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Abstract Motivated by questions of manifold learning, we study a sequence of ran-
dommanifolds, generated by embedding a fixed, compact manifold M into Euclidean
spheres of increasing dimension via a sequence of Gaussian mappings. One of the
fundamental smoothness parameters of manifold learning theorems is the reach, or
critical radius, of M . Roughly speaking, the reach is a measure of a manifold’s depar-
ture from convexity, which incorporates both local curvature and global topology. This
paper develops limit theory for the reach of a family of random, Gaussian-embedded,
manifolds, establishing both almost sure convergence for the global reach, and a fluc-
tuation theory for both it and its local version. The global reach converges to a constant
well known both in the reproducing kernel Hilbert space theory of Gaussian processes,
as well as in their extremal theory.
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1 Introduction

This paper has two themes to it. One lies in the general area of the geometry ofGaussian
processes, or random fields, over general spaces, and is about random embeddings.
The second is more topological, and can be seen as putting probability measures on
spaces of manifolds, and then studying the behavior of their reach. Both are motivated
from recent results in manifold learning.

1.1 Gaussian embeddings

We start with parameter spaces whichwill always bem-dimensional, compact, smooth
manifolds, without boundary, and which will be denoted by M . On M , we define a
centered, unit variance, smooth, Gaussian process f : M → R , the distribution of
which is characterized by its covariance function C : M × M → R . Taking k ≥ 1,
we also define a R k-valued process

f k(x) = ( f1(x), f2(x), . . . , fk(x)) , (1.1)

made up of the first k processes in an infinite sequence of i.i.d. copies of f . It is not
hard to check (under the mild side requirements that will be made formal later) that
(1.1) defines, with probability one, an embedding (i.e. an injective homeomorphism)
f k(M) of M into R k for all k ≥ 2m + 1, akin to what one would expect from the
Whitney embedding theorem. We call this a Gaussian embedding of M .

It is easy to check that the diameter of f k(M) is O(
√
k). Thus, to keep the embed-

ding under control, we need to normalise it either by
√
k, or self-normalise by defining

hk(x) != f k(x)
∥ f k(x)∥ , x ∈ M, (1.2)

where ∥·∥ is the standard Euclidean norm, and consider the embedding hk(M), which
now lies in the unit sphere Sk−1 in R k . For reasons of notational convenience, this is
the embedding that we shall consider in the current paper, although we could just as
well have adopted a

√
k normalisation without any qualitative changes in our results,

although some of the details would be different. We call hk(M) a self-normalised,
Gaussian, embedding of M .

However, although all of M, f and the ambient spheres are smooth, it is not so
clear how smooth these embeddings are going to be as k → ∞. On the one hand,
the self-normalisation in (1.2) ensures that hk(M) lies in a fixed radius sphere. On the
other hand, high-dimensional spheres are strange objects, with surface areas tending
to zero as the dimension grows. Thus, given the increasing independence added into
the mapping with each new f component, it is not at all a priori clear whether the
embeddings eventually become rough, and perhaps fractal, or whether there is some
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sort of strong law behavior that leads to deterministic behavior in the limit. If the latter
case is correct (which it is) then an associated fluctuation theory is called for.

The main results of this paper resolve these issues, at least in the framework of the
reach of the self-normalised Gaussian embeddings hk(M), as k → ∞.

1.2 Reach

The modern notion of reach seems to have appeared first in the classic paper [9] of
Federer, in which he introduced the notion of sets with positive reach and their asso-
ciated curvatures and curvature measures. Working in an Euclidean setting, Federer
was able to include, in a single framework, Steiner’s tube formula for convex sets
and Weyl’s tube formula for C2 smooth submanifolds of Rn . The importance of this
framework extended, however, far beyond tube formulae, as it became clear that much
of the theory surrounding convex sets could be extended to sets that were, in some
sense, locally convex, and that the reach of a set was precisely the way to quantify this
property.

To be just a little more precise, but going beyond the Euclidean setting, we start
with a smooth manifold N embedded in an ambient manifold !N . Then the local reach
at a point x ∈ N is the furthest distance one can travel, along any vector based at x
but normal to N in !N , without meeting a similar vector originating at another point
in N . The (global) reach of N is then the infimum of all local reaches. The reach is
related to local properties of N through its second fundamental form, but also to global
structure, since points on N that are far apart in a geodesic sense might be quite close
in the metric of the ambient space !N . The reach of a manifold is also known as its
‘critical radius’ for a good geometrical reason described below. (See the paragraph
following (2.3).) However, to avoid any possible confusion, we shall use only the term
‘reach’ throughout this paper.

We shall give precise definitions in the following section, noting for now that beyond
its importance in tube formulae and other classical areas of Differential Geometry and
Topology, the notion of positive reach has recently begun to play an important role in
the literature of Topological Data Analysis (TDA) in general, and manifold learning
via algebraic techniques in particular.We shall discuss this briefly at the end of Sect. 2.

1.3 Main results and structure of the paper

With the terminology we have so far alluded to (but in most cases have yet to define
rigorously) let θ(N , x) denote the local reach of a manifold N at the point x ∈ N ,
while

τ ≡ τ(N ) != inf
x∈N

θ(N , x),

denotes the global reach of N . We, however, are interested in the reach of hk(M), and
the main result of this paper is Theorem 4.3, which states that there is a deterministic
function σ 2

c ( f, x), x ∈ M , such that, with probability one, and uniformly in x ∈ M ,
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cot2
"
θ
"
hk(M), hk(x)

##
→ σ 2

c ( f, x), (1.3)

as k → ∞. An immediate consequence of this is the existence of a constant, denoted
by σ 2

c ( f ), such that the sequence of global reaches satisfies

cot2
"
τ
"
hk(M)

##
a.s.→ σ 2

c ( f )
!= sup
x∈M

σ 2
c ( f, x). (1.4)

While the notation regarding the various versions of σ 2 is a little heavy, it is time-
honored, since the constant σ 2

c ( f ) has appeared previously in the extremal theory of
Gaussian processes. In fact, one of the most interesting aspects of the convergence in
(1.4) is the, a priori surprising, fact that σ 2

c ( f ) is the limit. This constant had arisen
earlier in a completely different context in [1,24]. That context, described briefly in
Sect. 4.2, related to rigorously proving the so called ‘Euler characteristic heuristic’,
which approximates a wide class of Gaussian extremal probabilities via the expected
Euler characteristic of their excursion sets. The role of the constant there is in quanti-
fying the super-exponentially small error rate involved in the approximation. We shall
discuss the importance of this constant in more detail in Sect. 4.

Given the convergence in (1.3), it is natural to ask if an associated fluctuation result
also holds. Indeed, this is the case, and Theorem 4.3 also gives us that

√
k
"
cot2

"
θ
"
hk(M), hk(·)

##
− σ 2

c ( f, ·)
#

(1.5)

converges, in distribution, as k → ∞, to a limitwhich canbeboundedby the supremum
of a certain Gaussian process, the precise distribution of which is given much later in
Theorem 11.1.

The remainder of the paper is organised as follows: In the following section we
have collected some general results about positive reach that were a large part of the
motivation for our study. The reader uninterested in motivation can skip all but the
definition of reach in Sect. 2.1. The reader interested in knowingmore about the history
and applications of positive reach is referred to the excellent survey by Thale [25], or
Chapter 7 of [6], which discusses reach in the context of TDA.

After the brief Sect. 3 devoted to notations, Sect. 4 defines Gaussian processes on
manifolds and associated notions such as the induced metric. It also introduces the
constant σ 2

c ( f ). Much of this section is a quick summary of the material in [1] needed
for this paper, and once this is done we have everything defined well enough to state
the main result of the paper.

The real work starts in Sect. 5, in which we develop specific representations for the
reach of a Sk−1 embedded manifold which form the basis of all that follows. Some
of the results here already exist in the literature, and the proofs of these are relegated
to an “Appendix”. Some are new and full proofs are given in situ. Sect. 6 lists four
lemmas, from which, together with the representation of Sect. 5, the proof of the a.s.
convergence in the main theorem follows easily. Following this, Sects. 7–10, which is
where the hardest work lies, then prove these lemmas, one at a time. In Sect. 11 we
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turn to the fluctuation result of (1.5), both proving it and describing the limit process.
Two technical appendices complete the paper.

2 Critical radius and positive reach

2.1 The definition

Throughout the paper our underlying manifold M will satisfy the following assump-
tions:

Assumption 2.1 M is an m-dimensional manifold, compact, boundaryless, oriented,
C3, and connected.

Sometimes we shall assume that M is associated with a Riemannian metric g, and
sometimes that it is embedded in a smooth Riemannian manifold (!M,!g). The main
example that we shall need for this paper for an embedding space is the unit sphere
!M = Sk−1, but we shall alsomeet the simple Euclidean case !M = R k when discussing
tube formulae below. In the first example, geodesics are along great circles, and the
associated Riemannian distance is measured via angular distance. In the second, the
geometry is the standard Euclidean one.

As an aside, we note that all our results could be extended to the case of manifolds
with boundary, and even stratified manifolds satisfying the kind of side conditions
endemic to [1]. However, then we would also have to suffer through all the heavy
notation endemic to [1], which seemed unnecessary, given that our primarymotivation
was to establish a general principle rather than the most general result possible.

For themain result of the paper, all of the conditions inAssumption 2.1 are required.
This is not true for some of the lemmas along the way, but for ease of exposition we
shall generally adopt all the conditions throughout the paper. For the fluctuation result,
we shall even need that M is C6, and we will add that assumption when needed. Of
course, if the majority of the authors were topologists rather than probabilists, we
would probably just have assumed that M is ‘smooth’ (i.e. C∞) and then not have
been concerned with optimal levels of differentiability.

We need the standard exponential map (cf. [17]) that maps tangent vectors to points
on the manifold. This, for x ∈ M and X ∈ Tx !M , the tangent space to x in !M , is given
by the local diffeomorphism

exp!Mx (X) = γx,ηX (∥X∥),

where γx,ηX is the unit speed geodesic in !M starting at x in the direction ηX
!=

X/∥X∥ ∈ S(Tx !M), the (sphere of) unit tangent vectors at x . The notion of reach is
closely related to the radius of the largest ball around the origins in Tx !M , x ∈ M , for
which all the exponential maps are, in fact, diffeomorphisms.

To give a more formal definition, let dM (x, y) (d!M (x, y)) denote geodesic distance
between points x, y ∈ M (∈ !M), and for x ∈ M and A ⊂ M set

dM (x, A)
!= inf
y∈A
d(x, y),

with a similar definition for x ∈ !M and A ⊂ !M .
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Then the local reach of M in !M at x , in a direction η ∈ S(Tx !M), is defined by

θℓ(x, η)
!= sup

$
p : d!M

"
exp!Mx (p η),M

#
= p

%
. (2.1)

Thus, if p > θℓ(x, η), there is a point y ̸= x in M which is closer to exp!Mx (p η) than
x is. The local reach of M in !M at the point x is defined as

θ(M, x) ≡ θ(x) != inf
η∈T⊥

x M∩S(Tx !M)
θℓ(x, η), (2.2)

where T⊥
x M is the normal space at x , of M in !M . Taking an infimum over the entire

manifold finally gives the global reach of M in !M :

τ(M) ≡ τ ≡ θ(M, !M)
!= inf
x∈M

θ(x) ≡ inf
x∈M

θ(M, x). (2.3)

Amore picturesque definition of reach, in the Euclidean setting for which !M = Rn ,
which also explains the terminology ‘critical radius’ is as follows: Imagine rolling a
ball of radius r and dimension n over the manifold M , but in such a way that the ball
only touches M at a single point. The largest choice of radius that allows this is the
critical radius/reach.

The simplest Euclidean example is provided when M is a convex set, in which case
its reach will be infinite. In fact, infinite reach characterizes these convex sets. If M is
a sphere, then its reach is equal to its radius. If M is the disjoint union of two spheres,
the reach is the minimum of the two radii and half of the closest distance between the
spheres.

On the other hand, if !M is itself a sphere, and M a great circle, then the reach of M
(in angular coordinates, and as a subset of the ambient sphere) will be π/2. In general,
the reach of a closed submanifold of a sphere will be no more than π/2.

This is all you need to know about reach to skip to Sect. 4 and read the rest of the
paper. The rest of this section is motivational.

2.2 Medial axis

An alternative way to think of reach is via the notions of the medial axis of M and its
local feature size, notions which have been developed in the Computational Geometry
community [3]. Given M embedded in !M , define the set

G =
&
y ∈ !M : ∃ x1 ̸= x2 ∈ M such that d!M (y,M) = d!M (y, x1) = d!M (y, x2)

'
.

