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Abstract

The simultaneous nonlinear regression modeling of multiple wavelengths of

spectrophotometric data allows binding constants to be determined with much

higher precision than in previous single‐wavelength methods; however, this

method of global analysis has intrinsic limitations as well. Through Monte

Carlo simulations on UV‐vis titration data using various types of experimental

errors, we demonstrate how the precision of binding constant calculation

deteriorates under very strong binding regimes, as quantified by the product

K[H]o. We show that for a 1:1 binding model, global analysis can be reliably

performed when K[H]o < 1000, representing a significant improvement over

previous recommendations. The relative impacts of different sources of error

as well as the degree of overlap in molar absorptivity curves are quantified.

Even under optimal conditions, errors in initial concentrations of the titration

solutions are found to have the most impact on error in the calculated binding

constant, while instrumental noise is largely weeded out by the global analysis

technique. We propose experimental diagnostics indicating when the model

has lost sensitivity to the binding constant and derive a novel experimental

design formula for maximizing the precision of the binding constant calcula-

tion. The results imply the need to develop robust and accessible uncertainty

estimation techniques competent to deal with concentration errors and

asymmetric confidence intervals.
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1 | INTRODUCTION

Binding constants in solution play a central role in a wide variety of chemical research areas. Supramolecular structures
tuned for selective binding interactions can function as ionic sensors and separation agents.1,2 Metal binding properties
of polypeptides can yield insights into the protein‐folding problem.3 The binding strength of metal‐ligand coordination
reactions allows construction of a wide variety of geometric structures fabricated on the nanoscale.4,5 Especially when
the isolation of individual chemical components is not feasible, characterizing the thermodynamic properties of a solu-
tion constitutes a powerful route to controlling self‐assembling molecular structures.6,7 Consequently, precise, accurate,
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efficient, and cheap determination of solution‐phase binding constants is an important methodological goal in chemo-
metric analysis.8

UV‐vis spectrometry constitutes one popular method for ascertaining binding constants from simple titration data
whenever most of the equilibrium species are sufficiently strong chromophores.9,10 Traditionally, a spectrophotometric
titration has involved monitoring the absorbance of the solution at one wavelength. The resulting data constitute a vec-
tor of absorbance readings, which could be linearized via a variety of approximate methods to obtain the binding con-
stant between ligand and metal ion or supramolecular guest and host.8 A single wavelength can also be used to estimate
complexation stoichiometry via a Job's plot. However, the mathematical and statistical soundness of both methods has
been called into serious question. Simultaneous use of all of the wavelengths, known as global analysis, is decidedly
superior, as is rigorous nonlinear regression modeling for obtaining the best‐fit binding constant. Stoichiometry is best
determined by fitting and comparing multiple equilibrium models. If the compounds of interest do not absorb strongly,
and pathlengths and solution concentration cannot be adjusted to compensate, then UV‐vis may not be an appropriate
instrumental choice for the given system.

In physicochemical global analysis, the data are treated as a matrix, and the mathematics of linear algebra
and nonlinear regression are applied to obtain a simultaneous fit to all wavelengths.11-14 This technique achieves
superior resolution over averaging results from single‐wavelength vectors10 by making the global minimum more
sharply defined on the error surface.15 The basic implementation of global analysis in physicochemical modeling
(also known as hard modeling) has been explained in detail elsewhere.11-17 Briefly, the idea is to decompose the
absorbance matrix, D, into the matrix product of smaller matrices of molar absorptivities, R, and equilibrium con-
centrations, C, with an additive residual error matrix: D = RC + E. Nonlinear regression algorithms iteratively vary
the trial binding constants in an attempt to find the values minimizing the root mean square of the residual errors
matrix (RMSE). At each iteration, the equilibrium concentration matrix, C, is calculated from the initial concentra-
tions. Linear regression is then used to obtain the optimal molar absorptivity profiles, R, for the given trial binding
constants, thereby eliminating the linear parameters from the iterative fitting process. Multiple software packages
have been developed,18-23 of which two modern versions are freely available on the Web.22,23 Physicochemical global
modeling remains the method of choice for extracting precise binding constants from spectrophotometric
titrations.11,19

When applying physicochemical global analysis to a UV‐vis spectrophotometric titration, the chemometrician sup-
plies a computer program with the equilibrium binding stoichiometry, the absorbance dataset, and initial guesses for
the binding constant(s). In seconds, the analysis program returns the optimized value(s) for the binding constant(s)
along with an estimate of the associated error bars. The estimated uncertainties often vary between these different
methods,24 and popular techniques such as linearized standard errors have limited reliability.11 Five questions naturally
arise:

1. Under what conditions will the model lose sensitivity to the binding constant; that is, fit equally well regardless of
the precise value?

