
https://doi.org/10.1007/s00158-018-2094-0

EDUCATIONAL ARTICLE

PolyMat: an efficient Matlab code for multi-material topology
optimization

Emily D. Sanders1 · Anderson Pereira2 ·Miguel A. Aguiló3 ·Glaucio H. Paulino1

Received: 14 May 2018 / Revised: 16 August 2018 / Accepted: 5 September 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
We present a Matlab implementation of topology optimization for compliance minimization on unstructured polygonal
finite element meshes that efficiently accommodates many materials and many volume constraints. Leveraging the modular
structure of the educational code, PolyTop, we extend it to the multi-material version, PolyMat, with only a few
modifications. First, a design variable for each candidate material is defined in each finite element. Next, we couple a
Discrete Material Optimization interpolation with the existing penalization and introduce a new parameter such that we can
employ continuation and smoothly transition from a convex problem without any penalization to a non-convex problem in
which material mixing and intermediate densities are penalized. Mixing that remains due to the density filter operation is
eliminated via continuation on the filter radius. To accommodate flexibility in the volume constraint definition, the constraint
function is modified to compute multiple volume constraints and the design variable update is modified in accordance with
the Zhang-Paulino-Ramos Jr. (ZPR) update scheme, which updates the design variables associated with each constraint
independently. The formulation allows for volume constraints controlling any subset of the design variables, i.e., they can
be defined globally or locally for any subset of the candidate materials. Borrowing ideas for mesh generation on complex
domains from PolyMesher, we determine which design variables are associated with each local constraint of arbitrary
geometry. A number of examples are presented to demonstrate the many material capability, the flexibility of the volume
constraint definition, the ease with which we can accommodate passive regions, and how we may use local constraints to
break symmetries or achieve graded geometries.

Keywords Topology optimization · Polygonal finite elements · Matlab · Multi-material · ZPR

1 Introduction

This paper adds to a series of educational papers and associated
Matlab codes for topology optimization using unstructured

Responsible Editor: Xu Guo

Electronic supplementary material The online version of
this article (https://doi.org/10.1007/s00158-018-2094-0) contains
supplementary material, which is available to authorized users.

� Glaucio H. Paulino
paulino@gatech.edu

1 School of Civil and Environmental Engineering,
Georgia Institute of Technology, 790 Atlantic Drive NW,
Atlanta, GA 30332, USA

2 Department of Mechanical Engineering, Pontifical Catholic
University of Rio de Janeiro (PUC-Rio), Rua Marquês de São
Vicente, 225, Rio de Janeiro, RJ, 22451-900, Brazil

3 Simulation and Modeling Sciences, Sandia National
Laboratories, P.O. Box 5800, Albuquerque, NM 87185, USA

polygonal finite element meshes. The first code in the series is
PolyMesher, a general-purpose polygonal finite element
mesh generator for possibly complex domains (Talischi
et al. 2012a). PolyTop is a companion code that performs
topology optimization for compliance minimization using a
modular structure that separates the analysis routines from
the optimization formulation and can accommodate unstruc-
tured meshes (Talischi et al. 2012b). The effectiveness of
PolyTop’s modular framework is demonstrated by chang-
ing only a few lines in the analysis routines and arriving
at an implementation for minimization of dissipated power
in Stokes flow (Pereira et al. 2016). Here, we develop
PolyMat, a code built on PolyTop that requires mini-
mal modification to obtain minimum compliance designs
with many materials and accommodating possibly many
local or global volume constraints. In the same spirit of this
paper, Tavakoli and Mohseni (2014) detail the implemen-
tation and provide a downloadable Matlab code for their
Alternating Active Phase (AAP) algorithm, which handles
multiple materials by performing a series of binary phase
updates within each optimization step. The AAP code has

Structural and Multidisciplinary Optimization (2018) 58:2727–2759

/ Published online: 26 October 2018

E. D. Sanders et al.

been adopted by many researchers in recent years for multi-
material topology optimization (Park and Sutradhar 2015;
Lieu and Lee 2017; Doan and Lee 2017), including one case
in which it was coupled with multi-material topology optimi-
zation on polygonal finite element meshes (Chau et al. 2017).