The closure of G is called the medial axis, and for any x ∈ M the local feature size
s(x) is the distance of x to the medial axis. It is easy to check that

θ(M, !M) = inf
x∈M

s(x).
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In fact, Federer’s original definition of reach in [9] for the purely Euclidean case was,
implicitly, in terms of medial axes.

2.3 On tube formulae

As mentioned earlier, the birthplace of the notion of reach is Weyl’s volume of tubes
formula, a classical result in Differential Geometry, and an extension of the much
earlier Steiner’s tube formula for convex sets in Rn . Interestingly, Weyl’s original
paper [27]wasmotivated by a question raised byHotelling [11] related to the derivation
of confidence regions around regression curves. Both of these papers still make for
fascinating (but not easy) reading today, and both generated enormous literatures,
one mathematical (e.g. [10]) and one statistical (e.g. [12] and the literature referenced
there). For its importance to Probability see, for example, [1] and the references therein.

Restricting ourselves to the Euclidean setting for the moment, define the tube of
radius ρ > 0 around M in !M = R k to be

Tube(M, ρ) =
(
x ∈ R k : inf

y∈M
∥y − x∥ ≤ ρ

)
.

Then Weyl’s tube formula states that, for ρ < θ(M,R k),

Vol (Tube(M, ρ)) =
m*

j=0
L j (M)ωk− jρk− j , (2.4)

where Vol is k-dimensional Lebesgue volume, ωn denotes the volume of a unit n-
dimensional ball, and the L j (M) are the Lipschitz–Killing curvatures of M . These
are also known as quermassintegrales, Minkowski, Dehn and Steiner functionals, and
intrinsic volumes, although in many of these cases the indexing and normalisations
differ. It is worth noting, asWeyl established in what he considered the part of [27] that
required more than “what could have been accomplished by any student in a course
of calculus”, that these functionals are intrinsic. That is, they are independent of the
embedding of M into R k . (See for example, Lemma 10.5.1 in [1], where this fact is
given a probabilistic proof in the notation we use here.)

It is hard to overstate the importance of (2.4), along with its variants for more
general ambient spaces. The fact that the formula ceases to hold for ρ larger than the
reach means that all the applications of tube formulae also fail at some point, and it
is knowing where this point is that makes the reach such an important parameter of a
manifold.

2.4 Condition numbers, manifold learning and learning homology

Standard manifold learning scenarios usually start with a ‘cloud’ of points X =
{x1, . . . , xn} in some high dimensional space, which are believed to be sampled from
an underlying manifold M of much lower dimension m, with or without additional
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noise. (Additional noise will mean that the points need not lie on M itself, but rather
are sampled from some region near M .) A classical problem is to construct a set
which approximates M in a useful fashion. This is a well known problem with a vast
literature, and ‘useful’ here is usually taken to be mean physical closeness in some
norm.

More recently, a new literature has appeared, motivated by ideas from Algebraic
Topology, in which the aim of physical closeness is replaced with the aim of correctly
recovering the topology of M . Two of the earliest papers in this area are [18,19] (but
see also [8]) and it is these papers that were in fact the original motivators of the current
one.

In [19] the setup is that of a random sample from M , and the recovery method—or
at least the theorems describing its properties—relies on knowing the reach τ of M . In
this case, choosing an ε ∈ (0, τ/2), the simple union of ε-balls centered at the points
of X is chosen as the estimator of M . That is

Mestimate
!=
+

x∈X
Bε(x). (2.5)

The arguments in [19] follow a general paradigm towards solving a wide class of opti-
misation and other algorithmic problems, suggested by Steven Smale in [21]. Smale
proposed a two-part scheme, the first part of which involves studying deterministic
algorithms and determining their efficiency (in terms of running time, or some other
cost function) as a function of input parameters such as a condition number of the
input. (In the manifold setting, the condition number of the problem is essentially
the inverse of the reach.) The second step involves averaging over random inputs, or
random versions of the basic problem, to obtain either probabilistic tail estimates or
average values for the algorithmic cost. [2] gives an insight into this approach in the
setting of convex optimisation, but our interest is in the TDA setting.

Thus, the proofs in [19] start by showing that, if one has a dense enough subset of
points in M , then M is a deformation retract of Mestimate, and so both sets have the
same homology. For the second stage, it shows that if a large enough sample is taken
then one can bound, from below, the probability of the sample being dense enough.
The final result is that, for all small δ, if

n > β1

,
log(β2)+ log

,
1
δ

--
,

where

β1 =
4m vol(M)

ωm(ε cos γ1)m
, β2 =

8m vol(M)

ωm(ε cos γ2)m
, (2.6)

and γ1 = arcsin(ε/8τ) and γ2 = arcsin(ε/16τ), then the homology of Mestimate
equals the homology of M with probability at least 1 − δ. A corresponding result for
the case of sampling with noise is given in [18].

We have brought the above equations to show, explicitly, how the reach appears in
the complexity of this estimation problem. The smaller the reach, is, the smaller one

123



Convergence of the reach for a sequence of Gaussian… 1053

is forced to take ε, and the larger the sample size n needs to be for a given estimation
accuracy.

Of course, for a given problem, one does not knowwhatM is, and so, a fortiori, little
is known about its reach. Consequently, in the spirit of Smale’s two step procedure,
we need to enrich the second stage by also averaging over possible M . The current
paper is a step in this direction, by formulating a class of random Gaussian manifolds
and beginning a study of their reach.

Moreover, the main result of the paper has an immediate application in the mani-
fold learning situation. Although Theorem 4.3 relates only to a very specific random
embedding ofM into a high dimensional sphere, a liberal interpretation of the theorem
implies that the part of the complexity of the estimation problem depending on the
reach is more or less independent of any embedding of M into a higher dimensional
space. The import of this is that there is no ‘curse of dimensionality’, related to reach,
that involves the dimension of the ambient space.

Of course, we can only make these claims for the Gaussian-embedding that we
study, but the fact that they are proven in the Gaussian case will alleviate concerns
among practitioners, in general, that ambient dimension has an effect on reach. This
was not known until now, even for a special case.

A second practical implication of this paper is the introduction, albeit implicit, of a
new class of smooth random manifolds that are both reasonable and mathematically
tractable. Recalling the two stage paradigmofSmale above, itwould be interesting, and
probably useful, to introduce into the TDA setting the notion of Bayesian optimization.
In terms of the above homology learning example, by this we mean minimizing not
the probability of correctly identifying the homology for a fixed (but unknown) M , but
rather minimizing the expectation of some cost function of this probability, averaged
over a (random) family of possible M . The calculations of the current paper, along
with those of [15] which address issues of the asymptotic isometry of Gaussian-
embedded Riemannian manifolds, show that the model introduced here allows for
tractable mathematical manipulation.

3 Some (standard) notation

Many of our proofs, and even some of our definitions, freely use standard notation from
Differential Geometry. Since we expect that not all readers will be familiar with this,
we include here a brief notational guide. There are many standard texts to which one
can turn for details. Lee’s book [17] is our favourite, but the quick and dirty treatment
in Chapter 7 of [1] also suffices.

We are working with a Riemannian manifold (M, g), for which the Riemannian
metric is, for each x ∈ M , an inner product gx on the tangent space TxM to M
at x . If {(Uα, φα)}α is an atlas for M , then for each chart (Uα, φα) we shall often
need a (local) orthonormal frame field Xα = {Xα

1 , . . . , X
α
m} for the tangent bundle

T αM != {TxM, x ∈ Uα}, where orthonormality is in the metric g. We shall refer
to this later as “choosing an orthonormal frame field”, without specific reference to
charts or the index α. Since all our later definitions and calculations are local (i.e. can
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be carried out in terms of local charts) this is not a problem (and global issues such as
parallelizability do not arise.)

If F : M → R is a smooth function, and X = Xx ∈ TxM , then by

XF(x), (XF)(x), (Xx F)(x), Xx F(x), Xx Fx , etc,

we mean the derivative of F in direction Xx at x . At various times we will make use
of all of these possible notations, so as to make individual formulae either clear and/or
compact.

As opposed to the above derivatives, the gradient,∇F , of F is the unique continuous
vector field on M such that

gx (∇Fx , Xx ) = Xx F, (3.1)

for every vector field X . If F is a function of more than one parameter, say F(x, y),
then we will denote the gradient with respect to x as ∇x F(x, y), etc.

The (covariant) Hessian ∇2F is the bilinear symmetric map from C1(T (M)) ×
C1(T (M)) to C0(M) (i.e. it is a double differential form) defined by

(∇2F)(X, Y ) ≡ ∇2F(X,Y ) != XY F − ∇XY F = g(∇X∇F,Y ), (3.2)

where, while ∇ with no subscript denotes the gradient, when it is subscripted with a
vector field, as in ∇X , it indicates the Levi-Civita connection of (M, g).

It is standard that ∇2F could also have been defined to be ∇(∇F), which is from
where the notation comes. Recall that in the simple Euclidean case the Hessian is
typically considered to be the N × N matrix HF = (∂2F/∂xi∂x j )Ni, j=1. In the more
general setting above, HF defines the two-form by setting ∇2 f (X, Y ) = XHFY ′. In
this case (3.2) follows from simple calculus.

We shall need the obvious, but important, fact that if x is a critical point of F
(i.e. ∇F(x) = 0) then XF(x) = 0 for all X ∈ TxM and so by (3.2) it follows that
∇2F(X, Y )(x) = XY F(x). Consequently, at these points, the Hessian is independent
of the metric g.

This concludes our brief excursion into notation. We can now turn to some details
on Gaussian fields on manifolds before stating our main results.

4 Gaussian processes on manifolds, and the main theorem

As mentioned earlier, our basic reference for Gaussian processes is [1]. Here we shall
only give the very minimum in definitions and notation needed for this paper.

4.1 Gaussian processes on Riemannian manifolds

We start, as usual, with a C3 compact manifold M , with or without an associated
Riemannian metric g. (For the novice, Sect. 3 explains these terms and some of the
following notation.)
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The distribution of a real valued Gaussian process, or random field, f : M → R ,
with zero mean (assumed henceforth) is then determined by its covariance function
C : M × M → R given by

C(x, y) = E{ f (x) f (y)}.

If C is smooth enough, the process also induces a Riemannian metric on the tangent
bundle T (M) of M defined by

gx (X, Y )
!= E{(X f )(x) × (Y f )(x)} = Yy XxC(x, y)

..
y=x , (4.1)

where X,Y are vector fields with values Xx ,Yx in the tangent space TxM . We shall
assume throughout that C is positive definite on M × M , from which it follows that
g is a well defined Riemannian metric, which we call the metric induced by f.

Fromnowon,we shallmakeoneof two—essentially complementary—assumptions:

Assumption 4.1 If, in the above setting, we are given a manifold M as in Assump-
tion 2.1 and a Gaussian process f : M → R , but no metric on M , we shall assume
that M is endowed with the metric induced by f .

If, on the other hand, we start with a Riemannian manifold (M, g), then we shall
choose a Gaussian process in such a way that the metric induced by (4.1) is precisely
g.

The fact that, given a metric g, there exists a Gaussian process inducing this metric,
is a consequence of the Nash embedding theorem (cf. proof of Theorem 12.6.1 in
[1]). This assumption is crucial to all that follows, and there is no known general
topological or geometric theory for Gaussian processes when the metric on M is not
the one induced by the process.

The only additional assumptions that we require relate to smoothness and non-
degeneracy for f , but for this we need some notation. Thus we write, from now on,
∇ for the Levi-Civita connection of (M, g), and ∇2 for the corresponding covariant
Hessian. Fix an orthonormal (with respect to g) frame field E = (E1, . . . , Em) in
T (M). The specific choice of E is not important.

Assumption 4.2 We assume that the zero mean Gaussian process f : M → R has,
with probability one, continuous first, second, and third order derivatives over M , and,
for each x ∈ M , the joint distributions of the (1 + m + m(m + 1)/2)-dimensional
random vector

"
f (x), ((∇ f )(Ei ))(x), ((∇2 f )(Ei , E j ))(x), 1 ≤ i, j ≤ m

#
(4.2)

are nondegenerate.
We shall also assume that E{ f 2(x)}, the variance of f , is constant, and for con-

venience, we take the constant to be one. No other homogeneity assumptions are
required.
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Conditions on the covariance function of f guaranteeing the differentiability
requirements of the assumption are implicit in Corollary 11.3.2 of [1]. If M is a
Euclidean domain with smooth boundary, then these conditions require that the vari-
ous sixth-order partial derivatives of the covariance function satisfy

...C (6)(x, x)+ C (6)(y, y) − 2C (6)(x, y)
... ≤ K | ln |x − y||−(1+α),

for all x, y ∈ M , some finite K and α > 0, and where C (6) is a generic sixth-order
partial derivative of the covariance function. For a general manifold corresponding
conditions in terms of charts and atlases suffice. See Chapter 12 of [1] for details.