2. What sorts of experimental errors will have the biggest detrimental impact on the sensitivity of the results?
3. How do differing molar absorptivity profiles affect the propagation of this experimental error to the calculated bind-

ing constants?
4. What diagnostic metrics can the experimentalist apply to ascertain when the mathematical model has lost

sensitivity?
5. How should a titration be designed so that the mathematical model retains maximum sensitivity?

As evidenced by the literature, these questions are answered most effectively through simulated data studies. Using
visual inspection of simulated binding isotherms, Hirose has proposed that the product K[H]o, which effectively quan-
tifies the strength of a 1:1 binding regime, should be less than 1 to ensure accurate results.8 (Here, K refers to the asso-
ciation constant, Ka.) This work, however, did not use global analysis. Thordarson applied both visual inspection of
binding isotherms and Monte Carlo methods on a simulated two‐wavelength UV‐vis titration to obtain a revised global
analysis value of K[H]o < 100.10 This work only considered experimental errors in the instrumental response (absor-
bance) data. Subsequent work24 by Hibbert and Thordarson considered concentration and instrumental response error
in Monte Carlo simulations using simulated NMR datasets with one resonance, but global analysis was not employed.
Results from this study also suggested a K[H]o < 100 guideline. The same work includes simulations on 1:2 binding
models and a discussion of uncertainty estimation techniques applied to published data.25 Monte Carlo confidence
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intervals were found to be superior to model comparison confidence intervals using the F statistic26 and far superior to
the symmetric linearized (asymptotic) uncertainty estimation.

These K[H]o guidelines give upper bounds on the strength of the binding regime that can be successfully ana-
lyzed. Consequently, these guidelines are particularly pertinent for UV‐vis experiments, which generally probe stron-
ger binding regimes than NMR titrations.8,10 Calculation precision can also suffer in weak binding regimes.8 To
address this, Weber27 and later Wilcox28 have defined a P value metric that quantifies the “probability of binding,”
where P is defined as the equilibrium concentration of complex divided by either the initial guest or host concentra-
tion, whichever is smaller. They propose that weak binding regime titrations should range from at least 0.2 to 0.8 P.
However, this metric is not helpful for strong‐binding UV‐vis systems because all P values approach one as complex-
ation strength increases.28 Indeed, under strong binding regimes, Thordarson observes that simulated isotherms
only display substantial differences near the 1:1 equivalence point.10 It is therefore important to identify which ratios
of guest to host will maximize the sensitivity of the binding constant to the data, regardless of the binding regime
strength, thus allowing for more rigorous determination of the intrinsic limitations for ascertaining a binding con-
stant using global analysis.

This study focuses on the issue of sensitivity, seeking to quantify the conditions under which global analysis can
quantify a binding constant for a model 1:1 equilibrium system. We rigorously address the five questions above using
mathematical theorems and Monte Carlo simulations, taking care to recognize the inherent asymmetry involved. By
refining Hirose's K[H]o metric and deriving a novel approach for maximizing model sensitivity that is applicable regard-
less of the strength of the binding regime, this work will empower researchers to better design titrations to minimize the
uncertainty of the resulting binding constants. The results should give researchers confidence in using UV‐vis global
analysis not as a black box but instead as a substantial improvement upon single‐wavelength methodology with well‐
understood limitations.
2 | METHODS

The Monte Carlo simulation,29,30 a well‐established computational statistics method, is particularly useful for this task.
A large number of identical datasets are constructed from template materials (molar absorptivity profiles, initial concen-
trations, and ΔG° values), assuming that Beer's law and the law of mass action precisely hold. A unique pattern of ran-
dom error with a common standard deviation is added to each dataset. Each dataset is then analyzed using the normal
physicochemical global analysis technique, yielding a calculated result for the binding constant that can be compared
with the “true” binding constant used to build the data. The difference represents the error introduced into the calcu-
lated binding constant because of the experimental error added to the data, and therefore a distribution can be obtained
showing the spread in the calculated binding constants for the given error level. This procedure is repeated to find the
limit at which the hard modeling process fails to realistically ascertain the binding constant.

We employ three types of normally distributed errors in our simulations: absorbance error, where error with a
mean of 0 is added directly to the raw data; transmittance error, where error with a mean of 0 is added to the trans-
mittance before converting back to absorbance for modeling; and composition error, where error with a mean of 1 is
proportionally multiplied into the initial concentrations. The levels of transmittance and absorbance error were cho-
sen to span typical instrument capabilities, given that most research‐grade spectrometers have a transmittance error
rating around 0.0002 T.31 Composition error levels were chosen to cover an experimentally reasonable range from
0.01% to 1%.

