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This work considers the scaling properties characterizing the hyperuniformity
diffraction; limit-periodic tilings; non-Pisot (or anti-hyperuniformity) of long-wavelength fluctuations in a broad class of
tilings; quasiperiodic tilings. one-dimensional substitution tilings. A simple argument is presented which
predicts the exponent o governing the scaling of Fourier intensities at small
wavenumbers, tilings with o > 0 being hyperuniform, and numerical
computations confirm that the predictions are accurate for quasiperiodic tilings,
tilings with singular continuous spectra and limit-periodic tilings. Quasiperiodic
or singular continuous cases can be constructed with « arbitrarily close to any
given value between —1 and 3. Limit-periodic tilings can be constructed with «
between —1 and 1 or with Fourier intensities that approach zero faster than any
power law.
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1. Introduction

Recent work has shown that spatial structures with density
fluctuations weaker at long wavelengths than those of a typical
random point set may have desirable physical properties, and
such structures are said to be hyperuniform (Torquato &
Stillinger, 2003). Crystals and quasicrystals are hyperuniform,
as are a variety of disordered systems, including certain
equilibrium structures, products of nonequilibrium self-
assembly protocols and fabricated metamaterials. [For exam-
ples, sce Man et al. (2013), Haberko & Scheffold (2013),
Dreyfus et al. (2015), Torquato et al. (2015), Hexner & Levine
(2015), Castro-Lopez et al. (2017), Torquato (2018).] One
approach to generating point sets with nontrivial spatial fluc-
tuations is to use substitution tilings as templates. Our aim in
this article is to characterize the degree of hyperuniformity in
such systems and thereby provide design principles for
creating hyperuniform (or anti-hyperuniform) point sets with
desired scaling properties.

5 # Substitution tilings are self-similar, space-filling tilings
. mﬁ“ generated by repeated application of a rule that replaces each
% ] of a finite set of tile types with scaled copies of some or all of
i wa the tiles in the set (Frank, 2008). We are interested in the
0542 . . . .
s properties of point sets formed by decorating each tile of the
10" 1 w1 same type in the same way. We consider here only one-
R dimensional (1D) tilings. Although generalization to higher
a dimensions would be of great interest, the 1D case already
OPEN ACCESS reveals important conceptual features.
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Substitution rules are known to produce a variety of
structures with qualitatively different types of structure factors
S(k). Some rules generate periodic or quasiperiodic tilings, in
which case S(k) consists of Bragg peaks on a reciprocal-space
lattice supported at sums and differences of a (small) set of
basis wavevectors, which in the quasiperiodic case form a
dense set. Others produce limit-periodic structures consisting
of Bragg peaks located on a different type of dense set
consisting of wavenumbers of the form tkyn/p™, where n, m
and p are positive integers (Godréche, 1989; Baake & Grimm,
2011, 2013). Still others produce structures for which S(k) is
singular at a dense set of points but does not consist of Bragg
peaks (Bombieri & Taylor, 1986; Godréche & Luck, 1992;
Baake et al., 2017). (A singular continuous spectrum has
support on some set of zero Lebesgue measure, but has no
finite weight at any single point.) We note in particular that a
detailed analysis of the spectrum of substitution tilings with
non-PV properties (defined below) reveals multifractal scaling
laws (Godréche & Luck, 1992). Finally, there are cases for
which S(k) is absolutely continuous (Baake & Grimm,
2012) or the nature of the spectrum has not been clearly
described.

In this article, we present a simple ansatz that predicts the
scaling properties relevant for assessing the hyperuniformity
(or anti-hyperuniformity) of 1D substitution tilings. We illus-
trate the validity of the ansatz via numerical computations for
a variety of example tilings that fall in different classes with
respect to hyperuniformity measures. We also delineate the
full range of behaviors that can be obtained using the substi-
tution construction method, including a novel class in which
the integrated Fourier intensity Z(k) decays faster than any
power as k approaches zero.

Section 2 reviews the definition of the scaling exponent «
associated with both Z(k) and the variance ¢?(R) in the
number of points covered by a randomly placed interval of
length 2R. We then review the classification of tilings based on
the value of a. Section 3 reviews the substitution method for
creating tilings, using the well known Fibonacci tiling as an
illustrative example. The substitution matrix M is defined and
straightforward results for tile densities are derived. Section 4
presents a heuristic discussion of the link between density
fluctuations in the tilings and the behaviors of S(k) and Z(k),
which leads to a prediction for «. The prediction is shown to be
accurate for example tilings of three qualitatively distinct
types (Torquato, 2018): strongly hyperuniform (class I),
weakly hyperuniform (class III) and anti-hyperuniform.
Section 5 shows, based on the heuristic theory, that the range
of possible values of « produced by 1D substitution rules is
[—1,3] and that this interval is densely filled. Section 6
considers substitutions that produce limit-periodic tilings.
Examples are presented of four distinct classes: logarithmic
hyperuniform (class II), weakly hyperuniform (class III), anti-
hyperuniform, and an anomalous class in which Z(k)
approaches zero faster than any power law. Finally, Section 7
provides a summary of the key results, including a table
showing which types of tilings can exhibit the various classes
of (anti-)hyperuniformity.

