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In many applications of structural engineering,
the following question arises: given a set of
forces f1, f2, . . . , fN applied at prescribed points
x1, x2, . . . , xN , under what constraints on the forces
does there exist a truss structure (or wire web) with
all elements under tension that supports these forces?
Here we provide answer to such a question for any
configuration of the terminal points x1, x2, . . . , xN in
the two- and three-dimensional cases. Specifically, the
existence of a web is guaranteed by a necessary and
sufficient condition on the loading which corresponds
to a finite dimensional linear programming problem.
In two dimensions, we show that any such web can
be replaced by one in which there are at most P
elementary loops, where elementary means that the
loop cannot be subdivided into subloops, and where
P is the number of forces f1, f2, . . . , fN applied at
points strictly within the convex hull of x1, x2, . . . , xN .
In three dimensions, we show that, by slightly
perturbing f1, f2, . . . , fN , there exists a uniloadable
web supporting this loading. Uniloadable means it
supports this loading and all positive multiples of it,
but not any other loading. Uniloadable webs provide
a mechanism for channelling stress in desired ways.

1. Introduction
One of the main goals of structural engineering is to
find performing structures when one incorporates into
the design a specific type of material or substructure.
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Many materials behave quite differently under tension or compression: concrete and masonry
structures are two examples of materials that perform much better under compression. Some
types of structures support only specific loadings: a wire, for example, can support only tension
and not compression. Here we are interested in the case where one incorporates a material that
works particularly well under tension so that a wire web is expected to be representative of the
most performing structure to be used. Thus, we address the following problem: given a set of
forces f1, f2, . . . , fN applied at prescribed points x1, x2, . . . , xN , under what constraints on the forces
does there exist a wire web (or truss structure) with all elements under tension that supports these
forces? Note that the problem is identical if one is interested in the case where all elements are
under compression. We are only interested in wires which can be modelled as a set of straight
truss elements: we do not consider the case of catenary elements (e.g. [1–4]).

In the two-dimensional case, a complete answer to this problem is given by theorem 1 in [5]
in the special case where the prescribed points are vertices of a convex polygon. This theorem
states that, in this case, a web exists if and only if the net torque going clockwise around any
connected portion of the boundary is positive: for any sequence (xi, xi+1, . . . , xj) of consecutive
vertices ordered clockwise (where xk is identified with xk−N) we have

j∑
k=i

det(xk − xi, fk) ≥ 0. (1.1)

Furthermore, by using the Airy stress functions theory, a representative web is explicitly given
that contains no closed loops (that is, there is no set of wires forming the boundary of a polygon).
The reader is referred to [5] for details.

So the question now is: what happens when the points are not the vertices of a convex polygon
or what happens in the three-dimensional case? Theorem 1.1 (see below), which is one of the main
results of this paper, answers this question completely. To make the statement clear, let us first
introduce some terminology that will be used throughout the paper:

— Finite web: a collection W := ([xi, xj], [xk, xl] . . . ) of segments (or bars) where x1, . . . , xM are
a finite set of points called nodes.

— Terminal nodes: the nodes X= (x1, . . . , xN), N ≤M, where the forces are applied.
— Internal nodes: the remaining nodes, if any.
— Admissible web stress state: when each bar [xi, xj] of the web is endowed with a non-

negative tension σij, we say that σ = (σij, σkl, . . . ) is an admissible web stress state on W
for the loading F at X if it is in equilibrium under the action of the forces F= (f1, f2, . . . , fN)
applied at X= (x1, x2, . . . , xN). If there exists such an admissible stress state, then the web
W is said to support1 F at X.

— Uniloadable webs: webs which support only one loading (up to a positive multiplicative
constant).

Theorem 1.1 then reads as follows:

Theorem 1.1 (existence of a web under tension). Let AX be the cone of displacements U=
(u1,u2, . . . ,uN) at points X= (x1, x2, . . . , xN) defined by

AX := {U ∈ (Rd)N : ∀ 1 ≤ i< j≤N, (ui − uj) · (xi − xj) ≥ 0}. (1.2)

Then, the following condition:
inf

U∈AX
F · U≥ 0 (1.3)

is necessary and sufficient to ensure the existence of a finite web under tension that supports the loading F
at points X. In such a case, the web connecting the terminal points X pairwise supports the loading F.

1By ‘admissible stress state’, we mean an equilibrium state in which all bars are either in tension, or carrying no load. Thus,
by ‘supporting’, we mean supporting with all bars either in tension, or carrying no load.
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Figure 1. In this example, the forces F are directed radially outwards from a central point x0 and so the web that connects the
terminal pointsX tox0 supports such a loading. Among all thewebs that can support F, theorem 1.1 provides theweb connecting
the terminal points pairwise and in example 1.2 we determine the stress state in each wire of such a web and we prove it is an
equilibrium stress state. (Online version in colour.)

Section 2 is dedicated to the proof of theorem 1.1 and related consequences, whereas §3
provides insights on the mechanical meaning of the theorem with special reference to the two-
dimensional case. In general, from a mechanical point of view, the statement says that the work
performed by F is non-negative for any (infinitesimal)2 displacements U corresponding to a global
expansion of the system of points X. Notice that condition (1.3) provides a characterization of
the set A∗

X of all the loadings F at points X which can be supported by some finite web as the
solution to a finite dimensional linear programming problem. Moreover, theorem 1.1 states that
a web supporting the given loading is the one that connects the terminal points pairwise (see
example 1.2).

Example 1.2. Consider a balanced set of forces f1, . . . , fN at points x1,. . . ,xN that are directed
radially outwards from a central point x0 (so that fi = ci(xi − x0) for some set of positive
coefficients ci). Note that the balance of forces implies that x0 must belong to the convex hull
of the points x1,. . . ,xN .

Clearly, the web formed by the wires connecting the points x1,. . . ,xN to x0, figure 1a, supports
this loading: σi0 := ci‖xi − x0‖−1 is an admissible stress state on this web. But we can find another
web which supports the same loading: indeed, the web that connects the points x1,. . . ,xN pairwise,
figure 1b, is suitable when endowed with the stress state σij = ‖xi − xj‖cicj(

∑
k ck)

−1, with the
equilibrium condition

fi +
∑
j�=i

σij
xj − xi

‖xj − xi‖
= ci (xi − x0) + ci

(∑
k

ck

)−1 ∑
j

cj(xj − xi)

= ci(xi − x0) + ci

(∑
k

ck

)−1
⎛⎝∑

j

fj −
∑
j

cj(xi − x0)

⎞⎠ = 0

being satisfied at each node xi.

Section 4 focuses on another major topic of the paper, that is, on channelling or redistributing
stresses: we are interested in webs able to channel forces in a controlled way. For example, if
one considers, say, a bicycle wheel or a suspension bridge, then, a desired distribution of forces
is usually achieved by appropriately tightening the spokes or cables (clearly, the layout of these

2Notice that we solve this problem within the context of infinitesimal elasticity: examples of applications of the finite
deformation theory to describe the geometric nonlinearity are given, for instance, by [6–8].
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substructures is also essential). By contrast, here we seek to distribute stress through judicious
choices of the geometry of the web.

Notice that distributing stresses in wires is quite different from distributing electrical currents
in conducting wires. At a junction of more than two conducting wires, one cannot tell in advance
(without looking at the rest of the circuit) how much flow will be channelled into the different
wires (this is an advantage if one wants the current to flow where most needed, a disadvantage
if one wants to control the allocation of current, as in an irrigation system). This is due to the
fact that, in a conduction network, one only has to satisfy Kirchoff’s Law which states that the
outgoing current has to balance the incoming current. By contrast, when distributing stresses,
one has that at a node where four non-coplanar wires join (for the three-dimensional case, or
three non-collinear wires for the two-dimensional case), balance of forces implies that the tension
in one wire, and the geometry of the junction, uniquely determines the tension in the other wires.
Thus, having at each internal node a coordination number of four for the three-dimensional case,
or three for the two-dimensional case, is important to uniquely determining the loading that a web
can support. This principle underlies the construction of ‘pentamode materials’ [9], which have
a diamond-like structure with a coordination number of four at each node of the structure. As a
consequence, the stress field is essentially uniquely determined: like fluids which only support
a hydrostatic loading, pentamodes only support one loading but, unlike fluids, that loading can
be a combination of hydrostatic and shear forces. Pentamode materials have been studied for
their use in cloaking, in particular for cloaking against sonar. They can guide the acoustic wave
around an object while having little impedance mismatch at the membrane boundary with the
surrounding fluid [10].