Both experimental and idealized absorptivity data are used for the Monte Carlo simulations. Of the former nature, we
include a dataset (hereafter referred to as “buckyball”) modeled after a 1:1 supramolecular host‐guest system involving
fullerene nesting with macrocycle,32 with the ligand absorptivity removed for ease of simulation. Of the latter nature, we
include datasets where the molar absorptivity profiles are represented alternatively by Gaussians or downward facing
parabolas with negative values truncated at 0, enabling a precise description of how absorptivity curve overlap influ-
ences calculation results without competing effects from curve shape. A3 parabolas refer to the case where host, guest,
and the 1:1 host:guest complex all absorb, and each molar absorptivity profile has a width of 200 nm and is nonover-
lapping with the others. B3 parabolas are identical to A3 parabolas, except the peaks of each parabola are offset by only
50 nm, resulting in overlap between the absorptivity profiles. C3 Gaussians refer to the case when all species absorb, but
the peaks of each Gaussian are offset by only 17 nm. In C2 Gaussians, only the host and 1:1 host‐guest complex absorb.
All Gaussians have a half width of 200 nm.
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The overlap between the molar absorptivity profiles is an important feature of the model sensitivity and can be con-
veniently summarized by treating the curves as vectors. The following standard formula gives the angle θ between any
two absorptivity vectors:

θ ¼ cos−1
u
*
· v
*

u
*

��� ��� v
*

��� ���
0
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1
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As θ approaches 0°, the curves approach complete overlap; as it approaches 90°, the curves approach complete orthog-
onality. A3 parabolas have an angle of 90°; adjacent B3 parabolas, 40.1°; adjacent C2/3 Gaussians, 8.1°; buckyball
curves, 3.8°. No systematic study is needed for the absolute values of the molar absorptivity coefficients because, while
the absorbance in UV‐vis spectrophotometry should be held less than 1, pathlength adjustments and dilutions can and
should be tuned for each unique experimental system under consideration to place the signal on the correct scale.

Two main schemes were used for the initial solution compositions. “Dilution” profiles assume 50 equal aliquots of
guest solution are added to a host solution until the final ratio of [G]o to [H]o reaches 2.5 equivalents. “Spiked” profiles
assume the simulated titrant solution contains the same concentration of host as the analyte solution so that [H]o
remains constant throughout the experiment. In these simulations, spiked profiles are run to 1.5 equivalents to ensure
that the 1:1 equivalence is reached near the same point during the titration. Spiked profiles should be employed when
the guest species does not absorb so that the dataset may be safely shifted upwards, eliminating negative values and any
associated bias without introducing new errors.17 These profiles are additionally employed in the existing experimental
literature to reduce the possibility of aggregation side reactions,10 to avoid unnecessary dilution factors in the data anal-
ysis,10 and to permit easier visual identification of the titration endpoint. We therefore employ dilution profiles for sim-
ulations involving three absorbing compounds (A3 and B3 parabolas), but use spiked profiles for each simulation
involving only two absorbing compounds (C2 Gaussians and buckyballs), as well as for C3 Gaussian simulations for
direct comparison.

The choice of initial host concentration, [H]o, influences the strength of the binding regime. [H]o is constant for
spiked titrations; for dilution profiles, we use the value of [H]o in the first solution. We initially employ [H]o = 0.1 M
for the parabola and Gaussian curves and [H]o = 1 × 10‐4 M for the buckyball curves, approximating the concentration
regimes used for common spectrophotometric titrations involving transition metal coordination and supramolecular
host‐guest binding, respectively. We run the initial A3 parabola simulations to 2.5 equivalents, those with C2 Gaussians
out to 1.5 and the buckyball simulations to 1000 equivalents.8 For the studies varying [H]o values, parabola curves are
run to 2.5 equivalents, while Gaussian and buckyball curves are run to 1.5. In each case, these settings ensure each sim-
ulation contains datasets reaching at least 80% host complexation before the end of the titration.
3 | RESULTS AND DISCUSSION

To ascertain the relative impacts of different types of experimental error, Monte Carlo simulations using the A3 molar
absorptivity profiles ([H]o = 0.1 M) were run with absorbance error, transmittance error, composition error, and finally
both composition and transmittance error together, which most closely simulates real experimental conditions.

As seen in Figure 1, increasing the exergonicity of the reaction increases the spread of the Monte Carlo distribution
significantly and asymmetrically. This indicates that, as expected, stronger binding regimes admit to less precise deter-
mination of the equilibrium constants, especially in the exergonic direction. However, the quantities of transmittance
error produced by a research‐grade spectrometer (~0.0002 T) inflict relatively small errors on the calculated binding con-
stant as long as log(K[H]o) < 7. A very similar result holds for a comparable absorbance error simulation (Figure S‐5). In
both cases, the calculations are slightly biased towards larger outliers on the exergonic side for ΔG° values, although the
medians of the distributions stay close to 0. This asymmetry appears to arise from the nonlinear nature of the equilib-
rium concentration calculations.

