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a b s t r a c t

A (k, g)-graph is a k-regular graph with girth g and a (k, g)-cage is a (k, g)-graph with the
fewest possible number of vertices n(k, g). Constructing (k, g)-cages and determining the
order are both very hard problems. For this reason, an intensive line of research is devoted
to constructing smaller (k, g)-graphs than previously known ones, providing in this way
new upper bounds to n(k, g) each time such a graph is constructed.

The paper focuses on girth g = 5, where cages are known only for degrees k ≤ 7. We
construct (k, 5)-graphs using and extending techniques of amalgamation into the incidence
graphs of elliptic semiplanes of type L introduced and exposed by Funk (2009). The order
of these graphs provides better upper bounds on n(k, 5) than those known so far, for values
of k such that either 13 ≤ k ≤ 33 or k ≥ 66.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

All considered graphs are undirected and simple. For undefined terminology and notations the reader may refer to [5].
Let G be a graph with vertex set V (G) and edge set E(G). If the vertex set is a multiplicative (additive) group, every edge
{u, v} ∈ E(G) has a Cayley color , defined as the pair (uv−1)±1 (±(u− v), respectively). The girth of a graph G is the length g of
a shortest cycle. The set of vertices adjacent to a vertex v ∈ V is denoted N(v), and the degree of v is the cardinality of N(v).

A (k, g)-graph is a k-regular graph of girth g and a (k, g)-cage is a (k, g)-graphwith the fewest possible number of vertices.
Constructions of cages can be found in the complete survey [8]. The order of a (k, g)-cage is denoted by n(k, g). A lower bound
n0(k, g) on the number of vertices of a (k, g)-graph, known as theMoore bound, is given by:

n0(k, g) =

{
1 + k + k(k − 1) + · · · + k(k − 1)(g−3)/2 if g is odd;
2(1 + (k − 1) + · · · + (k − 1)g/2−1) if g is even.

In this paper we focus on the cage problem for g = 5. In this case n0(k, 5) = 1 + k2, and this bound is only attained for
k = 2, 3, 7 and, perhaps, for k = 57 (cf. [11]). The only known (k, 5)-graphs of minimum order for k = 4, 5, 6 are cages
(cf. [13,14,18–21]). No other (k, 5)-cage has been identified so far and most of the work carried out focus on constructing a
new (k, 5)-graph with fewer vertices, for degrees k > 7. Following the notation in [8,9], the currently best known bound on
n(k, 5) is given by the order rec(k, 5) of this graph.

The goal of this paper is to improve the bounds on n(k, 5), that is, to find lower values of rec(k, 5). The methods are
constructive, and based on the idea of amalgam. As far as we now, we reach this goal for most of the integers k in the range
13, . . . , 33, for k ∈ {66, 67, 68}, and for every k ≥ 74.
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Table 1
Upper bounds on the order of a (k, 5)-graph.
k Upper bound Due to Reference New upper bound

8 80 Royle [15]
9 96 Jørgensen [12]
10 124 Exoo [7]
11 154 Exoo [7]
12 203 Exoo [7]
13 230 Exoo [7] 226
14 284 Abreu et al. [2] 280
15 310 Abreu et al. [2]
16 336 Jørgensen [12]
17 436 Abajo et al. [1]
18 468 Abajo et al. [1]
19 500 Abajo et al. [1]
20 564 Abajo et al. [1]
21 666 Abajo et al. [1] 658
22 704 Abajo et al. [1]
23 880 Funk [9] 874
24 924 Funk [9] 920
25 968 Funk [9] 960
26 1012 Funk [9] 1010
27 1056 Funk [9] 1054
28 1200 Funk [9] 1192
29 1248 Funk [9] 1240
30 1404 Funk [9] 1392
31 1456 Funk [9] 1444
32 1624 Abajo et al. [1] 1608
33 1680 Abajo et al. [1] 1664

In Section 2 we consider the incidence graph Lq of the elliptic semiplane of type L, and define a new amalgamation
technique inspired by papers from Jørgensen [12], Funk [9] and Abreu et al. [2]. This technique requires both regular and
bi-regular graphs to increase the degree of the resulting graph while removing vertices in flexible ways. We also recall a
class of graphs introduced in [1] that will play a key role in our constructions.

In Section 3 we work with prime powers from q = 11 to q = 29. By using the new technique we construct (k, 5)-graphs,
for k ∈ {13, 14, 21, 23, . . . , 33}, that provide new bounds on n(k, 5). Table 1 shows the values of rec(k, 5) for 8 ≤ k ≤ 33
and highlights our contributions.

In the rest of the paper we restrict ourselves to amalgams of rq-regular graphs into Lq. This has been done in [1] (cf. [1],
Table 2 and Theorems 1.1, 1.2) for rq = 5, 6; and the achieved values of rec(k, 5) for 34 ≤ k ≤ 65 and 69 ≤ k ≤ 73 remain
untouched.

In Section 4, (cf. Theorem 4.1 and Corollary 4.1), we deal with q = 61 and prime powers q ≥ 71. For each q we find the
best possible amalgam with rq-regular graphs to prove that

n(q + rq, 5) ≤ 2(q2 − 1)

for 7 ≤ rq ≤ 12. This way, we improve the value rec(k, 5) for k ∈ {66, 67, 68} and from k = 74 up to k = 479 + 12 = 491.
This process, which first fixes rq and then determines the related prime powers q, could continue indefinitely. Now we

search for an explicit expression of rq as an increasing function of q, similar to Jørgensen’s bound (cf. [12], Corollary 19):

n
(
q +

⌊√
q − 1
4

⌋
, 5

)
≤ 2(q2 − 1) for an odd prime power q.

In Section 5 (cf. Theorems 5.1–5.3) we improve this result and obtain better values of rec(k, 5) for k > 491. The proof
of these theorems is based on the finite, relative and direct product difference sets provided by Singer [17], Bose [6] and
Ganley [10], respectively.

2. Constructions

Using position matrices, inspired by the ones introduced by Abreu et al. in [3], the adjacency matrix of a projective plane
was directly obtained in [4]. Furthermore, using also the position matrices of a family of Latin Squares, the adjacency matrix
of the following bipartite graph Lq = (L,P) was also obtained in Theorem 4.4. of [4].

Definition 2.1 ([4]). Let q ≥ 2 be a prime power and Fq a Galois field. Denote F∗
q = Fq \ {0}. Consider the sets L =

(Fq × F∗
q) ∪ ({∞} × F∗

q) and P = (Fq × F∗
q) ∪ ({∞} × F∗

q) and denote by ℓ[a, i], p(x, j), the elements of L and P, respectively.
The bipartite graph Lq = (L,P) is defined as follows:

For i ∈ F∗

q : N(ℓ[a, i]) =

{
{p(a + ij, j) : j ∈ F∗

q} ∪ {p(∞, i)} if a ∈ Fq;

{p(x, i) : x ∈ Fq} if a = ∞.
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This graph Lq is in fact the incidence graph of an elliptic semiplane of type L. It is obtained by removing from the projective
plane a line together with all its points, and another point not belonging to that line together with all the lines incident to
it. Notice that the graph Lq inherits the duality principle from the projective plane: any valid sentence in Lq still holds true
when lines ℓ[a, i] and points p(x, j) are interchanged. In particular, the following properties of the graphLq have been proved
in [4] and they play a fundamental role throughout the paper.

Proposition 2.1 ([4]). Let Lq be the bipartite graph given in Definition 2.1 for a prime power q ≥ 2. Denote La = {ℓ[a, i] : i ∈ F∗
q}

and Px = {p(x, j) : j ∈ F∗
q}, for a, x ∈ Fq ∪ {∞}. The graph Lq has the following properties:

(i) it is a q-regular graph of girth 6 with order 2(q2 − 1);
(ii) its vertex set admits a partition L ∪ P, where L =

⋃
a∈Fq∪{∞}

La and P =
⋃

x∈Fq∪{∞}
Px;

(iii) it has diameter 4 and any two distinct vertices either in La or in Px are at distance 4;
(iv) each block Px is connected to each block La by a perfect matching for a, x ∈ Fq ∪{∞}when x ̸= a; this matching is obtained

from the adjacency rule according to Definition 2.1.