Webs of springs that support only one loading (up to a multiplicative constant) were
instrumental in [11,12]. The corresponding elastic energies have the form (F · U)2, when their
terminal nodes have displacements U= (u1,u2, . . . ,uN), so that the webs are able to support only
forces proportional to F. In that context, as the elastic energy can be expressed using a rank-one
matrix in the form U · (F ⊗ F) · U, such webs were called ‘rank-one webs’. In this paper, as we
are interested in energies that are not necessarily quadratic, we prefer to use the definition of
uniloadable webs. In §4, we establish that, apart from some exceptional cases, if forces f1, f2, . . . , fN
at prescribed points x1, x2, . . . , xN are supported by some web, they are also supported by a
uniloadable one.

The uniloadable networks we introduce here if prestressed could replace the pentamode
materials in the aforementioned cloaking applications, allowing much greater flexibility in the
design and economy in the number of junctions and wire elements.

One may be interested not only in uniloadable webs but more generally in webs W for
which the set CWX of supported loadings is prescribed. It is clear that, for a given web W with
terminal nodes at X, the set CWX is a convex cone contained in A∗

X. In §4, we show that the
converse is true too in an approximate sense: given a convex cone C ⊂A∗

X, one can find a
sequence of webs Wn such that CWn

X approaches C as n→ ∞. For two-dimensional webs where
the points X are the vertices of a convex polygon, a similar question was addressed in theorem 2
of [5].

2. On the existence of a web under tension
This section is dedicated to the proof of theorem 1.1, and it contains some mathematical
technicalities. Therefore, we recommend the reader who is more interested in the mechanical
interpretation of the theorem to skip to §3.

Given a set of forces F applied at the points X, we question the existence of a web supporting
such a loading that has all the wires under tension. Recall that the equilibrium of a wire web is
achieved if the tension is constant in each wire and if each node is in equilibrium. This situation
admits a nice and synthetic, even if a bit abstract, formulation in terms of measures which is
convenient for proving theorem 1.1.
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Given a web W, the associated measure is

W :=H1|[xi,xj] + H1|[xk ,xl] + · · · (2.1)

where H1|[xi,xj] stands for the line measure (the one-dimensional Hausdorff measure)

concentrated on the segment [xi, xj]. Accordingly, the stress state σ can be represented by the
measure

S := σij
xi − xj

‖xi − xj‖
⊗ xi − xj

‖xi − xj‖
H1|[xi,xj] + σkl

xk − xl
‖xk − xl‖

⊗ xk − xl
‖xk − xl‖

H1|[xk ,xl] + · · · (2.2)

Similarly, associated with the applied system of forces is the discrete measure

F :=
N∑
i+1

fi δxi , (2.3)

where δxi stands for the Dirac measure at point xi. The equilibrium condition then simply reads

∇ · S + F = 0 (2.4)

and the requirement that all wires be under tension is equivalent to the requirement that the
measure S take values in the set of positive semidefinite symmetric matrices. We will denote
with M+ the set of such measures. Using this formulation, searching for a finite web boils down
to finding S ∈M+ of the form (2.2) such that (2.4) is satisfied.

If we drop the constraint that S must be of the form (2.2), we are led to an interesting
generalization: a generalized web W is a positive measure, and it supports the loading F if there
exists some S ∈M+ absolutely continuous with respect to W satisfying the equilibrium condition
(2.4). The relationship between this generalized formulation and the so-called Michell problem is
provided in §2c.

(a) Proof of theorem 1.1
Proof. To prove that condition (1.3) is necessary, we consider an admissible web stress S for

the loading F. As S is a positive semidefinite tensor measure with compact support, by Green’s
generalized formula we have (see section 6 of [5])

0 ≤
〈
S, e(u)

〉
= −

〈
∇ · S,u

〉
=

〈
F ,u

〉
= F · U (2.5)

for all C1 fields u such that e(u) := (∇u(x) + (∇u(x))T)/2 is positive semidefinite. Now, let U=
(u1,u2, . . . ,uN) be an element of AX. For any κ > 0, lemma 2.1 (see below) provides a Lipschitz
extension ũ : Rd →R

d satisfying ũ(x�) = u� and

∀(x,y) ∈ (Rd)2, (̃u(x) − ũ(y)) · (x − y) ≥ −κ‖x − y‖2. (2.6)

This extension field is differentiable a.e. and, at every point x of differentiability, inequality (2.6)
implies that e(̃u) ≥ −κI. In order to apply Green’s formula, we introduce a regularized field
uη := ũ ∗ ρη, ρη being a smooth convolution mollifier (i.e. non-negative, supported in the ball
of radius η, and such that

∫
ρη = 1). It can be readily checked that the strain e(uη) associated with

uη is smooth and satisfies everywhere the inequality e(uη) ≥ −κI. By applying (2.5) to the field
u= uη + κx, we deduce that ∑

i

fi · uη(xi) + κ
∑
i

fi · xi ≥ 0.

As uη → ũ uniformly on every compact set, we can pass to the limits η → 0 and κ → 0 in the last
inequality to obtain the desired inequality F · U≥ 0 (see equation (1.3)).



6

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20180781

...........................................................

To prove that condition (1.3) is sufficient, we consider F such that F · U≥ 0 for any u ∈AX.
The linear conditions (ui − uj) · (xi − xj) ≥ 0 can be rewritten in the form F(i,j) · U≥ 0, where

F(i,j) = (f(i,j)
1 , f(i,j)

2 , . . . , f(i,j)
N ) with f(i,j)

� =

⎧⎪⎪⎨⎪⎪⎩
xj − xi if � = i,

xi − xj if � = j,

0 otherwise.

(2.7)

Hence, thanks to the Farkas lemma [13], we know that F is a linear combination of the linear forms
F(i,j) with non-negative coefficients:

F=
∑

1≤i<j≤N

λi,jF
(i,j), λi,j ≥ 0. (2.8)

It is then easy to check that the positive semidefinite symmetric tensor measure

S =
∑

1≤i<j≤N

λi,j
(xi − xj) ⊗ (xi − xj)

‖xi − xj‖
H1|[xi,xj] (2.9)

is a possible web stress for the loading F . Indeed, for any a and b in R
d, we have ∇ · ((b − a) ⊗

(b − a)H1|[a,b]) = ‖b − a‖(b − a)(δa − δb), thus ∇ · S = −∑
i fiδxi = −F . Let us emphasize that this

web stress measure involves only the original nodes (x1, x2, . . . , xN) as claimed in the theorem. �

We now state and prove the interpolation lemma which was needed in the previous proof.