Another asymmetric feature of the Monte Carlo data is the presence of extreme exergonic outliers. This effect arises
in our simulations for a wide variety of absorptivity profiles, concentration regimes, and error types; it has also arisen in
our experience modeling experimental datasets. We suspect that, in the exergonic limit, certain error patterns make it
appear as if more product formed than was possible under mass balance constraints. This causes the model to send ΔG°
towards negative infinity to best account for the data. Obviously, these strongly exergonic outliers indicate that the



FIGURE 1 Monte Carlo (500 iterations × 101 true ΔG° settings (at 298 K) × 2 error settings + 500 × 151 × 2 = 252 000 datasets) using A3

parabolas with transmittance error. Shading corresponds to standard deviation of error. Four white lines represent medians. Seven hundred

twenty‐three exergonic outliers not shown. Each dot represents one optimized dataset
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particular combination of error conditions and ΔG° values are not tenable for experimental work. Thordarson reports a
Monte Carlo simulation resulting in an upper 95% confidence limit for K of +10%,14 suggesting a similar outlier
phenomenon in his analysis.10

Moving to composition error, the simulations tell a less optimistic story. For realistic 0.1% error, the calculated ΔG°
value begins to diverge sharply after about ΔG° = −35 kJ/mol. The median error in calculated ΔG° becomes more pos-
itive as the true ΔG° becomes more exergonic, while simultaneously exergonic outliers begin to appear in abundance.
Adding transmittance error in addition to the composition error has little additional effect (Figure 2; Figure S‐6 shows
result with composition error alone), showing that the distribution spread arising from composition and transmittance
error is not additive. Clearly, composition error proves to be the more deleterious form of error at realistic experimental
values. The asymmetries inherent in these distributions can be visualized through a histogram plot (Figure 3), which
represents a vertical cross‐section through Figure 2 at ΔG° = −40 kJ/mol.

To probe the effects of different absorptivity profiles on the calculation results, the same set of simulations was
performed using the C2 Gaussians (θ = 8.1°) with [H]o = 0.1 M and buckyball curves, (θ = 3.8°) with
[H]o = 0.0001 M. The former display far greater overlap than the A3 parabolas, and as a result, the Monte Carlo distri-
butions (Figure 4) show both more error for any given true ΔG° value and an increased number of outliers. While the
distributions of error remain relatively symmetric when the level of error is small, dramatic asymmetry occurs when the
binding regime strengthens. Clearly, there can be no hope of reliably obtaining the binding constant at a true value
FIGURE 2 Monte Carlo (500 × 101 × 4) results using A3 parabolas with composition and transmittance error. Shading corresponds to

error levels. Four white lines represent medians. One thousand four hundred exergonic outliers not shown



FIGURE 3 Histogram of Monte Carlo results for true ΔG° = −40 kJ/Mol simulation using A3 parabolas with composition and

transmittance error. Ninety‐eight exergonic outliers not shown

FIGURE 4 Monte Carlo (500 × 101 × 4) results using C2 Gaussians with composition and transmittance error. [H]o = 0.1 M. Shading

corresponds to error levels. Four white lines represent medians. Four thousand three hundred thirty‐one exergonic outliers not shown
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of ΔG° of −40 kJ/mol for realistic values of composition (≥0.1%) and transmittance (≥0.0002) error. The buckyball
curves display the greatest amount of overlap among the molar absorptivity profiles studied, and consequently, the sim-
ulations are extremely sensitive to added error (Figure 5). Even with composition error levels reduced by a factor of 10,
the Monte Carlo distributions exhibit prohibitively asymmetric errors that increase in magnitude as the reactions
become more exergonic. Under mild realistic error conditions (composition error of 0.1%), the binding constant cannot
be ascertained with confidence beyond a true value of ΔG° of −25 kJ/mol.

Having observed the relative effects of different types of error and molar absorptivity curves, we now show
numerically that the K[H]o metric serves as a useful invariant for binding strength across different concentration
regimes. As exemplified by Figure 6 and also Figure S‐4, Monte Carlo simulations demonstrate that the cutoff point
at which the standard deviation of the calculated ΔG° value reaches 1.0 kJ/mol occurs very regularly, with logK
increasing by 1 as [H]o decreases by a factor of 10. Distributions are generally symmetric up until the
σ ≥ 1 kJ/mol cutoff and the density of each distribution tapers off smoothly with a slight clustering towards
endergonic errors (Figure S‐9).

While K[H]o remains quite unaffected by the value of [H]o chosen, the absorptivity profiles chosen have a substantial
impact, varying the cutoff K[H]o by more than two orders of magnitude between the A3 parabolas and the buckyball
absorptivity curves (Table 1). Predictably, absorptivity curves with a smaller amount of overlap have larger cutoff values



FIGURE 5 Monte Carlo (500 × 101 × 4) results using buckyball curves with composition and transmittance error. [H]o = 1 × 104 M.

