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1. Introduction

All considered graphs are undirected and simple. For undefined terminology and notations the reader may refer to [5].
Let G be a graph with vertex set V(G) and edge set E(G). If the vertex set is a multiplicative (additive) group, every edge
{u, v} € E(G) has a Cayley color, defined as the pair (uv~!)*! (£(u — v), respectively). The girth of a graph G is the length g of
a shortest cycle. The set of vertices adjacent to a vertex v € V is denoted N(v), and the degree of v is the cardinality of N(v).

A (k, g)-graphis a k-regular graph of girth g and a (k, g)-cage is a (k, g)-graph with the fewest possible number of vertices.
Constructions of cages can be found in the complete survey [8]. The order of a (k, g)-cage is denoted by n(k, g). Alower bound
no(k, g) on the number of vertices of a (k, g)-graph, known as the Moore bound, is given by:

no(k, g) = 1+k+k(k—1)+ - +kik—1)&32 ifgisodd;
T 20+ k=4 (k=12 if g is even.

In this paper we focus on the cage problem for g = 5. In this case ng(k, 5) = 1 + k?, and this bound is only attained for
k = 2, 3,7 and, perhaps, for k = 57 (cf. [11]). The only known (k, 5)-graphs of minimum order for k = 4, 5, 6 are cages
(cf. [13,14,18-21]). No other (k, 5)-cage has been identified so far and most of the work carried out focus on constructing a
new (k, 5)-graph with fewer vertices, for degrees k > 7. Following the notation in [8,9], the currently best known bound on
n(k, 5) is given by the order rec(k, 5) of this graph.

The goal of this paper is to improve the bounds on n(k, 5), that is, to find lower values of rec(k, 5). The methods are
constructive, and based on the idea of amalgam. As far as we now, we reach this goal for most of the integers k in the range
13,...,33,fork € {66, 67, 68}, and for every k > 74.
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Table 1

Upper bounds on the order of a (k, 5)-graph.
k Upper bound Due to Reference New upper bound
8 80 Royle [15]
9 96 Jorgensen [12]
10 124 Exoo [7]
11 154 Exoo [7]
12 203 Exoo [7]
13 230 Exoo [7] 226
14 284 Abreu et al. [2] 280
15 310 Abreu et al. [2]
16 336 Jorgensen [12]
17 436 Abajo et al. [1]
18 468 Abajo et al. [1]
19 500 Abajo et al. [1]
20 564 Abajo et al. [1]
21 666 Abajo et al. [1] 658
22 704 Abajo et al. [1]
23 880 Funk [9] 874
24 924 Funk [9] 920
25 968 Funk [9] 960
26 1012 Funk [9] 1010
27 1056 Funk [9] 1054
28 1200 Funk [9] 1192
29 1248 Funk [9] 1240
30 1404 Funk [9] 1392
31 1456 Funk [9] 1444
32 1624 Abajo et al. [1] 1608
33 1680 Abajo et al. [1] 1664

In Section 2 we consider the incidence graph £, of the elliptic semiplane of type L, and define a new amalgamation
technique inspired by papers from Jergensen [12], Funk [9] and Abreu et al. [2]. This technique requires both regular and
bi-regular graphs to increase the degree of the resulting graph while removing vertices in flexible ways. We also recall a
class of graphs introduced in [1] that will play a key role in our constructions.

In Section 3 we work with prime powers from ¢ = 11 to g = 29. By using the new technique we construct (k, 5)-graphs,
for k € {13, 14, 21, 23, ..., 33}, that provide new bounds on n(k, 5). Table 1 shows the values of rec(k, 5) for 8 < k < 33
and highlights our contributions.

In the rest of the paper we restrict ourselves to amalgams of rg-regular graphs into £4. This has been done in [1] (cf. [1],
Table 2 and Theorems 1.1, 1.2) for ry = 5, 6; and the achieved values of rec(k, 5) for 34 < k < 65 and 69 < k < 73 remain
untouched.

In Section 4, (cf. Theorem 4.1 and Corollary 4.1), we deal with ¢ = 61 and prime powers q > 71. For each g we find the
best possible amalgam with ry-regular graphs to prove that

n(q+rq,5) <2(¢°—1)

for 7 < rqy < 12.This way, we improve the value rec(k, 5) for k € {66, 67, 68} and from k = 74 up to k = 479 + 12 = 491.
This process, which first fixes ry and then determines the related prime powers g, could continue indefinitely. Now we
search for an explicit expression of 1 as an increasing function of g, similar to Jergensen’s bound (cf. [12], Corollary 19):

(o[

In Section 5 (cf. Theorems 5.1-5.3) we improve this result and obtain better values of rec(k, 5) for k > 491. The proof
of these theorems is based on the finite, relative and direct product difference sets provided by Singer [17], Bose [6] and
Ganley [10], respectively.

J, 5) < 2(q* — 1) for an odd prime power q.

2. Constructions

Using position matrices, inspired by the ones introduced by Abreu et al. in [3], the adjacency matrix of a projective plane
was directly obtained in [4]. Furthermore, using also the position matrices of a family of Latin Squares, the adjacency matrix
of the following bipartite graph £, = (L, P) was also obtained in Theorem 4.4. of [4].

Definition 2.1 ([4]). Let ¢ > 2 be a prime power and Fy a Galois field. Denote F; = F, \ {0}. Consider the sets L =
(Fq x IF*) ({oo} x IE‘*) and P = (Fq x F}) U ({00} X IF*) and denote by ¢[a, i], p(x, ]) the elements of L and P, respectlvely
The blpartlte graph £q (L, P)is defmegl as follows:

{pla+1j,j) :j € Fg} U{p(oo, i)} if a € Fy;

Fori e Fy : N({[a,i]) = { {p(x, 1) : x € By} if a=o00

Please cite this article as: E. Abajo, C. Balbuena, M. Bendala et al., Improving bounds on the order of regular graphs of girth 5, Discrete Mathematics (2019),
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This graph £, is in fact the incidence graph of an elliptic semiplane of type L. It is obtained by removing from the projective
plane a line together with all its points, and another point not belonging to that line together with all the lines incident to
it. Notice that the graph £, inherits the duality principle from the projective plane: any valid sentence in £, still holds true
when lines £[a, i] and points p(x, j) are interchanged. In particular, the following properties of the graph £, have been proved
in [4] and they play a fundamental role throughout the paper.

Proposition 2.1 ([4]). Let L4 be the bipartite graph given in Definition 2.1 for a prime power q > 2. Denote L, = {¢[a, i] : i € F}
and Py = {p(x, J) : j € Fy}, for a, x € Fq U {oo}. The graph Lq has the following properties:

(i) it is a g-regular graph of girth 6 with order 2(q*> — 1);

(ii) its vertex set admits a partition L U P, where L = _J LyandP = Py;
(iii) it has diameter 4 and any two distinct vertices either in L, or in Py are at distance 4;
(iv) each block Py is connected to each block L, by a perfect matching for a, x € FqU{oo} when x # a; this matching is obtained

from the adjacency rule according to Definition 2.1.

aeFqU{oo} x€FqU{oo}

Property (iii) in Proposition 2.1 suggests the idea of adding new edges between vertices in the sets L, and Py of the graph £
in order to increase its regularity, as long as the girth of the resulting graph is at least 5. The Cayley colors (uv~—!)*" of the edges
{u, v} of a graph with vertex set Iy play a central role [1,2,9,12]. Funk introduces the following amalgamation technique:

Definition 2.2 ([9]). Given a prime power q¢ > 3 and graphs G;, Gp with vertex set IFZ the amalgamation of these graphs
into Lq is the graph £4(G;, Gp) obtained by adding to the graph £, the sets of edges {{e[a, il, €[a,i']} : {i,i'} € E(GL)} and
{{p(x. ), p(x.j)} : 4. J'} € E(Gp)}, with a, x € Fy U {o0}.