Lemma 2.1 (interpolation lemma). Let A be a finite subset of Rd, and u : A→R
d the field satisfying

(u(x) − u(y)) · (x − y) ≥ 0, ∀(x, y) ∈A2. Then, for any κ > 0, there exists a Lipschitz extension ũ of u on
R
d satisfying

∀(x,y) ∈ (Rd)2, (̃u(x) − ũ(y)) · (x − y) ≥ −κ‖x − y‖2. (2.10)

Proof. As u is bounded on the bounded set A, there exists M such that, for any x ∈A, ‖u(x)‖ ≤M
and ‖x‖ ≤M. Moreover, as A is finite, there exists δ > 0 such that, for any distinct points x and y
in A, ‖x − y‖ ≥ δ. We set λ = 8M2/δ2 and choose s such that 0 < λs< min(κ , 1). Let us consider φ

defined on A by3

φ(x) = (1 − λs2)x − su(x). (2.11)

For any distinct points x and y in A, we have, by straightforward computation

‖φ(x) − φ(y)‖2 = ‖(1 − λs2)(x − y) − s(u(x) − u(y))‖2

= ∥∥(x − y) − s
(
u(x) − u(y) + λs(x − y)

)∥∥2

= ‖x − y‖2 + s2‖u(x) − u(y) + λs(x − y)‖2 − 2s
(
(x − y) · (u(x) − u(y) + λs‖x − y‖2)

≤ ‖x − y‖2 + s2‖u(x) − u(y) + λs(x − y)‖2 − 2λs2‖x − y‖2

≤ ‖x − y‖2 + 4s2
(
‖u(x)‖2 + ‖u(y)‖2 + (λs)2‖x‖2 + (λs)2‖y‖2

)
− 2λs2‖x − y‖2

≤ ‖x − y‖2 + 16M2s2 − 2λδ2s2

≤ ‖x − y‖2. (2.12)

Kirszbraun’s theorem [14] proves the existence of an extension φ̃ of φ on R
d satisfying the same

condition: for any (x,y) ∈ (Rd)2,

‖φ̃(x) − φ̃(y)‖ ≤ ‖x − y‖. (2.13)

3Physically, when s is small, we can think of φ(x) as a deformation x→ φ(x) associated with the displacement field u(x). The
additional uniform contractive factor of (1 − λs2) is needed to account for the finite deformation corrections when u(x) − u(y)
is perpendicular to x − y (with say u(y) = 0 and y= 0, and u(x) orthogonal to x, the distance |x − su(x)| lengthens as s is
increased).
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Let us now define ũ on R
d by setting

ũ(x) = (1 − λs2)x − φ̃(x)
s

. (2.14)

For any x ∈A, we have ũ(x) = u(x). Moreover, ũ is a Lipschitz function which satisfies

(̃u(x) − ũ(y)) · (x − y) = s−1
(

(1 − λs2)‖x − y‖2 − (̃φ(x) − φ̃(y)) · (x − y)
)

≥ −λs‖x − y‖2 ≥ −κ‖x − y‖2. (2.15)

�

(b) Support of the stress field
From a physical viewpoint, it seems obvious that a finite web supporting the loading F at the
points X= (x1, x2, . . . , xN) should have an associated stress measure vanishing outside the convex
hull of the points x1, x2, . . . , xN . This section is devoted to proving this fact which turns out to be
valid also for generalized webs.

Theorem 2.2. Let F be a vector measure with compact support K andS inM+ such that ∇ · S + F =
0. Then the support of S is contained in the convex envelope co(K) of K.

Notice that, from this result, we can deduce that the support of S is contained in the subspace
spanned by the vectors4 x1, x2, . . ., xN and thus that the loading forces fi belong to this subspace.
Hence, we will be able to reduce our problem to this subspace and assume without loss of
generality that x1, x2, . . ., xN span R

d.

Proof. By Hahn–Banach separation theorem [15], proving that S vanishes outside the convex
envelope co(K) of K reduces to checking that S vanishes on all half spaces P+

m,a := {x : x · m> a}
with a ∈R and m ∈ Sd−1 which do not intersect K. This verification is achieved in several steps.
We first remark that, as P+

m,a and K do not intersect, we have ∇ · S = 0 on P+
m,a.

Step 1: Let us consider first a field S̃ ∈C1(Rd,Rd2

sym) such that S̃ ≥ 0 and ∇ · S̃ = 0 on P+
m,a.

Without loss of generality assume that m= e1, where e1 is the unit vector along the x1-axis (where
x1 is not to be confused with the point x1). Let us apply Green’s formula in the half ball ΩR := {x :
x1 > a, |x| <R}. We have ∫

∂ΩR

(S̃ · e1) · ndHd−1 =
∫
ΩR

(∇ · S̃) · e1 dHd = 0, (2.16)

where n stands for the outward normal. Dividing the boundary ∂ΩR into ΣR := {x : x1 = a, |x| <
R} and S+

R := {x : x1 > a, |x| =R} we get

−
∫
ΣR

(S̃ · e1) · e1 dHd−1 +
∫
S+
R

(S̃ · e1) · ndHd−1 = 0. (2.17)

Thus we have ∫
ΣR

(S̃ · e1) · e1 dHd−1 ≤
∫
S+
R

|S̃| dHd−1. (2.18)

As S̃ ∈ L1,
∫+∞

0 (
∫
S+
R

|S̃| dHd−1)dR< +∞ and so there exists a sequence Rn → +∞ such that
∫
S+
Rn

|S̃| dHd−1 → 0.

This implies that

lim
n→∞

∫
ΣRn

(S̃ · e1) · e1 dHd−1 = 0. (2.19)

As (S̃ · e1) · e1 ≥ 0 we get (S̃ · e1) · e1 = 0 on the whole hyperplane {x : x1 = a}. As S̃ ≥ 0, we
deduce that S · e1 = 0 on this hyperplane.

4Here we choose x1 as the origin for identifying points and vectors.
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Step 2: We remark that, if S̃ ≥ 0 ∈C1(Rd,Rd2

sym) satisfies ∇ · S̃ = 0 on the whole space R
d, then

by applying the result of step 1 to every pair (m, a) ∈ Sd−1 × R
d we get S̃ = 0 everywhere. We also

remark that this result holds true for any space dimension d.
Step 3: Going back to the case where S̃ ≥ 0 ∈C1(Rd,Rd2

sym) satisfies ∇ · S̃ = 0 only on the
half space P+

m,a, we apply step 1 to every pair (m, t) with t> a and we deduce that S̃ · m= 0
on the hyperplane Σt := {x : x · m= t}. The restriction of S̃ to this hyperplane is tangential and
divergence free. For almost every t> a,

∫
Σt

|S̃| < +∞, by applying the result of step 2 to R
d−1, we

deduce that S̃ vanishes on almost all hyperplanes Σt. Hence, S̃ vanishes on P+
m,a.

Step 4: In order to extend this result to measures, we introduce a smooth mollifier ρη and
Sη :=S � ρη. Clearly, Sη belongs to L1 ∩ C∞(Rd2

sym), Sη ≥ 0 and, for any t> a, and for η small
enough we have ∇ · Sη = 0 on P+

m,t. By applying the result of step 3 to Sη we get Sη = 0 on P+
m,t,

and by passing to the limit η → 0 we get S = 0 on P+
m,t. The theorem is proven by passing finally

to the limit t→ a. �

(c) Link with the Michell problem
A very old problem in mechanical engineering consists of minimizing the total volume of a
network of elastic bars (trusses) while the resistance to a given load remains constant. It reduces
to a linear programming problem that, according to our notation, reads

inf
σ

⎧⎨⎩∑
i

∑
j

|σij|‖xj − xi‖ : fi +
∑
j�=i

σij
xj − xi

‖xj − xi‖
= 0, ∀ i

⎫⎬⎭ . (2.20)

The classical dual formulation is the following maximization problem on deformations:

sup
U

{∑
i

fi · ui : |(ui − uj) · (xi − xj)| ≤ ‖xi − xj)‖2, ∀ i �= j

}
. (2.21)

