

ELSEVIER

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/discAutomorphism groups of designs with $\lambda = 1$

William M. Kantor*

University of Oregon, Eugene, OR 97403, United States
 Northeastern University, Boston, MA 02115, United States

ARTICLE INFO

Article history:

Received 4 April 2018

Accepted 30 January 2019

Available online xxxx

ABSTRACT

If G is a finite group and $k = q > 2$ or $k = q + 1$ for a prime power q then, for infinitely many integers v , there is a $2-(v, k, 1)$ -design \mathbf{D} for which $\text{Aut}\mathbf{D} \cong G$.

© 2019 Published by Elsevier B.V.

Keywords:

Automorphism group
 Design

1. Introduction

Starting with Frucht's theorem on graphs [7], there have been many papers proving that any finite group is isomorphic to the full automorphism group of some specific type of combinatorial object. Babai surveyed this topic [3], and in [3, p. 8] stated that in [1] he had proved that 2-designs with $\lambda = 1$ are such objects when $k = q > 2$ or $k = q + 1$ for a prime power q . (The case of Steiner triple systems was handled in [13].) The purpose of this note is to provide a proof of Babai's result¹:

Theorem 1.1. *Let G be a finite group and q a prime power.*

- (i) *There are infinitely many integers v such that there is a $2-(v, q + 1, 1)$ -design \mathbf{D} for which $\text{Aut}\mathbf{D} \cong G$.*
- (ii) *If $q > 2$ then there are infinitely many integers v such that there is a $2-(v, q, 1)$ -design \mathbf{D} for which $\text{Aut}\mathbf{D} \cong G$.*

Parts of our proof mimic [5, Sec. 5] and [9, Sec. 4], but the present situation is much simpler. We modify a small number of subspaces of a projective or affine space in such a way that the projective or affine space can be recovered from the resulting design by elementary geometric arguments. Further geometric arguments determine the automorphism group.

Section 7 contains further properties of the design \mathbf{D} in the theorem, some of which are needed in future research [6].

Notation: We use standard permutation group notation, such as x^π for the image of a point x under a permutation π and $g^h = h^{-1}gh$ for conjugation. The group of automorphisms of a projective space $Y = \text{PG}(V)$ defined by a vector space V is denoted by $\text{PGL}(V) = \text{PGL}(Y)$; this is induced by the group $\Gamma\text{L}(V)$ of invertible semilinear transformations on V . Also $\text{AGL}(V)$ denotes the group of automorphisms of the affine space $\text{AG}(V)$ defined by V .

2. A simple projective construction

Let G be a finite group. Let Γ be a simple, undirected, connected graph on $\{1, \dots, n\}$ such that $\text{Aut}\Gamma \cong G$ and G acts semiregularly on the vertices. There is such a graph for each $n \geq 6|G|$ that is a multiple of $|G|$ (using [2]).

* Correspondence to: University of Oregon, Eugene, OR 97403, United States.

E-mail address: kantor@uoregon.edu.

¹ This theorem was proved before I knew of Babai's result.

Let $K = \mathbf{F}_q \subset F = \mathbf{F}_{q^4}$, and let θ generate F^* . Let V_F be an n -dimensional vector space over F , with basis v_1, \dots, v_n . View G as acting on V_F , permuting $\{v_1, \dots, v_n\}$ as it does $\{1, \dots, n\}$. View V_F as a vector space V over K . If Y is a set of points of $\mathbf{P} = \text{PG}(V)$ then $\langle Y \rangle$ denotes the smallest subspace of \mathbf{P} containing Y .

We will modify the point-line design $\text{PG}_1(V)$ of \mathbf{P} , using nonisomorphic designs Δ_1 and Δ_2 whose parameters are those of $\text{PG}_1(K^4) = \text{PG}_1(3, q)$ but are not isomorphic to that design, chosen so that $\text{Aut} \Delta_1$ fixes a point ([Proposition 3.5](#)).

Our design \mathbf{D} has the set \mathfrak{P} of points of \mathbf{P} as its set of points. Most blocks of \mathbf{D} are lines of \mathbf{P} , with the following exceptions involving some of the subspaces Fv , $0 \neq v \in V$, viewed as subsets of \mathfrak{P} . For orbit representatives i and ij of G on the vertices and ordered edges of Γ ,

(I) replace the set of lines of $\text{PG}_1(Fv_i)$ by a copy of the set of blocks of Δ_1 , subject only to the condition

(#) there are distinct blocks, neither of which is a line of \mathbf{P} , whose span in \mathbf{P} is $\text{PG}_1(Fv_i)$,

and then apply all $g \in G$ to these sets of blocks in order to obtain the blocks in $\text{PG}_1((Fv_i)^g)$, $g \in G$; and

(II) replace the set of lines of $\text{PG}_1(F(v_i + \theta v_j))$ by a copy of the set of blocks of Δ_2 , subject only to (#), and then apply all $g \in G$ to these sets of blocks in order to obtain the blocks in $\text{PG}_1(F(v_i + \theta v_j)^g)$, $g \in G$.

We need to check that these requirements can be met.

(i) *Satisfying (#):* Let $\bar{\Delta}_s$ be an isomorphic copy of Δ_s , $s = 1$ or 2 , whose set of points is that of $\text{PG}_1(Fv) = \text{PG}_1(Fv_i)$ or $\text{PG}_1(F(v_i + \theta v_j))$. Let B_1 and B_2 be any distinct blocks of $\bar{\Delta}_s$. Choose any permutation π of the points of $\text{PG}_1(Fv)$ such that the sets B_1^π and B_2^π are not lines of $\text{PG}_1(Fv)$ and together span $\text{PG}_1(Fv)$. Using $\bar{\Delta}_s^\pi$ in place of $\bar{\Delta}_s$ satisfies (#). (If $q + 1 \geq 4$ then B_2 is not needed.)