In lieu of a full survey of the multi-material topology
optimization literature, we highlight a few key references
related to this work and refer the reader to Sanders
et al. (2018) for a more comprehensive literature review.
The multi-material formulation adopted here is based
on that of Zhang et al. (2018), which was proposed
in the context of the ground-structure method. Their
problem statement includes a very general specification
of the volume constraints that allows them to control any
subset of the candidate materials in any sub-region of
the domain. To efficiently accommodate such constraints,
Zhang et al. (2018) introduce the Zhang-Paulino-Ramos Jr.
(ZPR, pronounced “zipper”) design variable update scheme,
which is derived from a convex (linear) approximation
to the problem. Due to separability of the dual objective
associated with the linearized subproblems, Zhang et al.
(2018) observe that each constraint is dependent only on the
Lagrange multiplier of the constraint it is associated with,
allowing the ZPR to update the design for each constraint
independently. The ZPR update scheme was tailored for
continuum problems by Sanders et al. (2018) and coupled
with a Discrete Material Optimization (DMO) interpolation
(Stegmann and Lund 2005) to obtain solutions containing
little material mixing.

Here, we adopt both the ZPR update scheme and the
DMOmaterial interpolation scheme for volume-constrained
compliance minimization with possibly many materials and
many volume constraints. The main goal of this educational
paper is to elaborate on the details required to implement
the formulation within the PolyTop framework and also
to provide an educational Matlab code that can be used and
extended by others. Features of the educational PolyMat
code include: (1) the ability to generate complex domains
with complex sub-region geometries on which volume
constraints and/or passive regions may be specified; (2)
introduction of a new material interpolation parameter that,
along with the penalty parameter, can be continued to
achieve a smooth transition from the convex problem to a
non-convex problem in which both intermediate densities
and material mixing are penalized; (3) a method to obtain
designs with crisp boundaries between the material phases
via continuation on the filter radius; and (4) minimal
increase in computational cost relative to the single-material
implementation when the number of candidate materials is
low (e.g., ≤ 5).

The remainder of this paper is organized as follows. In
Section 2, we formulate the continuous volume-constrained
compliance minimization problem with multiple materials
and multiple volume constraints. The problem is discretized

in Section 3. We elaborate on the PolyMat implementation
in Section 4 and provide some extensions in Section 5. In
Section 6, we make some comments on the code’s efficiency
and provide a number of illustrative examples in Section 7.
Finally, Appendix A provides convergence plots for selected
example problems, Appendix B summarizes three different
filtering techniques that can easily be implemented in
PolyMat, Appendix C lists the problems available with
download of the code and summarizes the input information
required to run each problem, Appendix D provides an
example input file, PolyScript, Appendix E provides
a code listing for the main kernel of PolyMat, and
Appendices F, G, and H provide some additional Matlab
functions that are new relative to PolyTop.

2 Problem setting

In this section, we formulate the volume-constrained
compliance minimization problem in which we search for
an optimal shape, ω, contained in the extended domain,
� ⊆ R

2, where ω is the union of a finite number of non-
intersecting partitions composed of m different materials,
i.e, ω = ∪m

i ωi and ωi ∩ ωj = ∅ for i �= j (see Fig. 1). The
optimization problem is stated as:

inf
ω∈O

f (ω,uω) subject to gj (ω,uω) ≤ 0, j = 1, . . . , K

(1)

where O is the space of admissible shapes and uω ∈
Vω satisfies the governing variational problem of linear
elasticity:∫

ω

C(x)∇uω : ∇vdx =
∫

�̃N

t · vds, ∀v ∈ Vω, (2)

with the space of admissible displacements defined as:

Vω =
{
v ∈ H 1

(
ω,R2

)
: v|∂ω∩�D

= 0
}

(3)

Fig. 1 Extended design domain, boundary conditions, and illustration
of material partitions making up the optimal shape (adapted from
Talischi et al. 2012b)

2728

PolyMat: an efficient Matlab code for multi-material topology optimization

In (2), C(x) is the stiffness tensor that varies according to
the material from which each partition, ωi ⊆ ω, is made, �D

is the partition of ∂� on which displacements are pres-
cribed, �N is the complimentary partition of ∂� such that
�D ∪ �N = ∂� and �D ∩ �N = ∅, and �̃N ⊆ �N is the
partition of ∂� on which non-zero tractions, t, are prescribed.

The reader is referred to the discussions by Talischi
et al. (2012b) that develop, in sufficient detail, the notions
needed to arrive at the sizing problem from the problem
described in (1) and (2). Here, we briefly highlight the key
steps involved, emphasizing the additional requirements to
incorporate multiple materials into the formulation.

