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Abstract— Guidepath-based transport systems is a pertinent
abstraction for the traffic that is generated in many contempo-
rary applications, ranging from industrial material handling
and robotics, to computer game animations and the qubit
transport systems that are employed in quantum computing.
In some recent works of ours, we have proposed the traffic
coordination in this class of systems according to a model
predictive control (MPC) scheme that seeks to maximize the
traffic throughput while retaining computational tractability for
the corresponding scheduling problem. In this work we perform
a more systematic investigation of the conditions that must be
observed by the adopted MPC scheme in order to ensure the
liveness of the resulting traffic. The presented results span a
number of possible configurations of the underlying guidepath-
based transport systems, and integrate and extend a variety
of past results concerning the liveness-enforcing supervision of
AGV and other complex resource allocation systems.1

I. INTRODUCTION

This paper concerns the traffic that is generated by a set of
agents circulating on a connected graph which is known as
the “(supporting) guidepath network”. The “mission” trips of
these agents on the guidepath network are specified by node
sequences that must be visited by the agents in the indicated
order. Furthermore, during their trips to these destinations,
the agents must observe certain regulations that are dictated
by safety considerations. In particular, the agents must be
sufficiently separated during their traveling, a requirement
that is practically enforced by stipulating that these agents
cannot cohabitate on the same edge of the guidepath network
during their trips. This last stipulation is enforced by a traffic
coordinator, and it turns the agent traveling towards their
various destinations into a resource allocation process, with
the negotiated resources being the edges of the guidepath
network.

From an application standpoint, the traffic problems out-
lined in the previous paragraph arise naturally in the real-time
operations of various automated unit-load material handling
(MH) systems, like the AGV, overhead monorail and the
complex crane and gantry systems used in many production
and distribution facilities [1], but also in the physical medium
that implements the various elementary operations in the
context of quantum computing [2]; the reader is referred
to [3], [4], [5] for an elaboration on these connections. In
addition, similar guidepath-based traffic models have drawn
recently the attention of the robotics community (e.g., [6],

1This work was partially supported by NSF grant ECCS-1707695.

[7], [8], [9]), while, in the past, they have been studied
even by the broader CS community in the context of some
classical games like the, so called, “15-puzzle” where 15
uniquely numbered “pebbles” located on a 4×4 grid have to
be re-arranged in the row-major order by “pebble sliding”
through the single unoccupied vertex of the grid [10], [11].

A primary concern for the resource allocation process that
takes place in the aforementioned transport systems is the
establishment of a high throughput, through the facilitation
of expedient traveling of the running agents to their various
destinations. This objective is attained through (i) a pertinent
coordination of the agent traversal of the various contested
edges, and (ii) the effective utilization of the routing flex-
ibility that is defined by the topology of the underlying
guidepath network. At the same time, an additional important
concern for the traffic coordinator and the corresponding
resource allocation process is to maintain the “liveness”
of the generated traffic, by ensuring the agents’ ability to
reach their successive target nodes while avoiding potential
deadlocking and livelocking situations.

Under some further operational assumptions for the under-
lying transport system,2 the aforementioned concerns give
rise to a combinatorial scheduling problem that can be
effectively formulated as a mixed integer program (MIP);
some characteristic examples of such MIP formulations can
be found in [12], [13], [14], [8], [3]. However, the practical
applicability of these MIP formulations to many industrial
environments, and their solvability under the “real-time”
constraints that are posed by these environments, is rather
limited. Hence, in a recent research program of ours on the
considered traffic management problem, we have suggested
a decomposing approach that is inspired by the Model
Predictive Control (MPC) theory [15] for more traditional
optimal control problems.

Generally speaking, this MPC-based approach to the con-
sidered traffic scheduling problem decomposes the original
problem to a series of simpler scheduling problems that
seek to route efficiently the traveling agents to their most
immediate destinations. Furthermore, the active schedules
are updated every time that one of these agents reaches
its current destination and it is ready to set out for the
next one. But as in the more traditional MPC theory, an

2We shall detail all these assumptions in the subsequent, more technical
parts of this paper.



additional important concern in this decomposition process
is the establishment of the feasibility of the subproblem
sequence that is generated by it. In the context of the traffic
scheduling problem that is addressed in this work, this last
requirement is tantamount to the preservation of “traffic
liveness” by the considered MPC scheme.

This paper intends to take a more systematic look into
the traffic liveness-preservation requirement that was outlined
in the previous paragraph, and in this way define a more
solid base for the implementation of the proposed MPC
framework in the considered transport systems. As it will be
revealed by the subsequent developments, the corresponding
results are contingent upon certain structural and operational
characteristics of the underlying transport system. Among
these characteristics, some of the most prominent are (i)
the ability of an agent to freely reverse its motion on any
given edge of the guidepath network, and (ii) the availability
of a “depot” where the agents retire upon the completion
of their mission trips.3 Perhaps not surprisingly, our results
also rely pretty heavily upon past results concerning the
liveness-enforcing supervision of AGV systems ([16], [17],
[18], [19], [20]), a prominent and thriving research area
within the Discrete Event Systems (DES) community. When
viewed from this standpoint, the primary contribution of
this work is (a) to “catalog” those past results that are
currently scattered in various parts of the past literature, (b)
complement them with some new developments and insights,
and, most importantly, (c) organize and present them in a way
that will be practically useful in the MPC schemes that are
promoted in this work.