(ii) *These replacements are well-defined:* For (II), if $F(v_i + \theta v_j)^g \cap F(v_i + \theta v_j)^{g'} \neq 0$ for some $g, g' \in G$, then $v_{ig'} + \theta v_{jg'} \in F(v_{ig} + \theta v_{jg})$. Then either $v_{ig'} = v_{ig}$ and $v_{jg'} = v_{jg}$, or $v_{ig'} = \alpha \theta v_{jg}$ and $\theta v_{jg'} = \alpha v_{ig}$ for some $\alpha \in F^*$; but in the latter case we obtain $1 = \alpha \theta$ and $\theta = \alpha$, whereas θ generates F^* . Thus, $v_{ig'} = v_{ig}$, so the semiregularity of G on $\{1, \dots, n\}$ implies that $g' = g$, as required.

It is trivial to see that \mathbf{D} is a design having the same parameters as $\text{PG}_1(V)$. Clearly G acts on the collection of subsets of \mathfrak{P} occurring in (I) or (II): we can view G as a subgroup of both $\text{Aut} \mathbf{D}$ and $\text{PGL}(V)$.

We emphasize that the sets in (I) and (II) occupy a tiny portion of the underlying projective space: most sets Fv are unchanged. More precisely, in view of the definition of \mathbf{D} :

Every block of \mathbf{D} not contained in a set (I) or (II) is a line of \mathbf{P} . (2.1)
Every line of \mathbf{P} not contained in set (I) or (II) is a block of \mathbf{D} .

Nevertheless, we will distinguish between the *lines of \mathbf{P}* and the *blocks of \mathbf{D}* , even when the blocks happen to be lines. A *subspace of \mathbf{D}* is a set of points that contains the block joining any pair of its points. (Examples: (I) and (II) involve subspaces of \mathbf{D} .) A *hyperplane of \mathbf{D}* is a subspace of \mathbf{D} that meets every block but does not contain every point. We need further notation:

Distinct $y, z \in \mathfrak{P}$ determine a block yz of \mathbf{D} and a line $\langle y, z \rangle$ of \mathbf{P} . (2.2)

For distinct $y, z \in \mathfrak{P}$ and $x \in \mathfrak{P} - yz$, (2.3)
 $\langle x|y, z \rangle = \bigcup \{xp \mid p \in yz', y' \in xy - \{x\}, z' \in xz - \{x\}, \{y, z\} \neq \{y', z'\}\}.$

Here (2.3) depends only on \mathbf{D} not on \mathbf{P} , which will allow us to recover \mathbf{P} from \mathbf{D} .

Lemma 2.4. *If $y, z \in \mathfrak{P}$ are distinct, then there are more than $\frac{1}{2}|\mathfrak{P}|$ points $x \in \mathfrak{P} - yz$ such that*

- (1) $\langle x, y, z \rangle$ is a plane of \mathbf{P} every line of which, except possibly $\langle y, z \rangle$, is a block of \mathbf{D} ,
- (2) $\langle x|y, z \rangle = \langle x, y, z \rangle$,
- (3) if $yz \subseteq \langle x|y, z \rangle$ then $\langle y, z \rangle = yz$, and
- (4) if $yz \not\subseteq \langle x|y, z \rangle$ then $\langle y, z \rangle$ is the union of the pairs $\{y_1, z_1\} \subset \langle x|y, z \rangle$ such that $y_1z_1 \not\subseteq \langle x|y, z \rangle$.

Proof. Let

$$x \notin yz \cup \bigcup \{\langle y, z, Fv \rangle \mid Fv \text{ in (I) or (II)}\}. \quad (2.5)$$

There are more than $(q^{4n} - 1)/(q - 1) - n^2(q^6 - 1)/(q - 1) - (q + 1) > \frac{1}{2}|\mathfrak{P}|$ such points x . Clearly $\langle x, y, z \rangle$ is a plane of \mathbf{P} .

(1) Let $L \neq \langle y, z \rangle$ be a line of $\langle x, y, z \rangle$, so $\langle x, y, z \rangle = \langle y, z, L \rangle$. If L is not a block of \mathbf{D} then, by (2.1), L is contained in some set Fv in (I) or (II), so $x \in \langle y, z, L \rangle \subseteq \langle y, z, Fv \rangle$ contradicts (2.5).

(2) By (1), $\langle x, y \rangle$ and $\langle x, z \rangle$ are blocks of \mathbf{D} . Let $\{y', z'\}$ be as in (2.3). Then $\{y', z'\} \subset \langle x, y, z \rangle$ and $\langle y', z' \rangle \neq \langle y, z \rangle$. By (1), $y'z' = \langle y', z' \rangle \subseteq \langle x, y, z \rangle$ and $xp = \langle x, p \rangle \subseteq \langle x, y, z \rangle$ for each point p of $\langle y', z' \rangle$. Then $\langle x|y, z \rangle \subseteq \langle x, y, z \rangle$. Each point of $\langle x, y, z \rangle$ lies in such a line $\langle x, p \rangle$; since that line is a block by (1), $\langle x, y, z \rangle \subseteq \langle x|y, z \rangle$.

(3) If $yz \neq \langle y, z \rangle$ then, by (2.1), yz lies in some set Fv in (I) or (II). By hypothesis and (2), $yz \subseteq \langle x|y, z \rangle \cap Fv = \langle x, y, z \rangle \cap Fv = \langle y, z \rangle$. Thus, $yz = \langle y, z \rangle$.