First, we introduce a characteristic function, χω, that
recasts the boundary value problem in (2) onto �. Next,
we define a choice function, φω, that takes on a scalar
value (material scale factor) corresponding to one of a finite
number of candidate materials. Together, χω and φω scale a
constant material tensor, C, to arrive at its spatially varying
counterpart, C(x). To enforce existence of solutions to the
boundary value problem, we adopt an Ersatz approach by
replacing χωφω with ε + (1 − ε)χωφω, where εC defines
a compliant material used to fill the void regions. Now, (2)
becomes:∫

�

[ε + (1− ε)χωφω]C∇u : ∇vdx =
∫

�̃N

t · vds, ∀v ∈ V,

(4)

and the space of admissible displacements, V , is indepen-
dent of ω.

A continuous parameterization, ρi ∈ [0, 1], i =
1, . . . , m, is introduced for each candidate material to avoid
integer programming, which can be prohibitively expensive.
A penalty function, mW , (e.g., SIMP (Zhou and Rozvany
1991; Bendsøe 1989)) recovers the binary nature of the
problem and an additional interpolation function, mM ,
enforces selection of a single material at each point in ω.

Further, we adopt a restriction setting in which a
regularization map, P , enforces well-posedness of the
optimization problem by introducing a measurable function,
ηi, i = 1, . . . , m, for each candidate material, such that
each ρi in the admissible space of designs inherits the
smoothness characteristics of the kernel used to define P ,
i.e., ρi = P(ηi). Here, the regularization map is defined by
convolution of the design functions, ηi, i = 1, . . . , m, with
a smooth kernel (filter), F , i.e., (Bourdin 2001; Borrvall and
Petersson 2001):

PF (ηi) =
∫

�

F(x, x)ηi(x)dx (5)

where the filter of radius R is defined as:

F(x, x) = c(x)max

(
1 − x − x

R
, 0

)
(6)

and c(x) is a normalizing coefficient.

Now, the volume-constrained compliance minimization
problem is stated as:

inf
{ρ}mi=1∈A

f (ρ1, . . . , ρm, u) =
∫

�̃N

t · uds subject to

gj ({ρi : i ∈ Gj }) =
∑
i∈Gj

1

|�j |
∫

�j

mV (ρi)dx − vj ≤ 0,

j = 1, . . . , K (7)

where Gj is the set of material indices associated with
constraint j ,�j ∈ � is the partition of the domain for which
constraint j is specified, mV is the interpolation function
for the volume constraint, vj is the volume fraction limit for
constraint j , the space of admissible designs is:

A = {PF (η1) ◦ . . . ◦ PF (ηm) : ηi ∈ L∞ ∀i(�; [ρ, ρ])} (8)

where ◦ indicates composition of functions, and u ∈ V
satisfies:

∫
�

mE(ρ1, . . . , ρm)C∇u : ∇vdx =
∫

�̃N

t · vds, ∀v ∈ V,

(9)

where mE = mM ◦ mW and the space of admissible
displacements is:

V = {v ∈ H 1(�,R2) : v|∂�D
= 0} (10)

3 Discretization

A final step required to solve the problem numerically is to
discretize the displacement field, V , and design space, A,
on �. For convenience, we choose to discretize both spaces
using the same fixed partition, Th = {��}N�=1, for which h

represents the characteristic mesh size, �� ∩ �k = ∅ for
� �= k, and ∪��� = �. With this partition, we define the
piecewise constant discretization of A:

Ah = {PF (ηh
1) ◦ · · · ◦ PF (ηh

m) : ρ ≤ ηh
i ≤ ρ∀i, ηh

i |��

= const ∀�} (11)

where we define ρh
i = PF (ηh

i), i = 1, . . . , m, for
each candidate material. The matrix of design variables,
Z = {z�1, . . . , z�m}N�=1, results from discretizing the design
functions as follows:

ηh
i (x) =

N∑
�=1

z�iχ��
(x) (12)

2729

E. D. Sanders et al.

where z�i is the constant value that ηh
i assumes over ��. The

functions, ρh
i , are replaced by ρ̃h

i , i = 1, . . . , m, which are
constant over each element:

ρ̃h
i (x) =

N∑
�=1

y�iχ��
(x) (13)

according to an elemental value, y�i = ρh
i (x∗

�), that we have
defined using the value of ρh

i at the centroid, x∗
� , of element

�. The set of element values can also be organized in matrix
form as Y = {y�1, . . . , y�m}N�=1.