Shading corresponds to error levels. Four white lines represent medians. Twenty‐two thousand nine hundred twenty‐three exergonic

outliers not shown

FIGURE 6 Graphical representation of the width of the Monte Carlo distribution for different concentration regimes, using A3 parabolas.

ΔG° was decreased in increments of 0.25 kJ/Mol until the point where the sample standard deviation exceeded 1 kJ/Mol. Two hundred

datasets were computed at each true value of ΔG° to form the sample distribution. Composition error level = 0.1%, transmittance error

level = 0.0003
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for K[H]o. Interestingly, C2 Gaussians have higher cutoff values than those for C3 Gaussians, suggesting that titrations
with a nonabsorbing guest may be slightly more resilient to error.

Table 1 captures how error level and the overlap of molar absorptivity curves impact sensitivity when determining a
binding constant from UV‐vis data. It should serve as a point of reference when designing a spectrophotometric
titration. (Complete results of all combinations of the four error types and three molar absorptivity profiles are
presented in Table S‐I.) Given practical experimental constraints of low magnitudes of molar absorptivity coefficients,
however, it may not be possible to construct chemical solutions satisfying the cutoff K[H]o. Two situations are consid-
ered below, one amenable to a spectrophotometric titration with appropriate adjustment of the experimental conditions
and one not.

In the first place, suppose that the molar absorptivity values of the equilibrium species are large, such that an initial
host stock solution leads to too much absorbance for UV‐vis measurement. In this case, the host stock solution can
always be diluted, as dilution can only improve the sensitivity according to the K[H]o value. If a larger host concentra-
tion is desired given the concentration of the guest stock solution, then the pathlength can be decreased instead. Thus,
strongly absorbing host compounds offer flexibility in titration design.



TABLE 1 Critical values of ΔG° (kJ/mol) and K[H]o at which the standard deviation of the Monte Carlo distribution becomes larger than

1 kJ/mol. “Mild error” refers to a transmittance error of 0.0003 and a composition error of 0.1%. “Harsh error” refers to a transmittance error

of 0.001 and a composition error of 0.5%. “Δ isotherm RMS” is obtained by calculating the binding isotherm both at ΔG°cutoff and
ΔG°cutoff − 1 kJ/mol, then taking the root mean square of the difference between the two mole fraction isotherm vectors

Error Level 0.1 M 0.01 M 0.001 M 0.0001 M 0.00001 M Average K[H]0

Δ Isotherm
RMS (×103)

A3 parabolas
(dilution)

Mild ΔG° −38 −43.75 −49.25 −55.5 −61.25 486 000 ± 42 000 0.14
K[H]o 460 000 470 000 430 000 530 000 540 000

Harsh ΔG° −29.25 −34.5 −39.75 −45.75 −51.75 11 200 ± 1400 1.69
K[H]o 13 000 11 000 9000 10 000 12 000

B3 parabolas
(dilution)

Mild ΔG° −33.75 −39.5 −45.5 −51.25 −57 91 000 ± 6000 0.39
K[H]o 82 000 84 000 94 000 96 000 97 000

Harsh ΔG° −25.5 −31.25 −37 −42.25 −48 2830 ± 230 4.51
K[H]o 2900 3000 3100 2500 2600

C2 Gaussians
(spiked)

Mild ΔG° −34.25 −40 −45.75 −51.5 −57 102 000 ± 4000 0.19
K[H]o 100 000 100 000 100 000 110 000 100 000

Harsh ΔG° −27.5 −32.75 −39 −44.75 −50.25 6470 ± 530 1.74
K[H]o 6600 5500 6900 7000 6400

C3 Gaussians
(spiked)

Mild ΔG° −32.5 −38.25 −44 −49.5 −55.25 49 500 ± 1900 0.36
K[H]o 50 000 51 000 52 000 47 000 48 000

Harsh ΔG° −24.5 −30.5 −36 −41.5 −47.5 2050 ± 100 3.97
K[H]o 2000 2200 2000 1900 2100

Buckyballs
(spiked)

Mild ΔG° −24 −29.25 −35.25 −41 −47 1550 ± 130 8.61
K[H]o 1600 1300 1500 1500 1700

Harsh ΔG° −15.75 −22.25 −27.5 −33.5 −39 70 ± 7 59.90
K[H]o 58 79 66 74 69
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In the second place, suppose that the molar absorptivity values are small, such that an initial stock solution does not
give enough absorbance for a spectrometer, but the binding constant is large. Such a situation may be unsuitable for
UV‐vis analysis. To obtain enough absorbance for an acceptable signal‐to‐noise ratio, one would like to increase the
concentrations. However, if K is large to begin with, this easily leads to a violation of the K[H]o metric, which would
render any titration unreliable in accuracy and reproducibility as demonstrated above. The alternative solution would
be to increase the pathlength, but this is often difficult or impossible. In these situations, if the researcher cannot find
an alternate spectral region with larger molar absorptivity values, then an instrumental technique other than UV‐vis
should be used.