Property (iii) in Proposition 2.1 suggests the idea of adding newedges between vertices in the sets La and Px of the graphLq
in order to increase its regularity, as long as the girth of the resulting graph is at least 5. The Cayley colors (uv−1)±1 of the edges
{u, v} of a graph with vertex set F∗

q play a central role [1,2,9,12]. Funk introduces the following amalgamation technique:

Definition 2.2 ([9]). Given a prime power q ≥ 3 and graphs GL, GP with vertex set F∗
q , the amalgamation of these graphs

into Lq is the graph Lq(GL,GP ) obtained by adding to the graph Lq the sets of edges
{
{ℓ[a, i], ℓ[a, i′]} : {i, i′} ∈ E(GL)

}
and{

{p(x, j), p(x, j′)} : {j, j′} ∈ E(GP )
}
, with a, x ∈ Fq ∪ {∞}.

Definition 2.3 ([9]). Given a prime power q ≥ 3 and an integer r > 0, the pair of r-regular graphs GL, GP with vertex set F∗
q

and girth g ≥ 5 is said suitable for amalgamation into Lq, or simple suitable, if they have disjoint sets of Cayley colors in F∗
q .

Jørgensen (cf. [12], Theorem 3) defines an equivalent construction and achieves the same result with a different
terminology.

Theorem 2.1 ([9,12]). Given a prime power q ≥ 3 and a pair of r-regular graphs GL, GP suitable for amalgamation into Lq, the
graph Lq(GL,GP ) is (q + r)-regular, has girth at least five and order 2(q2 − 1).

Next, we provide a refinement of this technique that exploits the particularities of the perfect matchings between L∞ and
Px (x ̸= ∞), and between P∞ and La (a ̸= ∞), that lead us to use specific graphs HL, HP in addition to the pair GL, GP . While
in [9,12] V (GL) = V (GP ) = F∗

q , in the new technique V (GL), V (GP ), V (HL), V (HP ) ⊆ F∗
q . This removal of vertices is the key to

reduce the value rec(k, 5).

Definition 2.4. Given a prime power q ≥ 3 and graphs GL,GP ,HL,HP such that V (GL), V (GP ), V (HL), V (HP ) ⊆ F∗
q , the

amalgamation of these graphs intoLq is the graph denotedLq(GL,GP ,HL,HP ) with vertex set VL∪VP and edge set EL∪EP ∪Eq,
where VL =

⋃
a∈Fq{ℓ[a, i] : i ∈ V (GL)} ∪ {ℓ[∞, i] : i ∈ V (HL)}, VP =

⋃
x∈Fq{p(x, j) : j ∈ V (GP )} ∪ {p(∞, j) : j ∈ V (HP )},

and EL =
(⋃

a∈Fq

{
{ℓ[a, i], ℓ[a, i′]} : {i, i′} ∈ E(GL)

})
∪

{
{ℓ[∞, i], ℓ[∞, i′]} : {i, i′} ∈ E(HL)

}
, EP =

(⋃
x∈Fq

{
{p(x, j), p(x, j′)} :

{j, j′} ∈ E(GP )
})

∪
{
{p(∞, j), p(∞, j′)} : {j, j′} ∈ E(HP )

}
, Eq = E(Lq[VL ∪ VP ]), where Lq[VL ∪ VP ] denotes the subgraph of Lq

induced by VL ∪ VP .

We determine conditions on the graphs GL,GP ,HL,HP to ensure that the amalgam graph Lq(GL,GP ,HL,HP ) is (q+ r)-regular
with girth at least five.

Definition 2.5. Let q ≥ 3 be a prime power, r ≥ 0 be an integer and two partitions F∗
q = RL ∪ TL ∪WL = RP ∪ TP ∪WP . The

ordered set of graphs (GL,GP ,HL,HP ) is r-suitable for amalgamation into Lq, or simply r-suitable, if it satisfies the following
properties:

(i) V (GL) = F∗
q \ WL = RL ∪ TL, where the vertices in RL and TL have degree r + |WP | and r + |WP | + 1, respectively.

V (GP ) = F∗
q \ WP = RP ∪ TP , where the vertices in RP and TP have degree r + |WL| and r + |WL| + 1, respectively.

(ii) HL and HP are r-regular graphs with V (HL) = F∗
q \ (WP ∪ TP ) = RP and V (HP ) = F∗

q \ (WL ∪ TL) = RL.
(iii) The graphs GL, GP , HL and HP have girth at least 5.
(iv) E(HL) ∩ E(GP ) = ∅, E(HP ) ∩ E(GL) = ∅ and GL,GP have disjoint sets of Cayley colors in F∗

q .

In Fig. 1 we illustrate the partitions of F∗
q and the vertex sets of the graphs GL, GP , HL, HP . The eliminated sets are shown

in dashed lines.
We are interested in the properties of the amalgam graph Lq(GL,GP ,HL,HP ). Suitability guarantees that it is regular and

free from triangles and quadrilaterals.
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Fig. 1. V (GL) = RL ∪ TL , V (GP ) = RP ∪ TP , V (HL) = RP , V (HP ) = RL .

Theorem 2.2. Let q ≥ 3 be a prime power, r ≥ 0 be an integer, and (GL,GP ,HL,HP ) be an ordered set of r-suitable graphs. The
graph Lq(GL,GP ,HL,HP ) is (q + r)-regular, has girth at least 5 and order 2(q2 − 1) − (q + 1)(|WL| + |WP |) − (|TL| + |TP |).

Proof. Denote G = Lq(GL,GP ,HL,HP ) and G∗
= Lq[VL ∪ VP ]. Let us see that G is (q+ r)-regular by computing the degrees of

the vertices of VL, (the ones of VP should be treated in the same way).
In G∗ every vertex of

⋃
a∈Fq{ℓ[a, i] : i ∈ V (GL)} has degree q − 1 − |WP | or q − |WP |, depending on whether i ∈ TL or not,

because

NG∗ (ℓ[a, i]) =

{
{p(a + ij, j) : j ∈ F∗

q \ WP } if i ∈ TL;
{p(a + ij, j) : j ∈ F∗

q \ WP } ∪ p(∞, i) if i /∈ TL,

and every vertex in {ℓ[∞, i] : i ∈ V (HL)} remains with degree q, due to NG∗ (ℓ[∞, i]) = {p(x, i) : x ∈ Fq}. From the definition
of GL and HL, the vertices of the set VL have degree q + r in G after amalgamation.

Let us check that G has girth at least five. Denote by C a shortest cycle of G and suppose, by contradiction, that |C | ≤ 4.
The graph G∗ has girth at least 6 and the graphs GL,GP ,HL,HP have girth at least 5, then the cycle C must have at least
an edge contained in E(G) \ E(G∗). By Proposition 2.1(iv), a triangle cannot exist in G, and C must be a cycle of length 4.
Suppose that {ℓ[a, i], ℓ[a, i′]} is an edge of C , for a ∈ Fq, i, i′ ∈ V (GL) and {i, i′} ∈ E(GL). Let p(x, j) ∈ V (C) be a neighbor
of ℓ[a, i] and p(x, j′) ∈ V (C) be a neighbor of ℓ[a, i′], for x ∈ Fq and j, j′ ∈ V (GP ). From Definition 2.1, it follows that
x = a + ij = a + i′j′, yielding ij = i′j′ and (j′j−1)±1

= (ii′−1)±1. Since by hypothesis GL and GP share no Cayley color, it
follows that {j, j′} /∈ E(GP ); hence, p(x, j) and p(x, j′) are not adjacent. Now assume that {ℓ[∞, i], ℓ[∞, i′]} is an edge of C ,
for i, i′ ∈ V (HL). From Definition 2.1, edges {ℓ[∞, i], p(x, i)} and {ℓ[∞, i′], p(x, i′)} belong to E(G) for every x ∈ Fq. Since
{i, i′} ∈ E(HL) and E(HL) ∩ E(GP ) = ∅, vertices p(x, i) and p(x, i′) are not adjacent. The same argument holds if we suppose
that {p(∞, j), p(∞, j′)} is an edge of C with j, j′ ∈ V (HP ). In any case, there is no cycle C of length 4 in G. ■

Remark 2.1. Let q ≥ 3 be a prime power and r ≥ 0 be an integer. According to Theorem 2.2, the existence of r-suitable
graphs (GL,GP ,HL,HP ), for certain setsWL,WP , TL, TP ⊆ F∗

q , ensures that

n(q + r, 5) ≤ 2(q2 − 1) − (q + 1)(|WL| + |WP |) − (|TL| + |TP |). (1)