(4) We have $yz \neq \langle y, z \rangle$ since $\langle y, z \rangle \subseteq \langle x, y, z \rangle = \langle x|y, z \rangle$ by (2). By (2.1), since $\langle y, z \rangle$ is not a block it is contained in some set Fv in (I) or (II).

For any $\{y_1, z_1\}$ in (4) we have $\{y_1, z_1\} \subseteq \langle x|y, z \rangle = \langle x, y, z \rangle$ by (2), and $y_1z_1 \not\subseteq \langle x, y, z \rangle$, so $\langle y_1, z_1 \rangle$ is not a block of \mathbf{D} and hence $\langle y_1, z_1 \rangle = \langle y, z \rangle$ by (1).

On the other hand, consider an arbitrary pair $\{y_1, z_1\} \subset \langle y, z \rangle \subset Fv$. Then $y_1z_1 \subset Fv$ by the definition of \mathbf{D} . Since $\langle y, z \rangle$ is not a block, $y_1z_1 \not\subseteq \langle y, z \rangle = \langle x|y, z \rangle \cap Fv$ by (2), so $y_1z_1 \not\subseteq \langle x|y, z \rangle$. Thus, $\langle y, z \rangle$ is the union of the pairs $\{y_1, z_1\}$ in (4). \square

Proof of Theorem 1.1(i). We first recover the lines of \mathbf{P} from \mathbf{D} . For distinct $y, z \in \mathfrak{P}$, use each $x \notin yz$ in Lemma 2.4(3) or (4) in order to obtain, more than $\frac{1}{2}|\mathfrak{P}|$ times, the same set of points that must be $\langle y, z \rangle$.

We have now reconstructed all lines of \mathbf{P} as subsets of \mathfrak{P} . Then we have also recovered \mathbf{P} , V , $\Gamma L(V)$ and $P\Gamma L(V)$, so that $\text{Aut}\mathbf{D}$ is induced by a subgroup of $\text{Aut}\mathbf{P} = P\Gamma L(V)$, and hence by a subgroup H of $\Gamma L(V)$ such that $\text{Aut}\mathbf{D} \cong H/K^*$.

Any block of \mathbf{D} that is not a line of \mathbf{P} spans a 2-space or 3-space of \mathbf{P} occurring in some 3-space $\text{PG}_1(Fv)$ in (I) or (II), and spans at least a 4-space of \mathbf{P} together with any block in any $\text{PG}_1(Fv') \neq \text{PG}_1(Fv)$. Any two blocks of \mathbf{D} that are not lines of \mathbf{P} and lie in the same set in (I) or (II) span at most a 3-space of \mathbf{P} ; by (#) each set in (I) or (II) is spanned by two such blocks.

This recovers all subsets (I) and (II) of \mathfrak{P} from \mathbf{D} and \mathbf{P} . Moreover, the fact that $\Delta_1 \not\cong \Delta_2$ specifies which of these subspaces of \mathbf{D} have type (I) (or (II)).

We next determine the F -structure of V using \mathbf{D} . We claim that the subgroup of $\Gamma L(V)$ fixing each set in (I) or (II) consists of scalar multiplications by members of F^* . Clearly such scalar multiplications behave this way. Let $h \in \Gamma L(V)$ behave as stated. Then $h: xv_i \mapsto (xA_i)v_i$ for each $x \in F$, each i and a 4×4 invertible matrix A_i over K . If ij is an ordered edge of Γ and $x \in F$, then $(x(v_i + \theta v_j))^h = (xA_i)v_i + ((x\theta)A_j)v_j$ is in $F(v_i + \theta v_j)$, so $(xA_i)\theta = (x\theta)A_j$. Since ji is an ordered edge, also $(xA_j)\theta = (x\theta)A_i$, so $(x\theta\theta)A_i = ((x\theta)A_j)\theta = (xA_i)\theta\theta$, and A_i commutes with multiplication by θ^2 . By Schur's Lemma, $xA_i = xa_i$ for all $x \in F$ and some $a_i \in F^*$. Then $xa_i\theta = x\theta a_i$, so $a_i = a_j$. Since Γ is connected, all a_i are equal, proving our claim.

In particular, the field F and the F -space V_F can be reconstructed from \mathbf{D} . Then $H \leq \Gamma L(V_F)$ since H normalizes F^* , while G lies in H . Since the sets in (II) correspond to (ordered) edges of Γ , H induces $\text{Aut}\Gamma \cong G$ on the collection of sets in (I). It remains to show that the kernel of this action is K^* .

Let $h \in H \leq \Gamma L(V_F)$. Multiply h by an element of G in order to have h fix all Fv_i . Let $\sigma \in \text{Aut}F$ be the field automorphism associated with h . For each i we have $v_i^h = a_i v_i$ for some $a_i \in F^*$. Let ij be an ordered edge of Γ and write $b = a_j/a_i$. As above, $F(v_i + \theta v_j)^h = F(a_i v_i + \theta^{\sigma} a_j v_j) = F(v_i + \theta^{\sigma} b v_j)$ and $F(\theta v_i + v_j)^h = F(\theta^{\sigma} a_i v_i + a_j v_j) = F(v_i + \theta^{-\sigma} b v_j)$ both have type (II), so $\theta^{\sigma} b = \theta^{\pm 1}$ and $\theta^{-\sigma} b = \theta^{\mp 1}$. Then $b^2 = 1$, $\theta^{\sigma} = \pm\theta^{\pm 1}$, and hence $\sigma = 1$ and $b = 1$ since θ generates F^* . The connectedness of Γ implies that all a_i are equal: h is scalar multiplication by $a_1 \in F^*$.

