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1. Introduction

It was observed by Erdős [12] in 1945 that the lemma of Littlewood and Offord [32] on small ball probabilities
of weighted sums of Bernoulli random variables actually follows from Sperner’s theorem [58] on the maximal size of
antichains in the Boolean lattice. Subsequently Stanley [60] and Proctor [51] used similar ideas to attack more difficult
problems; a very nice review of the key ideas can be found in [28]. The goal of this paper is to further develop the
core idea of relating properties of posets to the ‘‘distributional spread’’ of weighted sums of independent, integer-valued
random variables. We do this in two steps. First, we elucidate a natural link, which does not seem to have been explicitly
observed in the literature, between the strong Sperner property of posets and its behavior for product posets on the one
hand, and majorization inequalities on the other. Second, we follow a classical approach, similar to that used in our earlier
papers [46,63,64], to demonstrate new Rényi entropy inequalities for sums of independent random variables using the
majorization inequalities. The entropy inequalities are of interest in information theory and probability, and were our
original motivation for this work—they are discussed at length in Section 2.

In order to state our main results, we need to develop some terminology. For a non-negative function f : Z → R+

over the integers, the support Supp(f ) is defined by {x ∈ Z : f (x) > 0}. We identify sets with their indicator functions;
thus, for example, f = 0.4{0, 3} + 0.2{2} means f (0) = f (3) = 0.4, f (2) = 0.2, and f (x) = 0 for x ∈ Z \ {0, 2, 3}.

✩ Some portions of this paper were presented by the authors at the IEEE International Symposia on Information Theory in 2014 and 2015 (Wang
et al., 2014; Woo and Madiman, 2015).
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Definition 1.1. Suppose f : Z → R+ is finitely supported, with |Supp(f )| = n + 1. Then we may write Supp(f ) =

{x0, . . . , xn} with x0 < · · · < xn, and we may represent f in the form

f =

n∑
r=0

ar{xr},

where ai > 0 for each i ∈ {0, . . . , n}. Given the non-negative function f , we define f # by

f # :=

n∑
r=0

ar{r}.

Thus, f # is supported on {0, . . . , n} and it takes the same functional values as f . If we consider the graph, we may
think of f # as a ‘‘squeezed rearrangement’’ of f , where we preserve the order of the function values but eliminate gaps
in the support.

Definition 1.2. We say f is #-log-concave if f # is log-concave, i.e., f #(i)2 ≥ f #(i − 1)f #(i + 1) for any i ∈ Z. We say
that a random variable X taking values in the integers is #-log-concave if its probability mass function is #-log-concave.
Given a random variable X with probability mass function f , we write X# for a random variable with probability mass
function f #.

In the terminology of Definition 1.1, since ar = 0 for r ∈ Z \ {0, . . . , n}, f is #-log-concave if and only if a2r ≥ ar−1ar+1.
We also need the classical notion of majorization. We use f [i] to denote the ith largest value of f , allowing for the

possibility of multiple ties. For example, f [i]
= f [i+1] when the ith largest value appears at two different locations.

Definition 1.3. Consider two finitely supported functions f and g from Z to R+, and assume |Supp(f )| = |Supp(g)| = n+1.
We say f is majorized by g (and write f ≺ g) if

k∑
i=1

f [i]
≤

k∑
i=1

g [i] for all k = 1, . . . , n, (1)

and
n+1∑
i=1

f [i]
=

n+1∑
i=1

g [i]. (2)

For random variables X and Y with probability mass functions f and g respectively, we write X ≺ Y if f ≺ g .

Our first main theorem is a majorization inequality for convolutions that holds under a log-concavity condition. Recall
that, given independent random variables X, Y with probability mass functions f , g , the sum X + Y has the probability
mass function f ⋆ g , where ⋆ denotes convolution, i.e., f ⋆ g(k) =

∑
i∈Z f (i)g(k − i) for each k ∈ Z.

Theorem 1.4. Let N be a finite number. If X1, . . . , XN are independent and #-log-concave over Z, then

X1 + · · · + XN ≺ X#
1 + · · · + X#

N . (3)

The proof of Theorem 1.4 is based on the strong Sperner property of the product of weighted chain posets—Section 3
summarizes the necessary background on poset theory, and the proof of the theorem is detailed in Section 4. We mention
in passing that although we focus on Z-valued random variables with finite support in this paper, Theorem 1.4 has an
extension to the case where the random variables have infinite support using a similar procedure to that in [46,64,66].

Let us discuss a pleasing application of Theorem 1.4 to proving a key ingredient in rearrangement inequalities on the
integers proved by Gabriel [13] (generalizing a result of Hardy and Littlewood [17]) and popularized in the book by Hardy,
Littlewood and Pólya [18]. For a finite set A in Z, note that A#

= {0, 1, . . . , |A| − 1}; here, as before, we identify the sets
A and A# with their indicator functions.

Corollary 1.5. If A1, A2, . . . , AN are finite sets (or indicator functions) in Z, then

A1 ⋆ A2 ⋆ · · · ⋆ AN ≺ A#
1 ⋆ A#

2 ⋆ · · · ⋆ A#
N .

To see how Corollary 1.5 follows from Theorem 1.4, suppose random variables X1, X2, . . . , XN are uniformly distributed
on the sets A1, A2, . . . , AN respectively. By applying Theorem 1.4 and multiplying by the appropriate cardinalities (to
convert uniform probability mass functions to indicator functions), the desired result follows.