WhenWL = WP = ∅, the removal of γ = 1, . . . , q sets La ∪ Pa from Lq(GL,GP ,HL,HP ), for a ̸= ∞, provides

n(q + r − γ , 5) ≤ 2(q + 1 − γ )(q − 1) − (|TL| + |TP |), (2)

and ifWL ̸= ∅ orWP ̸= ∅, the deletion of a set La ∪ Pa for a ̸= ∞ from Lq(GL,GP ,HL,HP ) produces a (q+ r −1, q+ r)-regular
graph.
When TL = TP = ∅, the deletion of the set L∞ ∪ P∞ generates a graph which ensures that

n(q + r − 1, 5) ≤ 2q(q − 1) − q(|WL| + |WP |). (3)

Remark 2.2. To simplify notation, we consider the natural isomorphism between the multiplicative group F∗
q and the

additive group Zq−1, which allows us to identify ξ u
∈ F∗

q with u ∈ Zq−1, for a primitive root ξ ∈ F∗
q . Thus, we replace one

group by the other in the following results. In particular, let us notice that the weight or Cayley color of an edge {u, v} is
±(u − v), for vertices u, v ∈ Zq−1. By ω(G) we denote the set of Cayley colors of the edges of a graph G whose vertex set
V (G) ⊆ Zq−1.

Next we describe some graphs of girth at least 5 introduced in [1], which are very useful for constructing suitable graphs
for amalgamation.
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Definition 2.6 ([1]). Let N ≥ 5 be an integer, and let k1, . . . , km be a sequence of different odd elements from Z2N .

(i) We denote by S2N (k1, . . . , km) the graph with vertex set Z2N and edge set {{2v, 2v + kj} : 0 ≤ v ≤ N − 1, 1 ≤ j ≤ m}

where the sum is performed modulo 2N .
(ii) Let 0 < P,Q < N be two different even elements from Z2N . We denote by S2N (P,Q ; k1, . . . , km) the graph obtained by

adding to S2N (k1, . . . , km) the new edges {2v, 2v + P} and {2v + 1, 2v + 1 + Q } for 0 ≤ v ≤ N − 1, where the sum is
performed modulo 2N.

In the context of this paper, we recall some properties of these graphs

Lemma 2.1 ([1]). Let N ≥ 5 be an integer, and let k1, . . . , km be a sequence of different odd elements from Z2N . The following
statements hold:

(i) The graph S2N (k1, . . . , km) is m-regular, bipartite and has at most m Cayley colors in Z2N . Moreover, the girth of
S2N (k1, . . . , km) is at least 6 iff all the numbers ki − kj are different in Z2N , for i ̸= j and 1 ≤ i, j ≤ m.

(ii) Let 0 < P,Q < N be two different even elements from Z2N . The graph S2N (P,Q ; k1, . . . , km) is (m + 2)-regular and has at
most m + 2 Cayley colors. Moreover, the girth of S2N (P,Q ; k1, . . . , km) is at least 5 iff the following conditions hold in Z2N :

(a) The numbers 3P, 4P, 3Q , 4Q are different from 0.
(b) All the numbers ki − kj are different for i ̸= j and 1 ≤ i, j ≤ m.
(c) ki − kj ̸= a − a′ for every pair a, a′

∈ {0,±P, ±Q }.

Lemma 2.2 ([1]). Let k1, . . . , km be a sequence of different odd integers such that all the numbers ki − kj are different in Z, for
i ̸= j and 1 ≤ i, j ≤ m; and let P,Q be two positive even integers such that ki − kj ̸= a − a′ for every pair a, a′

∈ {0,±P, ±Q }.
The following statements hold:

(i) For every integer N > max{|ki|, ki − kj}, the graph S2N (k1, . . . , km) is m-regular, bipartite with girth at least 6 and has at
most m Cayley colors in Z2N .

(ii) For every integer N > max{|ki|, ki − kj, a − a′
} where a, a′

∈ {0, ±P, ±Q }, the graph S2N (P,Q ; k1, . . . , km) is (m + 2)-
regular, with girth at least 5 and has at most m + 2 Cayley colors.

The graphs described in Definition 2.6 are used in the rest of this paper. Theywill be given either by explicit constructions,
or by using their relationship with finite difference sets.

3. Results for small values, 11 ≤ q ≤ 29

We provide suitable graphs (GL,GP ,HL,HP ) with V (GL), V (GP ), V (HL), V (HP ) ⊆ Zq−1 to construct Lq(GL,GP ,HL,HP ) and
improve rec(k, 5) for k ∈ {13, 14, 21, 23, 25, 27, 29, 31, 33}. Applying Remark 2.1 we also obtain new values of rec(k, 5) for
k ∈ {24, 26, 28, 30, 32}.

Theorem 3.1. The upper bounds on n(k, 5) listed in the last column of Table 1 for k ∈ {13, 14, 21, 23, 24, . . . , 33} provide better
values of rec(k, 5).

Proof. For q ∈ {11, 13, 19, 23, 25, 27, 29}, let us consider the graph Lq given in Definition 2.1. Next we provide graphs
(GL,GP ,HL,HP ), r-suitable for amalgamation intoLq with r = k−q. Theorem2.2 guarantees that the graphLq(GL,GP ,HL,HP )
is k-regular and has girth at least 5.

▶ q = 11 → k = 13:
Consider q = 11, r = 2, WL = WP = ∅, TL = Z10 and TP = {0, 4, 5, 9}. Let GL be a Petersen graph with V (GL) = Z10,

two disjoint pentagons (0, 2, 4, 6, 8, 0), (1, 5, 9, 3, 7, 1) and edges {0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9} joining them. Hence, the
set of Cayley colors of GL (in Z10) is ω(GL) = ±{1, 2, 4}. Let GP be with V (GP ) = Z10 formed by S10(3, −3) and the chords
{0, 5}, {4, 9}. The set of Cayley colors of GP (in Z10) is ω(GP ) = ±{3, 5}, and clearly, ω(GL) ∩ ω(GP ) = ∅. By Theorem 2.2,
HP = ∅ and the vertices of HL are the vertices of degree 2 in GP , that is, V (HL) = {1, 2, 3, 6, 7, 8}. Let HL be the 6-cycle
(1, 2, 3, 8, 7, 6, 1)which satisfies the condition E(HL)∩E(GP ) = ∅. Since (GL,GP ,HL,HP ) is an ordered set of r-suitable graphs,
the amalgam L11(GL,GP ,HL, ∅) is 13-regular, has girth 5 and 2(112

− 1) − 10 − 4 = 226 vertices. It states rec(13, 5) = 226.
▶ q = 13 → k = 14:
Consider q = 13, WL = {2, 7}, WP = {7, 11}, TL = TP = ∅ and r = 1. Let GL be a Petersen graph formed by the

disjoint pentagons (1, 6, 11, 4, 9, 1), (0, 5, 10, 3, 8, 0) and edges {1, 8}, {6, 5}, {11, 3}, {4, 0}, {9, 10} joining them. The set
of Cayley colors of GL (in Z12) is ω(GL) = ±{1, 4, 5}. Let GP be a Petersen graph with disjoint pentagons (0, 9, 6, 8, 10, 0),
(2, 5, 3, 1, 4, 2), and edges {0, 2}, {9, 3}, {6, 4}, {8, 5}, {10, 1} joining them. The set of Cayley colors of GP (in Z12) is ω(GP ) =

±{2, 3, 6}, so ω(GL) ∩ ω(GP ) = ∅. By Theorem 2.2, V (HL) = Z12 \ WP , V (HP ) = Z12 \ WL and the degree of both HL and
HP must be equal to r = 1. Let HL be formed by the edges {0, 1}, {2, 3}, {4, 5}, {8, 9}, {6, 10} and let HP be formed by the
edges {0, 3}, {1, 4}, {6, 9}, {8, 10}, {5, 11}. Notice that E(HP ) ∩ E(GL) = ∅ and E(HL) ∩ E(GP ) = ∅. Since the ordered set
(GL,GP ,HL,HP ) is r-suitable, the graph L13(GL,GP ,HL,HP ) is 14-regular, has girth 5 and order 2(132