Definition 2.3 ([9]). Given a prime power ¢ > 3 and an integer r > 0, the pair of r-regular graphs G;, Gp with vertex set IF;
and girth g > 5 is said suitable for amalgamation into £, or simple suitable, if they have disjoint sets of Cayley colors in .

Jorgensen (cf. [12], Theorem 3) defines an equivalent construction and achieves the same result with a different
terminology.

Theorem 2.1 ([9,12]). Given a prime power q > 3 and a pair of r-regular graphs G, Gp suitable for amalgamation into L,, the
graph L4(Gy, Gp) is (q + r)-regular, has girth at least five and order 2(q* — 1).

Next, we provide a refinement of this technique that exploits the particularities of the perfect matchings between L., and
Py (x # 00), and between P, and L, (a # o0), that lead us to use specific graphs H;, Hp in addition to the pair G;, Gp. While
in [9,12] V(G) = V(Gp) = Iy, in the new technique V(Gy), V(Gp), V(HL), V(Hp) < FFy. This removal of vertices is the key to
reduce the value rec(k, 5).

Definition 2.4. Given a prime power ¢ > 3 and graphs Gy, Gp, Hy, Hp such that V(G,), V(Gp), V(HL), V(Hp) € Ty, the
amalgamation of these graphs into £, is the graph denoted £4(G;, Gp, H;, Hp) with vertex set V, UVp and edge set E; UEp UE,,
where Vi = ez, (010,11 1 i € V(G} U {€[00, 1] < i € V(H} Vb = Uy, IP(.1) 1§ € V(Gp)} U {p(00,]) 1 j € V(Hp)},
and £} = (Uaqu {{ela.il. ela, 1} : {i. 7} € E(GL)}) U {{€loo, il £loo, 1} : {i. '} € E(H)}, Ep = (Uxqu{{P(X,j), p(x,j)}
{i.J'} € E(Gp)}) U {{p(00, )), p(00, )} : . j'} € E(Hp)}, Eq = E(£q[VL U Vp]), where £4[V;, U Vp] denotes the subgraph of £,
induced by V; U Vp.

We determine conditions on the graphs G;, Gp, H;, Hp to ensure that the amalgam graph £4(G;, Gp, H;, Hp) is (q + r)-regular
with girth at least five.

Definition 2.5. Let q > 3 be a prime power, r > 0 be an integer and two partitions IFZ =R UT, UW; = Rp UTp UWp.The
ordered set of graphs (G, Gp, H;, Hp) is r-suitable for amalgamation into Lg, or simply r-suitable, if it satisfies the following
properties:

(i) V(G) = IE‘; \ W, = R, U T, where the vertices in R; and T; have degree r + |Wp| and r + |Wp| + 1, respectively.
V(Gp) = Fy \ Wp = Rp U Tp, where the vertices in Rp and Tp have degree r + |W| and r + [W,| + 1, respectively.
(ii) Hy and Hp are r-regular graphs with V(H;) = IFZ \ (WpUTp)=Rpand V(Hp) = IF; \ (W, UT;) =Ry.
(iii) The graphs Gy, Gp, H; and Hp have girth at least 5.
(iv) E(H) NE(Gp) = @, E(Hp) N E(GL) = ¥ and Gy, Gp have disjoint sets of Cayley colors in .

In Fig. 1 we illustrate the partitions of IFZ and the vertex sets of the graphs G, Gp, Hy, Hp. The eliminated sets are shown
in dashed lines.

We are interested in the properties of the amalgam graph £4(G;, Gp, H, Hp). Suitability guarantees that it is regular and
free from triangles and quadrilaterals.
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Ry Ry | -ilr_“-i
T 1L Rpll Toli Wp|
W, W, | P
L,
R Tp | Wil R To | Wl

Fig. 1. V(G,) = R, UT., V(Gp) = Rp U Tp, V(Hy) = Re, V(Hp) = Ry

Theorem 2.2. Let q > 3 be a prime power, r > 0 be an integer, and (G, Gp, H;, Hp) be an ordered set of r-suitable graphs. The
graph £4(Gy, Gp, Hy, Hp) is (q + r)-regular, has girth at least 5 and order 2(q* — 1) — (q + 1)(JW¢| + [Wp|) — (ITz| + |Tp]).

Proof. Denote G = £4(Gy, Gp, Hr, Hp) and G* = L£4[V, U Vp]. Let us see that G is (q + r)-regular by computing the degrees of
the vertices of Vi, (the ones of Vp should be treated in the same way).

In G* every vertex of |, {¢[a,i] :i € V(G,)} has degree ¢ — 1 — |Wp| or ¢ — |Wp|, depending on whether i € T; or not,
because

aelfg

{pla+ij,j): j € F; \ Wp) ifi e Ty
{pla+1i,j):jeFy\WptUp(oo,i) ifigT,

and every vertex in {£[o0, i] : i € V(H;)} remains with degree g, due to N¢«(£[o0, i]) = {p(x, i) : x € Fq}. From the definition
of G; and H, the vertices of the set V| have degree g + r in G after amalgamation.

Let us check that G has girth at least five. Denote by C a shortest cycle of G and suppose, by contradiction, that |C| < 4.
The graph G* has girth at least 6 and the graphs G;, Gp, H;, Hp have girth at least 5, then the cycle C must have at least
an edge contained in E(G) \ E(G*). By Proposition 2.1(iv), a triangle cannot exist in G, and C must be a cycle of length 4.
Suppose that {¢[a, i], £[a, ']} is an edge of C, for a € Fq, i, € V(G;) and {i,i'} € E(G.). Let p(x,j) € V(C) be a neighbor
of £[a, i] and p(x,j’) € V(C) be a neighbor of ¢[a, ], for x € F, and j,j’ € V(Gp). From Definition 2.1, it follows that
X = a+ij = a+1if,yielding ij = ij and (jj=1)*' = (ii'~1)*'. Since by hypothesis G; and Gp share no Cayley color, it
follows that {j, j'} ¢ E(Gp); hence, p(x, j) and p(x, j') are not adjacent. Now assume that {£[00, i], £[0c0, i']} is an edge of C,
fori,i" € V(H.). From Definition 2.1, edges {£[oo, ], p(x, i)} and {¢[o0, i'], p(x, i')} belong to E(G) for every x € F,. Since
{i,i"} € E(H.) and E(H.) N E(Gp) = @, vertices p(x, i) and p(x, i’) are not adjacent. The same argument holds if we suppose
that {p(c0, j), p(co, j')} is an edge of C with j, j’ € V(Hp). In any case, there is no cycle C of length4in G. ®

Ng+(£la, i) = {

Remark 2.1. Let g > 3 be a prime power and r > 0 be an integer. According to Theorem 2.2, the existence of r-suitable
graphs (G, Gp, Hy, Hp), for certain sets W, Wp, T;, Tp C IF;‘ ensures that

n(g+r,5) <2(q* — 1) — (q+ (W] + [Wp|) — (ITe] + [Tp|). (1)
When W, = Wp = @, theremovalof y =1, ..., g sets Ly U P, from £4(G;, Gp, Hy, Hp), for a # oo, provides

nq+T—y.5)<2q+1—y)Xa—1)— (Tl + [Tol). )

and if W, # ¥ or Wp # ¢, the deletion of a set L, U P, for a # oo from £4(Gy, Gp, Hy, Hp) produces a (q+r — 1, g +r)-regular
graph.
When T; = Tp = ¢, the deletion of the set L, U P, generates a graph which ensures that

n(g+r—1,5) < 2q(q — 1) — qIWi| + [Wp)). 3)

Remark 2.2. To simplify notation, we consider the natural isomorphism between the multiplicative group IFZ and the
additive group Zq_4, which allows us to identify " € F7 withu € Zg4, for a primitive root & € IF;. Thus, we replace one
group by the other in the following results. In particular, let us notice that the weight or Cayley color of an edge {u, v} is
+(u — v), for vertices u, v € Zq4_1. By w(G) we denote the set of Cayley colors of the edges of a graph G whose vertex set

V(G) C Zy_1.