We note that a version of Gabriel’s inequality was, in fact, extended to the prime cyclic groups Z
/
pZ by Lev [29]. In

our companion paper [46], we develop a further generalization of such rearrangement inequalities (see [46, Theorem 6.2])
in the prime cyclic groups, with a crucial step in our proofs being the leveraging of Lev’s set majorization lemma
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(see [29, Theorem 1] for the full statement). The results of Gabriel [13], Lev [29] and the authors [46] for general non-
negative functions rather than indicator functions of sets require additional assumptions because one has to take into
account the ‘‘shape’’ of the convolved functions. It is a pleasant feature of the statement and proof above that it does not
require such assumptions.

Our second theorem is related to a beautiful and well known result of Sárkőzy and Szemerédi [56] related to what they
called the Erdős–Moser problem (although the paper of Katona [25], which they cite a pre-publication version of, does
not discuss it in the published paper, and the problem posed by Erdős in 1947 in the American Mathematical Monthly with
solutions given by Moser [11] as well as several others, which is cited by several later papers on the Sárkőzy–Szemerédi
result, seems only tangentially related). In any case, the ‘‘Erdős–Moser problem’’ is the following: Given N i.i.d. Bernoulli
random variables Y1, . . . , YN , estimate the maximal probability of independent weighted sums over distinct weights:

sup
k∈Z

sup
0<a1 ̸=···̸=aN

P (a1Y1 + a2Y2 + · · · + aNYN = k) .

Sárkőzy and Szemerédi [56] asserted that Erdős and Moser had shown that the maximal probability is of order
( logN

N

)3/2
and had conjectured that the logarithmic term could be removed; they proved this conjecture, thus showing that
the maximal probability is of order N−3/2. However, identification of an extremal set of weights remained open until
Stanley [60] used tools from algebraic geometry to show that (a1, a2, . . . , aN ) = (1, 2, . . . ,N) is extremal. A more
elementary algebraic proof was soon after given by Proctor [51]. Much more recently, Nguyen [49] not only observed
that the maximal probability is in fact [

√
24/π + o(1)]N−3/2, but he also showed a stability result around the extremal

configuration.
With this background, we are ready to state our second main result.

Theorem 1.6. Assume that 0 < a1 < a2 < · · · < aN and 1 ≤ mN ≤ mN−1 ≤ · · · ≤ m1 are all integers. If Y1, . . . , YN are
independent random variables with Yi having the Binomial

(
mi,

1
2

)
distribution for each i, then

a1Y1 + a2Y2 + · · · + aNYN ≺ Y1 + 2Y2 + · · · + NYN . (4)

The proof of Theorem 1.6 is based on the strong Sperner property of some products of posets, and is detailed in
Section 5.

As an application of Theorem 1.6, we can go beyond the Bernoulli assumption in the prior studies of [56,60] discussed
above, and identify the extremal weights for the wider class of binomially distributed random variables.

Corollary 1.7. Let 0 < a1 ̸= · · · ̸= aN . Let Y1, . . . , YN be i.i.d. random variables with the Binomial
(
m, 1

2

)
distribution. Then

P (a1Y1 + a2Y2 + · · · + aNYN = k) ≤ P
(
Y1 + 2Y2 + · · · + NYN =

⌊
mN(N + 1)

4

⌋)
.

To see how Corollary 1.7 follows from Theorem 1.6, observe that since Yi are i.i.d. in the former, we may assume that
the ai are ordered. Then the conclusion follows from Theorem 1.6 by focusing on the largest atom of both distributions,
and recognizing that the largest atom of Y1 + 2Y2 + · · · + NYN is achieved at the midpoint of the range because its
distribution is symmetric and unimodal (this latter fact is confirmed by Lemma 5.3, which we discuss later). Of course,
Theorem 1.6 can be applied without an identically distributed assumption, but we make this assumption in Corollary 1.7
for simplicity of statement.

This paper is organized as follows. Our original motivation for pursuing this work came from a search for Rényi entropy
power inequalities for integer-valued random variables, which is a problem of significant interest in information theory.
We explain this motivation and describe how our main results may be applied to obtain new entropy power inequalities
in Section 2. The rest of the paper focuses on the proofs of our main results—Section 3 recalls the necessary background
on Sperner theory, and the proofs of the two main theorems are detailed in Sections 4 and 5.

2. Applications to Rényi entropy inequalities

2.1. Background on entropy power inequality

We first define the one-parameter family of Rényi entropies for a probability mass function on the integers (these can
be defined on more general spaces by using a reference measure other than counting measure, but we do not need the
more general notion here).

Definition 2.1. Let X be an integer-valued random variable with probability mass function f . The Rényi entropy of order
α ∈ (0, 1) ∪ (1, +∞) is defined by

Hα(X) =
1

1 − α
log

(∑
i∈Z

f (i)α
)

.
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For limiting cases of α, define

H0(X) = log |supp(f )|,

H1(X) =

∑
i∈Z

−f (i) log f (i),

H∞(X) = − log sup
i∈Z

f (i).

The three special cases are defined in a manner consistent with taking limits of Hα(X) for α ∈ (0, 1) ∪ (1, +∞). Thus
the Rényi entropy of order α ∈ [0,∞] is well-defined. In particular, H1(·) is simply the Shannon entropy H(·).