2. Classes of hyperuniformity

For systems having a structure factor S(k) that is a smooth
function of the wavenumber k, S(k) tends to zero as k tends to
zero (Torquato & Stillinger, 2003), typically scaling as a power
law:

S(k) ~ k°. ey

In 1D, a unified treatment of standard cases with smooth S(k)
and quasicrystals with dense but discontinuous S(k) is
obtained by defining « in terms of the scaling of the integrated
Fourier intensity:

k
Z(k) = 20fS(q) dg. 2

The factor of 2 is inserted for consistency with higher-
dimensional generalizations where g is treated as a radial
coordinate. In both cases, « may be defined by the relation
(Oguz et al., 2017)

Z(k) ~ k' as k — 0. 3)

Systems with « > 0 have long-wavelength spatial fluctuations
that are suppressed compared with Poisson point sets and are
said to be hyperuniform (Torquato & Stillinger, 2003).
Prototypical strongly hyperuniform systems (with «>1)
include crystals and quasicrystals. We refer to systems with
«® <0 as anti-hyperuniform (Torquato, 2018). Prototypical
examples of anti-hyperuniformity include systems at thermal
critical points.

An alternate measure of hyperuniformity is based on the
local number variance of particles within a spherical obser-
vation window of radius R (an interval of length 2R in the 1D
case), denoted by 6?(R). If 02(R) grows more slowly than the
window volume (proportional to R in 1D) in the large-R limit,
the system is hyperuniform. The scaling behavior of 02(R) is
closely related to the behavior of Z(k) for small k£ (Torquato &
Stillinger, 2003; Oguz et al, 2017). For a general point
configuration in 1D with a well-defined average number
density p, 02(R) can be expressed in terms of S(k) and the
Fourier transform fi(k; R) of a uniform density interval of
length 2R:

o]

1
o*(R) = 2Rp gy f S(k)ii(k; R)dk (4)
with
alk; R) = ZLEERJ , (5)

where p is the density. [See Torquato & Stillinger (2003) for
the generalization to higher Euclidean space dimensions.] One
can express the number variance alternatively in terms of the
integrated intensity (Oguz et al., 2017):

o*(R) = —2Rp ﬁ [ Z(k)

DAk R)

ak ©
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For any 1D system with a smooth or quasicrystalline
structure factor, the scaling of o%(R) for large R is determined
by « as follows (Torquato & Stillinger, 2003; Zachary &
Torquato, 2009; Torquato, 2018):

R, a>1(class I)
InR, a=1(class II) . N
R, & <1 (class III)

o*(R) ~

For hyperuniform systems, we have « >0, and the distinct
behaviors of 6?(R) define the three classes, which we refer to
as strongly hyperuniform (class I), logarithmic hyperuniform
(class IT) and weakly hyperuniform (class III). As mentioned
above, systems with o < 0 are classified as anti-hyperuniform.

The bounded number fluctuations of class [ occur trivially
for 1D periodic point sets (crystals) and are also known to
occur for certain quasicrystals, including the canonical Fibo-
nacci tiling described below (Oguz et al., 2017). Other quasi-
periodic point sets (not obtainable by substitution) are known
to belong to class II (Kesten, 1966; Aubry et al., 1987; Oguz et
al., 2017).

3. Substitution tilings and the substitution matrix

A classic example of a substitution tiling is the 1D Fibonacci
tiling composed of two intervals (tiles) of length L and S. The
tiling is generated by the rule

L—> LS, S—1L, (8)

which leads to a quasiperiodic sequence of L and § intervals.
An important construct for characterizing the properties of
the tiling is the substitution matrix:

0 1
M=(1 1). ©)

which acts on the column vector (N, N, ) to give the numbers
of § and L tiles resulting from the substitution operation.

If the lengths L and § are chosen such that the ratio L/S
remains fixed, which in the present case requires
L/S = (1+5"Y2)/2 =1, the substitution operation can be
viewed as an affine stretching of the original tiling by a factor
of 7 followed by the division of each stretched L tile into an LS
pair, as illustrated in Fig. 1. Given a finite sequence with N
tiles of length S and N, tiles of length L, the numbers of L’s
and S’s in the system after one iteration of the substitution rule
are given by the action of the substitution matrix on the
column vector (Ng, N,).

More generally, substitution rules can be defined for
systems with more than two tile types, leading to substitution

Figure 1
The Fibonacci substitution rule. The tiling on the upper line is uniformly
stretched, then additional points are added to form tiles congruent to the
originals.

matrices with dimension D greater than 2. We present explicit
reasoning here only for the D = 2 case. A substitution rule for
two tile types is characterized by a substitution matrix:

a b
Mz(C d)' (10)

The associated rule may be the following:

S—SS...SLL...L, L—>SS...SLL...L, (11)

but different orderings of the tiles in the substituted strings are
possible, and the choice can have dramatic effects. Note, for
example, that the rule

S SL, I — SLSL (12)

produces the periodic tiling ... SLSLSL ..., while the rule

S— SL, L— SLLS (13)

produces the more complicated sequence discussed below in
Section 6.

Defining the substitution tiling requires assigning finite
lengths to S and L. We let £ denote the length ratio L/S, and
we consider only cases where the substitution rule preserves
this ratio [i.e. (bS + dL)/(aS + cL) = L/S] so that the rule can
be realized by affine stretching followed by subdivision. This
requires

d—a+[(a—dy + T

&= 2¢

(14)

For all discussions and plots below, we measure lengths in
units of the short tile length, S.