− 1) − 56 = 280. This
provides rec(14, 5) = 280.
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▶ q = 19 → k = 21:
For q = 19, consider r = 2, WL = WP = {6}, TL = {0, 2, 4, 5, 7, 8, 10, 13, 14, 15, 16} and TP = {0, 1, 3,

4, 5, 8, 11, 12, 13, 16, 17}. Let GL be the (3, 4)-regular graph formed by the hamiltonian cycle (0, 5, 12, 13, 2, 16, 3,
8, 7, 11, 15, 1, 14, 10, 9, 4, 17, 0) and the paths (1, 0, 7, 2, 9), (3, 14, 13, 17), (11, 10, 5, 16, 15, 4, 8, 12). Let GP be the
(3, 4)-regular graph formed by the hamiltonian cycle (0, 9, 11, 13, 10, 8, 2, 12, 4, 7, 17, 1, 16, 14, 5, 3, 15, 0) and the paths
(2, 17, 11, 14), (9, 12, 3, 1, 10), (7, 5, 8, 0, 16, 4, 13, 15). Since ω(GL) = ±{1, 4, 5, 7} and ω(GP ) = ±{2, 3, 6, 8, 9} in Z18, we
have ω(GL) ∩ ω(GP ) = ∅. Graphs HL and HP with V (HL) = Z18 \ (WP ∪ TP ) and V (HP ) = Z18 \ (WL ∪ TL) are formed by
the cycles (2, 7, 14, 15, 10, 9, 2) and (1, 3, 9, 11, 17, 12, 1), respectively. Notice that E(HL) ∩ E(GP ) = E(HP ) ∩ E(GL) = ∅.
Since all the requirements of suitability are satisfied, the graph L17(GL,GP ,HL,HP ) has degree 21 and girth 5. Hence
rec(21, 5) = 2(192

− 1) − 40 − 22 = 658.
▶ q = 23 → k = 23:
Consider q = 23, r = 0, WL = {5, 10, 20}, WP = {1, 10, 17}, TL = Z22 \ WL and TP = Z22 \ WP . Since GL and GP

must have degree 4 and girth 5, both must be isomorphic to the unique (4, 5)-cage [14,16]. Consider the graph GL with
vertex set V (GL) = TL formed by the two hamiltonian cycles (0, 18, 4, 11, 7, 3, 8, 9, 13, 12, 19, 15, 14, 21, 16, 1, 6, 2, 17, 0),
(0, 7, 12, 16, 17, 9, 4, 21, 3, 2, 19, 18, 1, 8, 15, 11, 6, 13, 14, 0) and the graph GP with V (GP ) = TP formed by the two cy-
cles (0, 16, 13, 2, 12, 21, 5, 7, 4, 6, 3, 14, 20, 11, 8, 18, 15, 9, 19, 0), (0, 12, 6, 8, 19, 7, 13, 11, 21, 9, 3, 16, 18, 5, 14, 2, 15,
4, 20, 0). According toDefinition 2.5 (ii),V (HL) = V (HP ) = ∅. Sinceω(GL) = ±{1, 4, 5, 7, 8} andω(GP ) = ±{2, 3, 6, 9, 10, 11}
in Z22, the suitability condition ω(GL)∩ ω(GP ) = ∅ is satisfied and the graph L23(GL,GP , ∅, ∅) has degree 23 and girth 5 with
2(232

− 1) − 24 · 6 − 38 = 874 vertices. Then, rec(23, 5) = 874.
▶ q = 23 → k = 25, 24:
To construct a (25, 5)-regular graph, consider q = 23, r = 2, TL = TP = ∅, WL = {2, 7} and WP = {7, 14}. Let

GL be the 4-regular graph formed by the cycles (4, 11, 6, 13, 12, 19, 4), (0, 17, 21, 3, 8, 1, 18, 14, 10, 9, 16, 15, 20, 5, 0),
(0, 4, 9, 1, 6, 5, 10, 3, 11, 15, 14, 13, 21, 20, 19, 18, 17, 16, 12, 8, 0), and let GP be the 4-regular graph formed by the cycles
(0, 9, 6, 4, 13, 16, 18, 12, 15, 17, 20, 11, 21, 19, 3, 1, 10, 8, 5, 2, 0), (9, 15, 13, 11, 5, 3, 9), (0, 10, 21, 12, 2, 4, 1, 20, 18, 6,
8, 17, 19, 16, 0). Since in Z22, ω(GL) = ±{1, 4, 5, 7, 8} and ω(GP ) = ±{2, 3, 6, 9, 10, 11}, we have ω(GL) ∩ ω(GP ) = ∅. Let
HL and HP be the cycles (0, 4, 3, 8, 12, 16, 20, 2, 6, 10, 18, 11, 15, 19, 1, 5, 13, 9, 17, 21, 0) and (0, 3, 6, 9, 12, 15, 18, 5, 21,
1, 4, 10, 13, 16, 19, 8, 11, 14, 17, 20, 0), respectively. Clearly, V (HL) = Z22 \ WP , V (HP ) = Z22 \ WL. Also, E(HL) ∩ E(GP ) = ∅

and E(HP ) ∩ E(GL) = ∅. Since the suitability conditions are satisfied, the graph L23(GL,GP ,HL,HP ) has girth 5, is 25-regular
and has 2(232

− 1) − 4 · 24 = 960 vertices which gives the new value rec(25, 5) = 960. Moreover, from Remark 2.1 (3) we
have the new bound rec(24, 5) = 920.

▶ q = 23 → k = 27, 26:
To construct a (27, 5)-regular graph, consider q = 23, r = 4, WL = WP = TL = ∅ and TP = {6, 17}. Let

GL = S22(4, 8; 1, −1), which is a 4-regular graph of girth 5 with ω(GL) = ±{1, 4, 8}. Let GP be formed by the cycle S22(7, −7)
together with the three paths (6, 16, 3, 20, 8, 21, 11, 17), (6, 12, 18, 15, 2, 13, 4, 7, 5, 17) and (6, 0, 10, 19, 9, 14, 5, 17).
Hence, GP is a (4,5)-regular graph of girth 5 with ω(GP ) = ±{3, 5, 6, 7, 9, 10, 11}. Clearly ω(GL) ∩ ω(GP ) = ∅. Let HL be
the graph with V (HL) = Z22 \ TP formed by the cycles (0, 9, 8, 4, 5, 11, 3, 2, 20, 16, 12, 13, 14, 10, 1, 21, 15, 7, 18, 19, 0),
(0, 13, 5, 18, 10, 9, 11, 16, 15, 14, 3, 19, 21, 4, 20, 0), (1, 2, 7, 8, 12, 1) and HP = S22(6, 10; 7, −7). It is easy to check that
HL and HP are 4-regular graphs of girth 5 such that E(HL)∩E(GP ) = ∅, E(HP )∩E(GL) = ∅. By Theorem 2.2, L23(GL,GP ,HL,HP )
has girth 5, is 27-regular and has 2(232

− 1) − 2 = 1054 vertices. This provides rec(27, 5) = 1054. Remark 2.1 (2) states
rec(26, 5) = 1010.

▶ q = 25 → k = 29, 28:
For q = 25, consider r = 4, WL = WP = ∅ and TL = TP = {7, 11, 19, 23}. Let GL be the graph S24(2, 10; 3, −3) together

with the edges {7, 19}, {11, 23}. Let GP be formed by the cycles (2, 17, 18, 11, 10, 14, 20, 19, 2), (1, 5, 6, 22, 3, 9, 8, 21, 1),
(0, 4, 23, 16, 12, 13, 7, 15, 0), (0, 1, 17, 23, 8, 19, 12, 3, 14, 7, 6, 11, 0), (2, 15, 9, 18, 13, 21, 10, 16, 5, 20, 4, 22, 2), and the
edges {7, 23}, {11, 19}. Let HL be formed by the cycles (6, 13, 5, 12, 10, 9, 17, 16, 15, 4, 21, 2, 3, 8, 0), (0, 16, 20, 13, 4, 10,
1, 3, 15, 14, 12, 2, 6, 9, 22, 8, 5, 17, 21, 18, 0), (1, 18, 14, 22, 20), and HP by the cycles (0, 10, 14, 20, 9, 3, 4, 5, 1, 8, 17, 2,
13, 21, 15, 0), (0, 12, 8, 14, 13, 18, 3, 10, 22, 2, 9, 1, 21, 16, 4, 17, 15, 20, 6, 5, 0) and (18, 6, 22, 16, 12). The graphs GL, GP ,
HL, HP have girth 5, E(HL) ∩ E(GP ) = ∅, E(HP ) ∩ E(GL) = ∅ and ω(GL) ∩ ω(GP ) = ∅ because ω(GL) = ±{2, 3, 10, 12}
and ω(GP ) = ±{1, 4, 5, 6, 7, 8, 9, 11}. Since the ordered set (GL,GP ,HL,HP ) is r-suitable, the graph L25(GL,GP ,HL,HP ) is
29-regular, has girth 5 and order 2(252

− 1) − 8 = 1240, proving that rec(29, 5) = 1240. Moreover, Remark 2.1 (2) states
rec(28, 5) = 1192.