Next we describe some graphs of girth at least 5 introduced in [ 1], which are very useful for constructing suitable graphs
for amalgamation.
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Definition 2.6 ([1]). Let N > 5 be an integer, and let kq, . . ., k;; be a sequence of different odd elements from Zy.

(i) We denote by Syn(k1, .. ., kn) the graph with vertex set Z,y and edge set {{2v,2v+k}:0 <v <N -1, 1 <j<mj}
where the sum is performed modulo 2N.

(ii) Let0 < P, Q < N be two different even elements from Z,y. We denote by Syn(P, Q; k1, . . ., kp,) the graph obtained by
adding to Son(kq, . . ., kp) the new edges {2v, 2v + P} and {2v + 1,2v + 1+ Q} for 0 < v < N — 1, where the sum is
performed modulo 2N.

In the context of this paper, we recall some properties of these graphs

Lemma 2.1 ([1]). Let N > 5 be an integer, and let kq, . .., ky, be a sequence of different odd elements from Z,y. The following
statements hold:

(i) The graph Son(kq, ..., kn) is m-regular, bipartite and has at most m Cayley colors in Z,y. Moreover, the girth of
Son(ka, ..., ki) is at least 6 iff all the numbers k; — k; are different in Zy, fori #jand 1 <i,j <m.

(ii) Let 0 < P, Q < N be two different even elements from Z,y. The graph Son(P, Q; k1, .. ., kp) is (m + 2)-regular and has at
most m + 2 Cayley colors. Moreover, the girth of Syn(P, Q; k1, . . ., ki) is at least 5 iff the following conditions hold in Z,y:

(a) The numbers 3P, 4P, 3Q, 4Q are different from 0.
(b) All the numbers k; — k; are different fori # jand 1 <1i,j < m.
(c) ki — kj # a — d forevery paira,a’ € {0, £P, £Q}.

Lemma 2.2 ([1]). Let kq, . .., km be a sequence of different odd integers such that all the numbers k; — k; are different in Z, for
i#jand 1 <i,j < m; andlet P, Q be two positive even integers such that k; — k; # a — a for every pair a, a’ € {0, £P, £Q}.
The following statements hold:

(i) For every integer N > max{|ki|, k; — k;}, the graph Son(ki, ..., k) is m-regular, bipartite with girth at least 6 and has at
most m Cayley colors in Zy.

(ii) For every integer N > max{|ki|, ki — k;, a — a’} where a,a’ € {0, =P, +Q}, the graph Soyn(P, Q; k1, . .., k) is (m + 2)-
regular, with girth at least 5 and has at most m + 2 Cayley colors.

The graphs described in Definition 2.6 are used in the rest of this paper. They will be given either by explicit constructions,
or by using their relationship with finite difference sets.

3. Results for small values, 11 < q < 29

We provide suitable graphs (G, Gp, Hr, Hp) with V(G;), V(Gp), V(H.), V(Hp) € Z¢—; to construct £4(G;, Gp, Hr, Hp) and
improve rec(k, 5) for k € {13, 14, 21, 23, 25, 27, 29, 31, 33}. Applying Remark 2.1 we also obtain new values of rec(k, 5) for
k € {24, 26, 28, 30, 32}.

Theorem 3.1. The upper bounds on n(k, 5) listed in the last column of Table 1 for k € {13, 14, 21, 23, 24, ..., 33} provide better
values of rec(k, 5).

Proof. For q € {11, 13,19, 23, 25, 27, 29}, let us consider the graph £, given in Definition 2.1. Next we provide graphs
(Gi, Gp, Hy, Hp), r-suitable for amalgamation into £, withr = k—q. Theorem 2.2 guarantees that the graph £4(G;, Gp, Hy, Hp)
is k-regular and has girth at least 5.

»q=11— k=13:

Considerqg = 11,r =2, W, = Wp = 0, T, = Zyo and Tp = {0, 4, 5, 9}. Let G, be a Petersen graph with V(G,) = Z,
two disjoint pentagons (0, 2, 4, 6, 8,0),(1, 5, 9, 3, 7, 1) and edges {0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9} joining them. Hence, the
set of Cayley colors of G; (in Z1p) is w(Gy) = £{1, 2, 4}. Let Gp be with V(Gp) = Zq formed by S1o(3, —3) and the chords
{0, 5}, {4, 9}. The set of Cayley colors of Gp (in Z1g) is w(Gp) = £{3, 5}, and clearly, w(G.) N w(Gp) = @. By Theorem 2.2,
Hp = () and the vertices of H; are the vertices of degree 2 in Gp, that is, V(H;) = {1, 2, 3,6, 7, 8}. Let H; be the 6-cycle
(1,2, 3, 8,7, 6, 1)which satisfies the condition E(H, )NE(Gp) = @.Since (G, Gp, H;, Hp) is an ordered set of r-suitable graphs,
the amalgam £11(Gy, Gp, Hy, @) is 13-regular, has girth 5 and 2(112> — 1) — 10 — 4 = 226 vertices. It states rec(13, 5) = 226.

»q=13 > k= 14:

Considerq = 13, W, = {2,7}, Wp = {7,11}, T, = Tp = @ andr = 1. Let G, be a Petersen graph formed by the
disjoint pentagons (1, 6, 11,4, 9, 1), (0, 5, 10, 3, 8, 0) and edges {1, 8}, {6, 5}, {11, 3}, {4, 0}, {9, 10} joining them. The set
of Cayley colors of Gy (in Z13) is w(Gy) = £{1, 4, 5}. Let Gp be a Petersen graph with disjoint pentagons (0, 9, 6, 8, 10, 0),
(2,5,3,1,4,2),and edges {0, 2}, {9, 3}, {6, 4}, {8, 5}, {10, 1} joining them. The set of Cayley colors of Gp (in Z3) is w(Gp) =
+{2, 3, 6}, so w(G;) N w(Gp) = @. By Theorem 2.2, V(H,) = Z1; \ Wp, V(Hp) = Zq2 \ W} and the degree of both H; and
Hp must be equal to r = 1. Let H; be formed by the edges {0, 1}, {2, 3}, {4, 5}, {8, 9}, {6, 10} and let Hp be formed by the
edges {0, 3}, {1, 4}, {6, 9}, {8, 10}, {5, 11}. Notice that E(Hp) N E(G;) = ¥ and E(H.) N E(Gp) = (. Since the ordered set
(Gy, Gp, Hy, Hp) is r-suitable, the graph £13(G;, Gp, Hy, Hp) is 14-regular, has girth 5 and order 2(13% — 1) — 56 = 280. This
provides rec(14, 5) = 280.
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»q=19 - k =21:

For g = 19, considerr = 2, W, = Wp = {6}, T, = {0,2,4,5,7,8,10,13,14,15,16} and T, = {0, 1, 3,
4,5,8,11,12,13,16, 17}. Let G, be the (3, 4)-regular graph formed by the hamiltonian cycle (0, 5, 12, 13, 2, 16, 3,
8,7,11,15,1,14,10,9, 4, 17,0) and the paths (1,0,7,2,9), (3, 14, 13,17), (11, 10, 5, 16, 15, 4, 8, 12). Let Gp be the
(3, 4)-regular graph formed by the hamiltonian cycle (0, 9, 11, 13, 10, 8, 2, 12, 4,7, 17, 1, 16, 14, 5, 3, 15, 0) and the paths
(2,17,11,14),(9, 12, 3,1, 10),(7, 5, 8, 0, 16, 4, 13, 15). Since w(G;) = +{1, 4,5, 7} and w(Gp) = {2, 3, 6, 8, 9} in Z1g, we
have w(G;) N w(Gp) = . Graphs H; and Hp with V(H;) = Z1g \ (Wp U Tp) and V(Hp) = Z15 \ (W, U T;) are formed by
the cycles (2, 7, 14, 15, 10,9, 2) and (1, 3, 9, 11, 17, 12, 1), respectively. Notice that E(H;) N E(Gp) = E(Hp) N E(G;) = @.
Since all the requirements of suitability are satisfied, the graph £17(G;, Gp, H;, Hp) has degree 21 and girth 5. Hence
rec(21,5) = 2(192 — 1) — 40 — 22 = 658.