As no assumption is made on the number of bars, this belongs to the class of topological
optimization problems, and it is well known that, in general, no optimal solution exists. Indeed,
during the optimization process, the number of bars may increase to infinity leading thus to
diffuse structures. The crucial contribution of Michell [16] in the 1900s was to formulate a
generalized version (called Michell problem) in order to take into account all possible structures
which may appear in the limit. In the generalized version, attention is focused on the stress carried
by the structure rather than on its geometry. Michell stated a duality principle and obtained the
optimality conditions on the stress and strain tensors: they share the same eigenvectors (principal
directions) and the eigenvalues of the strain tensor have a fixed absolute value. Moreover, Michell
noticed that, in the two-dimensional case, when the eigenvalues of the strain tensor have opposite
sign and when the eigenvector fields are smooth enough to define stream lines (called ‘lines of
principal action’), then these lines constitute a so-called Hencky-net. This is a family of orthogonal
curves which represents the limit of the families of bars through the optimization process. We refer
to [17] for a detailed mathematical study where optimality conditions for a generalized truss are
established in a rigorous way. The generalized stress formulation derived by Michell in dimension
d= 2 reads as follows:

inf
S

{∫
ρ0(S) : ∇ · S + F = 0

}
, (2.22)

where ρ0(S) := |λ1(S)| + |λ2(S)| denotes the sum of the moduli of the two principal values of S.
The corresponding dual problem reads

sup
ũ

{〈F , ũ〉 : |(̃u(x) − ũ(y)) · (x − y)| ≤ |x − y|2}. (2.23)
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An admissible pair (u,S) is then optimal if and only if the following extremality relation
holds [17]:

〈F ,u〉 =
∫

ρ0(S) dx. (2.24)

We can now emphasize the link between our problem and the Michell problem described
above. It turns out indeed that admissible stress states associated with a loading F in the cone A∗

X
are solutions of the Michell problem.

Theorem 2.3. Let F be a bounded vector measure with compact support K and S ≥ 0 in Md2

sym such
that ∇ · S + F = 0. Then

(i) S is a solution to the Michell problem for F ,
(ii) any solution S̃ to the Michell problem for F satisfies S̃ ≥ 0.

Proof. Clearly u(x) := x is admissible for the dual problem. As −∇ · S =F , the following
relation holds:

〈F , x〉 = 〈−∇ · S, x〉 = 〈S, ∇x〉 =
∫

Tr(S). (2.25)

If we assume that S ≥ 0, then Michell’s dual energy ρ0(S) coincides with Tr(S) as both λ1(S) and
λ2(S) are non-negative. In particular, we have

∫
ρ0(S) = ∫

Tr(S), hence by (2.25) the pair (x,S)
satisfies relation (2.24). The optimality of (x,S) follows. This proves point (i).

To prove point (ii), it is enough to notice that, for any other solution S̃ of the primal problem,
the couple (x, S̃) is optimal and thus must satisfy the optimality condition (2.24) so that, by (2.25),
one has

〈F , x〉 =
∫

Tr(S̃) dx=
∫

ρ0(S̃) dx.

As ρ0(S̃) ≥ Tr(S̃), we deduce that ρ0(S̃) = Tr(S̃) and so S̃ ≥ 0. �

3. Theorem 1.1 in two dimensions
To get a better insight on the mechanical interpretation of the statement of theorem 1.1, we focus
on the two-dimensional case which was also analysed in [5]. In particular, we will show that when
the points x1, x2, . . . , xN are vertices of a convex polygon, our condition (1.3) is a generalization of
condition (1.1) proved in [5].

(a) Mechanical interpretation of the extreme rays of the coneAX

Given a set of points x1, x2, . . . , xN that are vertices numbered clockwise of a convex polygon, let

us consider the following displacement field u(j,i)
k defined by:

u(j,i)
k =

{
−R⊥(xk − xj), for k= j, j + 1, . . . , i − 1,

0 otherwise,
(3.1)

where

R⊥ =
[

0 1
−1 0

]
(3.2)

is the matrix for a 90◦ clockwise rotation and, if necessary, we identify k with k − N. We call

u(j,i)
k a ‘clam-shell’ displacement (figure 2) as it corresponds to the infinitesimal rotation between

two non-overlapping subpolygons into which the polygon of terminal points can be divided: by
keeping fixed one of the two subpolygons, the rotation of the other opens the clam. Given any
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xi−1

xl

xk

xj
xi−1

xi

xj

xi

(b)(a)

Figure 2. Given a set of points xi that form the vertices of a convex polygon, as in (a), an extremal infinitesimal movement is
obtained by breaking the polygon into two non-overlapping subpolygons connected at one vertex xj , as in (b). The ‘clam-shell’
movement then consists of fixing one subpolygon, in this example the lower triangle, and infinitesimally rotating the other
subpolygon anticlockwise about the point xj , so the ‘clam’ opens slightly, thus moving any vertex xk on the upper subpolygon
away from any vertex x� on the lower subpolygon.

points xk and x� on opposite sides of the clam (where u(j,i)
k �= 0, while u(j,i)

� = 0) we have

(u(j,i)
k − u(j,i)

� ) · (xk − x�) = −[R⊥(xk − xj)] · (xk − x�) ≥ 0, (3.3)

where the last inequality follows from the convexity of the polygon and the clockwise numbering
of the points. Thus, this clam-shell movement is an admissible displacement as it satisfies (1.2).
This implies that F satisfies the constraints (1.3), that is,

0 ≤
N∑
k=1

fk · u(j,i)
k =

i−1∑
k=j

(xk − xj) · [R⊥fk], (3.4)

which are precisely the same as the constraints (1.1) that characterize AX
∗, that is the set of all the

loadings F at X which can be supported by a finite web. Thus, in this case of the xi forming the
vertices of a convex polygon, the displacements U correspond precisely (up to an infinitesimal
rigid body motion) to these ‘clam-shell’ movements, and do not include any other movements.

More generally, to check the criterion (1.3) it suffices to check it for those U corresponding to
the extreme rays Um of the cone AX. These rays are perpendicular to the ‘faces’ of the polar cone
−AX

∗ (figure 3). We use an integer m= 1, 2, . . . ,M to index these rays. For any given m, there
exist associated loadings Fmh , h= 1, 2, . . . ,D − 1 all perpendicular to the extreme ray indexed by
m. Here, for a given m, each value of h signifies a pair (i, j) = (i(h,m), j(h,m)) such that Fmh = F(i,j),
and linear combinations of the Fmh , h= 1, 2, . . . ,D − 1 with positive weights generate the ‘face’
perpendicular to the extreme ray of the cone AX. Let Um = (um

1 ,um2 , . . . ,umN) be on this extreme
ray. Then, we have

Fmh · Um = 0, for h= 1, 2, . . . ,D − 1. (3.5)

In particular, if Fmh = F(i(h,m),j(h,m)), then the orthogonality implies that

(um
i(h,m) − umj(h,m)) · (xi(h,m) − xj(h,m)) = 0. (3.6)

If we think of Um as corresponding to a displacement, then this restriction says that (within
the infinitesimal displacements framework) there is no change in distance between xi(h,m) and
xj(h,m): the constraint is equivalent to only allowing those deformations compatible with rigid
rods joining the pairs of points (xi(h,m), xj(h,m)) for h= 1, 2, . . . ,D − 1. After eliminating the trivial
infinitesimal rigid body motions (translations and rotations) from Um, by requiring it to satisfy,
for instance,

N∑
i=1

ui = 0,
N∑
i=1

xi · Aui = 0 (3.7)
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–F(1,2)

–A*
X

AX

U1

U2

–F(3,5)

Figure 3. Schematic of the coneAX and the polar cone−A∗
X , the negative of the dual coneA∗

X . Here the F
(i,j) are the extreme

rays of the dual coneA∗
X , while the U

m are the extreme rays of the coneAX.

x2 x2

x4

x1x1 x3 x3

x4

(b)(a)

Figure 4. Consider the following four points which form an arrowhead in the plane: x1 = [0; 0], x2 = [1; 1], x3 = [0.5; 0] and
x4 = [1;−1]. The displacements corresponding to the extreme rays of the coneAX for this special geometry can be divided
into two groups: clam-shell movements and non-clam-shell movements. In this figure, the black lines represent the rigid wires
and the green lines represent the deformable bonds. Clearly, (a) is an example of a non-clam-shell displacement, whereas (b)
is an example of a clam-shell displacement (the rigid wire connecting the points x1 and x2 can rotate infinitesimally about the
point x2 while the rigid triangle formed by x2, x3 and x4 is held fixed). Notice that the existence of non-clam-shell movements
is due to the fact that the point x3 does not belong to the convex hull of the terminal points. (Online version in colour.)

