of the connections of the half edges
crossing the top and bottom boundaries of the rectangular representation, which is v0,0vm−1,0vm−2,0vm−3,0 · · · v4i+2,2v4i+3,2
v4i+4,2vm−4i−5,0vm−4i−6,0vm−4i−7,0 · · · vm−4,2vm−3,2vm−2,2vm−1,2vm−1,1v0,1v0,0 where i runs through every integer in order
from 0 to k − 2 = (m − 2)/4 − 2, as shown in Fig. 4 (the cycle is demonstrated in dashed lines).

In the following, we are going to extend the decomposition of H(m, 3) to H(m, 4l + 3) where m = 4k + 2 for some
integer k ≥ 1. A section R of width m is a tubular graph obtained from T (m, 4) by cutting each edge in S = {vi,0vi,1|i ∈

{0, 2, . . . ,m−2}} into two half edges as shown in Fig. 5. These half edges are e+

i and e−

i for even integers i ∈ {0, 2, . . . ,m−2}.
Note that R has a path P (as shown in Fig. 5 in dashed lines) such that R − E(P) is acyclic.

Note that, T (m, 4l+3) (resp. K (m, 4l+3)) can be constructed from T (m, 3) (resp. K (m, 3)) by adding l sections R of width
m in the following way: (1) Cut each edge in {vi,0vi,1 : 0 ≤ i ≤ 4k and i ≡ 0 (mod 2)} of T (m, 3) (resp. K (m, 3)) into two
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Fig. 6. A decomposition of T (10, 5) (left) and K (10, 5) (right) into a spanning tree and a cycle.

half-edges: one incident with vi,0 and the other incident with vi,1; (2) Take l copies of the section R, denoted by R1, . . . , Rl
and merge them into a big graph Q by joining the half edges e+

i of the αth copy and the half edge e−

i of the (α + 1)th copy
for α ∈ {1, . . . , l − 1}; (3) Join the half edge e−

i of R1 in Q to the half edge of T (m, 3) (resp. K (m, 3)) incident with vi,0, and
join the half edge e+

i of Rl in Q to the half edge of T (m, 3) (resp. K (m, 3)) incident with vi,1.
From the above construction, the paths P in the l copies of R are joined together to a long path P ′ in Q such that Q − E(P ′)

is acyclic and the vertices except these incident with the half edges e+

i of Rl in Q for i ∈ {4, 6, . . . ,m− 2} belong to the same
component of Q − E(P ′). In the resulting T (m, 4l + 3) (resp K (m, 4l + 3)), the path P ′ is inserted to the cycle C of T (m, 3)
(resp. K (m, 3)) to generate a new cycle C ′ by connecting the half edge incident with v0,0 to e−

0 and connecting the half edge
incident with v1,0 to e+

0 , respectively. It is not hard to see that T (m, 4l + 3) − E(C ′) (resp. K (m, 4l + 3) − E(C ′)) is connected
and acyclic, which is a spanning tree. Therefore, T (m, 4l + 3) (resp. K (m, 4l + 3)) has a decomposition into a cycle C ′ and a
spanning tree. This completes the proof of Lemma 3.4. □

Now, we turn to the case H(m, n) with n ≡ 1 (mod 4). First, we show a similar result for H(m, n) with n ≡ 1 (mod 4)
andm ≥ 10 as Lemma 3.4 for H(m, n) with n ≡ 3 (mod 4).

Lemma 3.5. Let H(m, n) be a hexangulation of a surface with m ≡ 2 (mod 4) and n ≡ 1 (mod 4). If m ≥ 10, then H(m, n)
has a decomposition into a spanning tree and a cycle.

Proof. First, note that both T (m, 5) and K (m, 5) withm ≡ 2 (mod 4) have a decomposition into a spanning tree and a cycle
as shown in Fig. 6.

For T (m, 5), let C = v0,0vm−1,0vm−2,4vm−1,4 · · · v4i,4v4i+1,4v4i+2,4v4i+3,0v4i+4,0v4i+5,0 · · · vm−4,0 vm−3,0vm−4,4vm−5,4vm−5,3
vm−4,3vm−4,2 · · · v0,2vm−1,2vm−1,1v0,1v0,0 where i runs over all integers from 0 to k − 2 = (m − 2)/4 − 2 in order. (For
example, see the dashed-line cycle of T (10, 5) in Fig. 6.) Then T (m, 5)− E(C) is a tree. Hence, T (m, 5) withm = 4k+ 2 has a
decomposition into a cycle and a spanning tree.