The SL sequence generated by a substitution rule is
obtained by repeated application of that operation to some
seed, which we will take to be a string containing ng short
intervals and n, long ones. We are interested in point sets
formed by decorating each L tile with £ points and each § tile
with s points. The total number of points at the mth iteration is

Ny = (5,80 -M"-(ng,ny), (15)
and the length of the tiling at the same step is
Xm = (1' S) ‘M7 (nS’ n’L)' (16)

Let A, and X, be the cigenvalues of M, with A, being the
largest, and let v, and v, be the associated eigenvectors. We
have

M=a+tck hy=d—ck 17

vi=(b/c,8); v, =(=§1). (18)

The unit vectors (1, 0) and (0, 1) may be expressed as follows:
(1, 0) = ulcv, — cév,), 19)

0, 1) = u(cgv, + bv,), (20)

where u = 1/(b + ¢£%). We then have
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M™ - (ng,n ) =M" - [”s(l, 0) +n,(0, 1)]

= u[k’l"(cns + cén,)v,

+ AS(—céng + an)vz]. (21)

The density of tile vertices after m iterations, p,, = N,/ X, is

thus
_ [&sE— O [ctng—bn,\ (A\"
Pm =P+ [ b+ c& ( ng+én, J\A) ' 22)
with 7 = (bs + c£€)/(b + c£*), where we have used the fact
that (1,§)-v, =0.

4. Scaling properties of 1D substitution tilings

As long as the coefficient of (A,/A,)" in equation (22) does not
vanish, the deviations of p from p for portions of the tiling that
arc mapped into each other by substitution are related by

A
=5p,,. (23)

6pm+l A.
1

If the coefficient does vanish, which requires that £ be rational,
the tiling may be periodic, but the ordering of the intervals in
the seed becomes important. We will revisit this point below.
For now we assume that the tiling is not periodic.

We make three conjectures regarding nonperiodic substi-
tution tilings, supported, as we shall see, by numerical
experiments. The results are closely related to recently derived
rigorous results (Baake, Gaehler et al., 2018).

Conjecture 1. We take equation (23) to be the dominant
behavior of density fluctuations throughout the system, not
just for the special intervals that are directly related by
substitution. That is, we assume that there exists a character-
istic amplitude of the density fluctuations at a given length
scale after averaging over all intervals of that length, and that
the §p in equation (23) can be interpreted as that character-
istic amplitude.

Conjecture 2. For the present purposes, we define the real-
space density g(x) = Y, 8(x —x,,) to consist of unit-strength
S-functions placed at every point x, where two tiles meet, and
consider the Fourier amplitudes

h

Alk) = hlgglo % / g(x) exp(ikx) dx/|. (24)

—h

With this definition, the average density over a large domain is
equal to the number density of tiles, p, in that domain. We
assume that A(k) scales the same way as the density fluctua-
tions at the corresponding length scale:

A
Ak/2) = 72 AK). (295)
1
This implies the form

AQK) ~ kI Pa/ml 0D — gl=Gnlal/inn D) 26)

Squaring to get S(k), we have

S(k) ~ k(2—2|n [Aal/ I A1) (27)

This conjecture may not hold when interference effects are
important, as in the case discussed in Section 6 below.

Conjecture 3. While Z(k) is an integral of S(k), the exponent
must be calculated carefully when S(k) consists of singular
peaks. In the Fibonacci projection cases, the scaling of peak
positions and intensities conspires to make Z(k) scale with the
same exponent as the envelope of S(k) (Oguz et al., 2017). We
assume that this property carries over to substitution tilings
with more than one eigenvalue greater than unity. Though the
diffraction pattern is not made up of Bragg peaks (Bombieri &
Taylor, 1986; Godreche & Luck, 1990), we conjecture that it
remains sufficiently singular for the relation to hold. Thus we
immediately obtain

_ 1ol
a=1 2<lnll)' (28)

Note that this calculation of the scaling exponent makes no
reference to the distinction between substitutions with [A,| <1
and those with |A,|>1. In the former case, A, is a Pisot—
Vijayaraghavan (PV) number, S(k) consists of Bragg peaks
and o?(R) remains bounded for all R. In the latter case, the
form of S(k) is more complex (Bombieri & Taylor, 1986), and
quantities closely related to o?(R), including the ‘wandering
exponent’ associated with lifts of the sequence onto a higher-
dimensional hypercubic lattice, are known to show nontrivial
scaling exponents (Godreche & Luck, 1990).

From equation (28), we see that the hyperuniformity
condition « > 0 requires |A,| < (Al)l/ %, Though the result was
obtained for substitutions with only D = 2 tile types, it holds
for D>2 as well, so long as all ratios of tile lengths are
preserved by the substitution rules; i.e. the dominant contri-
bution to the long-wavelength fluctuations still scales like
[A,]/X;. This distinction between hyperuniform and anti-
hyperuniform substitution tilings thus divides the non-PV
numbers into two classes which, to our knowledge, have not
previously been identified as significantly different. We note,
for example, that the analysis presented in Baake, Grimm et al.
(2018), which treats substitution matrices of the form
(0,n,1,1) and shows that they have singular continuous
spectra (having no Bragg component or absolutely continuous
component) for n > 2, does not detect any qualitative differ-
ence between the cases n = 3 and n = 5. The former case is
hyperuniform, with A = (1/2)[1 = (13)"?] and « =~ 0.37, while
the latter is anti-hyperuniform, with A = (1/2)[1 £ (21)"*] and
o~ —0.14.