With the above basic positioning of the paper content and
contributions, the rest of the paper is organized as follows:
Section II introduces the main structural and operational
assumptions for the transport systems that are considered
in this work. It also defines the traffic scheduling problem
addressed in this paper, and outlines the MPC scheme for this
problem that has been advocated in our past developments.
Section III constitutes the main part of the paper, presenting
a series of results that culminate into a set of practical
conditions that must be observed by the applied MPC scheme
in order to ensure the liveness of the overall generated
traffic. As remarked in the earlier parts of this section,
the corresponding developments are organized according to
certain attributes of the considered transport systems that
facilitate these developments and define the scope of their ap-
plicability. Section IV discusses the integration of the results
of Section III in the considered MPC framework, and, at the
same time, identifies remaining open issues that arise from
the presented developments. Finally, Section V concludes
the paper, summarizing its contributions and highlighting
directions for future research.

3A third dimension for extending the presented taxonomy of guidepath-
based transport systems can be based on the particular restrictions that are
imposed by the adopted zone allocation protocol. Due to space consider-
ations, this work does not expand in this direction, but we provide some
further comments on this issue in later parts of the manuscript.

II. THE CONSIDERED GUIDEPATH-BASED TRANSPORT
SYSTEMS, THE CORRESPONDING TRAFFIC SCHEDULING

PROBLEM, AND THE PROPOSED MPC FRAMEWORK

A formal characterization of the considered guidepath-
based transport systems and the generated traffic. The
guidepath-based transport systems considered in this work
are formally abstracted as follows: The system consists of
a guidepath graph G = (V,E) that is traversed by a set
of agents, A. Graph G is assumed to be connected and
undirected. The edges e ∈ E of G model the “zones” of the
underlying quidepath network. These edges can be traversed
by a traveling agent a ∈ A in either direction, and, in general,
they can hold no more than one agent at any time.

However, in many of these transport systems, the edge
set E might contain a “self-loop” edge, denoted by h,
and modeling a “home” location that can hold an arbitrary
number of agents; in particular, edge h acts as a “parking”
location for agents that are not on an active “mission”
trip. Following rather standard terminology borrowed from
the AGV literature, we shall refer to those guidepath-based
transport systems that possess the aforementioned “home”
edge h as “open”, and to the remaining ones as “closed’.

A “mission” trip for some agent a ∈ A is defined by
a sequence of edges Σa = 〈e ∈ E〉 that must be visited
by agent a in the specified order.4 Furthermore, for open
transport systems, the last edge in sequence Σa is the “home”
edge h, in line with the aforementioned role of this edge.

While traversing an edge e ∈ E with e = {vi, vj}, an
agent a will have a certain direction of motion that will
be indicated by the corresponding ordered pair (vi, vj) or
(vj , vi). This representation of the agent motion also enables
the following definition of the system state, that will be
useful in this work:

Definition 2.1: At any point in time, the state s of the
considered traffic system is defined by: (i) the edges ea =
{via , vja} that define the currently occupied zone by each
agent a ∈ A, and the agent’s direction of motion in that
zone; and (ii) the remaining visitation requirements, Σ̂a, for
each agent.

State s evolves by having (at least) one of the system
agents moving to a neighboring edge that is compatible with
its direction of motion on its current edge, and by further
updating the visitation sequences every time that a new target
edge is reached by such a transition. Moreover, in some
of the considered transport systems, an agent can reverse
its direction of motion on its current edge, in which case
this is an alternative mechanism for evolving the running
traffic state s. In the following, we shall refer to transport
systems that support reversibility of the agent motion on any
given edge as “reversible”, and to the remaining ones as
“irreversible”.

Since edges e ∈ E model the specified zones of the
underlying guidepath network G, they are assumed to be of

4E.g.,in the MHS operational setting, the edges e ∈ Σa typically model
pairs of pick-up and deposition locations that must be visited by the material
handling agent during its trip.



equal length. This assumption, together with the presumed
uniformity of the traveling agents a ∈ A, allow us to
further assume that the corresponding edge-traversal times
are deterministic and uniform across all edges. This last
duration defines a natural “time unit” for the considered
models, and enables the discretization of the traffic dynamics
of the underlying transport system.5

In the resulting discretized dynamics of the considered
traffic, it is further stipulated that an agent a cannot move
in an edge e at time t from a neighboring edge e′, unless e
was empty at time t− 1. This assumption prevents potential
agent cohabitation on a given edge during the transitional
phases that lead from (discrete) epoch t−1 to epoch t, and it
also implies that two agents cannot “swap” the occupation of
two neighboring edges.6 Most importantly for the subsequent
developments of this work, these traffic restrictions, when
combined with the arbitrary topology of the graph G and
the bidirectional traversal of its edges by the traveling agents,
can potentially give rise to deadlocking situations that will
permanently stall the further advancement of the agents
involved, and they necessitate the proactive management
of the underlying traffic with the additional objective of
preserving its liveness [16].