Entropy inequalities (even just for Shannon entropy) are powerful tools that have found use in virtually all parts of
mathematics. For example, just within discrete mathematics, they have been used to obtain bounds for enumeration
problems (see, e.g., [22,45,53]), to prove sumset inequalities in additive combinatorics (see, e.g., [40,41]), and to study
probabilistic models of discrete phenomena (e.g., independent sets [24], card shuffles [48]), colorings [50]). It is also
intrinsically interesting to develop an additive combinatorics of probability measures that treats measures rather than
sets as the basic objects of study and uses entropy to measure their ‘‘size’’ [1,6,7,19,27,38,39,54,62].

Among various entropy inequalities, the so-called ‘‘entropy power inequality’’ in Euclidean spaces has been very
successfully applied to prove coding theorems or to determine channel capacities for communication problems involving
Gaussian noise in Information Theory (see, e.g., [5,65]). The entropy power inequality also plays an important role in
Probability Theory (see, e.g., [21,33]) and Convex Geometry (see, e.g., [9,14,43]). The entropy power inequality can be
formulated in two different ways. Firstly, the original formulation, which was suggested by Shannon [57] and proved by
Stam [59], is the following. For independent random variables X and Y in Rd,

e
2
d h(X+Y )

≥ e
2
d h(X) + e

2
d h(Y ),

where h(X) represents the differential entropy of X . Formally, if X has a density function f in Rd, then h(X) =

−
∫
Rd f (x) log f (x)dx. The inequality shows the superadditivity of the ‘‘entropy power’’ with respect to the sum of two

independent random variables. Secondly, an equivalent sharp formulation (see, e.g., [63] for discussion) states that

h(X + Y ) ≥ h(Z∗

X + Z∗

Y ),

where Z∗

X and Z∗

Y are two independent Gaussian distributions with h(X) = h(Z∗

X ) and h(Y ) = h(Z∗

Y ).
The entropy power inequality stated above focuses on the continuous setting of Rd. It has been extensively studied and

many refinements exist (see, e.g., [2,35–37,44]). On the other hand, we only have a limited understanding of analogues
of the entropy power inequality on discrete domains such as the integers or cyclic groups.

One of the main difficulties is that useful analytic tools in the continuous domain cannot be naturally translated into
the discrete domain. For example, one can derive the entropy power inequality in Rd from the sharp form of Young’s
inequality for convolution developed by Beckner [4], as observed by Lieb [31], or using inequalities for Fisher information,
which is defined using derivatives of the probability density function, as done by Stam [59]. Unfortunately, a non-trivial
sharp Young’s inequality cannot be achieved in the discrete setting. It is also not obvious what the right definition of Fisher
information should be for the discrete setting because discrete derivatives do not satisfy the chain rule (see, e.g., [3,26,34]
for possible definitions of discrete Fisher informations). Owing to the difficulty of fitting such approaches into a discrete
setting, a general and sharp analogue of the entropy power inequality on the integers has not yet been established.

Nevertheless, it is a natural and interesting question to find a fully satisfactory entropy power inequality on the
integers—earlier attempts in this direction include [16,23,64,67]. In our companion paper [46], we established a lower
bound on the entropy of sums in prime cyclic groups (including the integers) based on rearrangement inequalities and
functional ordering by majorization where the rearrangement of a function f is achieved by shuffling (permuting) the
domain of f . While details may be found in [46], the goal of these rearrangement inequalities is to identify optimal
permutations that maximize or minimize a sum of pairwise products.

In this paper, we focus on the integer domain or the integer lattice domain. We continue to leverage the idea of
majorization used in our companion paper [46]. However, instead of establishing rearrangement inequalities, we take a
different path to establish the lower bound inequality of the entropy of sums in integers. Our approach is to establish and
utilize the similarity between the strong Sperner property of posets (the origin of this notion lies, of course, in Sperner’s
theorem [58], but the way we use this notion is inspired by Erdős [12] as described in Section 1) and functional ordering
by majorization.

2.2. Two entropy inequalities

A key application of Theorem 1.4 (and also Theorem 1.6) lies in establishing a lower bound on the Rényi entropy
of convolutions. As the main tool in translating majorization results to entropy inequalities, we use the following basic
lemma.
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Lemma 2.2 ([47, Proposition 3-C.1]). Assume that f and g are finitely supported non-negative functions in Z and f ≺ g. For
any convex function Φ : R → R,∑

i∈Z

Φ (f (i)) ≤

∑
i∈Z

Φ (g(i)) .

We note that by choosing a convex function Φ(x) = −xα for α ∈ (0, 1), Φ(x) = x log x for α = 1, and Φ(x) = xα for
α ∈ (1, +∞), and by taking limits when α ∈ {0,∞}, inequalities for Rényi entropies of all orders follow from Lemma 2.2
whenever we have a probability mass function majorized by another. In particular, our two main theorems combined
with Lemma 2.2 yield the following propositions.

Proposition 2.3. If X1, . . . , XN are independent and #-log-concave over Z, then

Hα (X1 + · · · + XN) ≥ Hα

(
X#
1 + · · · + X#

N

)
, (5)

for α ∈ [0,∞].

Rényi entropy inequalities such as this (and others of similar form in our companion paper [46]) have already begun
finding utility (see, e.g., [42,68]).