In the same way that Talischi et al. (2012b) discretized
the mapping PF , we relate the elemental values of ηh

i and
ρh

i according to the following:

yi = Pzi , i = 1, . . . , m (14)

where yi and zi are the ith columns ofY and Z, respectively,
and:

P�k =
∫

�k

F (x∗
�, x)dx (15)

The final discrete problem for volume-constrained com-
pliance minimization that accommodates many candidate
materials and many local or global volume constraints is
expressed as:

min
Z∈[0,1]N×m

f = FT U subject to

gj =
∑

i∈Gj

∑
�∈Ej

A�mV (y�i)∑
�∈Ej

A�

− vj ≤ 0,

j = 1, . . . , K (16)

where Fi = ∫
�̃N

t ·Nids is the vector of design-independent
applied loads, Ej is the set of element indices associated
with constraint j , A� is the volume of element �, and U
solves the discretized state equations,KU = F, in which the
stiffness matrix is:

K =
N∑

�=1

mE(y�i, . . . , y�m)k� (17)

and (k�)jk = ∫
��

C∇Nj : ∇Nkdx is the constant element
stiffness matrix of element �. In (17), recall that the stiffness
interpolation function, mE , is the composition of the multi-
material interpolation function and the penalty function, i.e.,
mE = mM ◦ mW .

4 Implementation in PolyMat

By leveraging the modular framework established in
PolyTop, we arrive at PolyMat, an implementation of
the problem stated in (16), with only a few modifications
to PolyTop. In addition to some new required input
data for multi-material problems, we add a new multi-
material interpolation function, MultiMatIntFnc, that

works with the existing penalty function, MatIntFnc,
to interpolate the elemental stiffnesses. Additionally, we
modify the constraint function, ConstraintFnc, so that
it computes multiple volume fraction constraints. Lastly,
we implement the ZPR design variable update scheme
(Zhang et al. 2018), which requires no modification to the
structure of the UpdateScheme function itself, but only
modification to the main function in PolyMat such that
we pass the subset of element variables associated with each
constraint to UpdateScheme, one constraint at a time. We
elaborate on these changes in the following subsections.

4.1 Input data and PolyScript

A Matlab script, PolyScript, is used to define all input
data, which is passed to the PolyMat kernel to perform
the analysis and optimization. Three inputs, defined in
PolyScript, are required in the call to PolyMat: two
Matlab struct arrays, fem and opt, which hold param-
eters related to the finite element analysis and the topol-
ogy optimization, respectively, and Color, which is an
NMat×3 matrix containing an RGB triplet for each candi-
date material (for visualization of results). The fields stored
in fem and opt are provided in Table 1 and are almost
identical to those needed for the single-material imple-
mentation in PolyTop. The only new fields are: (1) the
array, fem.Mat, containing the Young’s modulus of each
candidate material; (2) the number of candidate materials,
fem.NMat; (3) a handle to the multi-material interpola-
tion function, opt.MultiMatIntFnc; (4) cell arrays,
opt.ElemInd and opt.MatInd, holding the element
indices and material indices, respectively, associated with
each constraint; and (5) the number of volume constraints,
opt.NConstr. Additionally, opt.VolFrac is modified
such that it is an array containing a volume fraction for each
of the volume constraints.

As before, a call to PolyMesher with a pre-specified
domain file can be used to obtain the finite element mesh
and boundary condition data for a desired problem. In a
similar spirit, for the multi-material implementation with
possibly many volume constraints, a call to a pre-specified
constraint file can be used to obtain the necessary constraint
information. The constraint specification is detailed in the
next subsection.

4.2 Constraint specification

The formulation in (16) allows for a very general definition
of the volume constraints in which a given constraint
may control a subset of the candidate materials and/or a
subset of the elements (i.e., sub-regions of the domain).
The constraints are fully specified to PolyMat by the
vector of volume fraction constraints, opt.VolFrac, and