Similarly, for K (m, 5), let C = v0,0v1,0vm−2,4vm−1,4 · · · v4i,4v4i+1,4v4i+2,4vm−4i−3,0vm−4i−4,0 vm−4i−5,0 · · · v4,0v3,0vm−4,4
vm−5,4vm−5,3vm−4,3vm−4,2 · · · v0,2vm−1,2vm−1,1v0,1v0,0, where i runs over all integers from 0 to k − 2 = (m − 2)/4 − 2 in
order. (For example, see the dashed-line cycle of K (10, 5) in Fig. 6.) Then K (m, 5) − E(C) is a tree. It follows that K (m, 5) has
a decomposition into a cycle and a spanning tree.

To obtain a desired decomposition of T (m, n) (resp. K (m, n)) with m = 4k + 2 and n = 4l + 1 for k ≥ 2 and l ≥ 2, we
use a similar construction as shown in the proof of Lemma 3.4. First, take l − 1 copies of the section R (see Fig. 5) and merge
them together to build a large graph Q by joining the half edges e+

i of the αth copy R and the corresponding half edges e−

i of
the (α + 1)th copy of R for i ∈ {0, 2, . . . ,m − 2} and α ∈ {1, . . . , l − 2}. Then Q has m half edges, denoted by e+

i (from the
(l − 1)th copy of R) and e−

i (from the first copy of R). Then the dashed-line paths in each copy of R are merged together to a
long path P ′ of Q . Then, cut every edge in S = {vi,0vi,1|i ∈ {0, 2, 4, . . . ,m − 2}} into two half edges and then insert Q into
T (m, n) (resp. K (m, n)) by connecting the half edge e−

i of Q to the half edge incident with vi,0, and connecting the half edge
e+

i with the half edge incident with vi,1. Hence, the cycle C of T (m, 5) (resp. K (m, 5)) is extended into a cycle C ′ of T (m, n)
(resp. K (m, n)) by merging C and P ′ together. Note that C ′ is non-separating and intersects with every hexagon of T (m, n)
(resp. K (m, n)), and the spanning tree of T (m, 5) (resp. K (m, 5)) is extended into a spanning tree of T (m, n) (resp. K (m, n)).

Therefore, both T (m, n) and K (m, n) with m = 4k + 2 and n = 4l + 1 for k ≥ 2 and l ≥ 2 have a decomposition into
a cycle and a spanning tree. In other words, H(m, n) with m = 4k + 2 and n = 4l + 1 for k ≥ 2 and l ≥ 2 have a desired
decomposition. This completes the proof of Lemma 3.5. □

Now, we consider the remaining case H(6, n) with n = 4l + 1 for l ≥ 1.

Lemma 3.6. A hexangulation H(6, n) of a surface with n ≡ 1 (mod 4) and n ≥ 5 has a decomposition into a spanning tree and
a cycle.
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Fig. 7. A decomposition of H(6, 5).

Proof. First, both T (6, 5) and K (6, 5) have a decomposition into a spanning tree and a non-contractible cycle C = v0,0v0,1
v1,1v1,2v2,2v3,2v4,2v4,3v5,3v0,3v1,3v1,4v2,4v3,0v2,0v1,0v0,0. (See Fig. 7: identify the top dotted-line and the bottom dotted-line
in the same direction for T (6, 5) and in reversed directions for K (6, 5). In both cases, v2,4v3,0 is an edge of H(6, 5).)