Proposition 2.4. Let 0 < a1 < · · · < aN . If Yi’s are independent random variables following Binomial
(
mi,

1
2

)
for

1 ≤ mN ≤ mN−1 ≤ · · · ≤ m1, then

Hα (a1Y1 + a2Y2 + · · · + aNYN) ≥ Hα (Y1 + 2Y2 + · · · + NYN) , (6)

for α ∈ [0,∞].

Nguyen [49] observed that the optimal solution of the Erdős–Moser problem (for Bernoulli Yi) minimizes the variance
of a1Y1 + a2Y2 + · · · + aNYN among all choices of distinct positive weights, i.e., for 0 < a1 ̸= · · · ̸= aN ,

Var (Y1 + 2Y2 + · · · + NYN) ≤ Var (a1Y1 + a2Y2 + · · · + aNYN) .

Proposition 2.4 implies that the optimal solution of the Erdős–Moser problem also minimizes the Rényi entropy for any
order α ∈ [0, +∞] (and even for the more general binomial setting).

2.3. Inequalities for uniform distributions on subsets of Zd

In [67], we proved a discrete entropy power inequality for uniform distributions over finite subsets of the integers Z.
In the following lemma, we extend [67, Theorem II.2] from the α = 1 case to any Rényi entropy of order α ≥ 1.

Lemma 2.5. If X and Y are independent and uniformly distributed over finite sets A ⊂ Z and B ⊂ Z respectively,

Nα(X + Y ) + 1 ≥ Nα(X) + Nα(Y ), (7)

where Nα(X) = e(1+α)Hα (X) for α ≥ 1.

Proof. Since the α = 1 case is proved in [67], we assume that α > 1. Since any uniform distribution over a finite set is
#-log-concave, Proposition 2.3 implies that

Hα(X + Y ) ≥ Hα(X#
+ Y#).

Since Nα(X) = Nα(X#) and Nα(Y ) = Nα(Y#) hold trivially, it suffices for proving the inequality (7) to only consider the
case where A and B are sets of consecutive integers. Indeed, if we proved this special case, we would have

Nα(X + Y ) + 1 ≥ Nα(X#
+ Y#) + 1

≥ Nα(X#) + Nα(Y#)
= Nα(X) + Nα(Y ).

which is the desired statement.
What remains is to prove (7) for uniform distributions on finite sets of consecutive integers. Let |A| = n and |B| = m.

Since the roles of X and Y are symmetric, we may assume that n ≥ m. While Hα(X) = log n and Hα(Y ) = logm due to
uniformity, a direct calculation easily shows that

Hα(X + Y ) =
1

1 − α
log

[
m−1∑
i=1

iα

mαnα
+ (n − m + 1)

1
nα

]
. (8)
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First, observe that if m = 1, then Hα(X + Y ) = Hα(X) and Hα(Y ) = 0. Then Nα(X + Y )+ 1 = Nα(X)+ 1 = Nα(X)+Nα(Y ),
and hence the inequality (7) is sharp. Next, consider the expression inside the logarithm in the formula (8):

m−1∑
i=1

iα

mαnα
+ (n − m + 1)

1
nα

= n−αm−α

m−1∑
i=1

iα + n1−α
− mn−α

+ n−α

≤ n−αm−α

∫ m

1
xαdx + n1−α

− mn−α
+ n−α

= n1−α

[
1 +

1
n

−
α

1 + α

m
n

−
1

1 + α

m−α

n

]
.

Plugging this bound into (8), setting k = m/n ∈ [0, 1] and writing

ξ (k, n) = 1 +
1
n

−
α

1 + α
k −

1
1 + α

k−αn−(1+α),

we obtain the following lower bound for the Rényi entropy of X + Y :

Hα(X + Y ) ≥
1

1 − α

[
log n1−α

+ log ξ (k, n)
]
.

Then

Nα(X + Y ) = e(1+α)Hα (X+Y )
≥ e(1+α) log ne

1+α
1−α

log ξ (k,n)
=: ν(k, n).

Since the m = 1 case is already proved, if the following inequality is true, we are done.

ν(k, n) = e(1+α) log ne
1+α
1−α

log ξ (k,n)
≥ e(1+α) log n

+ e(1+α) log kn
= Nα(X) + Nα(Y ).

By rearranging terms, the above inequality is equivalent to

ξ (k, n) ≤
(
1 + k1+α

) 1−α
1+α .

When k =
2
n , we can directly show the following inequality is true by elementary calculation:

ξ

(
2
n
, n
)

= 1 +
1 − α

1 + α

1
n

−
2−α

1 + α

1
n

≤
(
1 + 21+αn−(1+α)) 1−α

1+α .

Furthermore, it is easy to show that for k ∈ [0, 1] and α > 1(
1 + k1+α

) 1−α
1+α ≥ 1 −

(
1 − 2

1−α
1+α

)
k.

Hence it suffices to show

ξ (k, n) ≤ 1 −

(
1 − 2

1−α
1+α

)
k

for all n ≥ 2 and k ≥
3
n . Let φ(k, n) := 1 −

(
1 − 2

1−α
1+α

)
k − ξ (k, n). For a fixed n ≥ 2,

∂φ

∂k
= −1 + 2

1−α
1+α +

α

1 + α

(
1 − k−(1+α)n−(1+α)) .

Then ∂φ

∂k = 0 at

k∗
=

1
n
α

1
1+α

[
−1 + 2

1−α
1+α + 2

1−α
1+α α

]−
1

1+α
,

and ∂φ

∂k > 0 for k > k∗ and ∂φ

∂k < 0 for k < k∗. Finally, by elementary calculation, we can easily show that

1
n

≤ k∗ <
2
n
.