▶ q = 27 → k = 31, 30:
To construct a (31, 5)-regular graph, consider q = 27, r = 4, WL = WP = ∅ and TL = TP = {5, 7, 9, 19, 21, 23}. Let

GL be the (4, 5)-regular graph with V (GL) = Z26 and E(GL) = E(S26(4, 8, 1, −1)) ∪ {{5, 19}, {7, 21}, {9, 23}}, and let GP be
formed by the cycles (0, 10, 3, 16, 22, 13, 4, 11, 14, 12, 1, 17, 24, 0), (0, 2, 11, 8, 10, 5, 14, 9, 3, 23, 12, 18, 16, 25, 1, 6, 22,
20, 17, 7, 13, 19, 24, 21, 4, 15, 0), (2, 23, 20, 15, 9, 6, 21, 5, 25, 19, 8, 18, 7, 2), and the edges {5, 7}, {9, 19}, {21, 23}. Since
ω(GL) = ±{1, 4, 8, 12} and ω(GP ) = ±{2, 3, 5, 6, 7, 9, 10, 11, 13} in Z26, it follows that ω(GL) ∩ ω(GP ) = ∅. Let HL be
the 4-regular graph with V (HL) = Z26 \ TP and cycles (0, 16, 12, 13, 17, 10, 11, 3, 15, 22, 14, 2, 1, 24, 8, 4, 20, 6, 18, 25, 0),
(0, 1, 13, 20, 14, 10, 24, 6, 16, 15, 17, 18, 2, 3, 4, 0), (11, 25, 22, 8, 12, 11), and HP be the 4-regular graph with V (HP ) =

Z26 \ TL with cycles (0, 11, 8, 25, 13, 18, 3, 10, 22, 2, 12, 17, 24, 16, 1, 20, 15, 6,
4, 14, 0), (0, 10, 25, 6, 12, 3, 1, 14, 17, 8, 20, 2, 13, 24, 15, 0), (18, 4, 22, 16, 11, 18). Since all the suitability conditions are
satisfied, bounds (1) and (2) in Remark 2.1 establish rec(31, 5) = 1444 and rec(30, 5) = 1392, respectively.
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▶ q = 29 → k = 33, 32:
Consider q = 29, r = 4, TL = TP = {2, 4, 7, 11, 16, 18, 21, 25} and WL = WP = ∅. Let GL be the graph

with E(GL) = E(S28(4, 8; 1, −1)) ∪ {{2, 16}, {4, 18}, {7, 21}, {11, 25}} and let GP be the graph formed by the hamiltonian
cycle (0, 22, 12, 2, 20, 9, 11, 6, 8, 24, 15, 17, 14, 21, 27, 10, 3, 16, 19, 25, 7, 5, 26, 23, 4, 1, 13, 18, 0), the 28-length-path
(1, 22, 9, 3, 5, 18, 8, 25, 10, 13, 11, 23, 2, 14, 19, 26, 24, 21, 0, 16, 6, 17, 7, 20, 27, 4, 15, 12) and the edges {1, 7}, {2, 18},
{4, 16}, {11, 21}, {12, 25}. Since ω(GL) = ±{1, 4, 8, 14} and ω(GP ) = ±{2, 3, 5, 6, 7, 9, 10, 11, 12, 13} in Z28, it follows that
ω(GL) ∩ ω(GP ) = ∅. Consider the 4-regular graph HL with cycles (0, 23, 12, 20, 14, 10, 8, 3, 15, 27, 6, 26, 1, 9, 13, 24, 5, 17,
22, 19, 0), (8, 19, 27, 13, 12, 8), (0, 1, 20, 5, 6, 10, 9, 17, 23, 15, 14, 22, 26, 3, 24, 0); and the isomorphic graph HP formed
by the cycles (3, 17, 20, 22, 12, 3), (0, 10, 23, 26, 8, 1, 27, 9, 5, 14, 24, 6, 13, 19, 15, 0), (0, 3, 14, 23, 13, 17, 1, 10, 22, 6, 8,
5, 19, 12, 27, 24, 15, 26, 20, 9, 0). The graphs GL, GP ,HL andHP are r-suitable, and bounds (1) and (2) state rec(33, 5) = 1664
and rec(32, 5) = 1608, respectively. ■

4. Results for greater values, 61 ≤ q ≤ 479

In the section above, new values of rec(k, 5) are obtained by amalgams into Lq, for prime powers 11 ≤ q ≤ 29. In the
next theorem we focus on q = 61 and q ≥ 71 and amalgamate regular graphs GL, GP with degrees rq > 6; similarly as in [9]
for rq = 4 and as in [1] for rq = 5, 6.

Theorem 4.1. Let q ≥ 61 be an odd prime power. Then n(q + rq, 5) ≤ 2(q2 − 1) where rq is the following integer:

rq =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

7 if q ∈ {61, 71, . . . , 89};
8 if q ∈ {101, . . . , 109};
9 if q ∈ {97, 113, . . . , 139} − {127, 131};
10 if q ∈ {127, 131, 149, . . . , 181};
11 if q ∈ {191, . . . , 223};
12 if q ≥ 227 and q ̸= 241;
13 if q = 241.

Proof. For each odd prime power q ≥ 61 (except q = 67) we construct a definite pair of suitable rq-regular graphs GL and
GP . Theorem 2.1 proves that the amalgam Lq(GL,GP ) is (q + rq)-regular with girth at least 5 and order 2(q2 − 1). Next, we
provide these two graphs for q ∈ {61, 97, 127, 131} and q ≥ 263. For the rest of values q the graphs GL, GP are indicated in
Table 2.

▶ q = 61 → k = 68 :

We consider the 7-regular graph GL = S60(12, 24; 1, −1, 5, 19, 27). To construct another 7-regular graph GP , we add
to the 5-regular bipartite graph S60(3, 7, 15, −29, 29) the edges {{2i, 2i + 10} : 0 ≤ i ≤ 29}, and the edges of the five
cycles (1 + 2i, 31 + 2i, 11 + 2i, 51 + 2i, 21 + 2i, 41 + 2i, 1 + 2i), for 0 ≤ i ≤ 4. Since both GL and GP have girth 5 and
ω(GL) ∩ ω(GP ) = ∅, due to ω(GL) = ±{12, 24, 1, 5, 19, 27} and ω(GP ) = ±{10, 20, 30, 3, 7, 15, 29}, the graph L61(GL,GP )
yields n(61 + 7, 5) ≤ 2(612

− 1) = 7440.
▶ q = 97 → k = 106 :

Let GL be the graphwith V (GL) = Z96 and edges the ones in S96(1, −1, 7, 19, −23, −27, −37) (isomorphic toL7) together
with the edges {2i, 2i+16}, for 0 ≤ i ≤ 47, and the ones in the cycles (1+ 2i, 49+ 2i, 17+ 2i, 81+ 2i, 33+ 2i, 65+ 2i, 1+ 2i)
, for 0 ≤ i ≤ 7. The graph GL is 9-regular, has girth 5 and set of Cayley colors ω(GL) = ±{16, 32, 48, 1, 7, 19, 23, 27, 37}.
Let GP be the isomorphic graph obtained from GL by the permutation on V (GL) = Z96 expressed as the following product of
cycles:

(1 29 62 37 19 90 55 77 76 46 27 18 11 8 4 2) · (3 48 30 17 39 63 68 42 25 66 41 64 40 24 14 7 38 23 67 70 43 72 44 26
15 28 16 10 5 69 86 53 89 84 52 32 20 12 6) · (9 83 92 56 34 21 79 58 35 82 51 88 54 33 60 36 22 13) · (31 71 87 78 47 73 74
45 93 95 85 61 80 50) · (49 59) · (81 91 94 57).