For the Fibonacci case, we have A, =71 and A, = —1/7,
yielding @ = 3, which agrees with the explicit calculation in
Oguz et al. (2017). Considering (a, b,c,d) of the form
(0, n, n, n) for arbitrary n, we find cases that allow explicit
checks of our predictions for « for both hyperuniform and

anti-hyperuniform systems. We have A, = nt and A, = —n/1,
yielding
Inn—Int
=1-2———|. 29
* , (Inﬂ +In r) 29)

6 Erdal C. Oguzetal. - (Anti)-hyperuniformity in substitution tilings
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For n > 2, the presence of more than one eigenvalue with
magnitude greater than unity gives rise to more complex
spectral features, possibly including a singular continuous
component. For 2 < n < 4, our calculation predicts 0 <o <1
and hence o?(R) ~ R'"® We numerically verify the latter
result for n = 2 using a set of 954 369 points generated by 12
iterations of the substitution tiling, where the decoration
consists of placing one point at the rightmost edge of each
tile (with s = £ =1). Fig. 2 shows the computed number
variance. For each point, a window of length 2R is moved
continuously along the sequence and averages are computed
by weighting the number of points in the window by the
interval length over which that number does not change. A
regression analysis yields o?(R) ~ R%3, in close agreement
with the predicted exponent from equation (27): 1 —a =
2(In2 —In7)/(In2 + In ) 2~ 0.36094.

For n > 5, the calculated value of « is negative, approaching
—1 as n approaches infinity. The point set is therefore anti-
hyperuniform; it contains density fluctuations at long wave-
lengths that are stronger than those of a Poisson point set. For
n =5, we have « = —0.0793 .. .. Fig. 3 shows a log-log plot of
the computed number variance along with the line corre-
sponding to 6?(R) ~ R™®. Again, the agreement between the
numerical result and the predicted value is quite good.
Intuition derived from theories based on nonsingular forms of
S(k) suggests that a negative value of « should be associated
with a divergence in S(k) for small k, though it remains true
that Z(k) converges to zero for & > — 1. For singular spectra,
the envelope of S(k) scales like Z(k), and we do not expect any
dramatic change in the behavior of S(k) as « crosses from
positive (hyperuniform) to negative (anti-hyperuniform). The
theories presented in Baake ef al. (2017) and Godreche &
Luck (1990) may provide a path to the computation of scaling
properties of S(k) in these cases. It is worth noting, however,
that the various classes of behavior can be realized by
substitutions that produce limit-periodic tilings with S(k)
consisting entirely of Bragg peaks with no singular-continuous
component, as shown in Section 6 below.

5 [
i J_,m‘-'f
. PRy

2’ “'a"h/'

o~

b1 st
05720
100 102 10° 104
R
Figure 2

Log-log plot of the number variance (black dots) for a non-PV
substitution tiling corresponding to (a, b, ¢, d) = (0, 2,2,2) decorated
with points of equal weight at each tile boundary. The variance was
computed numerically for the tiling created by 12 iterations of the
substitution on the initial seed SL. The red dashed line has the predicted
slope 1 — o 2 0.36.

For rules that yield rational values of the length ratio £, the
coefficient of (A,/A)" in equation (22) can vanish for
appropriate choices of ng and n,, suggesting that there are no
fluctuations about the average density that scale with wave-
length. This reflects the fact that the sequence of intervals
associated with the substitutions can be chosen to generate a
periodic pattern. (A simple example is S — L and L — SLS,
which generates the periodic sequence ...SLSLSL ..., with
& =2, =2and %, = —1.) For such cases, S(k) is identically
0 for all k smaller than the reciprocal-lattice basis vector. For
other interval sequence choices corresponding to the same M,
the tiling can be limit-periodic, and we would expect the
scaling to be given by applying the above considerations with
generic choices of the ordering, which would yield @ = 1 and
therefore a logarithmic scaling of o%(R). This case is presented
in more detail in Section 6 below, and the logarithmic scaling is
confirmed.

5. Achievable values of a

Beyond establishing that substitution tilings exist for each
hyperuniformity class, it is natural to ask whether any desired
value of ¢ can be realized by this construction method. Here
we show that if M is full rank, « always lies between —1 and 3.

First, note that the maximum value of |A,/A,| is 1, by defi-
nition, which sets the lower bound on & via equation (28). The
upper bound on « is obtained when |A,| is as small as possible,
but there is a limit on how small this can be. The product of the
eigenvalues of M is equal to det M, so |A,| cannot be smaller
than (| detM|/A1)l/(D_l). But |detM] is an integer, and the
smallest nonzero value it can take is 1. (The case X, =0 is
discussed in Section 6 below. For D > 3, one can have
detM = 0 with nonzero XA,. The analysis of such cases is
beyond our present scope.) Hence we have

A,) > A7 ®7Y, (30)

implying

108

~ 10

T S—
R

Figure 3

Log-log plot of the number variance (black dots) for an anti-
hyperuniform substitution tiling corresponding to (a,b,c,d) =
(0,5,5,5) decorated with points of equal weight at each tile boundary.
The variance was computed numerically for the tiling created by six
iterations of the substitution on the initial seed SL. The red dashed line
has the predicted slope 1 —a 2 1.08.
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Inld,| _D+1

=1-2 .
* Ink, —D—1

(31
Thus the maximum value of @ obtainable by this construction
method is 3, which can occur for D = 2, as in the Fibonacci
case.