»q=23—>k=23:

Consider ¢ = 23, r = 0, W, = {5,10,20}, Wp = {1,10,17}, T, = Zy» \ Wy and Tp = Zy; \ Wh. Since G; and Gp
must have degree 4 and girth 5, both must be isomorphic to the unique (4, 5)-cage [14,16]. Consider the graph G; with
vertex set V(G.) = T, formed by the two hamiltonian cycles (0, 18, 4, 11,7, 3, 8,9, 13, 12, 19, 15, 14, 21, 16, 1,6, 2, 17, 0),
(0,7,12,16,17,9,4, 21, 3,2, 19, 18, 1, 8, 15, 11, 6, 13, 14, 0) and the graph Gp with V(Gp) = Tp formed by the two cy-
cles (0, 16, 13, 2, 12, 21,5, 7,4, 6, 3, 14, 20, 11, 8, 18, 15, 9, 19, 0), (0, 12,6, 8,19, 7, 13, 11, 21, 9, 3, 16, 18, 5, 14, 2, 15,
4,20, 0). According to Definition 2.5 (ii), V(H.) = V(Hp) = @.Since w(G.) = +{1, 4, 5,7, 8} and w(Gp) = +{2, 3,6, 9, 10, 11}
in Zj,, the suitability condition w(G;) N w(Gp) = @ is satisfied and the graph £,3(G;, Gp, ¥, #) has degree 23 and girth 5 with
2(23% — 1) — 24 - 6 — 38 = 874 vertices. Then, rec(23, 5) = 874.

» q=23—> k=25,24:

To construct a (25, 5)-regular graph, consider q = 23,r = 2, T, = Tp = J, W, = {2,7} and Wp = {7, 14}. Let
G; be the 4-regular graph formed by the cycles (4, 11,6, 13, 12, 19, 4), (0, 17, 21, 3,8, 1, 18, 14, 10, 9, 16, 15, 20, 5, 0),
(0,4,9,1,6,5,10, 3, 11, 15, 14, 13, 21, 20, 19, 18, 17, 16, 12, 8, 0), and let Gp be the 4-regular graph formed by the cycles
(0,9,6,4, 13,16, 18, 12, 15, 17, 20, 11, 21, 19, 3, 1, 10, 8, 5, 2, 0), (9, 15, 13, 11, 5, 3,9), (0, 10, 21, 12, 2, 4, 1, 20, 18, 6,
8,17, 19, 16, 0). Since in Zy,, w(G) = £{1,4,5,7, 8} and w(Gp) = £{2, 3,6, 9, 10, 11}, we have w(G.) N &(Gp) = @. Let
H; and Hp be the cycles (0, 4, 3, 8, 12, 16, 20, 2, 6, 10, 18, 11, 15,19, 1, 5, 13,9, 17,21, 0) and (0, 3, 6, 9, 12, 15, 18, 5, 21,
1,4, 10, 13, 16, 19, 8, 11, 14, 17, 20, 0), respectively. Clearly, V(H;) = Zy, \ Wp, V(Hp) = Z3; \ W;. Also, E(H) N E(Gp) = @
and E(Hp) N E(G) = @. Since the suitability conditions are satisfied, the graph £,3(G;, Gp, Hy, Hp) has girth 5, is 25-regular
and has 2(23% — 1) — 4 - 24 = 960 vertices which gives the new value rec(25, 5) = 960. Moreover, from Remark 2.1 (3) we
have the new bound rec(24, 5) = 920.

»q=23—> k=27,26:

To construct a (27, 5)-regular graph, consider ¢ = 23, r = 4 W, = Wp = T, = Vand Tp = {6,17}. Let
GL = S$2(4, 8; 1, —1), which is a 4-regular graph of girth 5 with w(G) = £{1, 4, 8}. Let Gp be formed by the cycle S5,(7, —7)
together with the three paths (6, 16, 3, 20, 8, 21, 11, 17), (6, 12, 18, 15, 2, 13,4, 7,5, 17) and (6, 0, 10, 19, 9, 14, 5, 17).
Hence, Gp is a (4,5)-regular graph of girth 5 with w(Gp) = +{3,5,6,7,9, 10, 11}. Clearly w(G.) N w(Gp) = @. Let H; be
the graph with V(H;) = Zj, \ Tp formed by the cycles (0, 9, 8, 4, 5, 11, 3, 2, 20, 16, 12, 13, 14, 10, 1, 21, 15, 7, 18, 19, 0),
(0,13,5, 18, 10,9, 11, 16, 15, 14, 3, 19, 21, 4, 20, 0), (1,2, 7,8, 12, 1) and Hp = S5,(6, 10; 7, —7). It is easy to check that
H; and Hp are 4-regular graphs of girth 5 such that E(H;) NE(Gp) = @, E(Hp) NE(G.) = @. By Theorem 2.2, £,3(Gy, Gp, Hy, Hp)
has girth 5, is 27-regular and has 2(23% — 1) — 2 = 1054 vertices. This provides rec(27,5) = 1054. Remark 2.1 (2) states
rec(26,5) = 1010.

»q=25— k=29,28:

For q = 25, considerr = 4, W, = Wp =@ and T, = Tp = {7, 11, 19, 23}. Let G, be the graph S,4(2, 10; 3, —3) together
with the edges {7, 19}, {11, 23}. Let Gp be formed by the cycles (2, 17, 18, 11, 10, 14, 20, 19, 2),(1, 5, 6, 22, 3,9, 8, 21, 1),
(0,4,23,16,12,13,7,15,0),(0,1, 17, 23,8, 19, 12, 3, 14, 7,6, 11, 0), (2, 15,9, 18, 13, 21, 10, 16, 5, 20, 4, 22, 2), and the
edges {7, 23}, {11, 19}. Let H; be formed by the cycles (6, 13, 5, 12, 10, 9, 17, 16, 15, 4, 21, 2, 3, 8, 0), (0, 16, 20, 13, 4, 10,
1,3,15,14,12,2,6,9, 22,8,5, 17,21, 18, 0), (1, 18, 14, 22, 20), and Hp by the cycles (0, 10 14,20,9,3,4,5,1,8,17, 2,
13,21, 15, 0), (0, 12, 8, 14, 13, 18, 3, 10, 22, 2,9, 1, 21, 16, 4, 17, 15, 20, 6, 5, 0) and (18, 6, 22, 16, 12). The graphs Gy, Gp,
H;, Hp have girth 5, E(Hy) N E(Gp) = @, E(Hp) N E(GL) = ¥ and w(GL) N w(Gp) = @ because w(G) = +{2, 3, 10, 12}
and w(Gp) = £{1,4,5,6,7,8,9, 11}. Since the ordered set (G, Gp, H;, Hp) is r-suitable, the graph £,5(G;, Gp, H, Hp) is
29-regular, has girth 5 and order 2(25%2 — 1) — 8 = 1240, proving that rec(29, 5) = 1240. Moreover, Remark 2.1 (2) states
rec(28,5) = 1192.