The considered traffic scheduling problem and the sim-
plifying MPC framework. Having established the operational
dynamics of the considered transport systems in the previous
paragraphs, next we proceed with the definition of the
basic traffic scheduling problem that motivates the main
developments presented in this work. For this, we need the
following definitions:

Definition 2.2: A route Ra for any given agent a ∈ A
over a (discrete) time span T is a sequence 〈(vi, vj)ta : t =
0, . . . , T 〉 defining, for each epoch t ∈ {0, . . . , T}, the edge
of the guidepath network G that is occupied by agent a
during that epoch, and the agent orientation (or direction
of its motion) in this edge.

Definition 2.3: A set of routes {Ra: a ∈ A} that satisfy
the posed visitation requirements Σa for each traveling agent,
is a routing schedule S (w.r.t. these visitation requirements).
Schedule S is feasible, if the corresponding routes Ra are
compatible with the topology of the underlying guidepath
network G, and they abide to the aforestated operational
assumptions and stipulations that characterize the agent
maneuverability and the employed zone allocation protocol.

5Even in the case that the zone-traversal times are non-uniform in terms
of the zone set E and/or the agent set A, a discrete-time model for the
dynamics of the corresponding traffic can be obtained by utilizing the
greatest common divisor of the zone-traversal times, and refining the edge
definition for the guidepath network G accordingly.

6We also notice that in a considerable part of the relevant literature,
especially some lines of work that come from the Robotics and the Artificial
Intelligence communities (c.f. [8]), agents cannot swap their locations, but
an agent a can move into a zone while another agent a′ is moving out
of the same zone during the same discretized time step. This possibility
essentially implies an ability of locally coordinated motion on the part of
the agents, and impacts in a substantial, qualitative manner the dynamics of
the underlying traffic, as it enables behaviors that are not possible under the
more restrictive zone allocation protocol that requires agents to advance only
into empty zones. These remarks define the third classification dimension
that was suggested in Footnote 3.

Furthermore, for any given routing schedule S , the max-
imal traveling time required to meet all the posed visitation
requirements across all the corresponding routes Ra, a ∈ A,
will be characterized as the schedule makespan, and it will
be denoted by TS .

Then, the basic traffic scheduling problem that is consid-
ered in this work can be defined as follows:

Definition 2.4: The basic traffic scheduling problem for
the considered traffic systems: Given a state s0 of the consid-
ered guidepath-based transport system, determine a routing
schedule S that will satisfy the corresponding visitation
requirements that are defined by state s0, with minimal
makespan TS .

In the following, we shall denote an optimal schedule by
S∗ and the corresponding makespan by T ∗. Furthermore, as
remarked in the introductory section, an optimal schedule
S∗ can be obtained, in principle, by formulating and solving
a mixed integer program. But this MIP formulation does
not scale well for many real-world applications. To cope
with these practical challenges, we have proposed to use
an MPC scheme towards the solution of the aforementioned
scheduling problem [21]. This MPC framework decomposes
the overall scheduling problem to a sequence of subproblems
that seek the effective and efficient routing of the traveling
agents towards their most immediate destinations in the
corresponding sequences Σa, a ∈ A. The details of this
decomposition and the formulation of the corresponding
subproblems must also ensure that the traffic flow generated
by this decomposition remains “live”, i.e., that it maintains
the ability of all agents to reach their corresponding target
nodes, and in the case of open transport systems, eventually
retire to the corresponding “home” edge h. We address the
satisfaction of this “liveness” requirement in the next section,
while in Section IV we further discuss the implications of
the results of Section III for the overall organization of the
considered MPC framework.

III. PRESERVING TRAFFIC LIVENESS IN THE CONSIDERED
GUIDEPATH-BASED TRANSPORT SYSTEMS

In this section we provide conditions that must be observed
by the MPC framework that was outlined in the previous
section, in order to ensure the liveness of the resulting
traffic. Furthermore, we want these conditions to be effi-
ciently implementable in the real-time operational context
of the considered transport systems. The derived results are
contingent upon (i) the presence of a “home” edge h in the
underlying guidepath network G, and (ii) the “reversibility”
of the guidepath-based transport system;7 hence, we organize
their presentation accordingly.

A. Preserving traffic liveness in open and reversible
guidepath-based transport systems

For this class of guidepath-based transport systems, we
have the following fundamental result:

7We remind the reader that the “reversibility” of the guidepath-based
transport systems considered in this work was defined in the previous
section.