2730

PolyMat: an efficient Matlab code for multi-material topology optimization

Table 1 List of fields in the
input structures fem field

fem.NNode Number of nodes

fem.NElem Number of elements

fem.Node [NNode × 2] array of nodes

fem.Element [NElem × Var] cell array of elements

fem.Supp [NSupp × 3] support array

fem.Load [NLoad × 3] load array

fem.Nu0 Poisson’s ratio of solid material

fem.E0 Young’s modulus of reference solid material

fem.Mat‡ Array of Young’s moduli for candidate materials

fem.NMat‡ Number of candidate materials

fem.SElem‡ Elements in passive regions

fem.Reg Tag for regular meshes

fem.ElemNDof† Array showing number of DOFs of elements

fem.ShapeFnc† Cell array with tabulated shape functions and weights

fem.k† Array of local stiffness matrix entries

fem.i† Index array for sparse assembly of fem.k

fem.j† Index array for sparse assembly of fem.k

fem.e† Array of element IDs corresponding to fem.k

fem.ElemArea† Array of element areas

fem.F† Global load vector

fem.FreeDofs† Array of free degrees of freedom

opt field

opt.zMin Lower bound for design variables

opt.zMax Upper bound for design variables

opt.zIni Initial array of design variables

opt.MatIntFnc Handle to penalty function

opt.MultiMatIntFnc‡ Handle to material interpolation function

opt.P Matrix that maps design to element variables

opt.Volfrac‡ Array of specified volume fraction constraints

opt.NConstr‡ Number of volume constraints

opt.ElemInd‡ Cell array of elements associated with each constraint

opt.MatInd‡ Cell array of materials associated with each constraint

opt.Tol Convergence tolerance on design variables

opt.MaxIter Max. number of optimization iterations

opt.ZPRMove Allowable move step in the ZPR update scheme

opt.ZPREta Exponent used in the ZPR update scheme

The fields marked with the superscript †, if empty, are populated inside PolyMat. The fields marked with
the superscript ‡, are new or modified relative to the single-material implementation in PolyTop

two cell arrays, opt.ElemInd and opt.MatInd. In the
latter two arrays, each cell entry corresponds to a constraint
and contains a vector of element (for opt.ElemInd) or
material (for opt.MatInd) indices associated with that
constraint. These vectors of element and material indices
correspond to Ej and Gj in (16), respectively.

To avoid repeated modification of PolyScript for
different problems, it is convenient to define the constraint
information in a separate constraint file that is called
from PolyScript. In addition to defining the required

constraint data, VolFrac, ElemInd, and MatInd, in the
constraint file, it is also convenient to specify the array of
material moduli, Mat, and the array of RGB colors, Color,
for each of the candidate materials.

In general, it is straightforward to specify the required
constraint information; however, if the constraints are
defined on many sub-regions or if the sub-regions have
complex geometries, it may be difficult to determine the
element indices associated with each constraint (i.e., the
entries of ElemInd). One simple approach is to borrow

2731

E. D. Sanders et al.

some of the ideas used in PolyMesher for generating
complex domains. In the same way that PolyMesher
uses signed distance functions to implicitly represent the
domain geometry, we use signed distance functions to
implicitly represent the sub-region geometries. For the
sub-region associated with each constraint, we construct
a vector of distance values using the distance functions
provided with PolyMesher (i.e., dLine, dCircle,
dRectangle, dDiff, dIntersect, dUnion). Then,
we can easily determine which elements are within the
sub-region boundary by evaluating the sign of the distance
values. For “nice” meshes, the seeds used to construct the
mesh are very close to the element centroids and since
the seeds are easily accessible from PolyMesher, we
compute the distance values based on the locations of the
element seeds. The indices of elements with seeds inside
the boundary of constraint j ’s sub-region are returned as a
vector entry in the j th cell of ElemInd.

As an illustrative example, we construct the ElemInd
cell array for the domain in Fig. 2a, which is constructed
via a number of boolean operations on one rectangle and
two circles (c1 and c3) using PolyMesher. To define
the constraints shown in Fig. 2b, we define two additional
circles, c2 and c4, and store the signed distance values of
the element seeds with respect to these circles in variables
c2 and c4, respectively. The signed distance values for
the portion of the domain between c2 and c4 is stored in
variable int. With these signed distance values, we define
ElemInd for constraints g1 to g5 using the Matlab code
provided in Fig. 2b.

In addition to the domain files provided with download
of PolyTop, we provide a number of associated constraint
files with download of PolyMat. Refer to Appendix C
to understand how to use these files to solve the various
multi-material topology optimization problems provided
with download of PolyMat.

4.3 Initial guess

The NElem × NMat matrix containing the initial
guess, zIni, is specified in PolyScript by passing
VolFrac, ElemInd, and MatInd to a function called
InitialGuess, which evenly distributes the volume
fraction specified for each constraint between the materials
associated with that constraint (within the appropriate sub-
region). The code listing for the InitialGuess function
is included in Appendix F.