» q=27 - k=231, 30:

To construct a (31, 5)-regular graph, consider ¢ = 27,r = 4, W, = Wp = Pand T, = Tp = {5,7,9, 19, 21, 23}. Let
G; be the (4, 5)-regular graph with V(G;) = Z,s and E(G;) = E(S»(4, 8, 1, —1)) U {{5, 19}, {7, 21}, {9, 23}}, and let Gp be
formed by the cycles (0, 10, 3, 16, 22, 13, 4, 11, 14, 12, 1, 17, 24, 0), (0, 2, 11, 8, 10, 5, 14, 9, 3, 23, 12, 18, 16, 25, 1, 6, 22,
20, 17,7, 13, 19, 24, 21, 4, 15, 0), (2, 23, 20, 15, 9, 6, 21, 5, 25, 19, 8, 18, 7, 2), and the edges {5, 7}, {9, 19}, {21, 23}. Since
o(G) = £{1,4,8, 12} and w(Gp) = £{2,3,5,6,7,9, 10, 11, 13} in Zy, it follows that o(G;) N w(Gp) = @. Let H, be
the 4-regular graph with V(H;) = Zys \ Tp and cycles (0, 16, 12, 13, 17, 10, 11, 3, 15, 22, 14, 2, 1, 24, 8, 4, 20, 6, 18, 25, 0),
(0,1, 13, 20, 14, 10, 24, 6, 16, 15, 17, 18, 2, 3, 4, 0), (11, 25,22, 8, 12, 11), and Hp be the 4-regular graph with V(Hp) =
Zae \ Ty with cycles (0, 11, 8, 25, 13, 18, 3, 10, 22, 2, 12, 17, 24, 16, 1, 20, 15, 6,
4,14,0),(0, 10, 25,6, 12,3, 1, 14, 17, 8, 20, 2, 13, 24, 15, 0), (18, 4, 22, 16, 11, 18). Since all the suitability conditions are
satisfied, bounds (1) and (2) in Remark 2.1 establish rec(31, 5) = 1444 and rec(30, 5) = 1392, respectively.

Please cite this article as: E. Abajo, C. Balbuena, M. Bendala et al., Improving bounds on the order of regular graphs of girth 5, Discrete Mathematics (2019),
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» q=29 —> k=33,32:

Consider q = 29, r = 4T, = Tp = {2,4,7,11,16,18,21,25} and W, = Wp = . Let G, be the graph
with E(G,) = E(S.5(4, 8; 1, —1)) U {{2, 16}, {4, 18}, {7, 21}, {11, 25}} and let Gp be the graph formed by the hamiltonian
cycle (0,22,12,2,20,9, 11,6, 8, 24, 15, 17, 14, 21, 27, 10, 3, 16, 19, 25, 7, 5, 26, 23, 4, 1, 13, 18, 0), the 28-length-path
(1,22,9, 3,5, 18,8, 25, 10, 13, 11, 23, 2, 14, 19, 26, 24, 21,0, 16, 6, 17, 7, 20, 27, 4, 15, 12) and the edges {1, 7}, {2, 18},
{4, 16}, {11, 21}, {12, 25}. Since w(G;) = £{1, 4, 8, 14} and w(Gp) = +(2, 3,5, 6,7, 9, 10, 11, 12, 13} in Zyg, it follows that
w(GL) N w(Gp) = @. Consider the 4-regular graph H; with cycles (0, 23, 12, 20, 14, 10, 8, 3, 15, 27, 6, 26, 1,9, 13, 24,5, 17,
22,19,0),(8, 19,27, 13,12,8),(0, 1, 20, 5, 6, 10, 9, 17, 23, 15, 14, 22, 26, 3, 24, 0); and the isomorphic graph Hp formed
by the cycles (3, 17, 20, 22, 12, 3),(0, 10, 23, 26, 8, 1, 27,9, 5, 14, 24, 6, 13, 19, 15, 0), (0, 3, 14, 23, 13, 17, 1, 10, 22, 6, 8,
5,19, 12, 27, 24, 15, 26, 20, 9, 0). The graphs G;, Gp, H; and Hp are r-suitable, and bounds (1) and (2) state rec(33, 5) = 1664
and rec(32, 5) = 1608, respectively. ®

4. Results for greater values, 61 < q < 479

In the section above, new values of rec(k, 5) are obtained by amalgams into £, for prime powers 11 < q < 29. In the
next theorem we focus on ¢ = 61 and q > 71 and amalgamate regular graphs G;, Gp with degrees r, > 6; similarly as in [9]
forr; =4andasin[1]forry =5, 6.

Theorem 4.1. Let q > 61 be an odd prime power. Then n(q 4 r4, 5) < 2(q?> — 1) where 14 is the following integer:

7 ifqe{61,71,...,89};

8 ifgef{l101,...,109};

9 ifqe{97,113,...,139} — {127, 131};
=14 10 if qe{127,131,149,...,181};

11 if qe{191,...,223};

12 if q > 227 and q # 241,

13 if q = 241.

Proof. For each odd prime power q > 61 (except q = 67) we construct a definite pair of suitable ry-regular graphs G; and
Gp. Theorem 2.1 proves that the amalgam £4(G;, Gp) is (q + r4)-regular with girth at least 5 and order 2(g*> — 1). Next, we
provide these two graphs for q € {61, 97, 127, 131} and q > 263. For the rest of values q the graphs G;, Gp are indicated in
Table 2.

»q=61—>k=68:

We consider the 7-regular graph G; = Seo(12, 24; 1, —1, 5, 19, 27). To construct another 7-regular graph Gp, we add
to the 5-regular bipartite graph Sgo(3, 7, 15, —29, 29) the edges {{2i,2i + 10} : 0 < i < 29}, and the edges of the five
cycles (1 + 2i,31 4+ 2i, 11 + 2i,51 4+ 2i,21 + 2i,41 4+ 2i, 1 + 2i), for 0 < i < 4. Since both G; and Gp have girth 5 and
o(GL) N w(Gp) = @, due to w(G) = +{12,24, 1,5, 19, 27} and w(Gp) = +{10, 20, 30, 3, 7, 15, 29}, the graph Ls1(GL, Gp)
yields n(61 4 7,5) < 2(612 — 1) = 7440.

»q=97 - k=106:

Let G| be the graph with V(G,) = Zgs and edges the ones in Sg(1, —1, 7, 19, —23, —27, —37) (isomorphic to £7) together
with the edges {2i, 2i+16},for 0 < i < 47, and the ones in the cycles (1+ 2i, 49+ 2i, 17+ 2i, 81+ 2i, 33+ 2i, 65+ 2i, 1+ 2i)
,for 0 < i < 7. The graph G, is 9-regular, has girth 5 and set of Cayley colors w(G;) = +{16, 32,48, 1,7, 19, 23, 27, 37}.
Let Gp be the isomorphic graph obtained from G; by the permutation on V(G,) = Zgg expressed as the following product of
cycles:

(129623719905577764627 18 11842)-(348 3017 3963 68 42 2566 4164 40 24 147 382367 7043 72 44 26
152816 1056986538984523220126)-(98392563421795835825188543360362213)-(31718778477374
45939585618050)-(4959)-(81919457).