The set ω(GP ) = Z96 \ ({0} ∪ ω(GL)), and the graph L96(GL,GP ) yields n(96 + 9, 5) ≤ 2(972
− 1).

▶ q = 127 → k = 137:
We start with the graph S126(1, −1, 5, 13, 29, 39, −45, 61) which is isomorphic to L8, and consider the graph GL =

S126(18, 36; 1, −1, 5, 13, 29, 39, −45, 61). It is 10 regular, has girth 5 and ω(GL) = ±{18, 36, 1, 5, 13, 29, 39, 45, 61}. The
isomorphic graph GP is obtained from GL by the following permutation on V (GL) = Z126:

(1 106 78 59 23 123 81 27 39 55 11 54 42 31 96 79 67 117 121 115 12 6 3 103 53 112 86 63 99 105 102 76 58 44 32 21
41 9 82 61 94 72 56 43 124 92 71 116 88 64 47 37 52 36 28 19 109 69 80 60 45 125 98 74 57 51 108 84 62 46 33 65 25 118
89 10 5 114 87 104 77 107 122 91 13 100 75 101 110 85 93 97 11 26 18 14 7 120 90 70 50 35 66 48 34 22 16 8 4 2) · (15 38
29 40 30 20) · (17 68 49 24) · (113 119).

Since ω(GP ) ∩ ω(GL) = ∅, the graph L127(GL,GP ) establishes n(127 + 10, 5) ≤ 2(1272
− 1).

▶ q = 131 → k = 141 :

Consider the 10-regular graph GL = S130(26, 52; 1, −1, 7, −13, −31, −35, 55, −59) and the isomorphic graph GP
obtained by the following permutation on V (GL) = Z130:

(1 34 24 12 6 3 110 83 79 77 76 52 40 27 35 111 99 118 87 121 126 91 95 54 41 56 42 28 21 58 43 39 117 103 123 122
89 115 102 72 50 32 23 33 18 9 38 26 20 10 5 13 73 74 51 17 116 86 64 46 30 22 11 94 68 48 31 37 36 25 14 7 119 120 88
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Table 2
The rq-regular graphs GL and GP are suitable for amalgamation into Lq .

q rq GL GP

61 7 S60(12, 24; 1, −1, 5, 19, 27) See proof of Theorem 4.1
71 7 S70(10, 20; 1, −1, 5, 13, −23) S70(2, 4; 3, −7, 15, −21, 31)
73 7 S72(16, 28; 1, −1, 5, −9, 25) S72(2, 4; 3, −7, 15, −23, 35)
79 7 S78(12, 24; 1, −1, 5, −9, −27) S78(2, 4; 3, −7, 15, −21, 31)
81 7 S80(12, 24; 1, −1, 5, −9, −29) S80(2, 4; 3, −7, 15, −21, −39)
83 7 S82(12, 24; 1, −1, 5, −9, −27) S82(2, 4; 3, −7, 15, −21, 31)
89 7 S88(12, 24; 1, −1, 5, −9, −27) S88(2, 4; 3, −7, 15, −21, 33)

97 9 See proof of Theorem 4.1 See proof of Theorem 4.1
101 8 S100(16, 32; 1, −1, 5, −9, −21, −39) S100(2, 4; 3, −7, 15, −23, 33, −43)
103 8 S102(16, 32; 1, −1, 5, −9, −21, 35) S102(2, 4; 3, −7, 15, −23, −43, 45)
107 8 S106(16, 32; 1, −1, 5, −9, −21, 29) S106(2, 4; 3, −7, 15, −23, 33, 47)
109 8 S108(16, 32; 1, −1, 5, −9, −21, 29) S108(2, 4; 3, −7, 15, −23, 33, −43)

113 9 S112(18, 36; 1, −1, 27, 31, 43, −47, 51) S112(2, 4; 3, −15, 25, −29, 37, −39, 53)
121 9 S120(18, 36; 1, −1, 5, −11, −25, −33, 45) S120(6, 12; 3, −7, −29, −37, 41, 55, 57)
125 9 S124(18, 36; 1, −1, 5, 15, −25, −33, −45) S124(2, 4; 3, −7, −19, 21, −39, 47, −53)
127 10 S126(18, 36; 1, −1, 5, 13, 29, 39, −45, 61) See proof of Theorem 4.1
131 10 S130(26, 52; 1, −1, 7, −13, −31, −35, 55, −59) See proof of Theorem 4.1
137 9 S136(18, 36; 1, −1, 5, −9, 21, 49, 61) S136(2, 4; 3, −7, 15, −23, 33, −43, 65)
139 9 S138(18, 36; 1, −1, 5, −9, 21, 33, −47) S138(2, 4; 3, −7, 15, −23, 35, 49, −59)

149 10 S148(18, 36; 1, −1, 7, −21, 31, 41, 45, 57) S148(2, 4; 3, −9, 17, −25, −43, 53, −63, −73)
151 10 S150(18, 36; 1, −1, 5, 15, −23, 45, 57, 65) S150(2, 4; 3, −7, 19, −21, 37, 49, −59, 69)
157 10 S156(18, 36; 1, −1, 5, 13, −29, −39, −61, 69) S156(2, 4; 3, −7, 19, −21, −43, −55, 63, −73)
163 10 S162(18, 36; 1, −1, 5, −9, −25, −47, −59, 75) S162(2, 4; 3, −7, 15, −21, 31, −41, −71, 73)
167 10 S166(18, 36; 1, −1, 5, −9, 21, −41, 49, −65) S166(2, 4; 3, −7, 15, −23, 33, −55, 69, −69)
169 10 S168(18, 36; 1, −1, 5, −9, −21, 47, −59, 81) S168(2, 4; 3, −7, 15, −23, 43, −53, 67, −67)
173 10 S172(18, 36; 1, −1, 5, −9, 21, 49, 61, −77) S172(2, 4; 3, −7, 15, −23, 39, 57, −67, −81)
179 10 S178(18, 36; 1, −1, 5, −9, 21, 33, −61, 79) S178(2, 4; 3, −7, 15, −23, 35, −59, −73, 75)
181 10 S180(18, 36; 1, −1, 5, −9, 21, 33, −61, 79) S180(2, 4; 3, −7, 15, −23, 35, −37, 59, −85)

191 11 S190(18, 36; 1, −1, 5, 15, −25, 43, 63, 75, −81) S190(2, 4; 3, −7, 17, −23, −41, 49, −61, 79, −89)
193 11 S192(18, 36; 1, −1, 5, 13, 29, 39, −45, 61, 81) S192(4, 8; 3, −3, 17, −25, −35, 43, 73, −83, −85)
197 11 S196(18, 36; 1, −1, 5, −9, −33, 49, −61, 79, 95) S196(2, 4; 3, −7, 15, 35, −41, 51, 65, −67, 89)
199 11 S198(18, 36; 1, −1, 5, −9, −21, 39, −51, 67, 83) S198(2, 4; 3, −7, 15, −23, −43, 55, 69, 87, −87)
211 11 S210(18, 36; 1, −1, 5, −9, 21, 33, −57, 85, −101) S210(2, 4; 3, −7, 15, −23, −37, 47, −71, −95, 97)
223 11 S222(18, 36; 1, −1, 5, −9, 21, 33, −47, 91, −107) S222(2, 4; 3, −7, 15, −23, 35, 49, −51, −75, 97)

227 12 S226(18, 36; 1, −1, 5, −9, 33, 49, −65, 79, −85, 101) S226(2, 4; 3, −7, 15, 35, −37, 51, 69, −93, 95, −107)
229 12 S228(12, 30; 1, −1, 5, −9, −45, 57, 73, −79, 95, −107) S228(18, 42; 3, −3, 11, 31, 41, 43, −61, 93, 97, −109)
233 12 S232(36, 72; 1, −1, 5, 25, −39, 47, 59, 75, −95, −105) S232(4, 8; 3, −7, −35, 43, 57, 63, −69, 87, −87, 89)
239 12 S238(18, 36; 1, −1, −5, 11, −29, 33, 59, −85, 103, 111) S238(2, 4; 3, −7, 19, −37, 51, 63, −71, 87, −89, −109)
241 13 S240(24, 48; 1, −1, −5, 9, 27, 39, −55, 61, −75, −91, 107) S240(72, 96; −3, 15, −15, 23, 25, 29, −37, 79, −83, 99, 115)
243 12 S242(18, 36; 1, −1, −5, 9, −21, 43, 75, −89, 101, 113) S242(2, 4; 3, −7, 15, −23, 33, −59, 79, −91, 103, −119)
251 12 S250(18, 36; 1, −1, 5, −9, 25, 47, −59, 87, 99, 115) S250(2, 4; 3, −7, 15, −21, −39, 43, 63, −65, −95, −111)
257 12 S256(18, 36; 1, −1, 5, −9, 21, −43, 61, 87, 99, −111) S256(2, 4; 3, −7, 15, −23, 33, −55, 57, −69, −89, 93)
263 12 S262(28, 56; 1, −1, −13, 61, 65, 91, 97, 21, 107, 115) S262(20, 40; 3, −15, 27, −47, 49, 55, 57, −59, −63, −73)
.
.
.