The family of substitutions considered in Section 4 above
produces a discrete set of values of ¢ ranging from —1 to 3. By
considering two additional families, we can show that the
possible values of o densely fill this interval. For

a 0
M=<c d) (32)

with d>a+1 and 2¢ < (d — a), we have A, =g and A, =d.
Note that & = (d — a)/c is rational here; we assume that the
substitution sequences for the two tiles are chosen so as to
avoid periodicity. We have

a=1-2—. (33)

For fixed a, d can range from a 4 2 to 0o. As d approaches
infinity, & approaches 1. For d = a + 2, as a approaches infi-
nity, o approaches —1. For sufficiently large 4, the values of a
between 1 and d —2 yield an arbitrarily dense set of «’s
between —1 and 1.

Another class of M's produces «’s between 1 and 3. For

we (i )
with n > b, we have
£= %[n + @@+ 47, (35)
Auzgmi@u4Wﬁ (36)

We thus obtain

w—1—2 Inh—In2 + In{.l::s.i2 + 4.]:f —u] . 37)
Inb—1In2+4n[(n? +4)"" +n|

For large n, we have

1 2lnb—21n2—lnn (38)
a~1-— g
Inb+Inn

which approaches 3 for b <« n and approaches 1 for b = n. By
making n as large as desired, the values of b between 1 and n
give o’s that fill the interval between 1 and 3 with arbitrarily
high density.

6. Limit-periodic tilings

For a limit-periodic tiling, the set of tiles is a union of periodic
patterns with ever-increasing lattice constants of the form ap”,
where p is an integer and n runs over all positive definite
integers (Godréche, 1989; Baake & Grimm, 2011, 2013;
Socolar & Taylor, 2011). We show here that there exist limit-
periodic tilings of four hyperuniformity classes: logarithmic
(class IT), weakly hyperuniform (class IIT), anti-hyperuniform,

and an anomalous case in which Z(k) decays to zero faster
than any power law as k goes to zero. The latter corresponds to
a rule for which detM = 0 (and A, = 0), in which case « is
not well defined. The existence of anti-hyperuniform limit-
periodic tilings shows that anti-hyperuniformity does not
require exotic singularities in S(k) for small k. Generally, it
requires only that Z(k) grows sub-linearly with k.

6.1. The logarithmic case (a = 1)

The rule L — LSS, § — L with S =1 and L = 2 yields the
well-known ‘period doubling’ limit-periodic tiling. The
eigenvalues of the substitution matrix are A; = 2 and A, = —1,
leading to the prediction o =1 and therefore quadratic
scaling of Z(k) and logarithmic scaling of o*(r). Numerical
results for o2(R) are in good agreement with this prediction
(Torquato et al, 2018). In fact, one can show explicitly via
direct calculation of 0?(R) that the scaling is logarithmic. The
calculation outlined in Appendix A shows that

o0

S Sl 4 [( ) N

n=0

where w = 2R and {x} denotes the fractional part of x. From
this it follows that for R = 2"!/3 with n > 1 we have

oX(R) = 22—7 (1—33— + n) , (40)

demonstrating clear logarithmic growth for this special
sequence of R values. One can also derive an upper bound
over the interval 2"~! < R < 2" by assuming that the summand

!

.I IllIaJI‘IJ‘LI[H]I]lgy‘ﬂﬂhl‘l ]‘IIII[I%I‘]‘JIIII}[I]II‘IIIlhm

=

- WA

0.G 2 4 6 "é

R

Figure 4

The o = 1 (period doubling) limit-periodic tiling. Top: the tile boundaries
with each point plotted at a height corresponding to the value of n for the
sublattice to which it belongs. Bottom: plot of the number variance. The
horizontal dotted line marks o = 2/9, which is obtained for every R of
the form 2" with integer n > —1. The dashed lines indicate upper bounds,
and the open circles are analytically calculated values for R = 2" /3. See
text for details.
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in equation (39) takes its maximum possible value on the
intervals (0, 1/2], (1/2,1], (2",2"], for m <n, and maxi-
mizing the possible sum of the exponentially decaying
remaining contributions. The result is

1
o*(R) < 7 (1 +;—1) for 2" ' <R < 2". (41)

This upper bound also grows logarithmically and is shown as a
series of dashed lines in Fig. 4.

It is instructive to carry out a more detailed analysis of S(k)
for this particularly simple case as well. [See also Torquato et
al. (2018).] The tiling generated by applying the substitution
rule repeatedly to a single L with its left edge at x = 1 consists
of points located at positions 4¢(2j + 1), where £ and j range
over all positive integers (including zero). The structure factor
therefore consists of peaks at k,,, = 2mm/(ap”), with a =2
and p = 4, for arbitrarily large n and all integer m. For m not a
multiple of 4'~!, the peak at k,,, gets nonzero contributions
only from the lattices with £ > n. These can be summed as

follows:
2 x 4t

{=n

1N—l 2rimdl (2 4 1 2
A Tt ]y

3 "
= 2 x4

S(k""l) = I}im

— 00

1 mo: m
N (9 X 43") s @

where the factor of 1/(2 x 4%) in the first line is the density of
the sublattice with that lattice constant. Applying this

1/32 1/8 1/4 3/8 1/2
k (x2m)
103
102.
=
N
10!
1/32 1/8 1/2
Figure 5 k (x2m)