Proposition 3.1: Let s1, s2 denote two traffic states of
an open, reversible guidepath-based transport system. Then,
there is always a feasible routing schedule S that can lead
from state s1 to state s2.

The result of Proposition 3.1 was first established in
[4]. A constructive argument establishing the validity of
this proposition can be briefly structured as follows: First,
the assumed reversibility of the considered transport system
implies the existence of a feasible routing schedule S1 that
collects all agents in the “home” edge h; a simple such
schedule will route agents to edge h one at a time, starting
with the one(s) that have the closest distance from h. Once
all agents have been collected in edge h, another routing
schedule S2 will take them to their locations specified by
state s2. Again, schedule S2 will route the agents to their
respective locations one at a time, starting with the agent(s)
with the longest destination from the “home” edge h.

In the context of the MPC schemes that are considered
in this work, the practical implication of Proposition 3.1 is
that the generated traffic will remain live, irrespective of the
intermediate target states that define the decomposing logic
of the applied MPC scheme; some reasonable realizations of
this decomposing logic are discussed in Section IV.

B. Preserving traffic liveness in open and irreversible
guidepath-based transport systems

We start our discussion for this class of guidepath-based
transport systems by noticing that any meaningful realiza-
tion of these systems must satisfy the following additional
condition:

Condition 3.1: The employed guidepath network G has a
minimal nodal degree of 2.

Indeed, in the class of guidepath-based transport systems
considered in this subsection, if an agent a reaches a node
v with degree one, will not be able to reverse its direction
upon reaching that node and it will remain there forever.
On the other hand, the following lemma establishes that
Condition 3.1 guarantees the existence of a feasible route
taking an agent a ∈ A on a round-trip from the “home”
edge h to any node v ∈ V and back to h.

Proposition 3.2: Consider an open, irreversible guidepath-
based transport system satisfying Condition 3.1, and let s0
denote the state where every agent a ∈ A is located at the
“home” edge h. Then, for any given agent a and a node
v ∈ V , there exists a feasible route Ra that takes agent a
from edge h to node v and back edge h, while the remaining
agents a′ ∈ A \ {a} remain at edge h.

Proof: Since graph G is connected, there is a path p
leading from edge h to vertex v. Let e′ denote the last edge
on path p. Since the minimal degree of G is 2, there is an
edge e1 ≡ {v, v1} 6= e′. If v1 belongs in path p, then, edge e1
together with the segment of p leading from v1 to h defines a
path p′ that can be followed by agent a for its return trip from
node v to the “home” edge h. Otherwise, define p1 ≡ pe1,
and notice that there exists an edge e2 ≡ {v1, v2} 6= e1.
Repeating the previous argument with respect to node v2
and path p1, we can either identify a return path for agent

a, or extend path p1 to path p2 ≡ p1e2. Continuing in the
same manner, and recognizing the finiteness of the nodal set
V , eventually we shall reach to a node vk that will belong in
the constructed path pk−1 and will define the required return
path for agent a. �

The next result is an immediate implication of Proposi-
tion 3.2.

Corollary 3.1: Consider an open, irreversible guidepath-
based transport network satisfying Condition 3.1 at the state
s0 where every agent a ∈ A is located at the “home” edge
h. Then, there is a feasible routing schedule for every set of
visitation requirements {Σa : a ∈ A}.

Proof: A simple (although not necessarily efficient) sched-
ule will satisfy each visitation requirement for an agent
a ∈ A and a node v ∈ Σa by a distinct “round trip” of agent
a from the “home” edge h to node v and back to h. The
feasibility of this schedule is guaranteed by Proposition 3.2.
�

Corollary 3.1 and its proof essentially establish that Con-
dition 3.1 is necessary and sufficient for the satisfaction of
any set of visitation requirements {Σa : a ∈ A} when
the considered guidepath-based transport system is started
from state s0 where all agents are located in the “home”
edge h. On the other hand, the computational complexity of
assessing the feasibility of a set of visitation requirements
{Σa : a ∈ A} when the system is started from some
arbitrary state s, is currently an open problem.8 Hence, we
propose to restrict the operation of this class of guidepath-
based transport systems in a subset of their state space S for
which reachability of the state s0, where every agent a ∈ A
is located at the “home” edge h, can be established with
polynomial complexity. Such a subset of states is provided
by the concept of the “h-ordered” state.

Definition 3.1: A state s of an open, irreversible
guidepath-based transport network satisfying Condition 3.1
is “h-ordered” if there exists an ordering [·] : {1, . . . , |A|} →
A, of the agent set A, such that each agent a[i], i =
1, . . . , |A|, can advance to the “home” edge h from its current
edge while agents a[j], j = i + 1, . . . , |A|, maintain their
original positions in state s.