The degeneracy conditions (4.2) are close to trivial, but important. Together with
smoothness, they ensure that the sample paths of f are a.s. Morse over M .

As an aside regardingAssumption 4.2,wenote that the requirement that f ∈ C3(M)

can probably be done away with. It arises as a side issue in a tightness argument in
Sect. 9.3, which requires a uniform bound on increments of fourth order derivatives of
C. A (much) more complicated argument would probably require only that f ∈ C2+ϵ

for some ϵ > 0, but rather than lose sight of the forest for the trees we are happy to
live with the extra smoothness. In fact, in order to prove the fluctuation result (1.5),
we shall even have to assume that f ∈ C6(M). We shall explain how the need for
these high levels of smoothness arise below, when we have the requisite notation.

4.2 The parameter σ 2
c ( f )

Given the above setting, we now define a new Gaussian process on

M∗ != (M × M) \ diag(M × M) (4.3)

by setting

f x (y) = f (y) − E
&
f (y)

.. f (x),∇ f (x)
'

1 − C(x, y) . (4.4)

The fact that this process is well defined is not obvious, since as y → x in (4.4) both
numerator and denominator approach zero. Nevertheless, as we shall show in Sect. 8.1,
if we have enough smoothness for f , then the limit behaves well. For example, just to
be certain that limy→x f x (y) is well defined requires that f ∈ C2.

(In fact, ratios of the 0/0 nature appear throughout the proofs, with denominators
such as 1−C(x, y) (as above), 1−C2(x, y), and even (1−C2(x, y))2, all of which are
problematic as y → x . For the a.s. convergence of (1.4), this leads to the requirement
that f ∈ C3(M). For the fluctuation result (1.5) we will even need to assume that
f ∈ C6(M). While these conditions seem, at first, rather severe, they seem to be
necessary and not just a consequence of our method of proof. For example, as far
as the C3 requirement is concerned, it comes from the fact that local reach involves
curvature, and so second order derivatives. However, the definition of f x itself involves
∇ f , leading to the requirement for three derivatives for f (or at least slightly more
than C2). For details, see Sect. 9.4 and, in particular, the proof of Lemma 12.2).
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In any case, f ∈ C3(M) is more than enough to ensure that it makes sense to define
the function σc( f, ·), and the constant σc( f ), as follows:

σ 2
c ( f, x)

!= sup
y∈M\x

Var
/
f x (y)

0
, (4.5)

σ 2
c ( f )

!= sup
x∈M

σ 2
c ( f, x). (4.6)

We now have everything we need to state the main result of the paper, but, first, we
explain why the above two definitions are already ‘well known’.

Associated with the Gaussian process f are a reproducing kernel Hilbert space, H ,
and an L2 space,H, which is the completion of the span of f over M . Writing S(H)

and S(H) for the unit spheres of these spaces, there is an isometry, 2 between M ,
when given themetric g induced by f , and the embedded submanifold2(M) ⊂ S(H),
determined by 2(x) = f (x), for all x ∈ M . There are also isometries between S(H)

and S(H), and so between M and a corresponding subset of S(H), the details of
which can be found, for example, in Chapter 3 of [1], but which date back to the
earliest history of Gaussian processes.

It turns out that σ 2
c ( f, x) is precisely the cotangent squared of the local reach of

2(M) at the point f (x), when S(H) is considered as a submanifold of H. It follows
immediately that σ 2

c ( f ) is the cotangent squared of the corresponding global reach.
Similar statements can be made about the isometric embedding of M into S(H), but
would take longer to explain. The bottom line, however, is that both σ 2

c ( f, ·) and σ 2
c ( f )

are basic quantities inherently connected to (M, g) when it is viewed via isometric
embeddings into larger spaces, and that there is a lot of Hilbert sphere geometry lying
behind the asymptotics of this paper.

These observations are relatively recent. In our current notation, they can be found
in Section 14.4.3 of [1], but see also [22] and the references therein.

The reason that σc( f, ·) and σc( f ) have been of more recent interest is that they
arise in the rigorous justification of the so-called ‘Euler characteristic heuristic’ for
approximating the distribution of the supremum of smooth Gaussian processes. In this
setting, let χ (Au( f,M)) denote the Euler characteristic of the excursion set Au of the
Gaussian field f , defined by

Au ≡ Au( f,M) = {x ∈ M : f (x) ≥ u}.

It has been ‘well known’ for some decades that, at least for high levels u ∈ R , the
mean Euler characteristic provides a good estimate of the exceedance probability,
P
&
supx∈M f (x) ≥ u

'
. That is, for large u, the difference

Diff f,M (u)
!= E {χ (Au( f,M))} − P

(
sup
x∈M

f (x) ≥ u
)

is small.
Relatively recently (cf. [1,22,24]) this statement has been made precise. (These

sources actually treat the more general setting of stratified manifolds, which requires
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an additional condition of local convexity forM , as well as someminor side conditions
on both M and f . The definition of σ 2

c ( f ) is also correspondingly changed. See, for
example, [23] for a discussion of why local convexity is required. In fact, what is
required is close to positive reach, and the reason that (4.7) fails for zero reach is
much the same reason that tube formulae fail. But that is another story.) In our setting,
it is now known that

lim inf
u→∞ −u−2 log

..Diff f,M (u)
.. ≥ 1

2

,
1+ 1

σ 2
c ( f )

-
. (4.7)

4.3 Main result

With the introduction, motivation and almost all of the notation behind us, we are
almost ready to state the main result of the paper. However, twomore items of notation
are required. The first gives the local radius of hk(M), as a submanifold of Sk−1, at
the image, under hk = f k/∥ f k∥, of the point x ∈ M [cf. (1.2)]. This is given, for
x ∈ M , by

θk(x)
!= inf

η∈T⊥
hk (x)

(hk (M))∩S(Thk (x)Sk−1)
θℓ(hk(x), η), (4.8)

where η is a unit vector in the tangent space Thk(x)S
k−1 pointing in a normal direction

to hk(M) at hk(x) ∈ hk(M). The second gives the global reach, as

θk
!= inf
x∈M

θk(x). (4.9)

Theorem 4.3 Let M be a manifold satisfying Assumption 2.1, and let f : M → R be
a Gaussian process satisfying Assumptions 4.1 and 4.2. Assume that σ 2

c ( f ), as defined
by (4.6), is finite. Consider the embedding (1.2) of M into the unit sphere in R k , and
let θk be the global reach of the random manifold hk(M). Then, with probability one,

cot2 θk → σ 2
c ( f ), as k → ∞. (4.10)

If, in addition, M is C6, and the sample paths of f are a.s. C6 on M, then there exists
a sequence γ̄k of random processes from M → R , such that, for all x ∈ M,

√
k
...cot2 θk(x) − σ 2

c ( f, x)
... ≤ |γ̄k(x)| , (4.11)

and a limit process γ̄ : M → R , such that,

γ̄k(·) ⇒ γ̄ (·), (4.12)

where the convergence here is weak convergence, in the Banach space of continuous
functions on M with supremum norm, and
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γ̄ (x) = sup
y∈M\x

γ (x, y),

where γ is the Gaussian process over M∗ defined by (11.14).

We defer all further discussion of the fluctuation result of (4.11) and (4.12) until
Sect. 11, where it will be restated as Theorem 11.1, and the (rather involved) definition
of the process γ will appear. Until then we shall concentrate on the a.s. convergence
of (4.10).

As an aside, note that a variation of some of the easier arguments in the following
sections show that the sequence of mappings hk tends, with probability one, to an
isometry, in the sense that the associated pullbacks to M of the usual metric on Sk−1

tend to the induced metric (4.1) on M . We provide a rigorous treatment of this result
in [15], albeit with the self-normalisation of (1.2) replaced by a

√
k normalisation.

We also prove there that this gives rise to the a.s. convergence of a class of intrinsic
functionals of hk(M) to the corresponding functionals on (M, g). We refer you to [15]
for details.

5 Computation of the reach

This section contains twopurely geometric lemmas fromwhich follow theprobabilistic
computations that make up most of the paper. The first gives a characterisation of the
reach of general submanifolds of spheres, and the second does the same for the specific
submanifolds hk(M) in terms of the functions f k . To start, recall that geodesic distance
on the sphere is measured in terms of angles, r ∈ [0, π). Let M be a submanifold of
Sk−1, and ηx a unit normal vector at x ∈ M .

We can now state the following characterisation, which implicitly assumes, as we
shall from now on, that M has dimension at least one. As stated it is identical to
Lemma 2.1 of [22], restricted to our setting. ([22] treats the more general setting of
stratified manifolds.). Furthermore, as pointed out there, the proof is essentially the
same as the proof given in [12] for the one-dimensional case. Nevertheless, because
of its importance to this paper, and (only) for the sake of completeness, we give the
proof in “Appendix 1”.

An important point to note for the statement of this lemma is that since the manifold
M is embedded in R k , we can, and do, treat all tangent spaces TxM as affine subspaces
of R k , with origin at x .

Lemma 5.1 Let M be a submanifold of Sk−1, satisfying the conditions of Assump-
tion 2.1. Let T⊥

x M ⊂ Tx Sk−1 ⊂ TxR k be the normal space of M at x as it
sits in Sk−1, viz. the affine subspace of R k which is the orthogonal complement of
span(TxM ⊕ {x}) ⊂ TxR k in TxR k . Then the reach, θ(x), at x is given by

cot2(θ(x)) = sup
y∈M\{x}

∥PT⊥
x M
y∥2

(1 − ⟨x, y⟩)2 ,

where PT⊥
x M

is orthogonal projection onto T⊥
x M.
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We are now in a position to derive the global reach of our randommanifold hk(M).
The result is given in the next lemma. However, before stating and proving the lemma,
we need some preparatory definitions.

Recalling the embedding maps hk and the components f k of (1.2), let (X1, .., Xm)
be a frame bundle of full rank over M , and define the k × (m + 1) matrix

Lx =

⎡

⎢⎣
f1(x) X1 f1(x) · · · Xm f1(x)
...

...
...

...

fk(x) X1 fk(x) · · · Xm fk(x)

⎤

⎥⎦ ,

and the projection matrix

Px = Lx
"
LTx Lx

#−1
LTx ,

assuming that k is large enough (k ≥ 2m + 1). By the independence of the f j and the
non-degeneracy of Assumption 4.2, the rows of Lx are a.s. linearly independent, and
so LTx Lx is a.s. invertible. The matrix Px orthogonally projects vectors in R k onto

span
"
f k(x), f k∗ (Xi ), 1 ≤ i ≤ m

#
,

where f k∗ is the usual push forward operator.
Consider now the following expression, well known from the Statistics literature

as the maximum likelihood estimate based on k samples of the correlation coefficient
between f (x) and f (y); viz.

!Ck(x, y) =
7k
j=1 f j (x) f j (y)87k

j=1( f j (x))2
7k
j=1( f j (y))2

. (5.1)

Consider the conditional process f x (y) defined on M∗ by (4.4) and denote k i.i.d.
realizations of it at y by

f x,k(y) =
/
f x1 (y), . . . , f

x
k (y)

0
.

Define an ‘error process’

Ex,k(y) = k
∥ f k(y)∥2

(1 − C(x, y))2
(1 −!Ck(x, y))2

,
1
k
∥Px f x,k(y)∥2

-
. (5.2)

The key lemma to be proven before starting probabilistic calculations is the following.

Lemma 5.2 Let M be a manifold satisfying the conditions of Assumption 2.1, embed-
ded into Sk−1 via the embedding map defined in (1.2). Assume that f satisfies
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Assumptions 4.1 and 4.2. Then, with probability one, the reach of hk(M) is given
by

cot2 θk = sup
x∈M

sup
y∈M\{x}

k
∥ f k(y)∥2

(1 − C(x, y))2
(1 −!Ck(x, y))2

,
1
k
∥ f x,k(y)∥2

-
− Ex,k(y).

(5.3)

Proof The global reach is obtained by taking infima of local reaches as given in (2.3).
However, since the cotangent is decreasing in the first quadrant, we have

cot2 θk = sup
x∈M

cot2 θk(x).