Since h fixes Fv_1 it induces an automorphism of the subspace of \mathbf{D} determined by Fv_1 . By (I) and our condition on Δ_1 , h fixes a point Kcv_1 of Fv_1 , where $c \in F^*$. Then $Kcv_1 = (Kcv_1)^h = Kca_1v_1$, so $a_1 \in K$. Thus, $h \in K^*$ and $\text{Aut}\mathbf{D} \cong G$. \square

3. A simpler projective construction

We need a fairly weak result (Proposition 3.5) concerning designs with the parameters of $\text{PG}_1(3, q)$. We know of two published constructions for designs having those parameters, due to Skolem [15, p. 268] and Lorimer [12]. However, isomorphism questions seem difficult using their descriptions. Instead, we will use a method that imitates [9, 14] (but which was hinted at by Skolem's idea).

Consider a hyperplane X of $\mathbf{P} = \text{PG}(d, q)$, $d \geq 3$; we identify \mathbf{P} with $\text{PG}_1(d, q)$. Let π be any permutation of the points of X . Define a geometry \mathbf{D}_{π} as follows:

the set \mathfrak{P} of points is the set of points of \mathbf{P} , and

blocks are of two sorts:

the lines of \mathbf{P} not in X , and

the sets L^{π} for lines $L \subset X$.

Once again it is trivial to see that \mathbf{D}_{π} is a design having the same parameters as \mathbf{P} . Note that π has nothing to do with the incidences between points and the blocks not in X .

We have a hyperplane X of \mathbf{D}_{π} such that the blocks of \mathbf{D}_{π} not in X are lines of a projective space \mathbf{P} for which \mathfrak{P} is the set of points. We claim that the lines of this projective space can be recovered from \mathbf{D}_{π} and X . Namely, we have all points and lines of \mathbf{P} not in X . For distinct $y, z \in X$ and $x \notin X$, the set $\langle x|y, z \rangle$ in (2.3) consists of the points of the plane $\langle x, y, z \rangle$ of \mathbf{P} , and $\langle x|y, z \rangle \cap X$ is the line $\langle y, z \rangle$. We have now obtained all lines of the original projective space \mathbf{P} , as claimed. It follows that

$$\text{Aut}\mathbf{D}_{\pi} \leq \text{Aut}\mathbf{P}. \quad (3.1)$$

The symbol X is ambiguous: it will now mean either a set of points or a hyperplane of the underlying projective space (as in the next result). It will not refer to X together with a different set of lines produced by a permutation π .

Proposition 3.2. The designs \mathbf{D}_{π} and $\mathbf{D}_{\pi'}$ are isomorphic by an isomorphism sending X to itself if and only if π and π' are in the same $P\Gamma L(X)$, $P\Gamma L(X)$ double coset in $\text{Sym}(X)$.

Moreover, the pointwise stabilizer of X in $\text{Aut}\mathbf{D}_{\pi}$ is transitive on the points outside of X , and the stabilizer $(\text{Aut}\mathbf{D}_{\pi})_X$ of X induces $P\Gamma L(X) \cap P\Gamma L(X)^{\pi}$ on X .

Proof. Let $g: \mathbf{D}_\pi \rightarrow \mathbf{D}_{\pi'}$ be such an isomorphism. We just saw that \mathbf{P} is naturally reconstructible from either design. It follows that g is a collineation of \mathbf{P} ; its restriction \bar{g} to X is in $\mathrm{PGL}(X)$.

If $L \subset X$ is a line of \mathbf{P} then g sends the block $L^\pi \subset X$ of \mathbf{D}_π to a block $L^{\pi g} \subset X$ of $\mathbf{D}_{\pi'}$. Then $L^{\pi g \pi'^{-1}}$ is a line of \mathbf{P} , so that $\pi \bar{g} \pi'^{-1}$ is a permutation of the points of the hyperplane X of \mathbf{P} sending lines to lines, and hence is an element $h \in \mathrm{PGL}(X)$. Thus, π and π' are in the same $\mathrm{PGL}(X), \mathrm{PGL}(X)$ double coset.

Conversely, if π and π' are in the same $\mathrm{PGL}(X), \mathrm{PGL}(X)$ double coset let $\bar{g}, h \in \mathrm{PGL}(X)$ with $\pi \bar{g} \pi'^{-1} = h$. Extend \bar{g} to $g \in \mathrm{Aut}\mathbf{P}$ in any way. We claim that g is an isomorphism $\mathbf{D}_\pi \rightarrow \mathbf{D}_{\pi'}$. It preserves incidences between blocks not in X and points of \mathbf{P} since $g \in \mathrm{Aut}\mathbf{P}$ and those incidences have nothing to do with π and π' . Consider an incidence $x \in B \subset X$ for a block B of \mathbf{D}_π . Then $B = L^\pi$ for a line $L \subset X$. Since $g \in \mathrm{Aut}\mathbf{P}$, $x^g \in B^g = B^{\bar{g}} = L^{\pi \bar{g}} = (L^h)^{\pi'}$, which is a block of $\mathbf{D}_{\pi'}$, as required.

For the final assertion, the pointwise stabilizer of X in $\mathrm{Aut}\mathbf{P}$ is in $\mathrm{Aut}\mathbf{D}_\pi$ by the definition of \mathbf{D}_π . We have seen that the group induced on X by $\mathrm{Aut}\mathbf{D}_\pi$ corresponds to the pairs $(\bar{g}, h) \in \mathrm{PGL}(X) \times \mathrm{PGL}(X)$ satisfying $\pi \bar{g} \pi^{-1} = h$. \square

Note that there are many extensions g of \bar{g} since the designs \mathbf{D}_π have many automorphisms inducing the identity on X . Double cosets arise naturally in this type of result; compare [9, Theorem 4.4].

Let $v_i = (q^i - 1)/(q - 1)$.