with A any d × d antisymmetric matrix, there still must be one degree of freedom associated with
the infinitesimal motion corresponding to Um. The equality (ui − uj) · (xi − xj) = 0 cannot hold for
all i �= j as this then would correspond to a trivial overall (infinitesimal) rigid body motion, which
must be zero by (3.7). To fix the one degree of freedom, we can impose the normalization condition
that Um · X= 1. Without loss of generality, this can be seen by noting that for any U ∈AX,

0 ≤
N∑

i,j=1

(ui − uj) · (xi − xj) =
N∑

i,j=1

ui · ui + ujuj − 2
N∑
i=1

ui

N∑
j=1

uj = 2U · X, (3.8)

where, to get the last equality, we use (3.7). Furthermore, U · X= 0 implies that U is a rigid body
motion, which we excluded. So U · X> 0, and by replacing U with U/(U · X) we see that we can
assume U · X= 1.

To conclude, we showed that if the terminal points are the vertices of a convex polygon, then
all the extremal displacements correspond to clam-shell movements but notice that if there is at
least one terminal point inside the convex hull of the terminal points, then besides clam-shell
movements there are also other types of displacements, as shown in figure 4.
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(b) Simplifying the two-dimensional web
In two dimensions, in any web, we define a loop to be any polygon such that its edges are the
wires of the web. A minimal loop is one with no other wires inside the polygon. Any web with
all pairs of terminal points interconnected, as in figure 1b, can then be replaced by an equivalent
one with at most P minimal loops where P is the number of points x1, . . . , xN that lie inside the
convex hull of these N points. To show this we first place internal nodes where any pair of wires
(xi, xj) and (xr, xs) cross. Then take any minimal loop in the network. The vertices of this loop may
include a terminal point xj so long as the net force acting on the loop at xj (including fj and the
forces acting on xj due to the tension in the other wires outside the loop) points outside the loop.
As the wires are all under tension, the loop then is necessarily convex and exerts forces −f′m at the
nodes numbered clockwise around the loop. These forces necessarily satisfy (1.1), and the loop
can be replaced by an open web. The number of minimal loops in the web is thus reduced by one.
This procedure can be continued until there are at most P minimal loops, and each of these loops
is non-convex and thus its vertices include at least one terminal node xi where the associated
force fj points inside the loop. Electronic supplementary material, video S1, shows an example
of a web whose wires connect all the terminal points pairwise (initial frame), and how to replace
each closed loop with an open web so that the final frame represents an equivalent web in which
there is only one minimal loop due to the presence of one point, x4, inside the convex hull of the
terminal points.

4. Channelling the stresses in a web
In this section, we address the problem of designing wire webs that can support one and only one
loading, up to a positive multiplicative factor. Note that the stress is not distributed in a unique
way as there are many networks, i.e. stress patterns, that work. In a given wire web, this is possible
if one can determine the stress in each wire in a unique way up to an overall proportionality
constant: clearly this happens if at each internal node only four non-coplanar wires for the three-
dimensional case (or three non-collinear wires for the two-dimensional case) meet and at most
three non-coplanar wires meet at any terminal node for the three-dimensional case (or two non-
collinear wires for the two-dimensional case). Here we provide a procedure to achieve such a goal
so that at each internal node the coordination number is four for the three-dimensional case, or
three for the two-dimensional case, while only one wire is connected to each terminal node.

Then, it is important to uniquely determine the loading that a web can support. Let us call CWX
the set of all the loadings F that the web W can support at X. Clearly CWX is a convex cone. Indeed,
if the web supports the loadings F1 and F2 with admissible stresses S1 and S2, respectively, then
for any λ1 ≥ 0 and λ2 ≥ 0 it also supports the loading F= λ1F1 + λ2F2 with the associated stress
λ1S

1 + λ2S
2. Also, by definition, CWX must be a subset of the admissible loading cone A∗

X.
Here we address the converse question: given a convex cone C ⊂A∗

X can one find a web W such
that CWX = C? We first focus on the case where C is reduced to a single ray and then look for what
we call uniloadable webs (that is webs which support only one loading F, up to a multiplicative
constant). If C is a ray in the interior of A∗

X, then we can prove the existence of a uniloadable web
for any ray C. If C does not belong to the interior of A∗

X, then the existence of a uniloadable web
is not guaranteed. Finally, we will answer the question in case C is not simply a ray but a convex
cone. Specifically, we will give a positive answer in the following asymptotic sense: one can find
a sequence of finite webs Wn such that CWn

X approaches C as n→ ∞. For two-dimensional webs
where the points X are the vertices of a convex polygon, a similar question was addressed by
theorem 2 in [5], and the proof given here is similar.

(a) Reducing the number of wires meeting at a point
In two dimensions, the procedure for replacing a junction with M> 3 wires by a localized web
in which at most three wires meet is straightforward and described in §3 of [5]. Briefly, and as
illustrated in figure 5, one finds the associated Airy stress function in the neighbourhood of
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(b)

(a)

(c)

(d )

Figure 5. In two dimensions, a junction of many wires at an internal node as in (a) can be replaced by a web in which at most
three wires meet at every junction. First one determines an associated convex Airy function in the vicinity of the crossing, as in
(b). Then one cleaves it by a plane as in (c), and the associated web, as in (d), then has at most three wires meeting at every
junction.

x1

x3 x2

x4

(b)(a)

(c) (d )

Figure 6. Steps in the replacement of a junction ofmanywires under given balanced tensions, with a network localized around
the junction such that at most four wires meet at any junction in the new network, and the network still supports the same
tensions in the wires meeting the network. (Online version in colour.)

the junction. This is a convex cone with flat faces with the discontinuity in slope at the edges
corresponding to the tension in the wires (figure 5b). By cleaving the top of this cone, creating a
polygonal face (figure 5c), one obtains an associated web (figure 5d) supporting the same loading
as the original junction (figure 5a), but with at most three wires meeting at every junction.

In three dimensions, the procedure we use for replacing a junction with M> 4 wires is more
complicated. The steps are illustrated in figure 6, where we begin in figure 6a with a junction
where M= 6 wires meet. First we pick four of the wires (those marked in blue in figure 6a),
and points x1, x2, x3 and x4 on the four wires such that the tetrahedron T formed by x1, x2, x3
and x4 encloses the junction, which without loss of generality can be taken to be at the origin
x0 = 0 (this requires that the four wires be chosen so that they do not all lie on one side of any
plane through the origin: balance of forces at the origin ensures that at least one choice of such
four wires exists). The tensions in these four wires generally do not balance. However, consider
the ‘tensegrity network’ consisting of rods from the origin to the points x1, x2, x3 and x4 under
compression, balanced by wires along the edges of the tetrahedron T that are under tension.
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Example 1.2 (see §1) gives the explicit solution for the compressive forces in the rods and the
tensions in the wires in this ‘tensegrity network’. We next superimpose this ‘tensegrity network’
on our junction with the tensions in the ‘tensegrity network’ scaled so after superposition the
tension near the junction in one wire cancels, while the tensions in the other wires remain non-
negative, as sketched in figure 6b. We thus obtain a web under tension where the number of wires
joined to the origin is now M − 1 or less. However, we typically have also created junctions, at
some of the points x1, x2, x3 and x4 where five wires meet, like those in figure 6c. These junctions
are rather special in that one wire goes straight through the junction (but typically has different
tensions on opposite sides of the junction). These junctions are then locally replaced by networks
in which at most four wires meet as illustrated in figure 6d. Lemma 4.1 guarantees this can be
done. The last step is to successively repeat the argument until the junction at the origin has at
most four wires.