The a =1 limit-periodic tiling. Top: a logarithmic plot of the analytically
computed S(k) (arbitrarily scaled) including k,,, with #» < 3. Bottom: a
log-log plot of Z(k) computed numerically from S(k). The dashed red line
shows the expected quadratic scaling law.
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reasoning to each value of n gives a result that can be
compactly expressed as

3CD2Y, )T
GCD( _m}], (44)

Stk = [ ST

where v is an arbitrarily large integer, GCD() is the greatest
common denominator function, and m can now take any
positive integer value. Fig. 5 shows plots of S(k) and Z(k) for
this tiling. [See also Torquato er al. (2018) for an explicit
expression for Z(k) and proof of the quadratic scaling.] Note
that the apparent repeating unit in the plot of Z(k) spans only
a factor of 2, even though the scaling factor for the lattice
constants is 4. A similar etfect occurs in the Poisson and anti-
hyperuniform cases below. In the present case, the construc-
tion in Appendix A showing that the density can be expressed
using lattice constants 1/2" explains the origin of the effect.

6.2. A Poisson scaling example (¢ = 0) and weak hyper-
uniformity (0 < a < 1)

The substitution rule

S— LL, L —> LLSSSS (45)

with § =1 and L =2 produces a limit-periodic tiling with
a =2 and p = 16. Equation (28) yields o = 0, which is the
value corresponding to a Poisson system. Fig. 6 shows the
result of direct computations of Z(k) including all of the Bragg

Z(k)

1/32 1/2
k (x2m)

10° 100 102 10°
R

Figure 6

Comparison of direct computation of Z(k) and ¢?(R) with the predicted
scaling laws for a limit-periodic tiling with « = 0. The dashed red lines
show the expected linear scaling laws. The inset shows the piecewise
parabolic behavior of 0?(R) over a small span of R values.
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peaks at k = 27n/(ap®) and of o%(R). Values of o? were
computed from a sequence of 21 889 points obtained by seven
iterations of the substitution rule on an initial L tile. For each
point, a window of length 2R is moved continuously along the
sequence for the computation of the averages.

Limit-periodic examples of weak hyperuniformity (class
IIT) are afforded by substitutions of the form

0 2n
M_[Z 2(n—1):|’ (46)
with n > 3 with L/S = n, which yields
Inn—1In2
= 47
* Inn+1n2 (“47)
= {0.226294, 1/3, 0.39794, 0.442114, .. .}. (48)
6.3. Anti-hyperuniformity (a < 0)
The substitution rule
S— LLL, L — LLLSSSSSS (49)

with S =1 and L =2 produces a limit-periodic tiling with
a =2 and p = 36. Equation (28) yields

In3
a=1—-2—=-0.226294...,
In6

(50)
which indicates anti-hyperuniform fluctuations. Fig. 7 shows
the result of a direct computation of Z(k) including all of the
Bragg peaks at k = 27n/(ap?).

More generally, substitution matrices of the form

0 2n

m- (0 ) -
with n>3 and L/S=2 yield Ilimit-periodic anti-

hyperuniform tilings with
1 Inn  In2—1Inn (52)

o = — el
In2n  In2+4+1Inn

= {—0.226294, —1/3, —0.39794, .. .}. (53)

1/2x36 - 1/2
k (x2m)

12
101;2><362

Figure 7

Comparison of direct computation of Z(k) with the predicted scaling law
for a limit-periodic tiling with &« = —0.226294 .. .. The dashed red line
shows the expected scaling law with slope 1 + «.

6.4. A 2, = 0 case (« undefined)

A special class of tilings is derived from substitution
matrices of dimension D = 2 that have A, =0 (and hence
detM = 0). Such rules can produce periodic tilings, limit-
periodic ones or more complex structures. The criteria for
limit-periodicity can be obtained by analyzing constant-length
substitution rules in which each L is considered to be made up
of two tiles of unit length: L = AB. If the induced substitution
rule on §, A and B exhibits appropriate coincidences, the tiling

o oo™ [T e w
3iee " " 1] (1] 11 (13 1) L1
LI IR AL . B B T T L0 JIE BUL TR L REL I L 1 JiE REL I8 B I. :T T

9 27 81 243
X
107" —
1073 = '
& 107°
107 :
- |
1/2187 1/729 1/243 1/81 1/27
k (x2m)
104,

Z(k)

1127 1/9 1/3 1
k (x2m)

0 5 10 15 20
R

Figure 8
Top: periodic sublattices of the limit-periodic point set generated by
equation (54). Each point is plotted at a height n corresponding to the
subset that contains it. Points of the same color form a periodic pattern
with period 3". Second: deviation of |A(k,)| from 1/3". Third: the
integrated structure factor for the limit-periodic tiling with A, =0,
computed from subsets with #n < 8. The straight red (dashed) line of slope
5 is a guide to the eye for observing the concavity ot the curve. Bottom:
plot of the number variance for the limit-periodic tiling with A, = 0.
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Table 1
Types of 1D tilings and their possible hyperuniformity classes.
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A tick indicates that tilings of the given type exist, a dash that there are no such tilings, and a question mark that we are not sure whether such tilings exist.