The notion of h-ordered state adapts to the considered
problem context the notion of “ordered” traffic-states for
AGV systems that was introduced in [16]. In the following,
we shall denote the set of h-ordered states by Sho. Assessing
whether any given state s ∈ S is h-ordered reduces to
the construction of a corresponding ordering. The search of
such an ordering for the agent set A can be performed in a
“greedy” manner (i.e., without the need for any backtracking)
since the placement of any agent a ∈ A in the “home” edge h

8More specifically, the work of [20] provides a proof of the NP-
completeness of the problem of assessing the feasibility of a set of visitation
requirements {Σa : a ∈ A} in open irreversible guidepath-based transport
systems, when the system is started from an arbitrary state s, and the agent
routes are predetermined. On the other hand, under free agent routing, we
can pursue a routing scheme similar to the routing scheme that was discussed
in the proof of Proposition 3.1. But the complexity of determining the
existence of a feasible routing plan that will collect all traveling agents
from their current locations to the “home” location h, remains an open
issue.



increases the set of free edges that can be used by the remain-
ing agents for reaching the “home” edge h. The realization
of this possibility goes back to the seminal work of Dijkstra
and his development of Banker’s algorithm for more general
resource allocation systems [22]. However, in the considered
operational setting of the open, irreversible guidepath-based
transport systems, things are further complicated by the
extensive levels of routing flexibility that is available to
any given agent a. But this additional complication can be
handled with polynomial complexity w.r.t. the size of the
underlying guidepath network and the number of traveling
agents, through the adaptation of some relevant algorithms
that are presented in [16].

Furthermore, in [23] it is shown how the set of (h-)ordered
states that is admitted by any efficient realization of Banker’s
algorithm can be effectively expanded through controlled
partial search. Finally, it is easy to see that state s0, as well as
the states s that are involved in the proofs of Proposition 3.2
and Corollary 3.1, are h-ordered. Hence, starting from the
natural initial state s0, and using the algorithmic tools
provided in [16] and [23], we can confine the operation of
the underlying guidepath-based transport system in a subset
S′ of its state space S that is efficiently recognizable and
ensures live operation for the generated traffic. In Section IV
we also discuss how this capability can be utilized in the
MPC framework that is proposed for the considered set of
transport systems.

C. Preserving traffic liveness in closed and reversible
guidepath-based transport systems

We start our discussion for this class of guidepath-based
transport systems by noticing that for any meaningful real-
ization of these systems we must have |A| < |E| (since,
otherwise, no agent motion is possible). This inequality
implies that there is always a free edge in the guidepath
network; to facilitate the subsequent discussion, we shall
refer to such a free edge as a “hole”. Then, we have the
following lemma:

Lemma 3.1: For any given traffic state s of a closed,
reversible guidepath-based transport system with |A| < |E|,
and an edge e ∈ E, there is a state s′ reachable from s in
which edge e is a “hole”.

Proof: If edge e is a “hole” in state s, then we simply set
s′ ≡ s. Otherwise, let e′ denote an edge containing a “hole”
in state s that has the shortest possible distance from edge
e, and let p = 〈e ≡ e0, e1, . . . , el ≡ e′〉 be a corresponding
shortest path connecting e and e′. Then, according to the
working assumptions, each edge ei, i = 0, 1, . . . , l − 1, is
occupied by an agent ai. Consider the state s′ that is obtained
from state s by advancing each agent ai, i = 0, . . . , l − 1,
from its current edge ei to edge ei+1, starting with agent
al−1 and working in decreasing order of index i. Then, it is
not hard to see that the hole at edge e′ in state s has moved
to edge e in state s′. �

However, while the condition |A| < |E| guarantees the
effective move of a hole to any edge of network G, it is not
sufficient to ensure that any agent a ∈ A can move from its

a1	 a2	
a3	

a4	

e1	
e2	e3	

e4	

e5	

Fig. 1: A counter-example establishing that, for closed and
reversible guidepath-based transport systems, the condition
|A| < |E| is not adequate for ensuring the ability of an
agent a ∈ A to advance from its current edge e to a target
edge e′.

current location to a target destination. A counter-example
establishing the validity of this statement is presented in
Figure 1. In the depicted situation, agent a1 wants to move
to edge e2, and it also holds that |A| = 4 < |E| = 5. But it
is easy to check that the required transfer of agent a1 is not
feasible.

The problem in the example of Figure 1 arises from the
presence of the path e1e2. This path is characterized by the
fact that all of its edges do not belong on any cycle,9 and in
the following discussion, we shall characterize these paths as
“singular”. Also, we shall denote the set of singular paths
in graph G by PS , and for any path p ∈ PS , |p| will denote
the “length” of p, i.e., the number of its edges.

Then, our main result for this class of guidepath-based
transport systems can be stated as follows.

Proposition 3.3: In the class of closed and reversible
guide-path-based transport systems, a sufficient condition
guaranteeing that any agent a ∈ A can move from its current
edge e to any other edge e′ ∈ E of the guidepath network
G is that |A| ≤ |E| − 1−maxp∈PS

{|p|}.
Proof (Sketch): Consider first the case where PS = ∅.