Thus, φ(k, n) is minimized at k =
3
n for k ≥

3
n . By elementary calculation, we can also confirm that φ

( 3
n , n

)
≥ 0, which

completes the proof.
We note that when k =

2
n , φ

( 2
n , n

)
< 0 for some n; this is why φ(k, n) ≥ 0 is only proved when k ≥

3
n rather than

k ≥
2
n . □

We remark that the +1 term on the left side of inequality (7) is only necessary for point masses (i.e., distributions
supported on one point). In other words, if X and Y are independent and uniformly distributed over finite sets of
cardinality at least 2, then we in fact have

Nα(X + Y ) ≥ Nα(X) + Nα(Y ). (9)
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However, we highlight the formulation with +1 both because of the similarity with the Cauchy–Davenport Theorem [55],
and because the discrete entropy power inequality over the integers in Lemma 2.5 can be extended to the integer
lattice Zd.

Theorem 2.6. If X and Y are uniform distributions over finite sets A and B in Zd,

Nα(X + Y ) + 1 ≥ Nα(X) + Nα(Y ),

where Nα(X) = e(1+α)Hα (X) for α ≥ 1.

Proof. Consider a point z = (z1, . . . , zd) in Zd where zi ≥ 0 for each i. We regard z as a q-ary representation of an integer
value, where q is large and chosen later. In other words, the point z ∈ Zd can be mapped to a unique integer value in Z:

z = (z1, . . . , zd) ↦→ z1qd−1
+ z2qd−2

+ · · · + zd ∈ Z. (10)

For the set A in Zd, without loss of generality, we can shift A so that each point contains only non-negative components.
Let A′ be the set in Z equivalent to A via the q-ary representation (10). Similarly we can find the set B′ in Z equivalent to
B in Zd. We choose q large enough so that A ⋆ B in Zd maps to A′ ⋆ B′ in Z via the q-ary representation.

Let X ′ and Y ′ be uniform distributions on A′ and B′ in Z, respectively. This implies

Hα(X + Y ) = Hα(X ′
+ Y ′) ≥ Hα(X ′#

+ Y ′#).

Then the conclusion follows by applying Lemma 2.5 and from the fact that Hα(X) = Hα(X ′) and Hα(Y ) = Hα(Y ′). □

Theorem 2.6 uses the exponent c = 1 + α; Rényi entropy power inequalities with the same exponent in R were
recently explored by Bobkov and Marsiglietti [8] (although it was shown soon after by Li [30] that this exponent can be
improved). In fact, these authors proved similar inequalities in Rd, with the exponent 1+α

d , mimicking the 2/d exponent
in the original Shannon–Stam entropy power inequality.

The inequality we derived in Theorem 2.6 is independent of the dimensional factor d, and one might wonder whether
an entropy power inequality in the integer lattice Zd that respects the dimension exists. Even for the subclass of uniform
distributions and for α = 1, however, one can easily construct counterexamples showing that an exponent of 2/d fails in
general in Zd. We remark that in order to develop a discrete Brunn–Minkowski inequality in the integer lattice, Gardner
and Gronchi [15] imposed a natural and appropriate dimensional assumption, the main point of which is that at least two
points should be assigned to each axis direction. However, the dimensional assumption from [15] is still not sufficient to
obtain an improvement of Theorem 2.6 with exponent 1+α

d (as can be checked by counterexamples). Hence we leave the
discovery of appropriate dimensional entropy inequalities in the integer lattice as an open question for future works.

3. Background on Sperner theory

In this section, we summarize the basic elements of Sperner Theory as needed for our proofs. A comprehensive
summary can be found in books by Stanley [61] and Engel [10].

3.1. Partially ordered set (poset)

A set S with a binary relation ≼ is said to be partially ordered if the relation ≼ satisfies the reflexive, anti-symmetric,
and transitive properties, i.e., for any a, b, c ∈ S,

• a ≼ a (reflexive),
• if a ≼ b and b ≼ a, then a = a (antisymmetric),
• if a ≼ b and b ≼ c , then a ≼ c (transitive).

We emphasize that we use the symbol ≺ to represent majorization, and this has no relation to the partial order ⪯. If S
is partially ordered, we call S a partially ordered set, or a poset. For a, b ∈ S, a and b are comparable if a ≼ b or b ≼ a.
Otherwise, a and b are incomparable. A chain poset is a poset in which any two elements are comparable. A subset C of
S is called a chain of S if C is a chain poset as a sub-poset of S. We define the length of a chain C to be the number of
elements in C .

A subset A of S is called an antichain if any two distinct elements of A are incomparable. A subset K of S is called a
k-family of S if it is a union of at most k antichains. We say a poset S is weighted if each element has a positive weight. The
weight function w : S → R+ defines the weight of each element in S. We use a triple (S, w,≼) to represent the weighted
poset, but we sometimes omit to mention the weight function w explicitly when we describe a weighted poset. If the
poset has no weight function (or unweighted), we implicitly assume that each weight of an element is 1.