Lemma 4.1 (the five wires problem). Consider five wires with tensions Ti > 0, directions vi and
joining at the origin x= 0. Assume that the three first directions are independent while v5 = −v4. Then
we can replace these wires by a web in tension such that at each of its nodes, no more than four wires are
joining.

Proof. We can assume without loss of generality that T5 = αT4 so that balance of forces implies
that T1v1 + T2v2 + T3v3 + (1 − α)T4v4 = 0. Set t> 0 and s> α/3. Set also x1 = tT1v1, x2 = tT2v2,
x3 = tT3v3, x4 = tsT4v4 and x5 = −trT4v4 where r := s/(3s − α). As the real parameter t can be
arbitrarily chosen provided it is small enough, then we can avoid creating new nodes where a
node already exists or where a wire lies. The parts of the wires which lie between the points xi and
the origin are replaced by six wires [xi, x4], [xi, x5] (i ∈ {1, 2, 3}). When these wires have respective
(positive) tensions

Ti4 = r
t(r + s)

‖xi − x4‖ and Ti5 = s
t(r + s)

‖xi − x5‖, (4.1)

the web is in equilibrium. Indeed at each node xi for i ∈ {1, 2, 3} we have

Ti4
x4 − xi

‖xi − x4‖
+ Ti5

x5 − xi
‖xi − x5‖

+ Tivi =
rs − sr
t(r + s)

tT4v4 + r + s
t(r + s)

(−tTivi) + Tivi = 0. (4.2)

Moreover, at nodes x4 and x5 we have

3∑
i=1

(
Ti4

xi − x4

‖xi − x4‖
)

+ T4v4 = 1
r + s

(
rα + s − 3rs

)
T4v4 = 0 (4.3)

and
3∑

i=1

(
Ti5

xi − x5

‖xi − x5‖
)

+ T5v5 = 1
r + s

(
− s − αr + 3rs

)
T4v4 = 0. (4.4)

�

(b) Uniloadable webs
Given a ray C ⊂A∗

X, we want to determine whether there exists a uniloadable web which can
support the corresponding loading λF, with λ ≥ 0. In case C does not belong to the interior of
the cone A∗

X, then the existence of a uniloadable web is not guaranteed. When F belongs to the
interior of A∗

X, then we prove the existence of a uniloadable web supporting such a loading (up
to a multiplicative constant).

(i) Stuck loadings

Let us start with the following remark: let F= (f1, . . . , fN) belong to A∗
X with X= (x1, . . . , xN). Then,

it also belongs, for any t≥ 0, to the admissible loading cone A∗
X+tF of the shifted points (x1 +

tf1, . . . , xN + tfN). Indeed, taking a web W which supports F at X and adding to W all the wires
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x1

x1
x1

x3

x3
x3

x2

x4

x4

x4

x1

x3

x2

x2x2

x4

(b)(a)

(c) (d )

Figure 7. Examples of webs with ‘completely stuck loadings’ in two dimensions. We argue in example 4.2 that (a) is the unique
web that supports the given forces at the terminal nodes. A wire can be attached to the node x4, as in (b), in order to uniquely
define the associated Airy stress function, up to the addition of an affine function. This Airy stress function then lies above the
triangular pyramidal Airy stress function associated with the net forces applied at the three points x1, x2 and x3, as in (c). At
the same time, it must have a discontinuity in slope across the line between x1 and x4 corresponding to the tension in the wire
joining those two points. This then uniquely determines the Airy stress function (modulo the addition of an affine function) and
thus uniquely determines theweb. As discussed in example 4.3, (d) provides another example of awebwith a ‘completely stuck
loading’ where the web is uniquely determined once the loading is specified. (Online version in colour.)

[xi, x̃i] leads clearly to a web supporting F at X + tF. When t< 0 things are less clear. We say that
F at X is an unstuck loading if there exist ε > 0 such that

∃ε > 0, ∀ t< ε, F ∈A∗
X−tF,

otherwise we say that F is a stuck loading. A particular case of stuck loadings, referred to as
completely stuck loadings, is when there exists some k ∈ {1, . . . ,N} and ε > 0 such that

∀ 0 < t< ε, F �∈A∗
X̃

with X̃= (x1, . . . , xk−1, xk − tfk, xk+1, . . . , xN).

The stuck or completely stuck conditions can only occur when the loading F is a ray on the
boundary of the cone of admissible loadings A∗

X, as we will prove in the next subsection that any
F in the interior of A∗

X is unstuck. For a better insight, let us consider two examples of completely
stuck loadings.

Example 4.2. Consider forces f1 = [−1; 0], f2 = [3/4; 1], f3 = [3/4; −1] and f4 = [−1/2; 0] at the
four points considered in figure 4, that is, x1 = [0; 0], x2 = [1; 1], x3 = [1; −1] and x4 = [1/2; 0]. They
are supported by the web in figure 7a.

Our objective is to show that this is the only web supporting these forces, thus implying
that the loading is ‘completely stuck’. First move the force f4 = [−1/2; 0] back to the origin, by
attaching a wire joining the origin to x4, as in figure 7b. Then the net force acting on the origin is
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[−3/2; 0] and is balanced by the forces f3 and f4. The open web in figure 7c supports these three
forces, and the associated Airy function (up to addition of an affine function, see also [18]) is

φL(x) = max
{−3|x2|

4
,

1
4

− x1

}
, (4.5)

where x1 and x2 are the coordinates of x.
Now suppose we have any web supporting the four forces f1, f2, f3 and f4. Necessarily, this

web will be confined within the convex hull of the three points x1, x2, x3. To define the associated
Airy stress potential, in say all of R2, we need to move the four forces to infinity by attaching
infinite wires to the four points in the direction of infinity (the wire attached to x1 overlaps the
wire attached to x4 left of the origin). The existence of these wires implies a discontinuity of
slope of the Airy stress function across them, matching the tension in the wire. Now consider the
Airy stress function in the vicinity of the point x4. In particular take the tangent plane at a point
x0 that approaches x4 from the left remaining infinitesimally above the wire that joins x4 to the
origin. Similarly take the tangent plane at a point x′

0 that approaches x4 from the left remaining
infinitesimally below the wire that joins x4 to the origin. The maximum of these two tangent
planes is the valley function φV that takes the form

φV(x) = −|x2|
4

+ ax1 + bx2 + c. (4.6)

As the web is confined to the convex hull of x1, x2, x3, the Airy stress function outside this convex
hull can be taken to be φL (modulo an affine function that can be set to zero without loss of
generality). Convexity of the Airy stress function then implies the inequalities φL(xi) ≥ φV(xi) for
i= 1, 2, 3 and φL(x4) ≤ φV(x4). Elementary calculations then show that these inequalities allow one
no freedom in the choice of a, b and c and one necessarily has a= −1/2, b= c= 0. By convexity,
the Airy stress function of any web supporting the four forces must be above

φ(x) = max{φL(x), φV(x)} = max
{−3|x2|

4
,

1
4

− x1,
−|x2|

4
− x1

2

}
, (4.7)

and must coincide with it at the four points x1, . . . , x4. But the polyhedral nature of φ(x) means
that any other candidate convex Airy stress function must cleave it in the vicinity of x4, which
is forbidden. Thus (modulo the addition of an affine function) φ(x) given by (4.7) is the unique
possibility for the Airy stress function, and the web in figure 7a is the only web that can support
the four forces at the four points.

Example 4.3. A second example of a web with completely stuck loading is shown in figure 7d.
Forces f1 = [2; 0], f2 = [−2; 2], f3 = [−4; −6] and f4 = [4; 4] are applied at the points x1 = [0; 0],
x2 = [−1/2; 1], x3 = [−1/2; 1] and x4 = [1; 1]. The unique web that supports them is that drawn
in figure 7d, and the associated Airy stress potential (modulo addition of an affine function) is

φ(x) = max{2x1, −2x2 + 1, −|x2| − (4x1 − 1 − 3x2)+}, (4.8)

where q+ = max{0, q}. The proof proceeds similarly to the first example. The completely stuck
nature of the webs in our two examples has been verified numerically.