Then, the condition of Proposition 3.3 becomes |A| ≤
|E| − 1. Also, consider a path p = 〈e ≡ e0, e1, . . . , el ≡ e′〉
from e to e′. Then, the working assumption PS = ∅ implies
that there is a path from edge e1 to a “hole” that does not
include edge e0, and working as in the proof of Lemma 3.1,
we can move this “hole” to edge e1. Hence, agent a can
advance across path p by one edge, to edge e1. Furthermore,
iterative invocation of the above argument implies that there
is a routing schedule that can take agent a all the way to
edge e′.

When singular paths are present, the entire graph G can be
uniquely decomposed to a “tree”-like structure T , where the
nodes of T are the maximal subgraphs Gk, k = 1, . . . ,K ,
that are not containing any singular paths themselves, and the
edges of T correspond to the singular paths that interconnect

9Following standard terminology of graph theory, in this work we define
a cycle in an undirected graph as a simple path with coinciding starting and
ending nodes. Furthermore, a path is simple if it does not revisit any of its
vertices (except possibly the first and the last ones, in the case of a cycle).



pairs {Gi, Gj} of the aforementioned subgraphs Gk. Then,
transferring the considered agent a from its current edge
e to edge e′ will involve, in general, the traversal of a
“path” Q in this “tree”-like structure consisting of some
subgraphs Gk and the interconnecting singular paths. Let G1

denote the maximal subgraph containing edge e. Lemma 3.1
guarantees that we can move a “hole” to subgraph G1,
and, subsequently, an argument similar to that provided in
the first part of this proof further establishes that agent
a can move between any pair of edges of the considered
subgraph G1. Also, let G2 denote the maximal subgraph
that is second in the aforementioned “path” Q. The condition
|A| ≤ |E|−1−maxp∈PS

{|p|} guarantees (i) that it is always
possible to empty the singular path p ≡ {G1, G2} required
by the traveling agent a, while preserving the accessibility
of agent a to this path, and (ii) the agent ability to enter
the next required subgraph G2: all that needs to be done is
first to bring agent a to an edge e1 of G1 that is adjacent
to the singular path p, and subsequently empty the path p
of any other agents while ensuring the presence of a “hole”
in subgraph G2. Working in this way, agent a can advance
through the entire “path” Q that connects edges e and e′ in
the aforementioned “tree”-like structure. �

In the case where PS = ∅, the resulting condition of
Proposition 3.3 is also necessary for ensuring the ability
of any agent a ∈ A to move from its current edge e to
any other edge e′ ∈ E of the guidepath network G. On the
other hand, when PS 6= ∅, the condition of Proposition 3.3
is only sufficient; characteristically, the reader can check
that in the example of Figure 1, the circulating agents can
reach any edge of the depicted guidepath graph as long as
|A| ≤ |E| −maxp∈PS

{|p|}.10

The reader should notice that the condition of Proposi-
tion 3.3 is a structural condition for the underlying guidepath-
based transport system that can be validated off-line. Fur-
thermore, once this condition is established, the proof of
Proposition 3.3 also provides an effective mechanism for
developing a routing schedule for the transferring of agent a
from edge e to edge e′. And since this mechanism involves
only the identification of (shortest) paths for the necessary
transfers of agent a and the facilitating “holes” during
the various legs of the agent trip, this mechanism is also
computationally efficient.

From a more conceptual standpoint, the result of Proposi-
tion 3.3 for the considered class of guidepath-based transport
systems resembles the result of Proposition 3.1 for the open
and reversible case, in that once a certain structural condition
is established,11 then, the liveness of the underlying traffic
is automatically guaranteed. It is, thus, natural to attribute
this property to the motion reversibility that is possessed by
these transport systems, and as indicated in the closing part

10The perusal of the proof of Proposition 3.3 will also reveal that the
condition |A| ≤ |E| − 1 − maxp∈PS

{|p|} is also necessary as long as
there exists a maximal singular path p that connects two nontrivial maximal
subgraphs Gi, Gj containing no singular paths.

11In the case of the open and reversible guidepath-based transport
systems, this structural condition is the presence of the “home” edge h.

of Section III-A, the availability of this property simplifies
substantially the implementation of the MPC schemes that
are pursued in this work.

D. Preserving traffic liveness in closed and irreversible
guidepath-based transport systems

As in the case of open and irreversible guidepath-based
transport systems, closed and irreversible guidepath-based
transport systems need more active real-time supervision for
ensuring the liveness of the underlying traffic. A set of results
for facilitating such efficient control logic has been developed
in [19]. In this section we overview the main points of these
past developments, in a way that they can be related to the
MPC schemes that are the focus of this work.

Central in the developments of [19] is the partially di-
rected graph (PDG) G′(s) that is defined as follows:

Definition 3.2: Given a state s of the considered class of
guidepath-based transport systems, the corresponding PDG
G′(s) induced from state s and the guidepath graph G, by
substituting each edge e of G occupied by an agent a ∈ A in
s with a directed edge that indicates the orientation / direction
of motion of a on e.