A chain C of S is called maximal if there is no larger chain C ′ such that C ⊆ C ′. An element s in S is called minimal if
t ⪯ s implies s = t in S. The element s of S is said to cover the element t of S if t ⪯ s and if t ⪯ s′ ⪯ s implies s = s′
when s′ ̸= t . If every maximal chain of the poset S has length n + 1, we call S a graded poset with rank n. In such a case,
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we can define a unique rank function ρ : S → {0, 1, . . . , n} of S such that ρ(a) = 0 if a is a minimal element of S, and
ρ(b) = ρ(a) + 1 if b covers a. Then the rank of a is assigned to be ρ(a).

Given a weighted and ranked poset (S, ⪯, w), the sum of all weights at the same rank r ∈ {0, 1, . . . , n} is called the
weighted Whitney number of rank r . Similarly, if the poset is unweighted, the Whitney number of rank r is the total number
of elements at the rank r . We say that weighted Whitney numbers are log-concave if the sequence of weighted Whitney
numbers is log-concave in an increasing order of the rank. We say that weighted Whitney numbers are rank-symmetric
if the sequence of weighted Whitney numbers is symmetric in an increasing order of the rank. Similarly, we say that
weighted Whitney numbers are rank-unimodal if the sequence of weighted Whitney numbers is unimodal in an increasing
order of the rank.

The weighted and ranked poset (S, ⪯, w) has the k-Sperner property if the maximum total weight among all k-families
in S equals the largest sum of k weighted Whitney numbers. The weighted and ranked poset (S, ⪯, w) is strongly Sperner
(or has the strong Sperner property) if it is k-Sperner for all k = 1, 2, . . ..

The product of the posets S and T is defined to be the Cartesian product S×T , equipped with the partial order defined
by the requirement that (s, t) ⪯ (s′, t ′) in S × T if and only if s ⪯ s′ in S and t ⪯ t ′ in T . If S and T are weighted with
weight functions wS and wT , then the weight function wS×T of S × T is defined to be wS×T (s, t) = wS(s)wT (t).

We will also need later the notion of isomorphism between two posets. We say that two posets (Q ,≼) and (R,≼) are
isomorphic if there exists a bijective map φ : Q → R such that q1 ≼ q2 iff φ(q1) ≼ φ(q2) for q1, q2 ∈ Q and φ(q1), φ(q2) ∈ R.

3.2. Normalized matching property

Consider a ranked and weighted poset (S, w,≼) with the rank function ρ. For any subset A of S, we define the upper
shade of A, denoted ∇(A), as the set of all elements covering A. If a′

∈ ∇(A), then there exists an element a ∈ A such that
a ⪯ a′ and ρ(a′) = ρ(a) + 1.

Let Nr be the collection of all elements at rank r . A ranked and weighted poset (S, w,≼) is called normal if for any
antichain A subject to a subset of elements of rank r , the weight sum ratio of A with respect to the weighted Whitney
number of rank r is less than or equal to the weight sum ratio of the shade of A at rank r+1 with respect to the weighted
Whitney number of rank r + 1, i.e.,

w(A)
w(Nr )

≤
w(∇(A))
w(Nr+1)

(11)

where A ⊆ Nr is an antichain, w(A) is the sum of all weights of elements in A, and w(Nr ) is the weighted Whitney
number of rank r . Hsieh and Kleitman [20] proved that the normalized matching property is preserved under the product
of normal posets under the assumption of log-concave weighted Whitney numbers.

Proposition 3.1 (See [10, Theorem 4.6.2] or [20]). A product of two normal posets with log-concave weighted Whitney numbers
is again a normal poset with log-concave weighted Whitney numbers.

Proposition 3.2 (See [10, Corollary 4.5.3]). A normal poset is strongly Sperner.

Applying Propositions 3.1 and 3.2 to chain posets, we have the following corollary.

Corollary 3.3. For each i ∈ {1, . . . ,N}, assume that S(mi) has log-concave weighted Whitney numbers. Then the product of
chain posets S(m1, . . . ,mN ) is strongly Sperner with log-concave weighted Whitney numbers.

Proof. Since the weight sum ratio in (11) of any antichain for a chain poset is always 1, any weighted chain is normal.
Thus, the conclusion follows from Propositions 3.1 and 3.2. □

3.3. Strongly Sperner posets

Let N, n1, . . . , nN be fixed positive integers. A product of chain posets S(n1, . . . , nN ) can be defined to be a collection
of N-tuples of integers (a1, . . . , aN ) such that 0 ≤ ai ≤ ni for each i ∈ {1, . . . ,N}. The relation a = (a1, . . . , aN ) ≼ b =

(b1, . . . , bN ) iff ai ≤ bi for each i ∈ {1, . . . ,N}. Fig. 1 shows an example of the product poset S(2, 3).
Next, we introduce the poset M(m), a collection of m-tuples (a1, . . . , am) such that 0 = a1 = · · · = ai < ai+1 <

· · · < am ≤ m with i ∈ {0, . . . ,m}. As noted, we allow one exceptional case i = 0. If i = 0, we mean a1 > 0, and so
0 < a1 < a2 < · · · < am ≤ m. The relation a = (a1, . . . , an) ≼ b = (b1, . . . , bm) holds iff ai ≤ bi for all i. The poset M(m)
that we have thus defined is graded, with the rank function given by ρ(a) =

∑m
i=1 ai.

Stanley [60] originally proved that M(m) is rank-symmetric, rank-unimodal, and strongly Sperner, by leveraging ideas
from algebraic geometry. Subsequently, Proctor [51] gave a more accessible proof just based on basic linear algebra.
Following conventional terminology, we say that a ranked poset is Peck if the poset is rank-symmetric, rank-unimodal,
and strongly Sperner. Fig. 2 shows an example of the poset M(5).