Weakly Logarithmically Strongly hyperuniform

Anti- hyperuniform hyperuniform

hyperuniform (class III) (class II) Class I Anomalous Gapped

—1<a<0 O<o<1 a=1 l<a<3 o —> 0 « irrelevant
Periodic - - _ = W
Quasiperiodic ? ? J v -
Non-PV v Vi - - = _
Limit-periodic v V4 v ? v -

is limit-periodic (Dekking, 1978; Queffelec, 1995). For the
substitution matrix (1, 1, 2, 2), the rule (S - SL; L — SLSL)
produces a periodic tiling, and (S — SL; L — SLLS), for
example, produces a limit-periodic tiling.

For the limit-periodic cases, the analysis above would
suggest ¢ — 00, or, more properly, « is not well defined. We
present here an analysis of a particular case for which the
convergence of Z(k) to zero is indeed observed to be faster
than any power law.

The substitution rule

S— SL,L — SLLS (54)

with S =1 and L =2 produces a limit-periodic tiling with
a=1 and p = 3. Inspection of the point set (displayed in
Fig. 8) reveals that the number of points in the basis of each
periodic subset for n > 2 is 2"2, The density of points in
subset n>2 is (1/4)(2/3)". The substitution matrix
M = (1, 1, 2, 2) has eigenvalues A; =3 and A, = 0.

The unusual scaling in this case arises from interference
effects associated with the form factors of the different peri-
odic subsets. Let k, = 27r/3", the fundamental wavenumber
for the nth subset, and let X, denote the set of points in a
single unit cell of the nth subset. S(k,) has contributions
coming from all subsets of order n and higher. (Subsets of
lower order do not contribute, as their fundamental wave-
number is larger than k,.) After some algebra, we find

A(k,) = —1— Z exp(2mix/3")

3"
+ l: Zexp(zmxﬁ") + Zexp(Zm’.x/3”)i|.

xeX,
YEX, 1) YEXy 2

1
3ntl
(55)

Numerical evaluation of the sums over the unit-cell bases

reveals that A(k,) is suppressed by the interference from.

subsets of higher order. Fig. 8 shows the behavior of the
quantity F, = 3"|A(k,)|, revealing a rapid decay for small k.
The red (dashed) line shows the curve F, = (1/3)(3x)” "2,
which appears to fit the points well. An analytic calculation of
Z(k,) is beyond our present reach. The middle panel of Fig. 8
shows the results of a numerical computation that includes all
peaks k = 2mrm/p®, with p = 3. It is clear that Z(k) is concave
downwards on the log—log plot, consistent with the expecta-

tion that Z(k) goes to zero faster than any power of k. Note
that the curve is not reliable for the smallest values of k due to
the cutoff on the resolution of k£ values that are included. The
deviation from power-law scaling is most easily seen in the
increasing with n of the step sizes of the large jumps at
k = 2m/3". (Compare with the constant step sizes in Figs. 5, 6
and 7.)

For completeness, the bottom panel of Fig. 8 also shows a
plot of the number variance for this tiling. As expected, 6?(R)
is bounded from above. We note that the curve appears to be
piecewise parabolic, which is also the case for the standard
Fibonacci quasicrystal (Oguz et al, 2017), though the tech-
nique for calculating o?(R) based on projecting the tiling
vertices from a 2D lattice is not applicable here.

7. Discussion

We have presented a heuristic method for calculating the
hyperuniformity exponent ¢« characterizing point sets gener-
ated by substitution rules that preserve the length ratios of the
intervals between points. The calculation relies only on the
relevant substitution matrix and an assumption that the tile
order under substitution does not lead to a periodic tiling. The
method performs well in that it yields a value of « consistent
with direct measurements of the scaling of o?(R) in several
representative cases. This allows for a straightforward
construction of point sets with any value of o between —1
and 3.

It is well known that substitution rules can be divided into
distinct classes corresponding to substitution matrices with
eigenvalues that are not PV numbers leading to structure
factors S(k) that are singular continuous (Bombieri & Taylor,
1986; Baake et al.,, 2017), while substitution rules for which
|A,| <1 yield Bragg peaks. Our analysis shows that this
distinction corresponds to ¢ greater than or less than unity,
respectively. From the perspective of hyperuniformity, on the
other hand, the critical value of ¢ is zero, which corresponds to
[X,] = (Al)l/z. To achieve « < 0, a naive comparison to scaling
theories for systems with continuous spectra would suggest
that S(k) must diverge for small k. We find, however, that anti-
hyperuniformity, which does require sub-linear scaling of Z(k),
can occur without any divergence both in cases where the
spectrum is singular continuous, as for non-PV substitutions,
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and in cases where the spectrum consists of a dense set of
Bragg peaks, as in some limit-periodic systems.

Finally, our investigations led us to consider the results of
applying substitution rules for which A, = 0, which turned up
a novel case of a limit-periodic tiling for which S(k) approa-
ches zero faster than any power law. The physical implications
of this type of scaling have yet to be explored.

The different tiling types and their hyperuniformity prop-
erties are summarized in Table 1. Examples of quasiperiodic
tilings in classes I and II are presented in Oguz et al. (2017).
Note, however, that the class II case is not a substitution tiling.
We do not know whether some other construction methods
might yield quasiperiodic tilings that are in class III, anti-
hyperuniform, or even anomalous. For non-PV tilings (which
are substitution tilings by definition), at least two eigenvalues
of the substitution matrix must be greater than unity, which
rules out class II and class I. We conjecture that there are no
limit-periodic tilings in class I. We can prove this for D = 2
substitutions based on the fact that limit-periodicity requires
the two eigenvalues to be rational and the fact that M has only
integer elements requires their sum and product to be integers,
but we do not have a proof for D> 2.