Using the result from Lemma 5.1, the above is equal to

sup
x∈M

sup
y∈M\{x}

∥(I − Px )hk(y)∥2
/
1 − ⟨hk(x), hk(y)⟩

02 . (5.4)

Since f is centered Gaussian, its derivatives are also centered Gaussians. Furthermore,
setting

v
xy
k

!=
/
E
&
f1(y)

.. f1(x),∇ f1(x)
'
, . . . ,E

&
fk(y)

.. fk(x),∇ fk(x)
'0T

,

we have (I − Px )v
xy
k = 0. This fact, along with (4.4) and (5.4), shows that

cot2 θk = sup
x∈M

sup
y∈M\{x}

k
∥ f k(y)∥2

(1 − C(x, y))2
(1 −!Ck(x, y))2

,
1
k
∥(I − Px ) f x,k(y)∥2

-
.

From the fact that we have orthogonal projections, this is

sup
x∈M

sup
y∈M\{x}

k
∥ f k(y)∥2

(1 − C(x, y))2
(1 −!Ck(x, y))2

,
1
k
∥ f x,k(y)∥2

-
− Ex,k(y),

and the lemma is proven. ⊓8

We shall see later that the error term Ex,k(y) in (5.5) goes to zero, and so we shall
be primarily concerned with the a.s. convergence of

sup
x∈M

sup
y∈M\{x}

k
∥ f k(y)∥2

(1 − C(x, y))2
(1 −!Ck(x, y))2

,
1
k
∥ f x,k(y)∥2

-
. (5.5)

For this, we need to establish convergence results for the three terms here. The results
we need are stated as four lemmas in the next section.
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6 Four key lemmas and the proof of the main theorem

The proof of Theorem4.3 follows from the four lemmas stated below and is given at the
end of this section. Throughout this sectionwe shall assume, without further comment,
that M satisfies the conditions of Assumption 2.1. The conditions on f vary, since not
all the lemmas require the same level of smoothness. All the conditions, however, are
implied by Assumptions 4.1 and 4.2.

We start by showing that the first two terms in (5.5) converge uniformly, with
probability one, to 1.

Lemma 6.1 Let f k be a R k-valued random process on M, with i.i.d. components,
each a centered, unit variance Gaussian process over M, with a.s. continuous sample
paths. Then, with probability one,

lim
k→∞

sup
y∈M

....
k

∥ f k(y)∥2 − 1
.... = 0.

Lemma 6.2 Let f k be as in the Lemma 6.1, but also C3. Denote the covariance
function of its components by C(x, y), and let !Ck(x, y) be as defined in (5.1). Then,
with probability one,

lim
k→∞

sup
(x,y)∈M∗

.....

,
1 − C(x, y)
1 −!Ck(x, y)

-2
− 1

..... = 0.

The third lemma (after some trivial calculations) will—see below—give us that the
remaining term in (5.5) converges to the parameter σ 2

c ( f ).

Lemma 6.3 Under the same assumptions as in Lemma 6.2, and with probability one,

lim
k→∞

sup
(x,y)∈M∗

....
∥ f x,k(y)∥2

k
− Var

/
f x (y)

0.... = 0. (6.1)

It will follow from the proof of this lemma that f x (y) is bounded even when we are
arbitrarily close to diag(M × M). This is needed to ensure that all the terms defined
in (5.5) are, a priori, well defined.

The final step we need is the following.

Lemma 6.4 Under the same assumptions as in Lemma 6.2, and with Ex,k(y) as
defined in (5.2), we have, with probability one,

lim
k→∞

sup
(x,y)∈M∗

Ex,k(y) = 0.
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We now show how to prove the main result as a straightforward consequence of
the previous four lemmas.

Proof of Theorem 4.3 It is immediate from the results of Lemmas 5.2, 6.1, 6.2 and
6.4 that, with probability one,

lim
k→∞

cot2 θk = lim
k→∞

sup
(x,y)∈M∗

∥ f x,k(y)∥2
k

, (6.2)

and we shall be done once we show that the right hand limit is σ 2
c ( f ).

However, this is immediate from the much stronger result in Lemma 6.3 that

lim
k→∞

sup
(x,y)∈M∗

....
∥ f x,k(y)∥2

k
− Var

/
f x (y)

0.... = 0

and that, by definition,

σ 2
c ( f ) = sup

(x,y)∈M∗
Var
/
f x (y)

0
.

This completes the proof of Theorem 4.3, modulo proving the four lemmas. ⊓8

7 Proof of Lemma 6.1

We need to prove that

lim
k→∞

sup
y∈M

....
k

∥ f k(y)∥2 − 1
.... = 0, a.s. (7.1)

However, this follows almost trivially from the following standard strong law for
Banach space valued random variables, which, since we use it often, we state in full.

Theorem 7.1 ([16], Corollary 7.10) Let X be a Borel random variable with values
in a separable Banach space B with norm ∥ · ∥B. Let Sn be the partial sum of n i.i.d.
realizations of X. Then,

Sn
n

a.s.−→ 0

if, and only if, E{∥X∥B} < ∞ and E{X} = 0.

To prove (7.1), we set X = ( f (y))2 −1 in the above theorem. The Banach space B
is C(M) (continuous functions over M), equipped with the sup norm. The mean zero
condition is trivial. To check the moment condition on the norm of ( f )2 − 1, note that
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E
9

sup
y∈M

|( f (y))2 − 1|
:

≤ 1+ E
9

sup
y∈M

|( f (y))2|
:

≤ 1+ E

⎧
⎨

⎩

>

sup
y∈M

| f (y)|
?2
⎫
⎬

⎭ < ∞.

Finiteness of the expectation here follows from the Borell–Tsirelson–Ibragimov–
Sudakov inequality (e.g. Theorem 2.1.2 in [1]). This is all that is needed to prove
(7.1).

8 Proof of Lemma 6.3

Before starting this proof in earnest, we need to check that all the terms that are
implicitly assumed to exist in the statement of the lemma arewell defined. In particular,
we need to consider the limits

lim
y→x

f x (y) = lim
y→x

f (y) − E
&
f (y)

.. f (x),∇ f (x)
'

1 − C(x, y) , (8.1)

the problem being that both numerator and denominator tend to zero in the limit. If
(8.1) is not well defined, then the supremum in the lemma makes no sense. (Note that
away from the diagonal in M × M there is no problem with either boundedness or
continuity, due to the assumed smoothness of f .)

8.1 The limit (8.1) is well defined

The proof is basically an application of L’Hôpital’s rule. To start, we take an orthonor-
mal frame field X = {X1, . . . , Xm} for the tangent bundle ofM , where orthonormality
is in the induced metric g of (4.1) and with the conventions described in Sect. 3.

Then standard computations for this situation (cf. Section 12.2.2 of [1] for precisely
this case) give that the vector ( f (y), f (x),∇ f (x)) has a mean zero, multivariate
Gaussian distribution with covariance matrix

⎡

⎣
1 C(x, y) ∇xC(x, y)

C(x, y) 1 0
∇xC(x, y) 0 1

⎤

⎦ .

From this and the definition of Gaussian conditional expectations, it immediately
follows that

f x (y) = f (x)+ f (y) − f (x)
1 − C(x, y) −

m*

i=1

Xi f (x) XiC(x, y)
1 − C(x, y) . (8.2)
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Now take any X =7m
i=1 di Xi ∈ TxM , and let c be a C2 curve in M such that

c : (−δ, δ) → M, c(0) = x, ċ(0) = X.

As y → x along this curve, we have

lim
y→x

f x (y) = lim
u→0

⎡

⎣ f (x) −

"
d f (c(u))
du −7m

i=1 Xi f (x)
dXiC(x,c(u))

du

#

dC(x,c(u))
du

⎤

⎦ . (8.3)

Consider the limit of the ratio in the above expression, this being the only problem-
atic term. This is

(
7
i di Xi ) f (x) −7i (Xi f (x)(

7
j d j (X j Xi )C(x, x))

(
7
i di Xi )C(x, x)

. (8.4)

Note that because of our choice of Riemannian metric, and the fact that the Xi were
chosen to be orthonormal, we have

X j XiC(x, x) = g(Xi , X j ) = δi j ,

the Kronecker delta. Therefore the numerator in (8.4) is zero. The denominator is also
zero because of the assumption of constant variance on f . Thus, to find the true limit,
another application of L’Hôpital’s rule is necessary, and so we have

lim
y→x

f x (y) = f (x) − lim
u→0

⎛

⎝
d2 f (c(u))
du2 −7i Xi f (x)

d2XiC(x,c(u))
du2

d2C(x,c(u))
du2

⎞

⎠ .

It is easy to see that

lim
u→0

d2 f (c(u))
du2

= ∇2 f (x)(X, X)+ ∇X X f (x),

and

lim
u→0

d2XiC(x, c(u))
du2

= XXXiC(x, x)
= E{XX f Xi f }
= E{∇X X f Xi f }
= g(∇X X, Xi ),
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where in the second-last equality, we have used calculations from [1] [cf. Eqn.
(12.2.14)]. Consequently,

lim
u→0

*

i

Xi f (x)
d2XiC(x, c(u))

du2
=
*

i

g(∇X X, Xi )Xi f (x)

= ∇X X f (x),

and so, moving to the notation of 2-forms, the limit in (8.3) is given by the well defined
expression

f (x) − ∇2 f (x)(X, X)
∇2C(x, x)(X, X)

,

and the limit in (8.1), albeit dependent on the path of approach of y to x , is also well
defined. As a consequence, we also have that, for each finite k,

sup
(x,y)∈M∗

∥ f x,k(y)∥2
k

is a.s. finite.

8.2 Completing the proof

We now turn to the proof of the lemma, establishing (6.1).
This, however, follows exactly along the lines of the proof of Lemma 6.1, again

applying Theorem 7.1. We need only take as our Banach space Cb(M∗), the bounded,
continuous functions on M∗ with supremum norm, and as our basic random variable
X = ( f x (y))2 − Var ( f x (y)).

The previous subsection establishes the a.s. boundedness of X needed to make the
argument work.

9 Proof of Lemma 6.2

Lemma 6.2 involves showing that the ratio

1 − C(x, y)
1 −!Ck(x, y)

converges, uniformly, to one, as k → ∞. For given x ̸= y, this is straightforward,
following from a strong law of large numbers, much as in the previous two proofs.
However, as x → y, even for fixed k, there is no easy way to find a uniform bound on
the ratio, since both numerator and denominator tend to zero.
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9.1 Outline of the proof

We start by writing !C as a sum of three terms:

!Ck(x, y) = C(x, y)+ Bias(!Ck(x, y))+ ξk(x, y),

where ξk(x, y) ismean zero, randomerrorwith varianceVar(!Ck), and the deterministic
bias term is E{!Ck − C}.

We shall show in “Appendix 2” that

Bias(!Ck(x, y)) =
−C(x, y)(1 − C2(x, y))

2(k + 1)
+ O

,
1
k2

-
, (9.1)

Var(!Ck(x, y)) =
(1 − C2(x, y))2

k
+ O

,
1
k2

-
. (9.2)

and that the remainder terms in both expressions are uniformly bounded over M×M .
(In fact, this is almost classical, in that expressions for the bias and variance of the
correlation coefficient estimator centered around the sample means (as opposed to
!C, which is centered at zero) are well known in the Statistics literature, dating back,
at least, to [14] [Chapter 16, see (16.73) and (16.74)]. “Appendix 2” treats the zero-
centered !C case.)

For notational convenience, set

Gζk(x, y)
!=

√
k
/!Ck(x, y) − C(x, y)

0
(9.3)

Since the notation is getting long, from now on, we interchangeably use ak(x, y) and
axyk for a function ak of x and y, refrain from writing out explicitly the summation
indices and their range in some situations where they are obvious, and also introduce

β
xy
k

!= Bias
/!Ck(x, y)

0
.