The K[H]o figure functions as a guideline to determine when a titration can be expected to yield reliable results or not.
In this way, the theoretical Monte Carlo simulations directly inform experimental practice. However, it is also important
that for any given experiment, the sensitivity to the data be ascertained after the fact. We therefore present diagnostics to
quantify the sensitivity followed by insights regarding how to update the experimental design to achieve greater sensitivity.

While the impact of the molar absorptivity profiles and the precise magnitude of the residuals vary from system to
system, the computed binding isotherm (mole fraction of complex, relative to [H]o, plotted against equivalents of guest)
provides a point of comparison. For 1:1 systems, the change in the concentration matrix caused by a change in ΔG° is
entirely captured by the change in the single isothermal curve. This “difference isotherm” changes shape with the
strength of the binding regime, and not all segments exhibit equal sensitivity to ΔG°. Starting at the cutoff value for
ΔG°, we compute the root mean square of difference isotherm for a −1 kJ/mol perturbation (Table 1). This single
number represents the sensitivity of the concentration profiles to the binding constant used, and this metric can be
applied to any equilibrium model.

These observations can be formalized mathematically by calculating the number of guest equivalents needed to
obtain maximum concentration sensitivity to the binding constant. As shown in the Supporting Information, the 1:1
equilibrium constant expression can be reparameterized in terms of just three variables: XHG = [HG]/[H]o, E = [G]o/
[H]o, and B = K[H]o, rather than the typical four variables K, [H]o, [G]o, and [HG]. Under this scheme, the analytical
solution to the quadratic equation can be written in terms of the mole fraction of complex:
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ΧHG ¼ 1
2

1þ E þ 1
B
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E þ 1

B

� �2

− 4E

s2
4

3
5: (1)

Equation 1 completely describes the binding isotherm. This demonstrates that the mole fraction of complex is
completely determined by just two variables, B, the K[H]o binding strength metric and E, the equivalents of guest added.
This observation may additionally prove useful for experimentalists using NMR titrations, where XHG is the quantity
directly related to the change in the resonant frequency over the course of the titration.9,10

The derivative of this isotherm with respect to B (the strength of the binding regime) represents its sensitivity to K:

dΧHG

dB
¼ 1

2B2

1þ E þ 1
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ E þ 1
B

� �2
− 4E

q − 1

2
64

3
75: (2)

Figure 7 displays how Equation 2 changes shape as a titration shifts between weak and strong binding regimes,
which has significant implications for designing a suitable useful titration experiment. Exergonic systems are not merely
challenging because the magnitude of the sensitivity decreases as K[H]o increases, as can be inferred from the depen-
dence on B‐2, but additionally because the derivative shape effectively concentrates all of the chemical information
about the binding constant into a very narrow region close to the 1:1 equivalence point. Thus, unless the titration is con-
structed carefully, only a few chemical solutions (perhaps even none) will exhibit sensitivity to the binding constant.
The success or failure of the experiment will then ride entirely on the instrumental noise or concentration error in these
few solutions, leading to a potentially precipitous breakdown in the calculated binding constant precision.

Equation 2 additionally allows analytical calculation of the regions of the titration that are most sensitive to a
change in the binding constant. The maximum in this sensitivity function occurs at the number of equivalents of guest
obtained by setting the derivative of Equation 2 with respect to E = [G]o/[H]o equal to 0 and solving for E (Supporting
Information).

E ¼ G½ �0
H½ �0

¼ 1þ 1
K H½ �0

¼ 1þ 1
B
: (3)

Equation 3 identifies the number of equivalents in the single best chemical solution in a titration for determining the
binding constant. Notice that in the exergonic limit as K goes to infinity, the most sensitive chemical solution
approaches the 1:1 stoichiometry (Figure 7) in accord with previous observations10 but is not precisely the 1:1 solution.
Drawing on Weber's notion of the P value, we see that in the endergonic limit as K goes to 0, the best solution
FIGURE 7 Contour map of Equation 2, normalized for each K[H]o value to a height of one. The central black line marks the most

sensitive solution as expressed by Equation 3. Adjacent white lines mark the sensitivity envelope for C = 0.1 as defined by Equation 4
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approaches a P value of 0.5, which is of course the center of the recommended 0.2‐0.8 range. This can be confirmed by
observing that for P = 0.5, [G]o/[H]o = ½ + 1/(K[H]o), where the second term dominates for small K[H]o.