APPENDIX A

Calculation of ¢*(R) for the period doubling limit-
periodic tiling

The substitution rule L — LSS, S— L (with S=1 and
L = 2) applied to an initial L with its left boundary at x = 1
produces a tiling with tile boundaries at all positions of the
form x,,; = (2i + 1)4™, with j and m both running over all
positive integers (including zero). We are interested in
computing 02(R) for the density

p) = 3 8x — (2 + 1)4"].

m,j=0

(56)

Recall that o?(R) is the variance in the number of points
covered by a window of length 2R placed with its left edge at x
with uniform probability over all positive real values of x.

In Torquato et al. (2018), an expression for 0%(R) is derived
using equation (4) above. Here we show how ¢*(R) can be
computed directly, thereby confirming the validity of equation
(4) for this limit-periodic system and arriving at a particularly
simple expression that can be analyzed in detail.

We first note that we can rewrite p(x) as follows:

p() = 3 (—1)"8(x — i2").

n,i=0

67

To see this, first note that if x is an odd integer, then the only
term that contributes is n = 0, i = x, which gives a +1. This is
the m = 0 lattice of equation (56). More generally, if x is an
odd multiple of 27, there are contributions only from all n < p,
and these have alternating signs. If p is odd, the number of
such contributions is even, yielding a density of zero. If p is
even, the sum of the contributions is +1. The even values of p
correspond to all integer values of m in equation (56).

Let w = 2R be the length of the window and let N, (x) be
the number of points in the nth lattice covered by the window.
It is convenient to take the window to be open at its left edge
and closed at its right edge. Define {w}, as the fractional part
of w/2". It is convenient to think of w as being expressed in
base 2. {w}, is then given by the first n digits to the left of the
decimal point, plus all of the digits to the right. Note that N, (x)
depends on x only through {w},; the integer part of w/2" adds
the same number of points independent of the value of x.
Furthermore, there are only two possible values of N, (x),
which differ by unity. For the purpose of computing the
variance, we take these to be 0 and 1, and we work with the
densities of these values rather than the full values of N,

If the window is placed with its left edge at x = j2", the
contribution to the density from the nth lattice is 0. In order
for the window to cover an additional point, the left edge must
be placed such that {x},>1—{w},. The average density
covered by the window of length w is thus

() = i,(_l)”{W}“' (58)
The density squared is
PR =3 (1) — 208 — 29, (59)

n,i=0¢,j=0

A nonzero contribution to (u?) arises from an individual term
if and only if both the n and £ lattices contribute. For £ > n, the
fraction of x’s for which this is true is

{W}n [{W}e + 2”7£(1 - {W},,)]

The first term accounts for window placements that give a
contribution from the nth lattice. The light-gray bars in Fig. 9
show the values of x where the left edge of the window can be
placed to produce a nonzero contribution. The term in
parentheses counts the number of such intervals that occur
within a region that contribute from the £th lattice (indicated
by dark-gray bars in the figure) divided by the number of bars
in one lattice spacing of the £th lattice. We thus have

(60)

(u2) = i{w},x—l)z"

(el o]
+23 3wl [iw) + 271 = {wh)]. (61)
n=0e¢>n
Using (—1)*" = 1 and writing out (1) as a sum over # plus a
double sum with £ > n, straightforward algebra with conve-
nient cancelations of some of the double sums yields

o = (W) — ()’ (62)
o T . o . o e e
2" 2f

Figure 9
Illustration for explaining the computation of a term in the double sum
expression for (u?).
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= (wh, — {wh)

n=0
o o) {—n
+23° 3 (wh, - {w}3)<71) (63)
n=0 {=n+1
=2 (), — w2, (69
n=0

This result has been confirmed to be in perfect agreement with
direct computations.

Equation (64) describes a piecewise quadratic function of w
(see Fig. 5). One immediately sees that all values of w of the
form 2¢ give the same result; they give {w}, = 0forn < £ and
the same infinite series for n > £. Recalling that R = w/2, the
shared value is

o I\ 1\ 2
e =326 () =5

m=1

(65)

To show that the upper envelope of 62 grows logarithmically,
we first prove an upper bound that grows only logarithmically,
then identify a special sequence of window length values for
which the growth is logarithmic. The upper bound is obtained
by replacing all terms {w}, — {w}> in the sum with the
maximum value 1/4 for all n <1 + log, d, then replacing the
remaining infinite series with its maximal value, obtained by
maximizing Y_,(x/2" — x*/4"). The result is

P2 <R<2" N < %(3 +n). (66)
To show that there is a sequence of R values for which o*
grows logarithmically, consider w of the form 2" /3. Note that
the binary representation of w is 101...01.0101... for n odd
and ...101...0.1010... for n even. Again we consider the
contributions from £ < n, then sum the remaining series. The
value of {w}, oscillates between 1/3 and 2/3 for £ <n.
Straightforward algebra yields

2n 26

FR=2"/3)=—+—

( /3) 27 + 81’

which clearly grows logarithmically with R. Note that the

coefficient of n here is 2/27, reasonably close to the coefficient

of 1/12 derived for the upper bound, and that, as shown in

Fig. 5, these points are quite close to the true maxima for
w< 2",

(67)
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