4.4 Interpolation functions

Function handles to two interpolation functions,
MatIntFnc and MultiMatIntFnc, are stored in opt,
allowing the user to specify parameters related to the

for i = 1:3
ElemInd{i} = find(int(:,end)<=0);

end
SElemInd{1} = find(-c2(:,end)<=0);
SElemInd{2} = find(c4(:,end)<=0);

g4

g5

g1 g2 g3

g1 g2 g3

Passive

region 1

Passive

region 2

for i = 1:3
ElemInd{i} = find(int(:,end)<=0);

end
ElemInd{4} = find(-c2(:,end)<=0);
ElemInd{5} = find(c4(:,end)<=0);

int = dIntersect(c2,-c3);

c2 = dCircle(Seeds,x2,y2,r2);
c4 = dCircle(Seeds,x4,y4,r4);

c1
c2

c3
c4

int

(a)

(b)

(c)

Fig. 2 Constraint specification: a curved beam domain and code
needed to generate the distance values required to define the
constraints and/or passive regions; b constraint specification and code
needed to assemble ElemInd; and c constraint and passive region
specification and code needed to assemble ElemInd and SElemInd

interpolations in PolyScript. Together, MatIntFnc
and MultiMatIntFnc, perform the volume and stiffness
interpolations, outputting the volume interpolation,mV , and
the stiffness interpolation, mE , back to the kernel function,
PolyMat. MatIntFnc computes quantities explicitly
dependent on Y, while MultiMatIntFnc computes
quantities explicitly dependent on an intermediate variable,
W = {w�1, . . . , w�m}N�=1, introduced in the following.

The volume interpolation considered here is defined as:

mV (y�i) = y�i (18)

2732

PolyMat: an efficient Matlab code for multi-material topology optimization

and is computed in MatIntFnc. The stiffness interpola-
tion, mE , is accomplished in two steps. First, we apply a
penalty function, mW , in MatIntFnc to push the element
densities toward zero and one. For example, in the case of
SIMP (Bendsøe 1989; Zhou and Rozvany 1991) and RAMP
(Stolpe and Svanberg 2001), penalized element densities,
W, are computed as:

w�i = mW(y�i) =
{

y
p

�i (SIMP)
y�i

1+q(1−y�i)
(RAMP) � = 1, . . . , N

i = 1, . . . , m, (19)

where p > 1 and q > 0 are penalty parameters for
SIMP and RAMP, respectively, and W is introduced for
convenience of notation. As in PolyTop, the penalty
functions defined in MatIntFnc include SIMP and
RAMP. Next, the multi-material interpolation, mM , is
performed in MultiMatIntFnc using the following
function (Stegmann and Lund 2005):

mM(w′
�)=ε+(1−ε)

m∑
i=1

w�i

m∏
j=1
j �=i

(1−w�j)E
0
i , �=1, . . . , N

(20)

where w′
� is the �th row of W, ε is a small number used to

define the compliant (Ersatz) material in the void regions,
E0

i is the Young’s modulus of the ith candidate material
(specified in fem.Mat).

In Fig. 3, we plot the stiffness interpolation functions
for a single element with two candidate materials (E1 =
0.5, E2 = 1) considering SIMP with p = 4 and
ε = 0. As usual, the penalty function, mW , in Fig. 3a
makes intermediate values of y�i uneconomical (Bendsøe
1989; Zhou and Rozvany 1991). Note that the multi-
material interpolation function, mM , in Fig. 3b goes to
zero when both materials are fully dense, i.e., the multi-
material interpolation function makes material mixing
uneconomical when the materials are fully dense. However,
material mixing of intermediate densities is not significantly
penalized. When composed to mE , as shown in Fig. 3c,

the two functions penalize both intermediate densities and
material mixing.

The implementation of (20) in MultiMatIntFnc
takes advantage of the matrix math capabilities in Matlab
and avoids a nested for-loop over the elements and candidate
materials. In lines 13 to 18 of MultiMatIntFnc, we
assemble an NElem × NMat matrix, Prod, containing the
product,

∏m
j=1,j �=i (1−w�j), for each (�, i) entry. Assembly

of Prod requires a single for-loop over the number of
materials minus one. Then, the entire NElem ×1 vector,
E := mE(Y) = (mM ◦ mW)(Y), is computed in one line of
code:

E = eps + (1-eps).*((w.*Prod)*E0);

Aside from removing the parameter ε, MatIntFnc is
identical to that used in PolyTop. The code listing for
MultiMatIntFnc, which now accounts for ε, is provided
in Appendix G.