Corollary 3.3. *There are at least $v_d!/(v_{d+1}|\mathrm{PGL}(d, q)|^2)$ pairwise nonisomorphic designs having the same parameters as \mathbf{P} .*

Proof. Fix π in the proposition. There are at most v_{d+1} hyperplanes Y of \mathbf{D}_π (as in [8, Theorem 2.2]). By the proposition there are then at most $|\mathrm{PGL}(X)|^2$ choices for π' such that $\mathbf{D}_\pi \cong \mathbf{D}_{\pi'}$ by an isomorphism sending Y to X . Since there are $v_d!$ choices for π we obtain the stated lower bound. \square

Remark 3.4. We describe a useful trick. *A transposition σ and a 3-cycle τ are in different $\mathrm{PGL}(d, q), \mathrm{PGL}(d, q)$ double cosets in $\mathrm{Sym}(N)$, $N = (q^d - 1)/(q - 1)$, if $d \geq 3$ and we exclude the case $d = 3, q = 2$. For, if $\sigma g = h\tau$ with $g, h \in \mathrm{PGL}(d, q)$ then $g^{-1}h = g^{-1} \cdot \sigma g \tau^{-1} = \sigma^g \tau^{-1} \in \mathrm{PGL}(d, q)$ fixes at least $N - 5$ points, and hence is 1 by our restriction on d , whereas $\sigma^g \neq \tau$.*

Proposition 3.5. *For any q there are two designs having the parameters of $\mathbf{P} = \mathrm{PG}_1(3, q)$ and not isomorphic to one another or to \mathbf{P} , for one of which the automorphism group fixes a point.*

Proof. If $q = 2$ then there are even such designs with trivial automorphism group [4]. (Undoubtedly such designs exist for all q .)

Assume that $q > 2$. The preceding corollary and remark provide us with two nonisomorphic designs. It remains to deal with the final assertion constructively.

Let π be a transposition (x_1, x_2) of X . We will show that \mathbf{D}_π behaves as stated.

First note that each $g \in \mathrm{Aut}\mathbf{D}_\pi$ fixes X . For, suppose that $Y = X^g \neq X$ for some g , where $g \in \mathrm{Aut}\mathbf{P}$ by (3.1). The blocks in Y not in X are lines of \mathbf{P} . Then the same is true of the blocks in $Y^{g^{-1}} = X$ not in $X^{g^{-1}}$. This contradicts the fact that π sends all lines $\neq \langle x_1, x_2 \rangle$ of \mathbf{P} inside X and on x to sets that are not lines of \mathbf{P} .

By Proposition 3.2, $\mathrm{Aut}\mathbf{D}_\pi = (\mathrm{Aut}\mathbf{D}_\pi)_X$ induces $\mathrm{PGL}(X) \cap \mathrm{PGL}(X)^\pi$ on X . Let $\pi \bar{g} \pi^{-1} = h$ for $\bar{g}, h \in \mathrm{PGL}(X)$. Then $\bar{g}^{-1}h = \pi \bar{g} \pi^{-1}$ is a collineation of X that moves at most $2 \cdot 2$ points of X and hence fixes at least $(q^2 + q + 1) - 2 \cdot 2 > q + \sqrt{q} + 1$ points. By elementary (semi)linear algebra, the only such collineation is 1, so that $\bar{g} = h$ commutes with π and hence fixes the line $\langle x_1, x_2 \rangle$. Then \bar{g} also fixes a point of X and hence of \mathbf{D}_π . \square

Remark 3.6. By excluding the possibilities $q \leq 8$ and q prime in the previous section we could have used nondesarguesian projective planes (and $[F:K] = 3$).

4. A simple affine construction

We now consider Theorem 1.1(ii). The proof is similar to that of Theorem 1.1(i). That result handles the cases $q = 3, 4$ or 5, but we ignore this and only assume that $q > 2$.

Let G and Γ be as in Section 2. This time we use $K = \mathbf{F}_q \subset F = \mathbf{F}_{q^3}$; once again θ generates F^* . Let V_F be an n -dimensional vector space over F , with basis v_1, \dots, v_n . View V_F as a vector space V over K . If Y is a set of points of \mathbf{A} then $\langle Y \rangle$ denotes the smallest affine subspace containing Y .

We will modify the point-line design $\mathrm{AG}_1(V)$ of $\mathbf{A} = \mathrm{AG}(V)$, using nonisomorphic designs Δ_1, Δ_2 whose parameters are those of $\mathrm{AG}_1(3, q)$ but are not isomorphic to that design, chosen so that $\mathrm{Aut}\Delta_1$ fixes at least two points (Proposition 5.2).

Our design \mathbf{D} has V as its set of points. Most blocks of \mathbf{D} are lines of \mathbf{A} , with exceptions involving the sets Fv , $0 \neq v \in V$, in Section 2(I, II), where now Fv is viewed as a 3-dimensional affine space.

As before, the set of lines of $\mathrm{AG}_1(Fv_i)$ or $\mathrm{AG}_1(F(v_i + \theta v_j))$ is replaced by a copy of the set of blocks of Δ_1 or Δ_2 . This time, for each of these we require

(#') there are distinct blocks, each of which spans a plane of \mathbf{A} , such that the intersection of those planes is a line.

Clearly, these two blocks span a 3-space. (When $q > 3$ it would be marginally easier to require that there is a single block that spans a 3-space.) Condition $(\#')$ can be satisfied exactly as in *Satisfying $(\#)$* in Section 2. Since different sets Fv meet only in a single point, the modifications made inside them are unrelated. Once again it is easy to check that this produces a design \mathbf{D} with the desired parameters for which $G \leq \text{Aut}\mathbf{D}$.