Then, in view of (9.1), and up to a term of O(k−2) in the denominator, we have

,
1 − C(x, y)
1 −!Ck(x, y)

-
= 1 − Cxy

1 − Cxy + Cxy(1−(Cxy)2)
2(k+1) −

√
k
/!Cxyk −Cxy−β

xy
k

0

1−(Cxy)2
1−(Cxy)2√

k

. (9.4)

Cancelling (1 − Cxy) from numerator and denominator, this becomes

>

1+ C
xy(1+ Cxy)
2(k + 1)

−
√
k

/!Cxyk − Cxy − β
xy
k )
0

1 − (Cxy)2
1+ Cxy√

k

?−1

. (9.5)
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The only problematic term here is

√
k

/!Ck(x, y) − C(x, y) − βk(x, y))
0

1 − C2(x, y)
, (9.6)

since the second term converges deterministically to zero, and the final multiplicative
factor is bounded by 2/

√
k. We shall prove that the sequence of random processes

defined by (9.6) converges weakly to a continuous Gaussian process on M∗. This, the
extra divisor of

√
k in (9.5), and some elementary probability arguments which we

leave to the reader, will be enough to prove Lemma 6.2.
In fact, in view of (9.1), we can drop the bias term from (9.6), and suffice with the

weak convergence, over M∗, of the processes

ζk(x, y)
!=

Gζk(x, y)
1 − C2(x, y)

=
√
k
!Ck(x, y) − C(x, y)

1 − C2(x, y)
. (9.7)

We shall prove this in a number of stages.
To start, we show the weak convergence of the numerator in (9.7)—Gζk—which is

much less delicate than that of the ratio ζk , there being no 0/0 issues. The convergence
of the finite dimensional distributions is shown in the following Sect. 9.2 and the
tightness in 9.3. The final step is to apply the continuous mapping theorem, (e.g. [5],
Section 1.5) for which we need to know that the mapping between function spaces
that takes

φ(x, y) → φ(x, y)
1 − C2(x, y)

(9.8)

is continuous,with probability one, forGζ , the process onM×M which is the limit of the
Gζk .We have already seen that ratios like that on the right hand side here are problematic,
and computable, at the y → x limit, only via L’Hôpital’s rule. Consequently, the weak
convergence of theGζk is going to have to be in a function space with a norm that takes
into account convergence of derivatives as well as the function values. This is going
to make the tightness argument rather intricate, which is why Sect. 9.3 is the longest
in the paper. The continuous mapping argument will be given at the end, in the brief
Sect. 9.4.

9.2 Fi-di convergence of ζ̃k , and characterising the limit

The main result of this section is the following.

Lemma 9.1 The finite-dimensional distributions ofGζk , on M × M, converge to those
of the zero mean, Gaussian process,Gζ , with covariance function given by

E{Gζ (x0, y0)Gζ (x, y)} =
1
2
Cx0 y0Cxy

H
(Cy0x )2 + (Cy0 y)2 + (Cx0x )2 + (Cx0 y)2

I

+Cxy0
J
Cx0 y − Cx0xCxy

K
+ Cy0 y

J
Cx0x − Cx0 yCxy

K

−Cx0 y0
J
Cx0xCx0 y + Cy0 yCxy0

K
. (9.9)
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The proof will rely on the following result of Anderson.

Theorem 9.2 ([4], Theorem 4.2.3) Let {U (k)} be a sequence of d-component ran-
dom vectors and b a fixed vector such that

√
k(U (k)− b) has the limiting distribution

N (0, T ) as k → ∞. Let g(u) be a vector-valued function of u such that each compo-
nent g j (u) has a nonzero differential at u = b, and let ψb be the matrix with (i, j)-th
component (∂g j (u)/∂ui )|u=b. Then

√
k(g(U (k))−g(b)) has the limiting distribution

N (0, ψ ′
bTψb).

Proof of Lemma 9.1 As one might guess from the complicated form of (9.9) the
calculations involved are somewhat tedious, and so we shall concentrate on making
the main steps clear.

Towards that end, we introduce the following notation just for this proof. For any
i, j ∈ N, and points (xi , y j ) ∈ M × M , define

C̄
xi ,y j
11 (k) = ∥ f k(xi )∥2,
C̄
xi ,y j
22 (k) = ∥ f k(y j )∥2,

C̄
xi ,y j
12 (k) =

k*

ℓ=1
fℓ(xi ) fℓ(y j ).

Now define

U (k) = 1
k

/
C̄ x1,y111 , C̄ x1,y122 , C̄ x1,y112 , . . . , C̄ xn ,yn11 , C̄ xn ,yn22 , C̄ xn ,yn12

0
,

b =
/
1, 1,Cx1,y1 , . . . , 1, 1,Cxn ,yn

0
.

Thus, the elements ofU are the maximum likelihood estimators of the corresponding
elements of b. It then follows from standard estimation theory (e.g. [4], Theorem 3.4.4)
that

√
k(U (k)−b) has a limiting normal distributionwithmean 0 and some covariance

matrix T , the specific structure of which does not concern us at the moment.
In order to prove the lemma, we require the asymptotic distribution of

$√
k(!Ck(xi , yi ) − C(xi , yi ))

%n
i=1

. (9.10)

However, using the vectorU above it is easy to relate the!Cs to the C̄s, and if we now
define a function g : R3n → Rn by

g(u1, u2, . . . , u3n) =
,

u3√
u1u2

,
u6√
u4u5

, . . . ,
u3n√

u3n−1u3n−2

-
,

then Theorem 9.2 establishes the claimed convergence of finite dimensional distribu-
tions, and so proves the lemma, modulo two issues.

The first is the condition on the differential required by Theorem 9.2, but this is
trivial. The second is to derive the exact form (9.9) of the limiting covariances, which,
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while not intrinsically hard, is a long and tedious calculation. The calculation starts
by writing out the covariance function for !C and computing moments, all of which
involve Gaussian variables. Fortunately, most of the detailed calculations that we need
were carried out long ago in the statistical literature and, can be found, for example,
in [13] [e.g. Chapter 41, Example 41.6]. What remains is to send k → ∞ in these
expressions, and deduce (9.9). We shall not go through the tedious details here. ⊓8

9.3 Tightness of ζ̃k

For the reasons alluded to above and exploited below, we shall prove tightness in the
Banach space of twice continuously differentiable functions on M × M , which we
denote by B(2), equipped with the norm

∥ f ∥B(2)
!= max

$
∥ f ∥∞, ∥∇ f ∥∞, ∥∇2 f ∥∞

%
, (9.11)

where the norms of the first and second order derivatives are obtained by taking max-
imum over the norms of the 2m and 4m2 components of the Riemannian differential
and Hessian, respectively.

To break the rather long proof of tightness into bite sized pieces, we write

Gζk(x, y) = αk(x, y) + !k(x, y), (9.12)

where

αk(x, y)
!=

√
k

⎛

⎝
1
k

7k
j=1( f j (x) f j (y) − C(x, y))
87

( f j (x))2

k

87
( f j (y))2

k

⎞

⎠

and

!k(x, y)
!=

√
k

⎛

⎝1 −
L7

( f j (x))2

k

L7
( f j (y))2

k

⎞

⎠ C(x, y)
87

( f j (x))2

k

87
( f j (y))2

k

.

In the following two subsections we shall prove that the sequences αk and !k
converge weakly in B(2), from which the convergence ofGζk immediately follows.

9.3.1 αk converges weakly in B(2)

We start with something even simpler than αk , viz. the sequence of random functions
ηk defined by

ηk(x, y) =
√
k
,
1
k

*
f j (x) f j (y) − C(x, y)

-
. (9.13)
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To prove the weak convergence of this sequence, we use the theorem stated as part
of Example 1.5.10 in [26] [p. 41] (also see the discussion after the statement of the
theorem).

To this end, note that the summands in (9.13) are i.i.d. copies of the random function
f ⊗ f : M × M → R defined by ( f ⊗ f )(x, y) = f (x) f (y). If we endow M × M
with the topology induced by the Riemannian distance dM×M (this is the metric we
use in place of the semi-metric in the theorem from [26]), then M × M is compact in
this topology. Since the convergence of the finite dimensional distributions of (9.13)
follows from Theorem 9.2, all that is left to check for weak convergence of (9.13) is
tightness.

In order to show tightness, we first need to set up some notation, in particular for
Taylor expansions on M × M , in terms of Riemannian normal coordinates.

Consider normal neighbourhoods U1,U2 (local coordinates (xi ), (yi ), respec-
tively) around x0 and y0 in M , and take U1 × U2 around (x0, y0) in M × M . Then,
(xi : yi ) give us the following definition of coordinates in the product spaceU1 ×U2:

(x1, . . . , xm : y1, . . . , ym)(x0, y0) =
H
(x1, . . . , xm)(x0) : (y1, . . . , ym)(y0)

I
.

Since

T(x0,y0)(U1 ×U2) = Tx0U1 ⊕ Ty0U2,

any tangent vector v in the product tangent space splits uniquely as the sum of v1 ∈
Tx0U1 andv2 ∈ Ty0U2. This further gives us the followingdefinition for the exponential
map in M × M :

expM×M
(x0,y0)

(v) =
"
expMx0 (v1), exp

M
y0 (v2)

#
.

Let the coordinate basis vectors for the tangent spaces be denoted by
"

∂
∂xi

#
and

"
∂

∂yi

#
,

considered as rowvectors. The concatenation of the two serves as a basis for the product
tangent space, and so any vector v in this space can be written as

v = v1 ⊕ v2 =
m*

i=1
vi

∂

∂xi
+

m*

i=1
vi+m

∂

∂yi
.

This allows us to write the following Taylor expansion for C(x, y) about (x0, y0):

C(x, y) = C(x0, y0) + v

M,
∂C(x, y)

∂x1
, . . . ,

∂C(x, y)
∂ym

-
|(x0,y0)

NT

+ 1
2
v

M
∂2C(x, y)
∂k xi∂ l y j

|(x0,y0)
N
vT + O(∥v∥3),

where k+l = 2. Finally, we recall a few important facts from the topic of normal coor-
dinates andgeodesics (cf. [17]) that the geodesic starting from (x0, y0) in the directionv
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is given in Riemannian normal coordinates by t (v1 · · · v2m), geodesics are locallymin-
imizing, and so along with the previous fact, we have ∥v∥2 = d2M×M ((x, y), (x0, y0)).
Also, importantly, since the Christoffel symbols vanish at the centers of the normal
charts, covariant derivatives at the centers reduce to usual partial derivatives. There-
fore, working with normal coordinates is useful in local calculations.

Returning now to the issue of tightness, we need to establish moment bounds on the
second derivatives of the processes ηk of (9.13). Clearly, the variance and correlation
functionofηk , are, respectively, the variance of f (x) f (y)−C(x, y) and the correlation

E {( f (x) f (y) − C(x, y))( f (x0) f (y0) − C(x0, y0))} .

To investigate second derivatives, it is useful to move to the notation of 2-forms.
Doing so, it follows from simple algebra that the diagonal elements of the Hessian
matrix of this process are given by

(
∇2 f (x)

,
∂

∂xi
,

∂

∂xi

-
f (y) − ∇2Cxy

,
∂

∂xi
,

∂

∂xi

-
,

∇2 f (y)
,

∂

∂y j
,

∂

∂y j

-
f (x) − ∇2Cxy

,
∂

∂y j
,

∂

∂y j

-)
, 1 ≤ i, j ≤ m,

with other elements in the upper triangular portion falling into one of the three groups

∇2 f (x)
,

∂

∂xi
,

∂

∂x j

-
f (y) − ∇2Cxy

,
∂

∂xi
,

∂

∂x j

-
, 1 ≤ i < j ≤ m,

∇2 f (y)
,

∂

∂yi
,

∂

∂y j

-
f (x) − ∇2Cxy

,
∂

∂yi
,

∂

∂y j

-
, 1 ≤ i < j ≤ m,

or

∂ f (x)
∂xi

∂ f (y)
∂y j

− ∇2Cxy
,

∂

∂xi
,

∂

∂y j

-
, 1 ≤ i ≤ j ≤ m.

For the sake of illustration, we focus on only one ‘type’ of term. Computations for the
other terms are basically the same. The term we shall consider is

∇2 f (x)
,

∂

∂x1
,

∂

∂x2

-
f (y) − ∇2Cxy

,
∂

∂x1
,

∂

∂x2

-
,

and we now also note that the term involving the derivatives ofC does not present any
problem for the upper bound on the increments since C is deterministic and the fact
that f ∈ C3 implies that C is at least C6. Thus, it is enough to prove the following
bound

E
("

∇2 f (x)
"

∂
∂x1 ,

∂
∂x2

#
f (y) − ∇2 f (x)

"
∂

∂x1 ,
∂

∂x2

#
|x=x0 f (y0)

#2)

≤ Kd2M×M ((x, y), (x0, y0))
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for any two pairs (x, y), (x0, y0) ∈ M × M , and constant K . The expectation here is
bounded above by

2E

9,
∂2 f (x)
∂x2∂x1

f (y) − ∂2 f (x)
∂x2∂x1

|x=x0 f (y0)
-2:

+ 2E

9,,
∇ ∂

∂x1

∂

∂x2
f (x)

-
f (y) −

,
∇ ∂

∂x1

∂

∂x2
f (x)

-
|x=x0 f (y0)

-2:

. (9.14)

As far as the first expectation here is concerned, using Wick’s formula, the fact that f
has unit variance, and, for a differential operator D of any order, writing DCx0 y0 for
DCxy |(x0,y0), we have that it is equal to

M
∂4Cxx

∂(x2)2∂(x1)2
+ ∂4Cx0x0

∂(x2)2∂(x1)2
− 2

∂4Cxx0
∂(x2)2∂(x1)2

Cyy0
N

+
O,

∂2Cxy

∂x2∂x1

-2
+
,

∂2Cx0 y0
∂x2∂x1

-2
− 2

∂2Cxy0
∂x2∂x1

∂2Cx0 y

∂x2∂x1

P

. (9.15)

The important point to be checked is that terms which are O(1) and O(∥v∥) cancel.
We check this thoroughly below. The second order terms can be trivially bounded
using the facts that f ∈ C3 and |vi | ≤ ∥v∥. This technique of bounding gives the
required constant K independent of the points, but does not offer too much insight.
Consequently, we illustrate how this can be done for one case only.