Equation 3 therefore provides a novel basis for identifying the most sensitive region of the titration because it applies
to both strong and weak binding systems. This is especially useful for not only evaluating titrations but also designing
retitrations. Hirose refined boundaries when he suggested running a titration between 1/5 + 1/(4K) and 4/5 + 4/K
equivalents of guest. Equation 4 defines an equivalents envelope for a titration that is centered on the most sensitive
solution while maintaining a minimal width of 2C, where C is an arbitrary parameter.

1 − Cð Þ þ 1
4K H½ �0

<
G½ �0
H½ �0

< 1þ Cð Þ þ 4
K H½ �0

: (4)

This pair of equations is constructed to approach Hirose's boundaries as K decreases and yet converge around 1:1 as K
increases.

If titrations are designed to focus on the envelope defined in Equation 4, could the sensitivity limits be extended, and
if so, what is the optimal value of C? Monte Carlo simulations from K[H]o = 1 × 10‐6 to 1 × 106 were performed to find
out. “Control” titrations of 51 linearly spaced solutions were compared with “Envelope” titrations, in which the 50 lin-
early spaced solutions were compressed into the range defined by Equation 4 plus one solution of free host. As shown in
Table 2, focusing titrations within the Equation 4 envelope improves K[H]o sensitivity as long as C ≥ 0.1, but the sen-
sitivity deteriorates dramatically for smaller values of C. This is because all of the chemical solutions become com-
pressed in a very narrow region in which the total absorbance change is relatively small. Effectively, this situation
results in a precipitous worsening of the signal‐to‐noise ratio since any instrumental errors will have more impact on
the analysis results when the data are relatively featureless to begin with.

A second type of targeting strategy was employed in which 40 of the 51 solutions were evenly spaced within the enve-
lope defined by Equation 4, with six more covering the range from free host to the lower bound and five more covering
the range from the upper bound to 120% of the upper bound or two equivalents, whichever is larger. (The control titra-
tions cover an identical range.) These “Telescoping” titrations are designed to balance the focus on the most sensitive
region of a titration with the need to cover the full dynamic range of the signal. Graphical examples of Control, Enve-
lope, and Telescoping titrations are provided in the Supporting Information (Figures S‐12‐S‐13). Table 2 shows that
telescoping profiles perform as well or better than either the Control or the Envelope strategy for all values of C tested.
Therefore, after an initial titration, an experimenter may choose to titrate again using this telescoping strategy in order
to maximize the sensitivity of the titration to the binding constant.
TABLE 2 K[H]o cutoff values for varying strategies of sensitivity targeting under two different levels of error. Control simulations consist of

51 evenly spaced solutions with no targeting. For envelope simulations, the solutions are still evenly spaced but compressed into the range

defined by Equation 4 plus one solution of free host. Telescoping simulations consist of 40 solutions within the envelope of Equation 4 with

six more covering the range from free host to the lower bound and five more covering the range from the upper bound to 120% of the upper

bound or two equivalents, whichever is larger; 500 datasets were computed for each setting of K, using spiked C2 Gaussians with

[H]o = 0.1 M. Δ isotherm root mean square (RMS) is defined as in Table 1

C Diagnostic

Mild Error (Comp. = 0.1%, Trans. = 0.0003) Harsh Error (Comp. = 0.5%, Trans. = 0.001)

Control Envelope Telescoping Control Envelope Telescoping

0.5 K[H]o 3.6 × 104 4.8 × 104 4.8 × 104 5.3 × 103 6.9 × 103 6.9 × 103

Δ isotherm RMS (×103) 0.59 0.67 0.63 2.39 2.75 2.56

0.25 K[H]o 2.8 × 104 8.3 × 104 8.3 × 104 5.3 × 103 1.2 × 104 9.1 × 103

Δ isotherm RMS (×103) 0.71 0.63 0.60 2.39 2.56 2.90

0.1 K[H]o 3.6 × 104 1.5 × 105 1.5 × 105 5.3 × 103 1.2 × 104 1.6 × 104

Δ isotherm RMS (×103) 0.59 0.64 0.60 2.39 3.69 2.83

0.01 K[H]o 3.6 × 104 4.4 × 102 3.3 × 105 5.3 × 103 83 2.1 × 104

Δ isotherm RMS (×103) 0.59 23.38 0.79 2.39 43.16 3.46

0 K[H]o 3.6 × 104 1.9 × 102 5.8 × 105 5.3 × 103 63 2.8 × 104

Δ isotherm RMS (×103) 0.59 32.69 0.68 2.39 46.83 3.05

Abbreviation: RMS: root mean square
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It is instructive to note that the concentration profile sensitivity, as quantified by the difference (Δ) isotherm root
mean square (RMS) cutoff values, remains relatively constant for both envelope and telescoping profiles for large to
moderate C values regardless of targeting strategy even as the K[H]o cutoff value increases. This implies that for a given
level of error and set of molar absorptivity profiles, the change in the binding isotherm constitutes a second metric
for elucidating the exergonic limitations of the modeling. Consequently, the analytical intuition developed above is
confirmed: envelope and telescoping targeting strategies effectively extend the K[H]o cutoff value because the sensitivity
of the concentration profiles to the binding constant is maximized. The Δ isotherm RMS concept provides a useful
diagnostic to complement the K[H]o metric, as it incorporates initial concentrations from throughout the titration. As
crucial as it is, looking only at K[H]o fails to account for the necessity of structuring the initial concentrations to
optimize sensitivity, which otherwise could allow the lack of sensitivity in a poorly structured titration to go undetected.
The Δ isotherm RMS helps confirm the design of a particular experiment.