As in Section 2, most sets Fv are unchanged. In view of the definition of \mathbf{D} , the analogue of (2.1) holds. We use the natural analogues of definitions (2.2) and (2.3), using \mathbf{A} in place of \mathbf{P} and V in place of \mathfrak{P} .

Lemma 4.1. *If $y, z \in V$ are distinct, then there are more than $\frac{1}{2}|V|$ points $x \in V - yz$ such that*

- (1) *every line of the plane $\langle x, y, z \rangle$ of \mathbf{A} , except possibly $\langle y, z \rangle$, is a block of \mathbf{D} ,*
- (2) *$\langle x|y, z \rangle = \langle x, y, z \rangle$,*
- (3) *if $yz \subseteq \langle x|y, z \rangle$ then $\langle y, z \rangle = yz$, and*
- (4) *if $yz \not\subseteq \langle x|y, z \rangle$ then $\langle y, z \rangle$ is the union of the pairs $\{y_1, z_1\} \subset \langle x|y, z \rangle$ such that $y_1z_1 \not\subseteq \langle x|y, z \rangle$.*

Proof. Using x in (2.5), this is proved exactly as in **Lemma 2.4** except for (2), where we need to consider parallel lines using blocks that are lines by (1). Clearly $\langle x|y, z \rangle \subseteq \langle x, y, z \rangle$; we must show that $\langle x, y, z \rangle \subseteq \langle x|y, z \rangle$. In (2.3), for p in the line $y'z' = \langle y', z' \rangle$ of $\langle x, y, z \rangle$ parallel to $\langle y, z \rangle$, the blocks $xp \subset \langle x|y, z \rangle$ cover all points of the plane $\langle x, y, z \rangle$ except for those in the line L on x parallel to $\langle y, z \rangle$. If $y' \in xy - \{x, y\}$ and $p' = y'z \cap L$, then $L = xp' \subset \langle x|y, z \rangle$, so $\langle x, y, z \rangle \subseteq \langle x|y, z \rangle$. \square

Proof of Theorem 1.1(ii). First recover all lines of \mathbf{A} from \mathbf{D} exactly as in the proof of **Theorem 1.1(i)**. This also produces both the K -space V and $\text{A}\Gamma\text{L}(V)$ from \mathbf{D} .

We recover all subsets (I) and (II) essentially as before. Consider a pair B, B' of blocks of \mathbf{D} behaving as in $(\#')$: $\langle B \rangle$ and $\langle B' \rangle$ are planes and $\langle B \rangle \cap \langle B' \rangle$ is a line. Since distinct subsets in (I) or (II) do not have a common line, each such pair B, B' spans a subset in (I) or (II). Thus, by $(\#')$ we have obtained each subset in (I) or (II) from \mathbf{D} and \mathbf{A} using some pair B, B' . Once again, the fact that $\Delta_1 \not\cong \Delta_2$ specifies which of these subspaces of \mathbf{D} have type (I) (or (II)).

The subsets (I) all contain 0, and $\text{Aut}\mathbf{D}$ fixes their intersection, so $\text{Aut}\mathbf{D}$ is induced by a subgroup of $\text{A}\Gamma\text{L}(V)_0 = \text{GL}(V)$.

Recover the field F exactly as in the proof of **Theorem 1.1(i)**. Once again, $\text{Aut}\mathbf{D}$ is a subgroup of $\text{GL}(V_F)$ that induces $\text{Aut}\Gamma \cong G$ on the collection of sets in (I).

By repeating the argument at the end of the proof of **Theorem 1.1(i)** we reduce to the case of $h \in \text{Aut}\mathbf{D}$ fixing all sets in (I) and acting on V as $v \mapsto av$ for some $a \in F^*$. We chose Δ_1 so that $\text{Aut}\Delta_1$ fixes at least two of its points. It follows that $a = 1$, so that $h = 1$ and $\text{Aut}\mathbf{D} \cong G$. \square

5. A simpler affine construction

Consider a plane X of $\mathbf{A} = \text{AG}(3, q) = \text{AG}(V)$, $q > 2$; we identify \mathbf{A} with $\text{AG}_1(3, q)$. Let π be any permutation of the points of X . Define a geometry \mathbf{D}_π as follows:

- the set V of points is the set of points of \mathbf{A} , and
- blocks are of two sorts:
 - the lines of \mathbf{A} not in X , and
 - the sets L^π for lines $L \subset X$.

Once again it is trivial to see that \mathbf{D}_π is a design having the same parameters as \mathbf{A} .

As in Section 3, the blocks of \mathbf{D}_π not in X are lines of an affine space \mathbf{A} for which V is the set of points. As in Sections 3 and 4, the lines of this affine space can be recovered from \mathbf{D}_π using the analogue of (2.3).

Proposition 5.1. *The designs \mathbf{D}_π and $\mathbf{D}_{\pi'}$ are isomorphic by an isomorphism sending X to itself if and only if π and π' are in the same $\text{A}\Gamma\text{L}(X)$, $\text{A}\Gamma\text{L}(X)$ double coset in $\text{Sym}(X)$. This produces at least $q^2!/(q(q^2 + q + 1)|\text{A}\Gamma\text{L}(2, q)|^2)$ pairwise nonisomorphic designs having the same parameters as $\text{AG}_1(3, q)$.*

Moreover, the pointwise stabilizer of X in $\text{Aut}\mathbf{D}_\pi$ is transitive on the points outside of X , and $(\text{Aut}\mathbf{D}_\pi)_X$ induces $\text{A}\Gamma\text{L}(X) \cap \text{A}\Gamma\text{L}(X)^\pi$ on X .