.

.

.
.
.
.

.

.

.

q 12 Sq−1(28, 56; 1, −1, −13, 61, 65, 91, 97, 21, 107, 115) Sq−1(20, 40; 3, −15, 27, −47, 49, 55, 57, −59, −63, −73)

65 127 129 125 128 92 67 53 55 19 106 81 78 60 44 29 112 84 63 114 85 168 4 2) · (100 71 97 108 82 62 45 15 113 101 109
105 124 90 66 47) · (61 59 107 104 80) · (69 98 70 49 93 96).
Since ω(GP ) ∩ ω(GL) = ∅, the graph L131(GL,GP ) establishes n(131 + 10, 5) ≤ 2(1312

− 1).
▶ q ≥ 263 → k = q + 12 :

Consider the graphs GL = Sq−1(28, 56; 1, −1, −13, 61, 65, 91, 97, 21, 107, 115) and GP = Sq−1(20, 40; 3, −15, 27, −47,
49, 55, 57, −59, −63, −73). The integers in their definitions verify the conditions in Lemma 2.2, so both of them are 12-
regular graphs with girth 5 when q − 1 = 2N > 260, that is, when q ≥ 263 is an odd prime power. As their Cayley colors
are clearly disjoint, GL and GP form a suitable pair. ■

Let us notice that Theorem 4.1 is sharp when q ∈ {61, 71, 73, 79, 97, 113, 121, 127, 131, 149,
151, 191, 193, 197, 199}, because |V (GL)| = |V (GP )| = q − 1 < rec(rq + 1, 5), so rq is the maximum degree that the chosen
suitable graphs GL and GP can reach.

In [1] the authors consider some prime powers 31 ≤ q ≤ 59 and q = 64, 67 to obtain bounds on n(k, 5) for degrees
34 ≤ k ≤ 65 and 69 ≤ k ≤ 73. These values of rec(k, 5) are sharp and remain untouched. Now, we consider greater values
of k.
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Corollary 4.1. Given an integer k ∈ {66, 67, 68} and k ≥ 74, let q be the lowest odd prime power such that k ≤ q + rq, where
rq is given in Table 2. Then, n(k, 5) ≤ 2(k − rq + 1)(q − 1). In particular, n(k, 5) ≤ 2(k − 11)(q − 1) when 235 ≤ k ≤ q + 12.

Proof. Let q ∈ {61, 71, . . . , } be an odd prime power, and let GL, GP be the suitable pair of graphs provided in the proof of
Theorem 4.1. The graph Lq(GL,GP ) is (q + rq)-regular, has girth at least five and order 2(q + 1)(q − 1). Deleting iteratively
from this graph γ blocks of lines and γ blocks of points (cf. Remark 2.1 (2)), we have n(q+ rq − γ , 5) ≤ 2(q+ 1− γ )(q− 1),
or equivalently, n(k, 5) ≤ 2(k − rq + 1)(q − 1) for k ≤ q + rq. ■

In the following section we establish bounds better than the last one n(k, 5) ≤ 2(k − 11)(q − 1) for large odd prime
powers q and degrees k.

5. Results for q ∈ {313, 337, 367} and large values q > 479

In this section, thanks to a simple relationship between difference sets and graphs S2N (k1, . . . , km), we construct three
distinct families of graphs which are suitable for amalgamation into Lq. This way, we obtain new bounds on n(k, 5) for large
values of k. In particular, we improve the known bound

n(q +

⌊√
q − 1
4

⌋
, 5) ≤ 2(q2 − 1) for an odd prime power q

proved by Jørgensen (cf. [12], Corollary 19) using also difference sets. We begin with a simple auxiliar lemma.

Lemma 5.1. Let m,N be two positive integers and D = {d1, . . . , dm} ⊂ ZN such that all the numbers di − dj with i ̸= j are
different in ZN . Define K = {k1, . . . , km} where ki = 2di + 1 ∈ Z2N and consider an even non-zero δ ∈ Z2N . Then:

(i) S2N (k1, . . . , km) and S2N (k1 − δ, . . . , km − δ) are m-regular graphs with girth at least 6.
(ii) V = K ∩ (K − δ) ̸= ∅ iff δ = ki − kj for some 1 ≤ i, j ≤ m. In this case, V = {ki − δ}.
(iii) (−K ) ∩ (K − δ) ̸= ∅ iff δ = ki + kj for some 1 ≤ i, j ≤ m.

Proof. The assertion (i) follows from Lemma 2.1. Items (ii) and (iii) follow from direct calculations. First, if α ∈ K ∩ (K − δ),
there is an ordered pair (ki, kj) with α = kj = ki − δ and δ = ki − kj in Z2N . Since (ki, kj) is unique, we have V = {ki − δ}. In
a similar way, if α ∈ (−K ) ∩ (K − δ) then α = −ki = kj − δ and δ = ki + kj. ■

Roughly speaking, a subset D ⊂ H of an group H (written in additive notation) is a finite difference set if every non-zero
element of H can be represented by the same number λ of differences d − d′ with d, d′

∈ D. We only need the first and
simplest class of difference sets, that is, λ = 1 and H cyclic, defined and studied by Singer [17] in 1938.

Lemma 5.2 (cf. [17], Theorem 2). Given a prime power p, there is a subset D = {d0, . . . , dp} ⊂ Zp2+p+1 such that each non-zero
element h ∈ Zp2+p+1 is represented in a unique way as h = di − dj.

We use these finite difference sets to obtain the following result:

Theorem 5.1. Let p, q be prime powers such that q = 2(p2 + p + 1) + 1. Then

n
(
q +

√
2q − 5 − 1

2
, 5

)
≤ 2q2 − q − 1.

Proof. Denote N = p2 + p + 1 and let {d0, . . . , dp} ⊂ ZN be the difference set given by Lemma 5.2. Consider K =

{k0, . . . , kp} ⊂ Z2N = Zq−1 with ki = 2di + 1.
Since the set B = {ki + kj : 0 ≤ i, j ≤ p} has only (p + 2)(p + 1)/2 elements, take an even non-zero δ ∈ Z2N \ B and its

unique representation δ = kiδ − kjδ . By Lemma 5.1 and the election of δ, the (p+ 1)-regular graph GL = Sq−1(k0, . . . , kp) and
the p-regular graph GP = Sq−1(k0 − δ, . . . , kiδ−1 − δ, kiδ+1 − δ, . . . , kp − δ) have girth al least 6 and disjoint sets of Cayley
colors.

In order to apply Theorem 2.2 for r = p, WL = WP = ∅, TL = Zq−1 and TP = ∅, we define HL = Sq−1(k0, . . . , kp−1)
and HP = ∅. Clearly, E(HL) ∩ E(GP ) = ∅ because ω(HL) ∩ ω(GP ) = ∅. The graph Lq(GL,GP ,HL,HP ) has girth at least 5, order
2(q2 − 1) − (q − 1) = 2q2 − q − 1 and degree q + p = q +

1
2 (

√
2q − 5 − 1). ■

Let us notice that the graph S2(p2+p+1)(k0, . . . , kp) is isomorphic to the incidence graphPp of the projective plane. Actually,
Singer proves the existence of finite difference sets as a consequence of a geometric property of the projective planes.

Nowwe turn our attention to difference sets of a groupH relative to a subgroupH1.We are only interested in the differences
defined by Bose [6] in 1942.