Lemma 3.4 (See [51,60]). The poset M(m) is a Peck poset.
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Fig. 1. Poset of S(2, 3).

Proctor, Saks, and Sturtevant [52] proved that the Peck property is invariant under the product of posets.

Lemma 3.5 (See [52, Theorem 3.2]). A product of Peck posets is again Peck, and hence strongly Sperner.

4. Proof of Theorem 1.4

We establish the link between a non-negative function and a weighted chain poset. Consider a #-log-concave function
f =

∑n
r=0 ar{xr}, where x0 < · · · < xn and a2r ≥ ar−1ar+1. Setting Sf := Supp(f ) = {x0, . . . , xn}, we observe that (Sf , f , ≤)

forms a ranked and weighted chain poset with the weight function f (xr ) = ar . Thus, we regard a non-negative function
with finite support as a weighted chain poset:

f ≡ (Sf , f ,≼),

where the relation ≼ is the same as the usual ≤. Since f is #-log-concave, weightedWhitney numbers of Sf are log-concave.
Similarly f # =

∑n
r=0 ar{r} forms a weighted chain poset Sf # = {0, . . . , n} with log-concave Whitney numbers. Based on

the construction, Sf is isomorphic to Sf # by mapping φ(xr ) = r so that f (xr ) = f #(φ(xr )), i.e., the isomorphism map φ can
be chosen to be the rank function of Sf .

Next, consider N non-negative functions f1, . . . , fN , all of which are #-log-concave.
Define F (x(1), . . . , x(N)) := f1(x(1)) · · · fN (x(N)). Similarly define F#(x(1), . . . , x(N)) := f #1 (x(1)) · · · f #N (x(N)). As shown above,
there exists an isomorphic map φi between Sfi and Sf #i for each i = 1, . . . ,N . Thus, we choose φ : Sf1 × · · · × SfN →

Sf #1 × · · · × Sf #N by

φ
(
x(1)r1 , . . . , x(N)

rN

)
=
(
φ1(x(1)r1 ), . . . , φN (x(N)

rN )
)
. (12)

Then Sf1 × · · · × SfN is isomorphic to Sf #1 × · · · × Sf #N by φ. i.e.(
Sf1 × · · · × SfN , F ,≼

)
≡

(
Sf #1 × · · · × Sf #N , F#,≼

)
,

where F
(
x(1)r1 , . . . , x(N)

rN

)
= F#

(
φ1(x

(1)
r1 ), . . . , φN (x

(N)
rN )
)
.

Lemma 4.1. Sf #1 × · · · × Sf #N forms a normal poset with log-concave weighted Whitney numbers.

Proof. Each S#fi is a chain, thus it is a normal poset with log-concave weights. Corollary 3.3 confirms that the product of
normal posets is again normal with log-concave weighted Whitney numbers. □

Next, we establish a link between a product of posets and a convolution of non-negative functions through an antichain.
We define a level set

L[x] :=
{(

x(1), . . . , x(N))
: x(1) + · · · + x(N)

= x, x(i) ∈ Sfi for i = 1, . . . ,N
}
.

Lemma 4.2. φ (L[x]) forms an antichain in Sf #1 × · · · × Sf #N .
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Fig. 2. Poset of M(5).

Proof. Note that φ in (12) is a bijective and order-preserving map. Thus, it suffices to consider elements in L[x]. Suppose
that there exist two distinct comparable elements x :=

(
x(1), . . . , x(N)

)
and y :=

(
y(1), . . . , y(N)

)
such that x, y ∈ L[x] and

x ≼ y. This implies x(i) ≤ y(i) for each i = 1, . . . ,N . Since x and y are distinct, there exists some j such that x(j) < y(j).
Hence

x(1) + · · · + x(N) < y(1) + · · · + y(N).

This contradicts the fact that both x and y are in L[x]. □

Since Sf #1 × · · · × Sf #N is strongly Sperner, majorization follows.
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Proposition 4.3. If f1, . . . , fN are #-log-concave probability mass functions,

f1 ⋆ · · · ⋆ fN ≺ f #1 ⋆ · · · ⋆ f #N .

Proof. Let fsum := f1 ⋆ · · · ⋆ fN and fopt := f #1 ⋆ · · · ⋆ f #N . We may write out the convolution fsum as

fsum(x) =

∑
(x(1),...,x(N))∈L[x]

f1(x(1)) · · · fN (x(N)).

The isomorphism ρ in (12) and Lemma 4.2 imply that fsum(x) can be regarded as a sum of weights of an antichain in
Sf #1 × · · · × Sf #N . Since Sf #1 × · · · × Sf #N is a normal poset by Lemma 4.1, Sf #1 × · · · × Sf #N is strongly Sperner. Therefore

k∑
i=1

f [i]
sum ≤

k∑
i=1

f [i]
opt,

where the left-hand side corresponds to the sum of k antichains and the right-hand side corresponds to the sum of k
largest Whitney numbers in Sf #1 × · · · × Sf #N . Since fsum and fopt are still probability mass functions,

M∑
i=1

f [i]
sum =

M∑
i=1

f [i]
opt = 1,

for some sufficiently large M > 0. Thus we have the desired majorization. □

To conclude this section, we note that Theorem 1.4 is simply a restatement of Proposition 4.3 using random variables
rather than their probability mass functions.