A (simple) path p in G′(s) is defined as any (simple) path
p in the original graph G where, however, the directed edges
introduced by the definition of G′(s) have the same sense of
direction. Furthermore, a cycle c in G′(s) is a simple path
with coinciding initial and terminal nodes. A joint between
two cycles c and c′ is a simple path that is a sub-path for
both c and c′. On the other hand, a pass between two cycles
c and c′ is a singular path of the original guidepath graph
G with its first node lying on c, its last node lying on
c′, and with all of its edges being undirected in the PDG
G′(s). Finally, the next set of concepts are at the core of the
sought characterization of liveness for the considered class
of guidepath-based transport systems:

Definition 3.3: A chain in PDG G′(s) is the subgraph
defined by a sequence ch = 〈c1, p2, c2, p3, . . . , pn, cn〉, n ≥
1, such that (i) ci, i = 1, . . . , n, are cycles, (ii) pi, i =
2, . . . , n, are simple paths, and (iii) each path pi is a joint
or a pass between cycles ci−1 and ci. Two edges e, e′ ∈ E
are chain-connected – or, simply, chained – if there exists a
chain that contains, both, e and e′. Furthermore, PDG G′(s)
is chained if every two edges e, e′ ∈ E are chained.

Chain connectivity defines an equivalence relationship on
E, and the subgraphs of G′(s) that are induced by the corre-
sponding equivalence classes are the chained components of
G′(s). Also, the PDG C(s) that is obtained from G′(s) by
replacing each of its chained components by a simple node is
called the condensation of G′(s). Obviously, chained PDGs
G′(s) have condensations that correspond to a single node.
An efficient algorithm for obtaining the condensation C(s)
for any given PDG G′(s) is provided in [19].

Finally, in order to state formally the main results of [19]
that are of interest to this work, we also need to introduce the
notion of a live state for the considered transport systems.

Definition 3.4: For the considered class of closed, irre-
versible guidepath-based transport systems, state s is live



if and only if the state transition diagram RG(s), that is
induced by the reachable states from s, has a strongly
connected component such that for each agent a ∈ A and
each edge e ∈ E, there is a state sea where agent a is located
in edge e.

Then, utilizing also the notion of the singular paths p ∈
PS of the guidepath network G that was introduced in
Section III-C, the main result of [19] that is of interest to
this work can be stated as follows:

Proposition 3.4: In a closed and irreversible guidepath-
based transport system with |A| ≤ |E| −

∑
p∈PS

|p| − 2, a
given state s is live if and only if the set R(s) of the states
that are reachable from state s contains a chained state s′.

In [19] it is also argued that the condition |A| ≤ |E| −∑
p∈PS

|p| − 1 is necessary for being able to establish
traffic liveness for closed and irreversible guidepath-based
transport systems, and furthermore, the case of |A| =
|E| −

∑
p∈PS

|p| − 1 can give rise to unavoidable livelocks.
Hence, the corresponding condition of Proposition 3.4 can be
perceived as practically necessary for being able to establish
live traffic in the considered class of transport systems.

On the other hand, currently we do not avail of an efficient
test to check the reachability of a chained state s′ from any
given state s. In view of this limitation, [19] proposes to
confine the system operation in states that are either chained
or semi-chained; the latter are obtained from chained states
by transferring a single vehicle between two cycles c and c′

over a pass p that connects these cycles. The developments
of [19] guarantee that the aforementioned restriction will
maintain the liveness of the underlying traffic. Of course,
the resulting traffic coordinator is not maximally permissive
anymore, but such a restriction is similar, in spirit, to the
restriction that is imposed by the concept of the “h-ordered”
state in the case of open and irreversible guidepath-based
transport systems.

IV. DISCUSSION

The developments of Section III reveal that under mo-
tion reversibility for the guidepath-based transport systems
considered in this work, the establishment of liveness for
the underlying traffic requires only the satisfaction of a
structural condition by the given system configuration. More
specifically, in the case of open, reversible guidepath-based
transport systems, the mere presence of the “home” edge
h suffices for establishing the system liveness (c.f. Proposi-
tion 3.1). On the other hand, for closed, reversible guidepath-
based transport systems, the corresponding condition is
|A| ≤ |E| − 1−maxp∈PS

{|p|} (c.f. Proposition 3.3). When
these conditions have been established for any given config-
uration from these two subclasses, accessing any reachable
state in the resulting state space will not compromise the
liveness of the underlying traffic.

The above remarks further imply that for the case of
reversible guidepath-based transport systems, the interme-
diate target states to be employed by the considered MPC
frameworks can be chosen arbitrarily. Furthermore, any other
state that might be generated during the system advancement

towards these intermediate target states, can function safely
as an initial state in the case of a re-evaluation of the running
routing schedule S .