Proof. This is the same as for **Proposition 3.2** and **Corollary 3.3**. \square

Proposition 5.2. *For any $q \geq 3$ there are at least two designs having the parameters of $\mathbf{A} = \text{AG}_1(3, q)$, not isomorphic to one another or to \mathbf{A} , such that the automorphism group of one of them fixes at least two points.*

Proof. The bound in the preceding proposition provides us with many nonisomorphic designs. We need to deal with the requirement concerning automorphism groups. By [11] we may assume that $q \geq 4$.

Let $\pi \in \text{Sym}(X)$ be a 4-cycle (x, x_1, x_2, x_3) , where x_1, x_2, x_3 are on a line not containing x . We will show that \mathbf{D}_π behaves as required.

Let $g \in \text{Aut}\mathbf{D}_\pi$. As in the proof of [Proposition 3.5](#), g fixes X and induces a collineation \bar{g} of the subspace X of \mathbf{A} . By [Proposition 5.1](#), $\pi\bar{g} = h\pi$ with $\bar{g}, h \in \text{AGL}(X)$. As before, $\bar{g}^{-1}h = \pi\bar{g}\pi^{-1}$ is a collineation of X that fixes at least $q^2 - 2 \cdot 4 > q$ points as $q \geq 4$. Then $\bar{g} = h$ and $\pi\bar{g} = \pi$. Since the collineation \bar{g} commutes with π it fixes $\{x, x_1, x_2, x_3\}$ and hence also x , and so is the identity on the support of π . Thus, $\text{Aut}\mathbf{D}_\pi$ is the identity on that support. \square

6. Steiner quadruple systems

We have avoided $\text{AG}(d, 2)$ in the preceding two sections. Here we briefly comment about those spaces in the context of 3- $(v, 4, 1)$ -designs (Steiner quadruple systems), outlining a proof of the following result in [\[13\]](#).

Theorem 6.1. *If G is a finite group then there are infinitely many integers v such that there is a 3- $(v, 4, 1)$ -design \mathbf{D} for which $\text{Aut}\mathbf{D} \cong G$.*

Proof. Let $K = \mathbf{F}_2 \subset F = \mathbf{F}_{16}$ and Γ be as in Section 2, with θ a generator of F^* . Let V_F be a vector space over F with basis v_1, \dots, v_n , viewed as a K -space V . This time we modify the 3-design $\text{AG}_2(V)$ of points and (affine) planes of V . We use nonisomorphic designs Δ_1, Δ_2 having the parameters of $\text{AG}_2(4, 2)$ but not isomorphic to that design, and such that $\text{Aut}\Delta_1 = 1$ [\[10\]](#).

Once again our design \mathbf{D} has V as its set of points. Most blocks of \mathbf{D} are planes of \mathbf{A} , with exceptions involving the sets Fv , $0 \neq v \in V$, in Section 2(I, II), where now Fv is viewed as a 4-dimensional affine space. As before, the set of planes of $\text{AG}_2(Fv)$ or $\text{AG}_2(F(v_i + \theta v_j))$ is replaced by a copy of the set of blocks of Δ_1 or Δ_2 . This time, for each of these we require

(#") there are distinct blocks, each of which spans a 3-space of \mathbf{A} , such that the intersection of those 3-spaces is a plane.

Once again it is easy to check that this produces a design \mathbf{D} with the desired parameters for which $G \leq \text{Aut}\mathbf{D}$.

Distinct $x, y, z \in V$ determine a block xyz of \mathbf{D} and a plane $\langle x, y, z \rangle$ of \mathbf{A} . For distinct x, y, z and $w \notin xyz$, instead of (2.3) we use $\langle w|x, y, z \rangle = \bigcup \{abc \mid a \in wxy - \{w\}, b \in wxz - \{w\}, c \in wyz - \{w\}, \text{ with } a, b, c \text{ distinct and not all in } \{x, y, z\}\}$.

As before, all planes of \mathbf{A} can be recovered from \mathbf{D} , this time using various sets $\langle w|x, y, z \rangle$. Also the sets in (I) and (II) can be recovered, as can F , and the argument at the end of Section 4 goes through as before. \square

7. Concluding remarks

Remark 7.1. When considering possible consequences of this paper it became clear that additional properties of our designs should also be mentioned.

- (1) Additional properties of the design \mathbf{D} in [Theorem 1.1\(i\)](#).
 - (a) PG(3, q)-connectedness. The following graph is connected: the vertices are the subspaces of \mathbf{D} isomorphic to $\text{PG}_1(3, q)$, with two joined when they meet.
 - (b) PG($n - 1, q$) generation. \mathbf{D} is generated by its subspaces isomorphic to $\text{PG}_1(n - 1, q)$.
 - (c) Every point of \mathbf{D} is in a subspace isomorphic to $\text{PG}_1(n - 1, q)$ (in fact, many of these).
 - (d) More than q^n points are moved by every nontrivial automorphism of \mathbf{D} .
- (2) Additional properties of the design \mathbf{D} in [Theorem 1.1\(ii\)](#).
 - (a) AG(3, q)-connectedness. The following graph is connected: the vertices are the subspaces of \mathbf{D} isomorphic to $\text{AG}_1(3, q)$, with two joined when they meet.
 - (b) AG(n, q) generation. \mathbf{D} is generated by its subspaces isomorphic to $\text{AG}_1(n, q)$.
 - (c) Every point of \mathbf{D} is in a subspace isomorphic to $\text{AG}_1(n, q)$ (in fact, many of these).
 - (d) More than q^n points are moved by every nontrivial automorphism of \mathbf{D} .
- (3) Additional properties of the design \mathbf{D} in [Theorem 6.1](#). This time versions of (2a) (using $\text{AG}_2(4, 2)$ -connectedness), (2b), (2c), (2d) (2e) hold.