In two dimensions when the terminal points X are at the vertices of a convex polygon, the
existence of an open web supporting (the assumed admissible) loading F implies that such webs
are never ‘completely stuck’ with respect to the loading F. One may wonder: is a similar result
true in three dimensions? The numerical example of figure 8 shows, to the contrary, that there exist
terminal points X at the vertices of a convex polyhedron, and an admissible loading F such that
the associated web is ‘completely stuck’. This example was found by starting with N = 8 terminal
nodes at the vertices of a cube, taking an admissible loading F supported at these points, then
moving the terminal points backwards so that for each j= 1, 2, . . . , 8, xj is replaced by x′

j = xj − εjfj,
where the εj ≥ 0 are increased until the loading F at the terminals X′ = (x′

1, x′
2, . . . , x′

8) is completely
stuck, while keeping the terminals X′ as vertices of a convex polyhedron (table 1).
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Figure 8. We start by applying the forces fi , given in table 1, at the eight points shown in (a), whose coordinates are given by
xi in table 1. The points are initially chosen to be the vertices of a cube. Now, move the terminal points backwards so that for
each i = 1, 2, . . . , 8, xi is replaced by x′i = xi − εifi , where the εi ≥ 0 are increased until the loadings fi at the terminals x′i ,
provided in table 1, is completely stuck, while keeping x′i as vertices of a convex polyhedron. The diagonal lines along the faces
in (a) are numerical artefacts. (Online version in colour.)

Table 1. Components of the forces fi applied at the eight points shown in figure 8 whose coordinates in the original
configuration are given by xi (figure 8a), and in the final configuration by x′i (figure 8b).

i xi x′i fi
1 [−1;−1;−1] [−0.27473;−0.31827;−0.46693] [−0.98151;−0.92259;−0.72140]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 [−1; 1;−1] [−0.94086; 0.91949;−0.93330] [−0.46129; 0.62796;−0.52022]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 [−1;−1; 1] [−0.12837;−0.23757; 0.15689] [−0.74581;−0.65237; 0.72140]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 [−1; 1; 1] [−0.76226; 0.74617; 0.78972] [−0.72140; 0.77022; 0.63807]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 [1;−1;−1] [0.28777;−0.16187;−0.35258] [0.80474;−0.94700;−0.73151]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 [1; 1;−1] [0.27806;−0.12953;−0.35765] [0.75592; 1.1827;−0.67259]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 [1;−1; 1] [−0.01231;−0.28017; 0.08708] [0.74581;−0.53033; 0.67259]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 [1; 1; 1] [0.51981; 0.62495; 0.51177] [0.60355; 0.47140; 0.61366]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Unstuck loadings

The aim is to prove that, for a given loading F belonging to the interior of the one of admissible
loadings A∗

X, there exists a uniloadable web supporting only F (up to a multiplicative constant).
First, we need to prove that the cone A∗

X does not have an empty interior (lemma 4.4). Then, we
need to prove that if we perturb slightly the positions of the terminal points, the loading is not
stuck (lemma 4.5) and that there exists a connected web with all the wires under tension which
supports F. Finally, we can prove that such a web is a uniloadable web (theorem 4.8).

To prove that the cone A∗
X does not have an empty interior, we need to introduce the space

RX of infinitesimal rigid motions on X= (x1, . . . , xN) and its orthogonal BX, called the space of
balanced loadings on X, defined by

RX := {U= (u1, . . . ,uN) ∈ (Rd)N : ∃a ∈R
d, ∃A antisymmetric such that, ∀ i,ui = a + Axi},

BX := {F= (f1, . . . , fN) ∈ (Rd)N :
N∑
i=1

fi = 0,
N∑
i=1

(fi ⊗ xi − xi ⊗ fi) = 0}. (4.9)

There is no loss of generality to assume that
∑N

i=1 xi = 0 so that X also belongs to BX.
Recall that A∗

X, the cone of admissible forces F= (f1, . . . , fN) at the points X= (x1, . . . , xN), is
the dual cone of AX := {U ∈ BX : ∀(i, j), (ui − uj) · (xi − xj) ≥ 0} (see theorem 1.1). The set BX is a
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subspace of (Rd)N (with codimension d(d + 1)/2). The notion of interior we use is relative to this
subspace.

Lemma 4.4. The cone A∗
X is a subset of BX with non-empty interior.

Proof. We have already noticed, as a consequence of theorem 2.2, that there is no loss of
generality in assuming that the points (x1, . . . xN) span the space R

d. There is no loss of generality
either in assuming that it is the first points (x1, . . . xd+1) which span it.

Assume now, by contradiction, that the set A∗
X has empty interior. As it is convex, this means

that it is contained in a lower dimension subspace: there exists U= (u1, . . . ,uN) �= 0 ∈ BX such that
F · U= 0 for all F ∈A∗

X. As (x1, . . . xd+1) span R
d, and there exists a unique affine function u such

that u(xi) = ui for 1 ≤ i≤ d + 1.
Clearly, for any (i, j) ∈ {1, . . . ,N}, the particular loading F(i,j) = (f1, . . . , fN), defined by fi = xi −

xj, fj = xj − xi and fk = 0 whenever k �= i and k �= j, belongs to A∗
X (indeed a simple wire linking

xi to xj is an admissible web for this particular loading). Hence U satisfies (ui − uj) · (xi − xj) = 0
for any pair (i, j). This condition applied to all pairs with i≤ d + 1 and j≤ d + 1 implies that u is
a rigid motion. The same condition applied to all pairs (i, j) with i≤ d + 1 and j> d + 1 implies
that uj = u(xj) too. Then U is a non-vanishing rigid motion and this contradicts the definition
of BX. �

Let us now prove that all loadings in the interior of A∗
X are unstuck. More precisely:

Lemma 4.5. Let F be in the interior of A∗
X. Then, for ε > 0 small enough, F also belongs to the interior

of A∗
X−εF.

Proof. We first remark that, for any ε ∈R, F belongs to BX−εF. Indeed, for any antisymmetric
matrix A we have

∑N
i=1 fi · (A(xi − εfi)) = −ε

∑N
i=1 fi · (Afi) = 0.

Let now U be any vector in AX−εF with ‖U‖ = 1. For any pair (i, j), it fulfils

(ui − uj) · ((xi − εfi) − (xj − εfj)) ≥ 0, (4.10)

which implies
(ui − uj) · (xi − xj) ≥ ε(ui − uj) · (fi − fj) ≥ −4ε‖F‖. (4.11)

Let δ := mini�=j |xi − xj| be the smallest distance between the points xi and γ := 4‖F‖/δ2. The vector
W :=U + εγX satisfies

(wi − wj) · (xi − xj) = (ui − uj) · (xi − xj) + εγ (xi − xj) · (xi − xj) ≥ 0. (4.12)

Therefore its projection W on BX, which satisfies the same inequalities, belongs to AX.
The cone A∗

X is the set of all F satisfying ∀U ∈AX, F · U≥ 0. As F belongs to the interior of A∗
X,

the function V→ F · V must be strictly positive on the compact intersection of AX with the unit
sphere. Let us call α > 0 its minimum. By homogeneity, we have for any V in AX, F · V≥ α‖V‖.
When applied to W, this inequality gives

F · W= F · W= F · U + εγF · X≥ α‖W‖ = α‖U + εγX‖ ≥ α(1 − εγ ‖X‖). (4.13)

Hence we have
F · U≥ α(1 − εγ ‖X‖) − εγF · X≥ α − εγ ‖X‖(α + ‖F‖). (4.14)

For ε smaller than α/2γ ‖X‖(α + ‖F‖), we get F · U≥ (α/2)‖U‖. This inequality, valid for any U ∈
AX−εF with ‖U‖ = 1, remains true on the whole cone AX−εF by homogeneity. So the lemma is
proven. �

Lemma 4.6. If F is in the interior of A∗
X then there exists a connected web supporting F at X with a

strictly positive stress state.