The set w(Gp) = Zgg \ ({0} U @(Gy)), and the graph Lg6(Gy, Gp) yields n(96 + 9, 5) < 2(97% — 1).

» q=127 — k= 137:

We start with the graph Sq6(1, —1, 5, 13, 29, 39, —45, 61) which is isomorphic to £g, and consider the graph G, =
S126(18,36; 1, —1, 5, 13, 29, 39, —45, 61). It is 10 regular, has girth 5 and (G,) = +{18, 36, 1, 5, 13, 29, 39, 45, 61}. The
isomorphic graph Gp is obtained from G; by the following permutation on V(G;) = Z12:

(11067859231238127395511544231967967 117 1211151263 10353 112 86 63 99 105 102 76 58 44 32 21
419826194725643 1249271116 88 64 47 37 52 36 28 19 109 69 80 60 45 125 98 7457 51 108 84 62 46 33 65 25 118
8910511487 10477 107 122911310075 101110859397 1126 18 147 120907050 3566 48 3422 16 84 2) - (15 38
29403020)-(17684924)- (113 119).

Since w(Gp) N w(Gy) = @, the graph £1,7(G;, Gp) establishes n(127 + 10, 5) < 2(127% — 1).

»q=131— k=141:

Consider the 10-regular graph G, = Sy30(26,52; 1, —1,7, —13, —31, —35, 55, —59) and the isomorphic graph Gp
obtained by the following permutation on V(G ) = Z130:

(134241263110837977 76524027 3511199 118 87 121 126 91 95 54 41 56 42 28 21 58 43 39 117 103 123 122
8911510272503223331893826201051373745117 116 8664463022 119468 48 3137 3625147 119 120 88

Please cite this article as: E. Abajo, C. Balbuena, M. Bendala et al., Improving bounds on the order of regular graphs of girth 5, Discrete Mathematics (2019),
https://doi.org/10.1016/j.disc. 2019 02.007.
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Table 2
The rq-regular graphs G; and Gp are suitable for amalgamation into £g4.
q rq GL Gp
61 7 Se0(12,24; 1, —1,5, 19, 27) See proof of Theorem 4.1
71 7 S70(10,20; 1, —1, 5, 13, —23) S0(2,4; 3,7, 15, -21, 31)
73 7 $5(16,28; 1, —1,5, =9, 25) S2(2,4; 3, =7, 15, —23, 35)
79 7 S78(12,24; 1, —1,5, -9, —27) S78(2,4; 3, -7, 15, —21, 31)
81 7 Ss0(12,24; 1, —1,5, -9, —29) Sso(2, 4; 3, -7, 15, —21, —39)
83 7 S$2(12,24; 1, —1,5, =9, —27) Se2(2, 4; 3, =7, 15, =21, 31)
89 7 Sss(12,24; 1, 1,5, -9, —27) Sss(2,4; 3, -7, 15, —21, 33)
97 9 See proof of Theorem 4.1 See proof of Theorem 4.1
101 8 S100(16,32; 1, —1,5, =9, —21, —39) S100(2, 4; 3, =7, 15, =23, 33, —43)
103 8 S102(16,32; 1, —1,5, =9, —21, 35) S102(2,4; 3, =7, 15, —23, —43, 45)
107 8 S106(16,32; 1, —1, 5, =9, —21, 29) S106(2,4; 3, =7, 15, —23, 33, 47)
109 8 S108(16,32; 1, —1,5, =9, —21, 29) S108(2,4; 3, =7, 15, =23, 33, —43)
113 9 S112(18,36; 1, —1, 27, 31, 43, —47,51) S112(2, 4; 3, —15, 25, —29, 37, —39, 53)
121 9 S120(18,36; 1, —1,5, —11, —25, —33, 45) S120(6, 125 3, =7, =29, —37, 41, 55, 57)
125 9 S124(18,36; 1, —1, 5, 15, =25, —33, —45) S124(2, 4; 3, =7, —19, 21, —39, 47, —53)
127 10 S126(18,36; 1, —1, 5, 13, 29, 39, —45, 61) See proof of Theorem 4.1
131 10 S130(26,52; 1, —1,7, —13, —31, —35, 55, —59) See proof of Theorem 4.1
137 9 S136(18,36; 1, —1,5, -9, 21, 49, 61) S136(2, 4; 3, =7, 15, —23, 33, —43, 65)
139 9 S138(18,36; 1, —1, 5, =9, 21, 33, —47) S138(2, 4; 3, =7, 15, —23, 35, 49, —59)
149 10 S14(18,36; 1, —1,7, —21, 31, 41, 45, 57) S148(2,4; 3, 9,17, —25, —43,53, —63, —73)
151 10 S150(18,36; 1, —1, 5, 15, —23, 45, 57, 65) S150(2, 4; 3, —7, 19, —21, 37, 49, —59, 69)
157 10 S156(18,36; 1, —1,5, 13, —29, —39, —61, 69) S156(2,4; 3, -7,19, —21, —43, —55, 63, —73)
163 10 S162(18,36; 1, —1,5, =9, —25, —47, —59, 75) S162(2,4; 3, —7,15, —21, 31, —41, =71,73)
167 10 S166(18,36; 1, —1,5, =9, 21, —41, 49, —65) S166(2, 4; 3, =7, 15, —23, 33, —55, 69, —69)
169 10 S168(18,36; 1, —1,5, -9, —21, 47, —59, 81) S16s(2,4; 3, -7, 15, —23, 43, —53, 67, —67)
173 10 $172(18,36; 1, —1,5, -9, 21, 49, 61, —77) S172(2,4; 3, -7,15, —23, 39, 57, —67, —81)
179 10 S178(18,36; 1, —1, 5, =9, 21, 33, —61, 79) S178(2,4; 3, =7, 15, =23, 35, =59, =73, 75)
181 10 S180(18,36; 1, —1, 5, -9, 21, 33, —61, 79) S180(2, 4; 3, =7, 15, —23, 35, —37, 59, —85)
191 11 S190(18,36; 1, —1, 5, 15, —25, 43, 63, 75, —81) S190(2,4; 3, =7, 17, —23, —41, 49, —61, 79, —89)
193 11 S192(18,36; 1, —1, 5, 13, 29, 39, —45, 61, 81) S192(4, 8; 3, —3, 17, —25, —35, 43,73, —83, —85)
197 11 S196(18,36; 1, —1,5, =9, —33, 49, —61, 79, 95) S196(2, 4; 3, =7, 15, 35, —41, 51, 65, —67, 89)
199 11 S198(18,36; 1, —1,5, -9, —21, 39, —51, 67, 83) S19s(2,4; 3, -7, 15, —23, —43, 55, 69, 87, —87)
211 11 S210(18, 365 1, —1, 5, =9, 21, 33, —57, 85, —101) S210(2, 4 3, -7, 15, =23, —37,47, —71, —95, 97)
223 11 $220(18,36; 1, —1, 5, =9, 21, 33, —47,91, —107) $222(2,4;3,-7,15, -23, 35,49, —51, —75,97)
227 12 S226(18,36; 1, —1, 5, -9, 33, 49, —65, 79, —85, 101) S»6(2,4; 3, 7,15, 35, —-37,51, 69, —93, 95, —107)
229 12 S»s(12,30; 1, -1, 5, -9, —45, 57,73, =79, 95, —107) S28(18,42; 3, —3, 11, 31, 41, 43, —61, 93,97, —109)
233 12 $232(36,72; 1, —1, 5, 25, —39, 47, 59, 75, —95, —105) S»32(4, 8; 3, —7, —35, 43,57, 63, —69, 87, —87, 89)
239 12 S»38(18,36; 1, —1, —5, 11, —29, 33,59, —85, 103, 111) S»38(2,4;3,-7,19, —37,51,63, —71, 87, —89, —109)
241 13 S»40(24,48; 1, -1, —5,9, 27, 39, =55, 61, =75, —91, 107) S240(72, 96; —3, 15, —15, 23, 25, 29, —37,79, —83, 99, 115)
243 12 S242(18,36; 1, —1, =5, 9, —21, 43,75, —89, 101, 113) S42(2,4; 3, 7,15, -23, 33, —59, 79, —91, 103, —119)
251 12 S»50(18,36; 1, —1,5, -9, 25, 47, —59, 87, 99, 115) S»s0(2,4; 3, —7,15, —21, —39, 43, 63, —65, —95, —111)
257 12 S»56(18,36; 1, —1,5, -9, 21, —43, 61, 87,99, —111) S»s6(2,4; 3, -7, 15, —23, 33, —55, 57, —69, —89, 93)
263 12 S262(28,56; 1, —1, —13, 61, 65,91, 97, 21, 107, 115) S262(20, 405 3, —15, 27, —47, 49, 55, 57, —59, —63, —73)
q 12 Sq-1(28,56; 1, -1, —13, 61, 65, 91, 97, 21, 107, 115) Sq-1(20, 40; 3, —15, 27, —47, 49, 55, 57, =59, —63, —73)