Now we extend the decomposition of H(6, 5) to a decomposition of H(6, 4l + 1) for l ≥ 2 by adding l sections R of width
5 as the same approach to extend the decomposition of H(m, 3) to H(m, 4l + 3) in the proof of Lemma 3.4. Merge the cycle
C of H(6, 5) and the path P ′, obtained by joining the paths P in the l copies of the row-section R of width 5, to generate a
non-contractible and non-separating cycle C ′ of H(6, 4l + 1). So H(6, 4l + 1) − E(C ′) is a connected plane graph. Note that
the cycle C ′ intersects with every hexagon of H(6, 4l+1). Hence H(6, 4l+1)− E(C ′) is a tree because a non-hexagonal cycle
of H(6, 4l + 1) is either non-contractible or separating. So H(6, 4l + 1) has a decomposition into a spanning tree and a cycle
C ′. This completes the proof. □

Combining Lemmas 3.4–3.6, the proof of Theorem 3.3 is completed. Hence Theorem 2.2 follows.
In the following, we show Theorem 2.5 by constructing a new family of hexangulations of the torus.

Proof of Theorem 2.5. First, for any integer k ≥ 3, we construct a bipartite hexangulation of the torus with k faces:
(i) take a rectangular hexagon lattice L(m, 1) withm = 2k; (ii) first identify v0,0 with vm,0 and then join vi,0 and vi+1+2t,0 for
i ∈ {1, 3, . . . ,m − 1} and t ∈ {0, 1, . . . , k} to generate a hexangulation of the torus (all subscripts taken modulom). Denote
a hexangulation of the torus generated this way by T (m, 1, t). (For example, see T (14, 1, 2) in Fig. 2.) By the construction, a
vertex vi,0 of T (m, 1, t) is adjacent to vj,0 if and only if |i − j| ∈ {1, 2t + 1}.

First, assume that k is an odd integer. Then the first part of Theorem2.5 follows from the following claimbecause T (m, 1, t)
has k faces whenm = 2k.

Claim. The hexangulation T (m, 1, t) with m = 2k and t = (k − 1)/2 has a HIST.

Proof of Claim. Note that vi,0 is adjacent to vi+k,0. So C = v0,0v1,0 . . . vk,0v0,0 is a non-contractible cycle of T (m, 1, t) of
length k + 1. In G − E(C), the vertex vi,0 with 1 ≤ i ≤ k − 1 is adjacent to a vertex vj,0 with k + 1 ≤ j ≤ 2m − 1 because
|j − i| = k = 2t + 1. Therefore T (m, 1, t) − E(C) is connected and has exactly 3m/2 − |E(C)| = 3m/2 − (k + 1) = m − 1
edges. Hence T (m, 1, t) − E(C) is a HIST of T (m, 1, t). This completes the proof of the Claim.

Now, we assume that k is even. By the construction, T (m, 1, t) has no edges joining vi,0 and vj,0 if i ≡ j (mod 2). So
T (m, 1, t) is bipartite. It follows from Proposition 3.2 that T (m, 1, t) has noHIST. This completes the proof of Theorem2.5. □

4. Concluding remarks

Theorem 2.2 provides a necessary and sufficient condition for bipartite hexangulations of the Klein bottle. However, the
example in Fig. 2 shows that the necessary condition in Lemma 3.1 is not sufficient for bipartite hexangulations of the torus.
It is interesting to ask for a characterization of bipartite cubic graphs for which, the necessary condition of Lemma 3.1 is also
sufficient.

An even-subgraph of a graph G is a subgraph in which every vertex has even degree. If G is cubic, then an even-subgraph
of a cubic graph consists of a family of cycles. A connected cubic graph has a HIST if and only if the graph can be decomposed
into a spanning tree and an even-subgraph. A 3-decomposition of a cubic graph is a decomposition of the graph into
three subgraphs: a spanning tree, a matching and an even-subgraph. A cubic graph may not have a decomposition into a
spanning tree and an even-subgraph. However, it was conjectured by Hoffmann-Ostenhof that every connected cubic graph
always admits a 3-decomposition, the so-called 3-Decomposition Conjecture. The 3-Decomposition Conjecture has been
verified for planar graphs [8,14], and cubic graphs with a Hamiltonian path [12]. Note that, all hexangulations of surfaces
are Hamiltonian [2,16]. Therefore, a hexangulation of a surface does have a 3-decomposition. As shown in [6,11], it is
NP-complete to determine whether a plane cubic graph has a decomposition into a spanning tree and a family of cycles.
But, it is polynomial-time to find a 3-decomposition for a 3-connected plane cubic graph [14].
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