Consider the case

M
∂3Cxx0
∂(x1)3

|x=x0v1 + · · · +
∂3Cxx0

∂xm∂(x1)2
|x=x0vm

N

×
M
∂3Cyy0
∂(y1)3

|y=y0vm+1 + · · · +
∂3Cyy0

∂ym∂(y1)2
|y=y0v2m

N
.

The above is obviously smaller than

M ....
∂3Cxx0
∂(x1)3

|x=x0v1
....+ · · · +

....
∂3Cxx0

∂xm∂(x1)2
|x=x0vm

....

N

×
M ....

∂3Cyy0
∂(y1)3

|y=y0vm+1
....+ · · · +

....
∂3Cyy0

∂ym∂(y1)2
|y=y0v2m

....

N
.

This immediately yields the following upper bound, in which M3 is a bound on the
third order derivatives of C:

M2
3 [|v1| + · · · + |vm |] × [|vm+1| + · · · + |v2m |]
≤ M2

3m
2d2M×M ((x, y), (x0, y0)) = M2

3m
2∥v∥2.
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With the second order terms out of theway,we return to our claim that the zeroth and
first order terms cancel out in (9.15). Focus first on the second term in that expression.
For any (x, y) ∈ M × M, introduce the function

g(x, y) != ∂2Cxy

∂x2∂x1
,

which, by assumption, is at least C4. Expanding this in a Taylor series about (x0, y0),
we have

g(x, y) = g(x0, y0)+
m*

i=1

∂g(x, y)
∂xi

|(x0,y0)vi

+
m*

i=1

∂g(x, y)
∂yi

|(x0,y0)vm+i + O(∥v∥2).

In shorter notation, let us write the above as

g(x, y) = g(x0, y0)+
2m*

i=1
eivi + O(∥v∥2),

where the ei are the coefficients from the previous formula. Then,

,
∂2Cxy

∂x2∂x1

-2
+
,

∂2Cx0 y0
∂x2∂x1

-2

= 2(g(x0, y0))2 + 2g(x0, y0)
2m*

i=1
eivi

+ O(∥v∥2). (9.16)

Next, define the following smooth functions over M :

h(x) != ∂2Cxy0
∂x2∂x1

, t (y) != ∂2Cx0 y

∂x2∂x1
.

It is immediate that

h(x) = g(x0, y0)+
m*

i=1
eivi + O(∥v∥2),

t (x) = g(x0, y0)+
2m*

i=m+1
eivi + O(∥v∥2).

Therefore,

− 2
∂2Cxy0
∂x2∂x1

∂2Cx0 y

∂x2∂x1
= −2[g2(x0, y0)+ g(x0, y0)

2m*

i=1
eivi ] + O(∥v∥2). (9.17)
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It is now clear that, as claimed, at least for the second expression in (9.15), the zeroth
and first order terms in the Taylor expansion cancel [cf. (9.16) and (9.17)].

Turning now to the first term in (9.15), define a function w : diag(M × M) → R
by

w(x, x) != ∂4Cxx

∂(x2)2∂(x1)2
,

and a function on a : M → R by

a(x) != ∂4Cxx0
∂(x2)2∂(x1)2

.

These admit the Taylor series expansions

w(x, x) = w(x0, x0)+ 2
m*

i=1

∂w(x, x)
∂x1

|(x0,x0)vi + O(∥v∥2),

and

a(x) = w(x0, x0)+
m*

i=1

∂w(x, x)
∂x1

|(x0,x0)vi + O(∥v∥2).

Noting that the Taylor series expansion of Cyy0 about y0 is

1+ O(∥v∥2),

it is easy to see that here also, only the terms starting from the second order remain.
Again, following the same basic lines as in the previous argument shows that a similar
upper bound holds for the second expectation in (9.14). From our earlier discussions,
we are therefore done regarding proof of tightness of (9.13).

In addition, since by Lemma 6.1, we know that
87

( f j (x))2/k converges, uni-
formly over M , and with probability one, to 1, we have (e.g. [5] [Theorem 4.4]) the
joint weak convergence of the pair

⎛

⎝
√
k
,7

f j (x) f j (y)
k

− C(x, y)
-
,

L7
( f j (x))2

k

L7
( f j (y))2

k

⎞

⎠ .

Given this, the continuous mapping theorem immediately yields the weak conver-
gence of αk , as required.
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9.3.2 !k converges weakly in B(2)

Recall the expression for !k :

√
k

⎛

⎝1 −
L7

( f j (x))2

k

L7
( f j (y))2

k

⎞

⎠× C(x, y)
87

( f j (x))2

k

87
( f j (y))2

k

. (9.18)

We have already seen that the denominator in the rightmost ratio here converges a.s.,
and uniformly, to one, and so a simple application of Theorem 4.4 from [5] and the
continuousmapping theorem imply that we need only concern ourselveswith theweak
convergence of the sequence of processes 7k defined by

7k(x, y)
!=

√
k

⎛

⎝

L7
( f j (x))2

k

L7
( f j (y))2

k
− 1

⎞

⎠. (9.19)

To prove this convergence, we shall, for large enough k, bound 7k from above and
below by two sequences of processes, which converge to the same limit. These bounds
[cf. (9.21) below] involve a common term, the weak convergence of which is known,
and a smaller term, which converges a.s. and uniformly to zero.

The bound depends on the following algebraic inequality, due to Cartwright and
Field [7].

Theorem 9.3 ([7]) Let wi , 1 ≤ i ≤ n be numbers summing to 1. Let xi be positive
numbers in [a, b] (0 < a < b), whose arithmetic and geometric means are denoted
by AMw and GMw, respectively. Then,

1
2b

*
wi (xi − AMw)

2 ≤ AMw − GMw ≤ 1
2a

*
wi (xi − AMw)

2.

To apply Theorem 9.3 we note first that we know that k−17( f j (x))2 converges to
1 a.s. and uniformly. Thus, given any ε > 0, there exists a (random) k0 such that, for
all x ∈ M , and all k ≥ k0,

1 − ε ≤ 1
k

*
f 2j (x) ≤ 1+ ε.

Now apply the theorem, assuming that k ≥ k0, taking n = 2, [a, b] = [1−ε, 1+ε],
w1 = w2 = 1/2, and

x1 =
*

f 2j (x)/k, x2 =
*

f 2j (y)/k.

Setting

Nk(x)
!=

√
k
"*

f 2j (x)/k − 1
#
, (9.20)
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a little algebra leads to

1
2
(Nk(x)+ Nk(y)) − (Nk(x) − Nk(y))2

4(1 − ε)
√
k

≤ 7k(x, y) ≤ 1
2
(Nk(x)+ Nk(y)) − (Nk(x) − Nk(y))2

4(1+ ε)
√
k

. (9.21)

But this is precisely the inequality that we described above. Although it would be
straightforward to establish it independently, the weak convergence of Nk has already
been proven in Sect. 9.3.1, since Nk is just the process (9.13) over diag(M×M). From
this immediately follows the weak convergence of the processes from M × M → R
defined by (x, y) → Nk(x)+ Nk(y) and (x, y) → Nk(x) − Nk(y).

This completes the proof of the weak convergence of !k .

9.4 The continuous mapping argument

To complete the proof of Lemma 6.2, we exploit the fact, proven in the previous two
sections, thatGζk converges weakly in B(2) to the Gaussian processGζ with covariance
function given by (9.9), and use it to show that the ratio processes

ζk(x, y) =
Gζk(x, y)

1 − C2(x, y)
(9.22)

converge weakly in Cb(M∗).
As described at the beginning of this section, this follows immediately from an

application of the continuous mapping theorem, once we show that the mapping H :
B(2) → Cb(M∗), defined by

(H(φ))(x, y) = φ(x, y)
1 − C2(x, y)

(9.23)

is continuous, with probability one, for the probability measure supported on the paths
ofGζ .

Recall thatGζ is at least C2 over M ×M because of weak convergence in B(2). The
same (and more) is true for the covariance function C, so the issue of continuity of H
is trivial if we restrict γ to a region away from the diagonal of M × M .

So the only question remaining is what happens as y → x . What we shall now do
is investigate the limits

lim
y→x

Gζ (x, y)
1 − C2(x, y)

,

and show that they depend only on ratios of well defined functions of the second
derivatives of Gζ and C. This will immediately imply the continuity of H , and thus
complete the proof of Lemma 6.2.
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To this end, take Xx ∈ TxM, and a C2 curve c in M such that

c : (−δ, δ) → M, c(0) = x, ċ(0) = Xx .

Then, using the symmetry ofGζ and C, when y approaches x along Xx ,

lim
y→x

Gζ (x, y)
1 − C2(x, y)

= lim
u→0

Gζ (c(u), x)
1 − C2(c(u), x)

,

when the limit on the left hand side exists. It follows from (9.9) that the limit of the
numerator is zero, while the same is true of the denominator since C(x, x) = 1.

By L’Hôpital’s rule, the limit above is equal to

lim
u→0

dGζ (c(u),x)
du

−2C(c(u), x) dC(c(u),x)du

, (9.24)

The denominator here is easily seen to be zero, since x = y is a critical point for
C(x, y) and C is differentiable. To check that the same is true for the numerator, note
thatGζ is differentiable, with zero mean and covariance function given by the second
derivative of the covariance function ofGζ . That is,

H
E
$
(XxGζ (x, y))2

%I

y=x
=
J
Xy1Xy2E

&Gζ (x, y1)Gζ (x, y2)
'K
y1=y2=x .

Using the specific form (9.9) of this covariance, and denoting Xx1Cx1x for
Xy1Cy1x |y1=x1 , we have that

Xy1E{Gζ (y1, x)Gζ (y2, x)}|y1=x1
= 1

2
(Cy2x )3Xx1Cx1x +

1
2
Cy2x Xx1Cx1x

+ 3
2
Cy2x (Cx1x )2Xx1Cx1x

+ 1
2
Cy2x

H
(Cx1y2)2Xx1Cx1x + 2Cx1xCx1y2Xx1Cx1y2

I
+ Cy2x Xx1Cx1x

− (Cy2x )2Xx1Cx1y2 + Xx1Cx1y2 − Cy2x Xx1Cx1x
− 2Cx1y2Cx1x Xx1Cx1x − (Cx1x )2Xx1Cx1y2 − Cy2x Xx1Cx1x .

Taking the additional derivative Xy2 , and then setting x1 = x2 = x gives

2
"
∇2C(x, x)(Xx , Xx ) − ∇2C(x, x)(Xx , Xx )

#
= 0.

Thus, since the variance here is zero, y = x is indeed a critical point ofGζ (y, x),
and so to evaluate the limit in (9.24) we need yet another round of L’Hôpital’s rule.
This gives us that the limit is equal to
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lim
u→0

d2Gζ (c(u),x)
du2

−2
M"
dC(c(u),x)

du

#2
+ C(c(u), x) d2C(c(u),x)du2

N= −∇2Gζ (x, x)(Xx , Xx )
2∇2C(x, x)(Xx , Xx )

the equality here following from the fact that y = x is a critical point for bothGζ (y, x)
and C(y, x).

However, all terms here are well defined, finite, and non-zero with probability one,
so we are done.

10 Proof of Lemma 6.4

To prove the lemma, we need to show that the sequence

sup
x,y∈M∗

Ex,k(y) = sup
x,y∈M∗

k
∥ f k(y)∥2

(1 − C(x, y))2
(1 −!Ck(x, y))2

,
1
k
∥Px f x,k(y)∥2

-

converges to zero, with probability one.
By Lemmas 6.1 and 6.2we know that each of the first two factors here a.s. converge,

uniformly over M∗, to one. So it suffices to show the convergence of the final factor
to zero, or that

lim
k→∞

sup
(x,y)∈M∗

1
k
∥Px f x,k(y)∥2 = 0, a.s. (10.1)

Since we have already shown that f x (y) is a.s. bounded over M∗, the absolute value
of its supremum has (on a large deviations scale) Gaussian-like tails, and so standard
Gaussian arguments show that the maximum of k i.i.d. copies of this process can,
asymptotically, be a.s. bounded by C

√
log k for some finite C .