65127 129 125 128 9267 535519 106 8178 604429 1128463 11485 168 42) - (10071 97 108 82 62 45 15113 101 109
105 124 90 66 47) - (61 59 107 104 80) - (69 98 70 49 93 96).
Since w(Gp) N w(G;) = @, the graph £131(G;, Gp) establishes n(131 + 10, 5) < 2(131% — 1).

»q>263—>k=q+12:

Consider the graphs G, = S,-1(28, 56; 1, —1, —13, 61, 65, 91, 97, 21, 107, 115) and Gp = S4-1(20, 40; 3, —15, 27, —47,
49, 55,57, —59, —63, —73). The integers in their definitions verify the conditions in Lemma 2.2, so both of them are 12-
regular graphs with girth 5 when g — 1 = 2N > 260, that is, when q > 263 is an odd prime power. As their Cayley colors
are clearly disjoint, G; and Gp form a suitable pair. ®

Let us notice that Theorem 4.1 is sharp when q € {61, 71, 73,79, 97, 113, 121, 127, 131, 149,
151, 191, 193, 197, 199}, because |V(G.)| = |[V(Gp)| = q — 1 < rec(ry + 1, 5), so rq is the maximum degree that the chosen
suitable graphs G; and Gp can reach.

In [1] the authors consider some prime powers 31 < q < 59 and ¢ = 64, 67 to obtain bounds on n(k, 5) for degrees
34 < k <65 and 69 < k < 73. These values of rec(k, 5) are sharp and remain untouched. Now, we consider greater values
of k.
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Corollary 4.1. Given an integer k € {66, 67, 68} and k > 74, let q be the lowest odd prime power such that k < q + rq, where
rq is given in Table 2. Then, n(k, 5) < 2(k — ry + 1)(q — 1). In particular, n(k, 5) < 2(k — 11)(q — 1) when 235 < k < q + 12.

Proof. Letq € {61,71,...,} be an odd prime power, and let G;, Gp be the suitable pair of graphs provided in the proof of
Theorem 4.1. The graph £4(G;, Gp) is (q + ry)-regular, has girth at least five and order 2(q + 1)(q — 1). Deleting iteratively
from this graph y blocks of lines and y blocks of points (cf. Remark 2.1 (2)), we have n(q+r; —y,5) < 2(q+1—-y)q—1),
or equivalently, n(k,5) < 2(k —rg + 1) (g — 1) fork <q+r,. W

In the following section we establish bounds better than the last one n(k,5) < 2(k — 11)(q — 1) for large odd prime
powers q and degrees k.

5. Results for q € {313, 337, 367} and large values q > 479

In this section, thanks to a simple relationship between difference sets and graphs Son(k1, ..., km), we construct three
distinct families of graphs which are suitable for amalgamation into £,. This way, we obtain new bounds on n(k, 5) for large
values of k. In particular, we improve the known bound

Jg—1
n(q + L q4 J, 5) < 2(q*> — 1) for an odd prime power g
proved by Jergensen (cf. [12], Corollary 19) using also difference sets. We begin with a simple auxiliar lemma.
Lemma 5.1. Let m, N be two positive integers and D = {d, ..., dn} C Zy such that all the numbers d; — d; withi # j are
different in Zy. Define K = {k, ..., kn} where k; = 2d; + 1 € Z,y and consider an even non-zero § € Z,y. Then:
(i) Son(kq, ..., ky)and Syn(ky — 6, ..., kyy, — &) are m-regular graphs with girth at least 6.

(i) V=K N (K —8) #Diff 6 = ki — k; forsome 1 < i, j < m. In this case, V = {k; — §}.
(iii) (=K)N (K — 8) # Diff 6 = ki + kj forsome 1 <i,j <m.

Proof. The assertion (i) follows from Lemma 2.1. Items (ii) and (iii) follow from direct calculations. First, if« € K N (K — §),
there is an ordered pair (k;, kj) with o = kj = k; — § and 6 = k; — k; in Z,y. Since (k;, k;) is unique, we have V = {k; — é}. In
asimilar way, ifo € (=K)N (K — ) thena = —kij=k —dand s =k +k. ®

Roughly speaking, a subset D C H of an group H (written in additive notation) is a finite difference set if every non-zero
element of H can be represented by the same number A of differences d — d’ with d, d € D. We only need the first and
simplest class of difference sets, that is, A = 1 and H cyclic, defined and studied by Singer [17] in 1938.

Lemma 5.2 (¢f. [17], Theorem 2). Given a prime power p, there is a subset D = {do, ..., dp} C Z2,,, such that each non-zero
elementh € Z 1 is represented in a unique way as h = d; — d.

We use these finite difference sets to obtain the following result:

Theorem 5.1. Let p, q be prime powers such that ¢ = 2(p*> +p + 1) + 1. Then

J2q—5 —1
n(q+ qu) <2¢* —q-—1.
Proof. Denote N = p?> + p + 1 and let {do, ..., d,} C Zy be the difference set given by Lemma 5.2. Consider K =
{ko, ey kp} CZyy = Zq_1 with ki = Zdl + 1.

Since the set B = {k; +k; : 0 < i, j < p}hasonly(p+ 2)(p+ 1)/2 elements, take an even non-zero § € Z,y \ Band its
unique representation § = k;; — kj;. By Lemma 5.1 and the election of 8, the (p + 1)-regular graph G, = Sq_1(ko, ..., kp) and
the p-regular graph Gp = Sg_1(ko — 8, ..., kiy—1 — 8, ki;+1 — &, ..., k, — &) have girth al least 6 and disjoint sets of Cayley
colors.

In order to apply Theorem 2.2 forr = p, W, = Wp = §, T, = Zg—; and Tp = ¢, we define H, = Sq_i(ko, ..., kp—1)
and Hp = #. Clearly, E(H,) N E(Gp) = ¥ because w(H;) N w(Gp) = @. The graph £4(G;, Gp, Hy, Hp) has girth at least 5, order
20> —1)—(q—1)=2¢* —q—landdegreeq+p=q+3(~/2¢—5 —1). =

Let us notice that the graph Sy 2 ., )(ko, - - - , kp) is isomorphic to the incidence graph P, of the projective plane. Actually,
Singer proves the existence of finite difference sets as a consequence of a geometric property of the projective planes.

Now we turn our attention to difference sets of a group H relative to a subgroup H;. We are only interested in the differences
defined by Bose [6] in 1942.