5. Proof of Theorem 1.6

Assume that 0 < a1 < · · · < aN . Let Xi,j for 1 ≤ i ≤ N and 1 ≤ j ≤ mi ≤ N be independent random variables following
Bernoulli

( 1
2

)
. From the assumption, 1 ≤ mN ≤ mN−1 ≤ · · · ≤ m1. Then, we can decompose each Yi as follows:

Y1 := X1,1 + · · · + X1,m1 ,

...
...

YN := XN,1 + · · · + XN,mN .

By the construction, Y1, . . . , YN are independent random variables, with Yi ∼ Binomial
(
mi,

1
2

)
and 1 ≤ mN ≤ mN−1 ≤

· · · ≤ m1. We denote by nj the number of defined Xi,j’s for each 1 ≤ j ≤ N . Let Zj :=
(
X1,j, . . . , Xmj,j

)
.

For each j, consider an element ij = (b1, . . . , bmj ) in M(mj). We encode bk = i > 0 for some k in ij iff Xi,j = 1. Otherwise,
bk = 0. For example, when mj = 5,

ij = (0, 0, 0, 2, 4) iff Zj =
(
X1,j = 0, X2,j = 1, X3,j = 0, X4,j = 1, X5,j = 0

)
.

Thus as described above, there exists a bijective link between an element ij in M(mj) and each realization of the
random vector Zj. Furthermore, we are able to construct another bijective map between an element (i1, . . . , iN ) in
M(m1) × · · · × M(mN ) and each realization of the random array (Z1, . . . , ZN ).

Let Lj(Zj) := a1X1,j + · · · + ajXmj,j for each 1 ≤ j ≤ N . Based on the construction, we see that

Ysum := a1Y1 + · · · + aNYN = L1(Z1) + · · · + LN (ZN ).

As in Section 4, we define the level set Lj[xj] in M(mj) as follows:

Lj[xj] :=
{
ij ∈ M(mj) : ij bijectively corresponds to Zj such that Lj(Zj) = xj

}
.

Lemma 5.1. Lj[xj] forms an antichain in M(mj).

Proof. Suppose that there exist two distinct elements ij and i′j in Lj[xj] such that ij ≼ i′j . Assume that ij and i′j correspond
to Zj and Z′

j , respectively. Since ij = (b1, . . . , bmj ) and i′j = (b′

1, . . . , b
′
mj
) are distinct, there exists some k > 0 such that

bk < b′

k. Since ai are positive and ordered, we must have 0 < abk < ab′
k
, which implies that

Lj(Zj) < Lj(Z′

j).

This contradicts the assumption that both ij and i′j are in Lj[xj], thus proving the desired statement. □
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More generally, we define a level set L[x] in M(m1) × · · · × M(mN ) as

L[x] := {(i1, . . . , iN ) ∈ M(m1) × · · · × M(mN ) : (i1, . . . , iN )
bijectively corresponds to (Z1, . . . , ZN ) such that L1(Z1) + · · · + LN (ZN ) = x}.

Following the same argument in Lemma 5.1, we see that L[x] forms an antichain. We omit the proof for simplicity.

Lemma 5.2. L[x] forms an antichain in M(m1) × · · · × M(mN ).

Next, we invoke Lemma 3.5, which says that a product of Peck posets is again Peck, together with Lemma 3.4, which
asserts that M(m) is Peck.

Lemma 5.3. M(m1) × · · · × M(mN ) is Peck, and thus strongly Sperner.

We note that |M(mj)| = 2mj , so |M(m1) × · · · × M(mN )| = 2m1+···+mN . Then,

P (Ysum = x) =
|L[x]|

2m1+···+mN
.

Before explaining the link between the strong Sperner property and majorization, it is necessary to identify the saturated
or extremal situation. Let

Yopt := Y1 + · · · + NYN ,

which corresponds to the coefficients a1 = 1, . . . , aN = N . Clearly we may write Yopt = R1(Z1) + · · · + RN (ZN ), where
Rj(Zj) := X1,j + · · · + mjXmj,j for each 1 ≤ j ≤ N . Then, as Stanley and Proctor explained in [51,60], the size of each
level set of Rj(Zj) has a bijective correspondence to a Whitney number of M(mj) by matching the rank to the value Rj(Zj).
Hence each level set of Yopt has a bijective correspondence to a Whitney number of M(m1) × · · · × M(mN ) by applying
the property of the product of posets. Therefore we confirm that Yopt is the extremal case.

Now it remains to establish majorization through the strong Sperner property of M(m1)× · · · ×M(mN ). Let Z0
+
be the

set of non-negative integers. Observe that(
2m1+···+mN

)
sup
C⊂Z0

+

∑
|C |=k

P (Ysum ∈ C) ≤
(
2m1+···+mN

)
sup
C⊂Z0

+

∑
|C |=k

P
(
Yopt ∈ C

)
, (13)

where the left-hand side corresponds to the sum of weights from k antichains in M(m1)×· · ·×M(mN ) and the right-hand
side exactly corresponds to the sum of k-largest Whitney numbers from M(m1) × · · · × M(mN ). We see that Eq. (13) is
confirming the condition (1). The condition (2) follows using the fact that the total sum of a probability mass function
equals 1. Thus we conclude that Ysum is majorized by Yopt, which completes the proof of Theorem 1.6.
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