Since Px is orthogonal projection onto an (m + 1)-dimensional subspace of R k , it
now follows that, for large enough k,

1
k
∥Px f x,k(y)∥2 <

C(m + 1) log k
k

, (10.2)

from which (10.1) now follows, and we are done.

11 Fluctuation theory for Local Reaches

We now return to the last part of Theorem 4.3, in which we described a fluctuation
result involving the local reaches of the random manifolds hk(M). In particular, we
want to consider the k → ∞ distributional limit of the functions
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√
k
"
cot2 θk(·) − σ 2

c ( f, ·)
#

(11.1)

where θk(x), defined by (4.8), is the local reach of hk(M) at the point hk(x), for
x ∈ M .

The main result of this section is Theorem 11.1, which contains what is needed
to complete the statement of Theorem 4.3, in that the limit process for (11.1) is now
described in (formidable) detail.

To make that detail appear a little more natural, we shall do a little algebra before
stating the theorem.

11.1 Some algebra and rearrangements

From the proof of Lemma 5.2, we know that

cot2 θk(x) = sup
y∈M\{x}

$
Rk(x, y) − Ex,k(y)

%
, (11.2)

where Ex,k(y) is the ‘error’ term defined at (5.2) and we set

Rk(x, y)
!= k

∥ f k(y)∥2
(1 − C(x, y))2
(1 −!Ck(x, y))2

,
1
k
∥ f x,k(y)∥2

-
.

We already know from Lemma 6.4 that Ex,k(y) → 0 uniformly in x and y as k → ∞.
However, looking back over the proof, in particular the final inequality (10.2), we see
that the same is true for

√
kEx,k(y), from which it follows that we can ignore the error

term in (11.2). In addition, we also know from Theorem 4.3 that

lim
k→∞

sup
(x,y)∈M∗

..Rk(x, y) − Var( f x (y))
.. = 0. (11.3)

Thus it seems not unreasonable that the structure of the limit of (11.1)might come from
a continuous mapping theorem and the weak convergence of the random processes
γk , where

γk(x, y)
!=

√
k
/
Rk(x, y) − Var( f x (y))

0
, (x, y) ∈ M∗. (11.4)

If we now recall/introduce the notations,

8
(1)
k (x) = ∥ f k(x)∥2

k
, 8

(2)
k (x, y) = ∥ f x,k(y)∥2

k
, (11.5)

and

Zk(x, y) =
√
k

O,
1 − C(x, y)
1 −!Ck(x, y)

-2

− 1

P

, (11.6)
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Bk(x, y) =
√
k
"
8

(2)
k (x, y) − Var( f x (y))

#
, (11.7)

Nk(y) =
√
k
"
8

(1)
k (y) − 1

#
, (11.8)

then it takes no more than a few lines of simple algebra to check that

γk(x, y) = Bk(x, y) − Nk(y)Zk(x, y)
8

(2)
k (x, y)

√
k8(1)

k (y)

− 8
(2)
k (x, y)

8
(1)
k (y)

Nk(y) + 8
(2)
k (x, y)Zk(x, y). (11.9)

Now we wave our hands a little to come to some vague conclusions, before stating
Theorem 11.1 which will make these conclusions precise, and then giving proofs.
Firstly however, to reduce the lengths of some of the formulae to come, we recall
some of our notational shorthand,

Cxy = C(x, y), !Cxyk = !Ck(x, y), (11.10)

and introduce

V xy = Var
/
f x (y)

0
= 1 − (Cxy)2 −7m

i=1(XiCxy)2

(1 − Cxy)2 . (11.11)

(To see why the right hand side here is indeed Var ( f x (y)), see (12.4) below).
Now consider the various terms in (11.9). Although we did not state it explicitly,

we have actually already proven that Nk has a Gaussian limit. (See the discussion
below in the proof of Lemma 12.1.) We also know, from Lemmas 6.1 and 6.3, that, as
k → ∞, uniformly on M and M∗, respectively,

8
(1)
k (x)

a.s.→ 1 and 8
(2)
k (x, y)

a.s.→ V xy .

In addition, Lemma 6.2 and the a.s. convergence of 8
(1)
k lead to the expectation (this

is the handwaving step) that Bk and Zk will both have Gaussian limits. Substituting
this ‘information’ into (11.9), the implication is that the first term on the right hand
side will have a Gaussian limit on M∗, the second will converge to zero, the third will
converge to V xy times a Gaussian process on M , while the last term will converge to
V xy times a Gaussian process on M∗. Unfortunately, all the limit processes will be
correlated, which is what makes the precise description of this a little long-winded, as
we now see.

11.2 The fluctuation result

Theorem 11.1 Let f and M satisfy the assumptions of Theorem 4.3, including the
conditions that M is C6 and that, with probability one, f ∈ C6(M). Then there exists
a sequence γ̄k of random processes from M → R , such that, for all x ∈ M,
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√
k
...cot2 θk(x) − σ 2

c ( f, x)
... ≤ |γ̄k(x)| (11.12)

and a limit process γ̄ : M → R such that

γ̄k(·) ⇒ γ̄ (·). (11.13)

The convergence here is weak convergence, in the Banach space Cb(M) of continuous
functions on M with supremum norm, and

γ̄ (x) = sup
y∈M\x

γ (x, y),

where γ is the a.s. continuous Gaussian process over M∗ representable in distribution
as

γ (x, y) = β(x, y)+ V xyη(y)+ 2V xyζ(x, y)(1+ C(x, y)). (11.14)

Here

1. η(y) is a centered Gaussian process over M with correlation function

E{η(y1)η(y2)} = 2(C(y1, y2))2.

2. β(x, y) is a centered Gaussian process over M∗ with correlation function

E{β(x1, y1)β(x2, y2)} = 2
/
E{ f x1(y1) f x2(y2)}

02
.

3. ζ(x, y) is a centered Gaussian process over M∗ with correlation function

E{ζ(x1, y1)ζ(x2, y2)}

= 1
(1 − (Cx1y1)2)(1 − (Cx2y2)2)

×
(
1
2
Cx1y1Cx2 y2

H
(Cy1x2)2 + (Cy1y2)2 + (Cx1x2)2 + (Cx1y2)2

I

+ Cx2 y1
J
Cx1y2 − Cx1x2Cx2 y2

K
+ Cy1y2

J
Cx1x2 − Cx1y2Cx2 y2

K

− Cx1y1
J
Cx1x2Cx1y2 + Cy1y2Cx2 y1

K )
.

As for the corresponding cross-covariance functions, we write them in terms of
X1, . . . , Xm, an orthonormal (with respect to the induced metric) vector field on M.
None of the cross-covariances are dependent on the particular choice of vector field.

E{η(y1)β(x2, y2)} =
2
J
Cy1 y2 − Cx2 y2Cx2 y1 −7i XiCxy1 |x=x2 XiCxy2 |x=x2

K2

(1 − Cx2 y2 )2 ,

E{η(y1)ζ(x2, y2)} =
2Cx2 y1Cy1 y2 − Cx2 y2

$
(Cx2 y1 )2 + (Cy1 y2 )2

%

1 − (Cx2 y2 )2
,
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E{ζ(x1, y1)β(x2, y2)} =
1

(1 − (Cx2 y2 )2)

×
M

2
(1 − Cx1 y1 )2

$"
Cy1 y2 − Cx1 y1Cx1 y2 −

*
XiCxy1 |x=x1 XiCxy2 |x=x1

#

×
"
Cy1x2 − Cx1 y1Cx1x2 −

*
XiCxy1 |x=x1 XiCxx2 |x=x1

#%

− Cx2 y2
(1 − Cx1 y1 )2

("
Cy1 y2 − Cx1 y1Cx1 y2 −

*
XiCxy1 |x=x1 XiCxy2 |x=x1

#2

+
"
Cy1x2 − Cx1 y1Cx1x2 −

*
XiCxy1 |x=x1 XiCxx2 |x=x1

#2)N
.

Although Theorem 11.1 takes a lot of space to state, its main implication is simple:
The limiting fluctuations of the local reach of hk(M) are bounded by a functional of
a Gaussian process on M∗. The detailed structure of this Gaussian process is compli-
cated, and depends, in terms of properties such as differentiability, on the underlying
covariance of f . For example, while the limit is a.s. continuous, it will not typically be
differentiable, and fine sample path properties such as Hölder continuity will depend
on the behaviour of the underlying covariance C in ways that are not at all obvious.

12 Proof of Theorem 11.1

We start with two lemmas, and then use these to complete the proof in the Sect. 12.2.

12.1 Two lemmas

Lemma 12.1 Under the conditions of Theorem 11.1, and with the notation of the
previous section, we have the joint weak convergence of the following vector valued
process over Cb(M∗):

"
8

(1)
k , 8

(2)
k , Bk, Nk, Zk

#
⇒ (1, V, β, η, 2ζ(1+ C)) , (12.1)

where V : M × M → R is defined by V (x, y) = V xy.
Proof Most of the pieces that make up the proof of Theorem 11.1 are actually already
in hand. For a start, by Lemmas 6.1 and 6.3 we know 8

(2)
k (x, y) and 8

(1)
k (y) con-

verge to the deterministic limits V xy and 1, respectively, where the convergence is
almost surely uniform in (x, y) ∈ M∗ and y ∈ M . The corresponding weak conver-
gence is, obviously, implied by this. Secondly, in Sect. 9.3.1 we established the weak
convergence of Nk in Cb(M) [cf. (9.20) and the last paragraph of Sect. 9.3.2].

To add Zk to this convergence, note that the main term there—(1−C(x, y))/(1−
!Ck(x, y))—already appeared in Sect. 9.1, and can be rewritten as in (9.4). Substituting
there the ζk(x, y) of (9.7) and expanding out the powers, simple algebra leads to the
fact that

Zk(x, y) = 2(1+ C(x, y))ζk(x, y) + O(1/
√
k), (12.2)

and we have already shown the weak convergence of ζk in Cb(M∗) [cf. (9.22)].
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Note that to this point we have relied on results that arose in earlier parts of the
paper, and these required only that f ∈ C3(M). The additional level of differentiability
required by the lemma, and so also byTheorem11.1, comes from the following lemma,
which completes the collection by establishing the weak convergence of Bk .

In view of the fact that all the limit processes are either deterministic or Gaussian,
applications of Slutsky’s theorem and the Cramér–Wold device then complete the
proof, modulo calculating all the limit variances and covariances, for which we do not
intend to write out the details. ⊓8
Lemma 12.2 Under the conditions of Lemma 12.1, and with the notation of the pre-
vious section, Bk ⇒ β in Cb(M∗).

Proof The proof follows along the same lines as the proof of the weak convergence
of αk described in Sect. 9.3.1.

To start, we once again choose an orthonormal frame field {Xi } for M , with the
conventions of Sect. 3. Write the corresponding Riemannian normal basis vectors as
{∂/∂xi }, and

&
∂/∂xi : ∂/∂yi

'
as the corresponding basis for the tangent spaces on

M × M . In this basis, we have

f x (y) = f (y) − Cxy f (x)
1 − Cxy −

m*

i=1

∂ f (x)
∂xi

∂Cxy
∂xi

1 − Cxy , (12.3)

and

V xy = Var
/
f x (y)

0
=

1 − (Cxy)2 −7i (
∂Cxy
∂xi )

2

(1 − Cxy)2 . (12.4)

If we now write

9ℓ(x, y)
!= (1 − Cxy)2

"/
f xℓ (y)

02 − V xy
#
,

then we can also write

Bk(x, y) =
k−1/27k

ℓ=1 9ℓ(x, y)
(1 − Cxy)2 . (12.5)

Suppose we can show that the numerator here has a Gaussian limit,9, say, as k → ∞.
Since it is a sum of i.i.d. processes, this should not be too hard. To complete the proof
of the weak convergence of the Bk we could then use a continuous mapping argument,
as before, by defining a map, H say, between functions on M∗ via

(H(φ))(x, y) = φ(x, y)
(1 − Cxy)2 , (12.6)

where the image function is in Cb(M∗). For this to work, we need to know that H is
continuous, with probability one, for the probability measure supported on the paths
of 9. (This is not straightforward, since, as we shall soon see, we once again run into
0/0 issues for (H(9))(x, y) as x → y.) As a first step in checking this continuity, we
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need to know something about 9, and the function space on which the convergence
of the numerator in (12.5) to 9 occurs.