Realizing the extent of freedom that is described in the
previous paragraph, [21] has pursued an MPC control scheme
for open, reversible guidepath-based transport systems where
the running target state is defined by the immediate targets
of the traveling agents a ∈ A in their corresponding nodal
sequences Σa. Furthermore, this target state is redefined
every time that an agent reaches its current destination. At
each intermediate phase of the resulting MPC scheme, the
running schedule S is computed according to a local search
scheme that first constructs an initial feasible schedule, S0,
according to the constructive argument that was outlined in
the discussion of Proposition 3.1, and subsequently improves
iteratively the constructed schedule by seeking alternative
shorter feasible routes for the agents that define the current
makespan (i.e., the agents with the longest traveling times to
their target destinations in the current schedule).

The extension of the MPC framework of [21] to the
class of closed, reversible guidepath-based traffic systems,
requires the provision of existence results and algorithmic
procedures for the construction of the initial routing schedule
in this new operational setting. In fact, the availability of
such a routing schedule is contingent upon the selection
of the next intermediate target state, s̃(s), w.r.t. the current
state s of the underlying traffic system. A set of seminal
results for guiding this selection is provided by the following
proposition, that initially appeared in [11]; the statement of
this proposition is based on an alternative representation
of the underlying guidepath structure and the supported
traffic, where agents are located on the vertex set V ′ of the
corresponding guidepath-graph G′ and the edge set E′ of
G′ defines the adjacency relationship among the available
locations.

Proposition 4.1: Consider a closed, reversible guidepath-
based transport system satisfying the condition of Proposi-
tion 3.3. Then, for any given pair (s, s′) of traffic states, state
s′ is reachable from state s if any of the following conditions
are satisfied:12

i. The corresponding guidepath graph G′ is 1-connected.
ii. The corresponding guidepath graph G′ is biconnected,

not a polygon, and |A| < |V ′| − 1.
iii. The corresponding guidepath graph G′ is biconnected,

not a polygon or isomorphic to the graph T0 depicted
in Figure 2, |A| = |V ′| − 1, and the graph G′ is not
bipartite.

iv. The corresponding guidepath graph G′ is biconnected,
not a polygon or isomorphic to the graph T0 depicted
in Figure 2, |A| = |V ′| − 1, the graph G′ is bipartite,
and the permutation of the vertex set V ′ that is induced
by the state pair (s, s′) is even.

12We remind the reader that a connected graph G is biconnected iff
the removal of a single vertex v from G retains the graph connectivity;
otherwise, graph G is 1-connected. Also, a permutation is even if it
results from an even number of pairwise exchanges of the ordering of the
underlying set.
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Fig. 2: The special graphs involved in the statement of
Proposition 4.1.

The proof provided in [11] for the above proposition also
outlines an O(|V ′|3) algorithm for constructing a feasible
routing schedule from state s to state s′. Hence, this algo-
rithm can provide the initial feasible schedule for extending
the MPC framework of [21] to closed, reversible guidepath-
based traffic systems. Furthermore, it is interesting to notice
that the basic logic for the construction of these routing
schedules is similar to the logic that provided the routing
schedule in the proof of Proposition 3.1, but the role of the
“home” edge h is now played by some other topological
elements of the underlying guidepath graph G′.

In the case of irreversible guidepath-based transport sys-
tems, the intermediate target states s̃(s) specified by the
applied MPC scheme must be carefully selected in order
to ensure the liveness of the generated traffic. Furthermore,
these target states must be reachable by the running state
s of the underlying traffic system. The particular sets of
(i) h-ordered states and (ii) the chained and semi-chained
states that were discussed in Section III, can provide an
effective guideline for the generation of these target states
for the respective cases of (a) open and (b) close irreversible
guidepath-based transport systems in a way that ensures the
traffic liveness. On the other hand, currently we lack any
results similar to those of Propositions 3.1 and 4.1 that
would resolve more general state-reachability requirements
in the case of irreversible transport systems. Hence, the
detailed implementation of a practical MPC-based traffic
control framework for this class of guidepath-based transport
systems remains quite open and it is part of our future
investigations.

V. CONCLUSIONS

In this paper we have presented a set of results pertaining
to the establishment of liveness for the traffic of guidepath-
based transport systems that are controlled by an MPC
framework. These results collect and extend a number of
developments that have appeared in a sporadic / fragmented
manner in the corresponding literature.

Our future work will seek to complete further the results
presented in this paper, and to extend them to additional
subclasses of guidepath-based transport systems. Such an
interesting extension concerns the case defined by the more
relaxed zone allocation protocol of Footnote 6. Furthermore,
another case of considerable interest when moving in this
direction, is that where the traveling agents must also observe

“rendezvous” or other synchronization constraints.13 Finally,
a remaining important open issue concerns the exact char-
acterization of the computational complexity of the decision
problems of assessing state-liveness in the case of irreversible
guidepath-based traffic systems.
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