Lemma 5.3 (cf. [6], Theorem 1). Consider a prime power p > 3, the cyclic group H = Z,>_ and the subgroup Hy = (p + 1)
formed by the multiples of p + 1. Then there exists aset D = {d, ..., d,} C H such that each element h € H \ H; is represented
as d; — d; in a unique way, and no difference d; — d; with i # j lies in Hy.
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Bose’s relative difference sets let us obtain the following bounds. Let us notice that item (ii) establishes a result valid for
every large odd prime power q.

Theorem 5.2. The following upper bounds hold:
(i) Letp > 7 and q be prime powers such that q = 2(p*> — 1) + 1. Then

1
n(qu,/qur +2, 5) <2q*-1).

(ii) Given q an odd prime power, let p > 9 be the highest prime power such that q > 4p? — 3. Then
n(q+p+2,5) <2q - 1).
In particular, if g = 4p> — 3, we have

(‘J-f—ﬁ

+2, 5) <2q*—1).

Proof (i). Assume that g = 2(p? — 1)+ 1 is a prime power for a prime power p > 7. Notice thatp = ,/ % From Theorem 4.1

it follows that n(q +p +2,5) < 2(q*> — 1) forp € {7, 8, 11} and q € {97, 127, 241}, while for p € {9, 16} the values of q are
not prime powers.

Forp = 13,q = 337 and g+ p+2 = 352 we give the following explicit construction: Let G; = S334(28, 56; 1, —1, 5, —13,
21, —43,59,67,91, —95, —121, —131, 165) and let Gp be the graph with V(Gp) = Z335 and whose edges are the ones in
the graph S33¢(—27, —29, —23, —41, —7, =71, 31, 39, 63, —123, —149, —159, 137) together with the edges {2i, 2i + 140},
for 0 < i < 167, and the ones in the cycles (1 + 2i, 85 + 2i, 197 + 2i, 309 + 2i, 57 + 2i, 169 + 2i, 281 + 2i, 29 + 2i, 253 +
2i, 141+ 2i, 225+ 2i, 113+ 2i, 14 2i),fori = 0, ..., 13. Since w(Gp) Nw(G;) = @, and since the rest of suitability conditions
of Theorem 2.1 are fulfilled, the graph £337(G;, Gp) yields n(337 + 15, 5) < 2(337? — 1) = 227136. Hence, item (i) holds for
pe{7,8,11, 13}

From now on we assume thatp > 17 and denote N = p?> — 1. Let {d, .. ., dp} C Zp>_4 be the relative difference set given
inLemma 5.3 and define K = {ki, ..., ky} where k; = 2d; + 1 € Z,,,2_;,. Consider the sets A = {ki —k; : 1 <i,j < p, i #]},
B={ki+k:1<ij<p}andC = ( (p + 1)). Define the odd elements m; € Zyp41) such that k; = m; mod 2(p + 1). By
Lemma 5.3, C N A = ¥ and the values m; are all different.

Our first step is to prove that C \ B contains an element § # 0.If @ = k; + k; € BN C then m; + m; = 0, and « requires a
unique pair {m;, —m;}. If p is even it could be —m; = m; = p + 1, but, in any case [BN C| < [|K|/2] = |[p/2]. Let us take a
non-zero$ € C \ B.

Consider the elements Py = 2(p + 1), Qp = 4(p + 1),P; = 6(p + 1),Q; = 8(p + 1) in C (in case p = 17, choose
Q1 = 10(p + 1)) and define the graphs G, = Sy,2_1)(Po, Qo; kl, .., kp)and Gp = Syp2_1y(P1, Qs k1 — 8, ..., kpy — 8). By
Lemmas 5.1 and 2.1 this pair of graphs is suitable for amalgamation into L4 and Theorem 2.1 proves (i).

(ii) Consider a prime power p > 9. As in the proof of (i), define k;, B, C, § and k; = k; — & as elements of Zy,>_;). With
abuse of language, we also denote by k;, k; € Z their representatives such that

— (1) <k, k <p*—1 (4)

and define the integers P = 2(p+1),Qy =4(p+ 1),P1 =6(p+ 1),Q; = 8(p + 1).

Now consider a prime power q > 4p? — 3 and the graphs G; = Sq—1(Po, Qo; k1, ..., ky)and Gp = Sq_1(P1, Q1; ki, . . ., k;).
From the inequalities (4),

-1
max (ki — k;) < 2(p> — 1) < %

In order to apply Lemma 2.2, it remains to see that 2Q; = 16(p+ 1) < q;—l A simple computation shows that this inequality
holds just for p > 9 (and q > 321).

Moreover, from the construction of k;, k;, Lemma 5.1 and the inequalities (4), it follows that G, and Gp share no Cayley
color in Zg_1. They form a suitable pair of graphs and Theorem 2.1 provides the conclusion (ii). ®

With the notations of the proof of Theorem 5.2, item (i), let us notice that the graph S,,2_(k1, . .., ky) is isomorphic
to the incidence graph £,. In consequence, the graphs G, Gp are actually amalgams of 2-regular graphs into £, and the
construction in the proof has a recursive character.

Another family, defined by Ganley in [ 10], is the following one: Given an additive group H and two subgroups Hy, H, such
that H = H; & H,, a direct product difference set is a subset D = {dq, ...,dn} C H such thateach h € H \ (H; U Hy) is
represented in a unique way as h = d; — d;, and no difference d; — d; with i # j lies in H; U H,.

Lemma 5.4 (cf. [10], Theorem 2.4). For a prime p > 3, there exists a direct product difference set D = {ds, ..., d,—1} in the
additive group Zy—1) relative to the subgroups Hy = (p — 1) and H, = (p).
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We use these difference sets for our last result, in which we establish another bound on n(k, 5).

Theorem 5.3. Let p > 5 be a prime and q be a prime power such that q = 2p(p — 1) + 1. Then

2g—1+3
n(q+7”’2+, 5) < 2(¢> — 1)

Proof. Forp = 5and q = 2p(p — 1) + 1 = 41, the bound n(41 + 6, 5) < 2(41%2 — 1)is proved in [1]. Forp = 7and p = 11,
the result cannot be applied because g = 85 and g = 221 are not prime powers. Assume p > 13 isa prime. Letds, ..., dp_4
be the integers provided by Lemma 5.4 and consider k; = 2d; 4 1. The bipartite (p — 1)-regular graph Sy,—1)(k1, . . ., kKp—1)
has girth g > 6.

Definesets B = {ki+k : 0 <i,j <p—2}andC = (2(p — 1))U(2p). Let Py = 2(p — 1),Q = 4p — 1), P1 = 2p,
Q; = 4p. Choosing a non-zero § € C \ B and following the same reasoning as in Theorem 5.2, we have that the graphs
Gt = Sopp—1)(Po, Qo; k1, ..., kp—1) and Gp = Sypp—1)(P1, Q15 k1 — 8, ..., k,—1 — &) are suitable for amalgamation into L.
Hence the graph £,(G;, Gp) has girth at least 5, order 2(q* —1)and degreeq+p—1+2=q+ @. |

Remark 5.1. On the one hand, the results of this section can be applied top = 13 and ¢ = 313 (Theorem 5.3), ¢ = 337
(Theorem 5.2, item (i)), and ¢ = 367 (Theorem 5.1). On the other hand, given an odd prime power q > 479, the highest
prime power p such that q > 4p® — 3 verifies p > 11. In this case, the bound n(q+p+2, 5) < 2(q*> — 1) given by Theorem 5.2
is better than the result n(q + 12, 5) < 2(q?> — 1) provided by Theorem 4.1.

The graphs constructed in this article are available in several formats. Readers can request them by email.
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