We start with9. Since, by assumption, it is mean zero Gaussian, all of its properties
are determined by its covariance function. Given the expressions (12.3) and (12.4), it
is not hard to check that this is given by

E {9ℓ(x1, y1)9ℓ(x2, y2)} = E {9(x1, y1)9(x2, y2)}

= Cy1y2 − Cx2 y1Cx2 y2 −
*

i

∂Cx2y1
∂xi

∂Cx2 y2
∂xi

+Cx1x2Cx1y1Cx2 y2

+Cx1y1
*

i

∂Cx2x1
∂xi

∂Cx2y2
∂xi

−
*

i

∂Cx1y2
∂xi

∂Cx1y1
∂xi

+Cx2 y2
*

i

∂Cx1x2
∂xi

∂Cx1y1
∂xi

+
*

i, j

∂Cx1y1
∂xi

∂Cx2 y2
∂xi

∂2Cx1x2
∂xi∂x j

. (12.7)

(Note that setting x = x1 = x2 and y = y1 = y2 here is what gives the numerator in
the expression for V xy in (11.11)).

We can now consider the behaviour of

lim
y→x

9(x, y)
(1 − Cxy)2 . (12.8)

To see how this works, we restrict the argument to the case in which M is one-
dimensional. While notationally much simpler than the general case (although we
shall see in a moment that it is hardly ‘simple’) it is indicative of the general situation.
In the general case the limit in (12.8) will be taken along a specific path of y’s, for
which the final direction of approach to x will be what plays the role of the single
dimension in the following calculation.

Taking then x, y ∈ M ⊂ R1, it is an immediate consequence of (12.7) that the
variance of 9(x, y) tends to zero as y → x , and thus so does 9(x, y) itself. The
denominator here clearly also converges to zero, and so to compute the ratio we need
to resort to an application of L’Hôpital’s rule, which gives us that the limit in (12.8) is
the same as

lim
y→x

∂9(x,x)
∂x

−2(1 − Cxx ) ∂Cxx
∂x

. (12.9)

Once again, it is obvious that the denominator vanishes in the limit.
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As for the numerator, it follows from (12.7) and the fact that g-norm of ∂
∂x is one

that

E
9,

∂L(x, y)
∂x

-2
: ....

y=x
= ∂

∂y1

∂

∂y2
E{L(x, y1)L(x, y2)}|y1=y2=x

= 4
,
Cy1y2 − Cxy1Cxy2 − ∂Cxy1

∂x
∂Cxy2

∂x

-

×
,

∂2Cy1y2
∂y1∂y2

− ∂Cxy1
∂y1

∂Cxy2
∂y2

− ∂2Cxy1
∂y1∂x

∂2Cxy2
∂y2∂x

-

+ 4
,

∂Cy1y2
∂y1

− ∂Cxy1
∂y1

Cxy2 − ∂2Cxy1
∂y1∂x

∂Cxy2
∂x

-

×
,

∂Cy1y2
∂y2

− ∂Cxy2
∂y2

Cxy1 − ∂2Cxy2
∂y2∂x

∂Cxy1
∂x

-
.

However, evaluated at y1 = y2 = x , this also vanishes, so yet another application of
L’Hôpital’s rule is required.

In fact, twomore applications of L’Hôpital’s rule are required, and while the deriva-
tion follows the line of the previous applications, the formulae are rather long, and so
we will skip the details. However, in the end, one finds that

lim
y→x

9(x, y)
(1 − Cxy)2 =

∂4L(x,x)
∂x4

6
"

∂2Cxx
∂x2

#2 , (12.10)

where the variance of the numerator is

72

>
∂4Cxx

∂x4
−
,

∂3Cxx

∂x3

-2
− 1

?2

, (12.11)

which, like the denominator of (12.10) is non-zero. (This is a consequence of the
non-degeneracy assumed in Assumption 4.2).

The punch line to all this is that in order to apply the continuous mapping theorem
with the mapping H of (12.6), we need to have convergence not only of the sum
k−1/279ℓ, but also at least four of its derivatives. That is, we needweak convergence
in theBanach space B(4) of four times continuously differentiable functions onM×M ,
equipped with the norm

∥ f ∥B(4)
!= max

$
∥ f ∥∞, ∥∇ f ∥∞, ∥∇2 f ∥∞, ∥∇3 f ∥∞, ∥∇4 f ∥∞

%
,

[cf. (9.11)].
Now that we know what to do, the rest is, at least in principle, straightforward, and

the proof follows along the same lines of the proof of the weak convergence of αk we
treated in Sect. 9.3.1. Convergence of finite dimensional distributions follows from
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Theorem 9.2, while tightness requires the computation of moments of increments of
the 9ℓ and their first four derivatives. Note, however, that 9ℓ(x, y) involves f xℓ (y).
Since we have seen that f xℓ (·), as a function on M , basically possesses one less level
of differentiability that f itself, requiring four derivatives for 9ℓ ultimately leads to
requiring f ∈ C5(M). In addition, since the arguments is Sect. 9.3.1 relied on a Taylor
expansion, one further derivative is required, which is why the lemma, and so Theorem
11.1, require f ∈ C6(M).

We leave the details to the reader. While they are long and involved, the fact that
all random variables are either Gaussian or squares of Gaussians means that there is
no more involved than Wick’s formula and accounting. ⊓8

12.2 Proof of Theorem 11.1

From (11.2), (11.4) and the definition (4.5) of σ 2
c ( f, x)) we have that

√
k
...cot2 θk(x) − σ 2

c ( f, x)
... =

√
k
... sup
y∈M\{x}

"
Rxyk − Ex,k(y)

#
− sup
y∈M\{x}

V xy
...

≤
√
k
... sup
y∈M\{x}

Rxyk − sup
y∈M\{x}

V xy
...

+
√
k sup
y∈M\{x}

..Ex,k(y)
..

≤ sup
y∈M\{x}

|γk(x, y)| +
√
k sup
y∈M\{x}

..Ex,k(y)
...

From the discussion preceding (11.3) we know that we can ignore the second term here
in the limit. The representation of γk in (11.9) in terms of the processes 8

(1)
k , 8

(2)
k

Bk, Nk and Zk , the joint weak convergence of all of these in Lemma 12.1, and an
application of the continuous mapping theorem, complete the proof of Theorem 11.1.

⊓8

Acknowledgements We would like to thank Takashi Owada for useful discussions, and two referees for
helpful comments.

Appendix 1

We now give a proof of Lemma 5.1. As mentioned earlier, Lemma 5.1 is identical
to Lemma 2.1 of [22] and, as pointed out there, the proof is essentially the same as
the proof given in [12] for the one-dimensional case. Thus, we make no claim of
originality, and include the proof for completeness only.

Proof Take (a unit length vector) ηx ∈ T⊥
x M ∩S(Tx Sk−1), and consider the geodesic

γ(x,ηx )(r) = cos r x + sin r ηx , r ≥ 0.

123



1088 R. J. Adler et al.

To determine the local reach in the direction ηx , we need to know how far we can
extend γ so that the metric projection of the endpoint is x . Clearly, this is until we find
a y ̸= x such that

⟨y, γ(x,ηx )(r)⟩ = ⟨x, γ(x,ηx )(r)⟩.

Consider first the case of r < π
2 so that cos r > 0. Then the above two formulae imply

that we can extend the geodesic at least until such an r as long as

sup
y ̸=x

(cos r (⟨y, x⟩ − 1)+ sin r⟨y, ηx ⟩) ≤ 0

⇐⇒ sup
y ̸=x

(− cos r (1 − ⟨y, x⟩ − 1)+ sin r ⟨y, ηx ⟩) ≤ 0

⇐⇒ sup
y ̸=x

,
− cot r + ⟨y, ηx ⟩

1 − ⟨x, y⟩

-
≤ 0

⇐⇒ sup
y ̸=x

⟨y, ηx ⟩
1 − ⟨x, y⟩ ≤ cot r.

When r ≥ π
2 , the same argument gives that as soon as there is a y such that ⟨y, ηx ⟩ > 0,

cos r (1 − ⟨y, x⟩)+ sin r ⟨y, ηx ⟩ > 0,

and therefore, for such r ,

sup
y ̸=x

(cos r (⟨y, x⟩ − 1)+ sin r⟨y, ηx ⟩) > 0,

implying that such a y is closer to γx,ηx (r) than x is. Hence, the geodesic can only be
extended up to a length less than or equal to π

2 .

Thus, by our earlier argument for r ≤ π
2 , we note that on the set

Z =
9

(x, ηx ) : sup
y ̸=x

⟨y, ηx ⟩ > 0

:

,

the reach satisfies

cot r(x, ηx ) = sup
y ̸=x

⟨y, ηx ⟩
1 − ⟨x, y⟩ = sup

y ̸=x

⟨y, ηx ⟩+
1 − ⟨x, y⟩ ≥ 0,

where x+ denotes the positive part of x . Meanwhile, on the set Z c, we have

cot r(x, ηx ) ≤ 0.
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Therefore, we have the inequality,

cot r(x, ηx ) ≤ sup
y ̸=x

⟨y, ηx ⟩+
1 − ⟨x, y⟩ ,

which becomes an equality when

sup
y ̸=x

⟨y, ηx ⟩+
1 − ⟨x, y⟩ > 0.

In other words, we have

cot
"
min

"
r(x, ηx ),

π

2

##
= sup
y ̸=x

⟨y, ηx ⟩+
1 − ⟨x, y⟩ .

Finally, since M is a closed manifold embedded into a sphere, the local reach at x ,
which is an infimum over all ηx above, cannot be greater than π

2 . Thus we can truncate
at this angle, and so, by (2.2), (2.3), and the above, obtain that

cot2(θ(x)) = cot2
,
inf
ηx

θℓ(x, ηx )
-
= sup

ηx :∥ηx∥=1
sup
y ̸=x

, ⟨y, ηx ⟩+
1 − ⟨x, y⟩

-2

= sup
y ̸=x

∥PT⊥
x M
y∥2

(1 − ⟨x, y⟩)2 ,

as required. ⊓8

Appendix 2

We need to show that the remainder terms, O(1/k2), in (9.1) and (9.2) are of the right
order and, just as importantly, are uniform over M × M .

As mentioned earlier, if the correlation estimates!C(x, y) of C(x, y) were centered
at sample means rather than zero—which we shall refer to as the ‘standard’ case—we
could simply quote known results from the Statistics literature to establish everything
we need. These results are not hard to prove, but they involve pages of tedious algebra,
which we do not want to try to reproduce here. Rather, we shall suffice with describing
the standard proofs, and where changes need to be made to cover our situation.

The standard case is treated in [14]. Following the derivation in Chapter 16, Sec-
tion 16.24 there, we start by writing out the joint probability of k sample values
{( f j (x), f j (y))}kj=1 drawn from a bivariate normal density with zero means and unit
variances in terms of the statistics we are interested in, namely,

s21
!= 1
k

*
f 2j (x), s22

!= 1
k

*
f 2j (y),
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along with the !Ck(x, y) of (5.1). These replace the standard sample mean centered
version of these statistics in [14].

Using the result of Example 11.6 in Chapter 11 of [14] which deals with finding
the distribution of a sum of squares of i.i.d. standard normal variates, and following
the discussion in Section 16.24 there, we find that the exact joint probability density
of s1, s2, and !Ck(x, y), on R+ × R+ × [−1, 1], is given by

kksk−1
1 sk−1

2 (1 −!C2
k(x, y))

k−3
2

π7(k − 1)(1 − C2(x, y))k/2
× e−

k
2(1−C2(x,y))

/
s21−2C(x,y)!Ck (x,y)s1s2+s22

0
.

As in Section 16.32 of [14], we now integrate out s1 and s2, and use the remaining
density of !C to compute that

E{!Ck(x, y)} =
C(x, y) 72((k + 1)/2)
7(k/2) 7((k + 2)/2)

F
,
1
2
,
1
2
,
k + 2
2

,C2(x, y)
-
,

where F is the hypergeometric function. Note that 0 ≤ C2(x, y) ≤ 1 for all (x, y) ∈
M × M . The fact that

F(α, β, γ, x) = 1+ xO(1/γ ) as γ → ∞

uniformly for x in any bounded set (cf. [20]), and a Stirling’s approximation which
gives that the ratio of Gamma functions in (12.89) converges to 1 as k → ∞, gives
the uniformity of the error bound in (9.1). A similar calculation establishes (9.2) and
the uniformity of the error bound there.
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