These reflect the fact that the sets of points in (I) or (II) cover a tiny portion of the underlying projective or affine space: a subset of the points determined by F -linear combinations of at most two of the v_i . For (1a), it is easy to see that any point in \mathbf{D} lies in a 4-space of V that contains some point $K\beta \sum_i v_i$, $\beta \in F^*$, and meets each set in (I) or (II) in at most a point; by (2.1) this produces a subspace of \mathbf{D} isomorphic to $\text{PG}_1(3, q)$. Moreover, all $K\beta \sum_i v_i$ lie in $F(\sum_i v_i)$, which also produces a subspace of \mathbf{D} isomorphic to $\text{PG}_1(3, q)$.

For (1b) we give examples of subspaces of V :

$$\langle v_1 + \theta^2 v_2, v_2 + \theta^2 v_3 + \theta^i v_4, \dots, v_{n-2} + \theta^2 v_{n-1} + \theta^i v_n, v_1 + v_2 + v_4 + v_5, \theta(v_1 + v_2 + v_4 + v_5) \rangle$$

for $2 < i < q^4 - 1$. Each of these misses all sets in (I) or (II), and hence determines a subspace of \mathbf{D} isomorphic to $\text{PG}_1(n - 1, q)$. These subspaces generate a subspace of \mathbf{D} containing the points $K(\theta^i - \theta^3)v_n$, $3 < i < q^4 - 1$, and hence also $\text{PG}_1(Fv_n)$. Now permute the subscripts to generate \mathbf{D} .

Part (1c) holds by using K -subspaces similar to the above ones. There are clearly projective spaces of larger dimension that are subdesigns of \mathbf{D} .

Part (1d) depends on the semiregularity of G on $\{v_1, \dots, v_n\}$. Use the points $K \sum_i \alpha_i v_i$ with $\alpha_1 = 1$ and $\alpha_i \in F - \{1\}$ for $i > 1$, where each $\alpha \in F - \{1\}$ occurs either for 0 or at least two basis vectors v_i . The lower bound q^n is easy to obtain but very poor.

Both (2) and (3) are handled as in (1).

Remark 7.2. In (II) we used the K -subspaces $F(v_i + \theta_r v_j)$. We could have used subspaces $F(v_i + \theta_r v_j)$, $r = 1, \dots, s$, for various θ_r , together with further nonisomorphic designs $\Delta_{2,r}$ (which are needed to distinguish among the $F(v_i + \theta_r v_j)$). All proofs go through without difficulty, as do the additional properties in the preceding remark.

Remark 7.3. Each of our designs has the same parameters as some $\text{PG}_1(V)$ or $\text{AG}_1(V)$. What is needed is a much better type of result, such as: *for each finite group G there is an integer $f(|G|)$ such that, if q is a prime power and if $v > f(|G|)$ satisfies the necessary conditions for the existence of a $2-(v, q+1, 1)$ -design, then there is such a design \mathbf{D} for which $\text{Aut}\mathbf{D} \cong G$.* When $q = 2$ this result is proved in a sequel to the present paper [6].

Acknowledgments

I am grateful to Jean Doyen for providing me with a clear description of Skolem's construction and for helpful comments concerning this research. I am also grateful to a referee for many helpful comments. This research was supported in part by a grant from the Simons Foundation.

References

- [1] L. Babai, BIBD's with given automorphism groups, (unpublished); see [3, p. 8].
- [2] L. Babai, On the minimum order of graphs with given group, *Can. Math. Bull.* 17 (1974) 467–470.
- [3] L. Babai, On the abstract group of automorphisms, in: *Combinatorics (Swansea, 1981)*, in: LMS Lecture Notes, vol. 52, Cambridge U. Press, Cambridge-New York, 1981, pp. 1–40.
- [4] F.N. Cole, L.D. Cummings, H.S. White, The complete enumeration of triad systems in 15 elements, *Proc. Natl. Acad. Sci.* 3 (1917) 197–199.
- [5] U. Dempwolff, W.M. Kantor, Distorting symmetric designs, *Des. Codes Cryptogr.* 48 (2008) 307–322.
- [6] J. Doyen, W.M. Kantor, Automorphism groups of Steiner triple systems. <http://arxiv.org/abs/1808.03615>.
- [7] R. Frucht, Herstellung von Graphen mit vorgegebener abstrakter Gruppe, *Compos. Math.* 6 (1938) 239–250.
- [8] D. Jungnickel, V.D. Tonchev, The number of designs with geometric parameters grows exponentially, *Des. Codes Cryptogr.* 55 (2010) 131–140.
- [9] W.M. Kantor, Automorphisms and isomorphisms of symmetric and affine designs, *J. Algebr. Comb.* 3 (1994) 307–338.
- [10] P. Kaski, P. Östergård, O. Pottonen, The Steiner quadruple systems of order 16, *J. Combin. Theory Ser. A* 113 (2006) 1764–1770.
- [11] C.C. Lindner, A. Rosa, On the existence of automorphism free Steiner triple systems, *J. Algebra* 34 (1975) 430–443.
- [12] P. Lorimer, A class of block designs having the same parameters as the design of points and lines in a projective 3-space, in: *Combinatorial Mathematics (Proc. Second Australian Conf. Univ. Melbourne, Melbourne, 1973)*, in: Lecture Notes in Math., vol. 403, Springer, Berlin, 1974, pp. 73–78.
- [13] E. Mendelsohn, On the groups of automorphisms of Steiner triple and quadruple systems, *J. Combin. Theory Ser. A* 25 (1978) 97–104.
- [14] S.S. Shrikhande, On the nonexistence of affine resolvable balanced incomplete block designs, *Sankhyā* 11 (1951) 185–186.
- [15] E. Witt, Über Steinersche Systeme, *Abh. Math. Sem. Hamburg* 12 (1938) 265–275.