Proof. We first check that there exists a web W supporting F at X= (x1, . . . , xN) such that all wires
with non-vanishing tension make a connected set. The set D of loadings F for which there exists
a set I strictly included in {1, . . . ,N} such that

∑
i∈I fi = 0 is a union of subspaces (of codimension
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d) of the space BX of balanced loading. We want to avoid the case where F is supported by two
or more disconnected webs and clearly this may only happen if F ∈D. In that case, we use the
following trick: as the interior of D is empty we can find G ∈ BX such that F + G and F − G belong
to A∗

X\D. Let W+ and W− be two webs supporting, respectively, F + G and F − G and let S+ and
S− be the associated stress measures. The measure S := (S+ + S−)/2 satisfies

∇ · S + F = ∇ · S
+

2
+ ∇ · S

−

2
+ F = −F + G

2
− F − G

2
+ F = 0.

Its support is the union of the supports of S+ and S− which both are connected sets containing
all the terminal nodes where the applied forces are non-vanishing. Thus we get a finite connected
web W with a strictly positive stress state σ that supports the loading F= (f1, . . . , fN) at points
X= (x1, . . . , xN). �

Corollary 4.7. If F is in the interior of A∗
X then there exists a connected web supporting F at X with a

strictly positive stress state and only one wire joining each terminal node.

Proof. Lemma 4.5 provides an ε > 0 small enough for F to belong to the interior of A∗
X−εF.

Lemma 4.6 then provides a connected web W supporting F at X − εF with a strictly positive stress
state σ . Adding to W, for those i ∈ {1, . . . ,N} such that fi �= 0, the wires [xi, xi + εfi] and fixing the
tension to ‖fi‖ in each of these wires, makes a new web supporting F at X with a strictly positive
stress state. Clearly, as W is connected, the new one is also connected. �

We can finally state the theorem regarding the existence of a uniloadable web for an unstuck
loading.

Theorem 4.8 (existence of uniloadable webs). For any F in the interior of the admissible loading
cone A∗

X, there exists a finite web W such that CWX = {λF : λ ≥ 0}.
Proof. Corollary 4.7 states that there exists a finite connected web W with a strictly positive

stress state σ that supports the loading F= (f1, . . . , fN) at points X= (x1, . . . , xN) and such that only
one wire is attached to each terminal node. This web is then modified (according to lemma 4.5)
into a new web W̃ having the extra property that all the internal nodes have in two dimensions at
most three coplanar wires meeting it, and in three dimensions at most four non-coplanar wires,
or three coplanar wires, meeting it. This ensures that W̃ supports only the loadings λF for λ ≥ 0.
Indeed, as F is an admissible loading for W̃ at points X, the unique wire attached to x1 has direction
f1. Let F̃= (̃f1, . . . , f̃N) be another admissible loading for W̃ at X. Balance of forces at x1 imposes
f̃1 = λf1. As the wire attached to x1 is under tension for both loadings, we have λ ≥ 0. Now at each
node of the web, once the (positive) tension in one of the joining wires is fixed, the balance of
forces fixes the tension in all other joining wires. As the web is connected, from node to node, the
tensions of all wires are fixed: F̃ is uniquely determined and clearly F̃= λF. �

(c) Possible loading cones
Here we seek answer to the question: given a convex cone C ⊂A∗

X can one find a web W such that
CWX = C?

To proceed, as sketched in fig. 4 of [5], one approximates the convex cone C by a cone, that

we will denote with CWj

X , having a finite number j of extreme rays F(j)m, m= 1, 2, . . . , j, each
strictly in the interior of C and hence strictly in the interior of the admissible loading cone A∗

X.
As we are free to make arbitrary small perturbations of the extreme rays F(j)m, we can assume

that these are chosen so that at each terminal i, f(j)m
i is not collinear with f(j)�

i for any m, � with
� �=m. Associated with F(j)m is then a uniloadable web W(j)m supporting, and only supporting, at
the terminals X, the loadings λF(j)m, λ ≥ 0. By adjusting the positions of the interior nodes of the
different uniloadable webs W(j)m now indexed by j= 1, 2, . . . ,m we can ensure that the webs W(j)m

do not have overlapping interior nodes, nor overlapping collinear wires. By superimposing these
uniloadable webs, for m= 1, 2, . . . , j one obtains the web Wj having the desired loading cone. It
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may happen that some wire pairs cross when we superimpose the webs, generating an additional
interior node at the crossing point. This is still acceptable, as balance of forces at the crossing point
ensures that the tension in the wire remains the same on opposite sides of the crossing point. If
more than two wires cross at the same point, then we can perturb the uniloadable webs to avoid
this.

Taking the limit j→ ∞ allows us to approximate C arbitrarily closely, so that CWj

X → C.

5. Conclusion
In this paper, we provide full answer to the question as to whether, given a set of forces applied
to specific points, called terminal points, there exists a web that supports such forces with all
the wires under tension. Specifically, we provide a necessary and sufficient condition on the
loading forces which guarantees the existence of such a web; see theorem 1.1. Such a condition
corresponds to a finite-dimensional linear programming problem: if this has solution, then a web
exists which is formed by the wires connecting pairwise the terminal points. Conversely, any web
under tension supporting the given loading can be replaced by the web provided by the linear
programming problem.

The conditions related to the linear programming problem are inequalities expressed in terms
of the displacements of the terminal points: they form a cone in the displacement space and the
edges of the cone correspond to those displacements that satisfy the conditions as equalities. In
case the terminal points form the vertices of a convex polygon, these extreme edges correspond
precisely (up to an infinitesimal rigid body motion) to clam-shell movements and do not include
any other movements. By clam-shell movements, we denote a displacement field that arises
when one breaks the convex polygon connecting the terminal points into two non-overlapping
subpolygons connected at one vertex and fixes one subpolygon and infinitesimally rotates the
other one, so the clam opens slightly. In the case where there is at least one terminal point that
lies inside the convex hull of the terminal points, the extreme rays of the cone of admissible
displacements correspond to types of displacements that are not simply clam-shell movements.

In practical situations, one would like to have uniloadable webs, that is webs that support only
one loading and all positive multiples of it: such webs allow one to channel stresses in desired
ways and the superposition of them allows one to get a desired convex loading cone. To construct
a uniloadable web in two dimensions, one has to replace each closed minimal loop, that is any
polygon formed by the intersection of wires that cannot be divided into subpolygons, by an open
web (not containing any closed loop). This is always possible if the terminal points are positioned
at the vertices of a convex polygon. If that is not the case, then there will still be minimal closed
loops in a number equal to that of the terminal points which lie inside the convex hull of the
terminal points.

In general, to construct uniloadable webs, one has to reduce the number of wires meeting at
either a terminal point or at an internal node. The first step is to modify the web so that only
one wire is attached to each terminal point. We proved that this is possible only when the given
loading lies inside the cone formed by the inequality conditions associated with the dual linear
programming problem. If, instead, the loading corresponds to one of the extreme rays of such
a cone, then we have that for some webs this modification is impossible and we say that such
webs have stuck loadings. We provided two examples of webs of this type in two dimensions;
see examples 4.2 and 4.3. Since in two dimensions we know that a web with terminal points that
are vertices of a convex polygon can always be replaced by an open web, we have that such
webs are never completely stuck: indeed, in both examples 4.2 and 4.3 the terminal points are
not vertices of a convex polygon. This does not hold in the three-dimensional case for which one
can find a web with stuck loadings which have the terminal points forming a convex polyhedron
(figure 8). On the other hand, if the loading belongs to the interior of the cone formed by the
inequalities regarding the loadings in the dual linear programming problem, then we provide a
general procedure to reduce the number of wires meeting at each internal node where initially
five or more wires meet.
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