Lemma 5.3 (cf. [6], Theorem 1). Consider a prime power p ≥ 3, the cyclic group H = Zp2−1 and the subgroup H1 = (p + 1)
formed by the multiples of p + 1. Then there exists a set D = {d1, . . . , dp} ⊂ H such that each element h ∈ H \ H1 is represented
as di − dj in a unique way, and no difference di − dj with i ̸= j lies in H1.
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Bose’s relative difference sets let us obtain the following bounds. Let us notice that item (ii) establishes a result valid for
every large odd prime power q.

Theorem 5.2. The following upper bounds hold:

(i) Let p ≥ 7 and q be prime powers such that q = 2(p2 − 1) + 1. Then

n
(
q +

√
q + 1
2

+ 2, 5
)

≤ 2(q2 − 1).

(ii) Given q an odd prime power, let p ≥ 9 be the highest prime power such that q ≥ 4p2 − 3. Then

n(q + p + 2, 5) ≤ 2(q2 − 1).

In particular, if q = 4p2 − 3, we have

n
(
q +

√
q + 3
2

+ 2, 5
)

≤ 2(q2 − 1).

Proof (i). Assume that q = 2(p2 −1)+1 is a prime power for a prime power p ≥ 7. Notice that p =

√
q+1
2 . From Theorem 4.1

it follows that n(q + p + 2, 5) ≤ 2(q2 − 1) for p ∈ {7, 8, 11} and q ∈ {97, 127, 241}, while for p ∈ {9, 16} the values of q are
not prime powers.

For p = 13, q = 337 and q+p+2 = 352we give the following explicit construction: Let GL = S336(28, 56; 1, −1, 5, −13,
21, −43, 59, 67, 91, −95, −121, −131, 165) and let GP be the graph with V (GP ) = Z336 and whose edges are the ones in
the graph S336(−27, −29, −23, −41, −7, −71, 31, 39, 63, −123, −149, −159, 137) together with the edges {2i, 2i+ 140},
for 0 ≤ i ≤ 167, and the ones in the cycles (1 + 2i, 85 + 2i, 197 + 2i, 309 + 2i, 57 + 2i, 169 + 2i, 281 + 2i, 29 + 2i, 253 +

2i, 141+2i, 225+2i, 113+2i, 1+2i), for i = 0, . . . , 13. Sinceω(GP )∩ω(GL) = ∅, and since the rest of suitability conditions
of Theorem 2.1 are fulfilled, the graph L337(GL,GP ) yields n(337 + 15, 5) ≤ 2(3372

− 1) = 227136. Hence, item (i) holds for
p ∈ {7, 8, 11, 13}.

From now onwe assume that p ≥ 17 and denote N = p2 −1. Let {d1, . . . , dp} ⊂ Zp2−1 be the relative difference set given
in Lemma 5.3 and define K = {k1, . . . , kp} where ki = 2di + 1 ∈ Z2(p2−1). Consider the sets A = {ki − kj : 1 ≤ i, j ≤ p, i ̸= j},
B = {ki + kj : 1 ≤ i, j ≤ p } and C = (2(p + 1)). Define the odd elements mi ∈ Z2(p+1) such that ki ≡ mi mod 2(p + 1). By
Lemma 5.3, C ∩ A = ∅ and the valuesmi are all different.

Our first step is to prove that C \ B contains an element δ ̸= 0. If α = ki + kj ∈ B ∩ C then mi + mj = 0, and α requires a
unique pair {mi, −mi}. If p is even it could be −mi = mi = p + 1, but, in any case |B ∩ C | ≤ ⌊|K |/2⌋ = ⌊p/2⌋. Let us take a
non-zero δ ∈ C \ B.

Consider the elements P0 = 2(p + 1), Q0 = 4(p + 1), P1 = 6(p + 1), Q1 = 8(p + 1) in C (in case p = 17, choose
Q1 = 10(p + 1)) and define the graphs GL = S2(p2−1)(P0,Q0; k1, . . . , kp) and GP = S2(p2−1)(P1,Q1; k1 − δ, . . . , kp − δ). By
Lemmas 5.1 and 2.1 this pair of graphs is suitable for amalgamation into Lq and Theorem 2.1 proves (i).

(ii) Consider a prime power p ≥ 9. As in the proof of (i), define ki, B, C , δ and k′

i = ki − δ as elements of Z2(p2−1). With
abuse of language, we also denote by ki, k′

i ∈ Z their representatives such that

− (p2 − 1) < ki, k′

i ≤ p2 − 1 (4)

and define the integers P0 = 2(p + 1), Q0 = 4(p + 1), P1 = 6(p + 1), Q1 = 8(p + 1).
Now consider a prime power q ≥ 4p2 − 3 and the graphs GL = Sq−1(P0,Q0; k1, . . . , kp) and GP = Sq−1(P1,Q1; k′

1, . . . , k
′
p).

From the inequalities (4),

max (ki − kj) < 2(p2 − 1) ≤
q − 1
2

.

In order to apply Lemma 2.2, it remains to see that 2Q1 = 16(p+1) <
q−1
2 . A simple computation shows that this inequality

holds just for p ≥ 9 (and q ≥ 321).
Moreover, from the construction of ki, k′

i , Lemma 5.1 and the inequalities (4), it follows that GL and GP share no Cayley
color in Zq−1. They form a suitable pair of graphs and Theorem 2.1 provides the conclusion (ii). ■

With the notations of the proof of Theorem 5.2, item (i), let us notice that the graph S2(p2−1)(k1, . . . , kp) is isomorphic
to the incidence graph Lp. In consequence, the graphs GL, GP are actually amalgams of 2-regular graphs into Lp and the
construction in the proof has a recursive character.

Another family, defined by Ganley in [10], is the following one: Given an additive groupH and two subgroupsH1,H2 such
that H = H1 ⊕ H2, a direct product difference set is a subset D = {d1, . . . , dm} ⊂ H such that each h ∈ H \ (H1 ∪ H2) is
represented in a unique way as h = di − dj, and no difference di − dj with i ̸= j lies in H1 ∪ H2.

Lemma 5.4 (cf. [10], Theorem 2.4). For a prime p ≥ 3, there exists a direct product difference set D = {d1, . . . , dp−1} in the
additive group Zp(p−1) relative to the subgroups H1 = (p − 1) and H2 = (p).
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We use these difference sets for our last result, in which we establish another bound on n(k, 5).

Theorem 5.3. Let p ≥ 5 be a prime and q be a prime power such that q = 2p(p − 1) + 1. Then

n
(
q +

√
2q − 1 + 3

2
, 5

)
≤ 2(q2 − 1).

Proof. For p = 5 and q = 2p(p − 1) + 1 = 41, the bound n(41 + 6, 5) ≤ 2(412
− 1) is proved in [1]. For p = 7 and p = 11,

the result cannot be applied because q = 85 and q = 221 are not prime powers. Assume p ≥ 13 is a prime. Let d1, . . . , dp−1
be the integers provided by Lemma 5.4 and consider ki = 2di + 1. The bipartite (p − 1)-regular graph S2p(p−1)(k1, . . . , kp−1)
has girth g ≥ 6.

Define sets B = {ki + kj : 0 ≤ i, j ≤ p − 2} and C = (2(p − 1)) ∪ (2p). Let P0 = 2(p − 1), Q0 = 4(p − 1), P1 = 2p,
Q1 = 4p. Choosing a non-zero δ ∈ C \ B and following the same reasoning as in Theorem 5.2, we have that the graphs
GL = S2p(p−1)(P0,Q0; k1, . . . , kp−1) and GP = S2p(p−1)(P1,Q1; k1 − δ, . . . , kp−1 − δ) are suitable for amalgamation into Lq.
Hence the graph Lq(GL,GP ) has girth at least 5, order 2(q2 − 1) and degree q + p − 1 + 2 = q +

√
2q−1+3

2 . ■

Remark 5.1. On the one hand, the results of this section can be applied to p = 13 and q = 313 (Theorem 5.3), q = 337
(Theorem 5.2, item (i)), and q = 367 (Theorem 5.1). On the other hand, given an odd prime power q > 479, the highest
prime power p such that q ≥ 4p2 −3 verifies p ≥ 11. In this case, the bound n(q+p+2, 5) ≤ 2(q2 −1) given by Theorem 5.2
is better than the result n(q + 12, 5) ≤ 2(q2 − 1) provided by Theorem 4.1.

The graphs constructed in this article are available in several formats. Readers can request them by email.
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