The preceding discussion explains the primary importance of experimental initial concentration errors in determin-
ing the accuracy of the hard‐modeling equilibrium calculation under exergonic binding regimes. If stock solution con-
centrations are off even by a small amount, the narrowing sensitivity envelope near 1:1 may not be sufficiently probed,
leading to potentially catastrophic effects. This empirical effect of concentration error has been noted previously.
Thordarson observed that experimental errors in the [G]o/[H]o ratio may have the largest impact.9,24 In the related area
of spectrophotometric kinetics, Billeter et al. reported that the variance in the initial reagent concentrations dominate
the variance in the calculated rate constant, with little to no contribution from the variance of the residuals.30 This work
provides a rigorous numerical foundation for such intuition in the context of hard modeling for UV‐vis equilibrium
titrations.

Two key implications arise from pinpointing the dominant source of experimental error. First, analytical procedures
should prioritize the minimization of uncertainty in the preequilibration concentrations. Second and most important,
error estimation techniques must be designed to deal with initial concentration errors. Linearized standard errors,
which have become the method implemented in most software for hard modeling of equilibrium spectrophotometric
titrations, assume that all of the experimental errors are normally distributed in the response variables (in this case,
the absorbance data).33 Our study has shown that the most impactful errors lie in the predictor variables (initial concen-
trations) instead. This implies that linearized standard error methods will systematically underestimate the uncertainty
in the calculated binding constants because these methods will only respond robustly to spectrometer noise. One indi-
cation of this comes from the asymmetry of the errors on the calculated ΔG° values seen in the Monte Carlo simula-
tions. Linearized methods always yield symmetric error bars, a result clearly inappropriate for uncertainty estimation
in this situation.

Following the outputs of programs such as SpecFit,18 it has become common practice to publish binding constants
with linearized uncertainty estimates, although this practice has been challenged recently.24 The implication is that
the literature likely contains uncertainty estimates that are systematically too small. It is therefore imperative to develop
methods and accessible software that enable experimentalists to perform more robust uncertainty estimations than cur-
rently available. Norman and Maeder suggest that bootstrapping approaches may furnish more reliable uncertainty esti-
mates;11 additionally, Thordarson has implemented a related Monte Carlo technique capable of handling errors in
initial concentrations.24 This study lays a theoretical foundation for the importance of making such methodologies eas-
ily accessible in UV‐vis hard modeling.
4 | CONCLUSIONS

The foregoing Monte Carlo simulations speak to both the power and the potential pitfalls of nonlinear regression
modeling for equilibrium systems. On the one hand, the combination of global analysis and hard modeling enables
accurate binding constants to be obtained in binding regimes far stronger than the previous guideline of K[H]0 < 1.
While the precise cutoff depends upon the overlap in the molar absorptivity profiles used, many experimental systems
will have overlaps comparable with those employed in Table 1. The comparison (Table 1) of C2 and C3 systems suggests
that titrations with nonabsorbing guests may be somewhat more robust, although further studies with additional molar
absorptivity profiles would be needed to conclusively demonstrate a general trend. Ultimately, we suggest a revised
guideline of K[H]0 < 1000 for a conservative estimate of the magnitude of experimental errors, although well‐executed
titrations may admit to accurate determination even when K[H]0 = 10 000 or greater (Table 2). Nevertheless, hard
modeling can still lead to large asymmetric errors in excessively strong binding regimes because the model loses
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sensitivity to the precise value of K employed. This feature is fundamental to the nonlinear nature of chemical equilib-
rium and cannot be eradicated. As a corollary, systems with small absorptivity coefficients and large equilibrium con-
stants may not be amenable to analysis by UV‐vis methods. However, structuring the titration's initial concentrations
to target the optimal chemical solutions can raise the K[H]0 cutoff by up to an order of magnitude. When implementing
hard modeling, it is imperative that sensitivity be ascertained if a binding constant is ultimately reported. Researchers
and reviewers should expect diagnostic evaluations involving signal error estimation, concentration uncertainty, iso-
therm sensitivity, molar absorptivity curve overlap, and K[H]0. Emphasis on these criteria will increase the reliability
of binding constant data.
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