4.5 Analysis functions

Since we seek to minimize compliance, no change is needed
in the objective function, ObjectiveFnc; however, the
constraint function, ConstraintFnc, is modified to
compute multiple volume fraction constraints. The same
information required by the analysis functions in the single
material implementation is needed in the multi-material
implementation, namely, the element stiffnesses, E =
{E�}N�=1 := mE(Y) = (mM ◦ mW) (Y), and element
volume fractions V = {V�1, . . . , V�m}N�=1 := mV (Y). As
before, the element areas, A, needed to compute the volume
constraints are computed only once. Both ObjectiveFnc
and ConstraintFnc are provided with the PolyMat
code listing in Appendix E.

4.6 Sensitivity analysis

Sensitivities of the objective and constraints with respect to
the design variables, zi , i = 1, . . . , m, can be expressed via
the chain rule in an identical manner as the single-material
case, i.e.,:

Fig. 3 Material interpolation
functions for two candidate
materials (E1 = 0.5, E2 = 1) in
element � considering SIMP
with p = 4 and ε = 0: a mW

(see (19)); b mM (see (20)); and
c mE = mM ◦ mW

1

0.5

00

0.5

1

0

0.5

1.5

1

(b)

0

1

0 1

(a)

1

0.5

00

0.5

1

0

0.5

1.5

1

(c)

2733

E. D. Sanders et al.

∂f

∂zi

= ∂yi

∂zi

∂E
∂yi

∂f

∂E
+ ∂yi

∂zi

∂Vi

∂yi

∂f

∂Vi

, i = 1, . . . , m (21)

∂gj

∂zi

= ∂yi

∂zi

∂E
∂yi

∂gj

∂E
+ ∂yi

∂zi

∂Vi

∂yi

∂gj

∂Vi

, i = 1, . . . , m (22)

Such separation of the derivatives allows ObjectiveFnc
and ConstraintFnc to compute only the derivatives
with respect to their internal parameters, E and V.
For volume-constrained compliance minimization, these
derivatives are:

∂f

∂E�

= −UT ∂K
∂E�

U,
∂f

∂V�i

= 0 (23)

∂gj

∂E�

= 0,
∂gj

∂V�i

= A�∑
�∈Ej

A�

(24)

Then, the derivatives of E and V with respect to Y can
be computed in MatIntFnc and MultiMatIntFnc,
such that each function is only required to compute the
derivatives with respect to its internal parameters, Y andW,
respectively. SinceV is not a function ofW, we immediately
compute:

∂Vkj

∂y�i

=
{
1 if � = k and i = j

0 otherwise
(25)

in MatIntFnc. Using the chain rule again, we separate the
sensitivities of the design parameter, E:

∂E
∂yi

= ∂wi

∂yi

∂E
∂wi

, i = 1, . . . , m (26)

such that MatIntFnc computes ∂wi/∂yi , i = 1, . . . , m
and MultiMatIntFnc computes ∂E/∂wi , i = 1, . . . , m.
For example, in the case of SIMP, MatIntFnc computes:

∂wkj

∂y�i

=
{

py
p−1
�i if � = k and i = j

0 otherwise
(SIMP) (27)

and MultiMatIntFnc computes:

∂Ek

∂w�i

= (1−ε)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∏
j=1
j �=i

(1−w�j)E
0
i

−
m∑

p=1
p �=i

w�p

m∏
r=1
r �=p

r �=i

(1−w�r)E
0
p if � = k

0 otherwise

(28)

on lines 21 to 32, using assembly of a dProd matrix, in
a similar manner as was done to compute E with a Prod
matrix. Note that ∂yi/∂zi = PT is already known (see (14)),
and thus, we have computed all terms necessary to obtain
the sensitivities of the objective and constraints with respect
to the design variables, Z, in (21) and (22). Noting the
diagonal nature of the derivatives in (25), (27), and (28), we
store these derivatives as NElem × NMat matrices. Then,
the derivatives of the objective and constraints, stored as
an NElem × NMat matrix and an NElem × NConstr
× NMat matrix, respectively, are computed directly in the
main function of PolyMat as follows:

4.7 Update scheme

We adopt the ZPR design variable update scheme, which
allows us to efficiently handle multiple volume constraints
(Zhang et al. 2018). The ZPR update is derived using
Lagrangian duality of a series of linearized subproblems and
takes advantage of the fact that the Lagrange multipliers
associated with each constraint in these subproblems are

independent of one another. As a result, the set of design
variables associated with each constraint can be updated
independently. From an implementation point of view, we
loop over all volume constraints, each time passing only
the design variables associated with the current constraint
to UpdateScheme. The lines of code in PolyMat used
to call the update scheme for each constraint are as
follows:

2734

PolyMat: an efficient Matlab code for multi-material topology optimization

Note that the structure of the UpdateScheme function
itself remains unchanged from the original PolyTop
code, with one exception. The multi-material interpolation
function, mM , defined in (20) is a non-monotonous function
of W, allowing ∂mM/∂wi and ∂mE/∂yi , i = 1, . . . , m to
become negative (see Fig. 3). Thus, the derivatives, dfdz,
may become positive, leading to difficulties in the recursive
update term when the updated design variable becomes
undefined (or negative). Note that in the composition,mE =
mM ◦ mW , with p > 1 (SIMP) or q > 0 (RAMP) as
shown in Fig. 3c for SIMP, the derivatives, ∂mE/∂yi , i =
1, . . . , m, become negative in regions in which the densities
of both materials are relatively high. Also note, however,
that this situation is penalized and, in practice, material
mixing only results due to overlapping “gray” regions
arising due to the filter operation. Thus, although not
ideal, on line 77 of PolyMat (inside the UpdateScheme
function), we simply ignore the sensitivities of element
variables that have positive dfdz (Bendsøe and Sigmund
2003).

5 Extensions

We discuss a few extensions which, by design, can easily
be handled in the PolyMat framework. The extensions
include alternative filtering schemes, a means to avoid
mixing at material interfaces, continuation on both the
SIMP penalty parameter (p) and the mixing penalty
parameter (γ), which is specific to multi-material problems,
and, finally, incorporation of passive regions. The filtering
schemes in Section 5.1 include the standard density
filtering, the density + ZPR filter by Sanders et al. (2018),
and a new combination of the density + sensitivity filter.

5.1 Filtering

In addition to the density filter implemented in PolyTop,
we discuss two additional filters that can be used to
achieve (possibly) improved designs. One is the “density +
sensitivity filter”, in which we combine the original density
filter with the sensitivity filter proposed by Sigmund (1994),
(1997). This combination of the density + sensitivity filter is
a new approach that has not been explored elsewhere. The
second is the “density + ZPR filter” proposed by Sanders
et al. (2018). In addition to generating the element density
field, Y, with application of the density filter, these two
additional filters modify inputs to the design variable update
scheme, leading to different paths toward an optimal design.
First, we briefly review the design variable update scheme
and note how the two filters affect the update. Refer to
Appendix B of PolyTop (Talischi et al. 2012b) and Zhang

et al. (2018) for additional detail on derivation of the update
scheme.

The design variable update is defined as:

znew�i =
⎧⎨
⎩

z+
�i , z∗

�i ≥ z+
�i

z−
�i , z∗

�i ≤ z−
�i

z∗
�i , otherwise

(29)

where znew�i is the design point for the next iteration and
z∗
�i is a candidate design point for the next iteration that
is accepted only if it does not violate lower and upper
bounds, z−

�i and z+
�i , of the search region, which are defined

according to the box constraints, ρ and ρ, and a move limit,
M (opt.ZPRMove), as follows:

z−
�i = max

(
ρ, z0�i − M

)

z+
�i = min

(
ρ, z0�i + M

)
(30)

The candidate design point, z∗
�i , is obtained from a fixed-

point iteration:

z∗
�i = ρ + (B�i)

η(z0�i − ρ) (31)

where η (opt.ZPREta) is a damping parameter and,
according to the ZPR design variable update scheme,

B�i = −
∂f
∂z�i

|Z=Z0

λj
∂gj

∂z�i
|Z=Z0

(32)

Introducing a sensitivity filter, P̃, the fixed-point iteration
becomes:

z∗
�i = ρ + (B̃�i)

η(z0�i − ρ) (33)

where

B̃�i = −
∑N

k=1(P̃i)�k
∂f
∂zki

|Z=Z0

λj
∂gj

∂z�i
|Z=Z0

(34)

and the components of the sensitivity filter are:

(P̃i)�k = 1

z�i

P�kzki (35)

Implementation of the density + sensitivity filter amounts to
addition of the following line of code:

dfdz = (P*(z.*dfdz))./z;

immediately following computation of dfdz on line 18 of
PolyMat.

The density + ZPR filter introduced by Sanders et al.
(2018) applies an additional density filter during the fixed-
point iteration, as follows:

z∗
�i = ρ + (B�i)

η

(
N∑

k=1

P�kz
0
ki − ρ

)
(36)

Implementation of the density + ZPR filter in PolyMat
requires passing both z and V to UpdateScheme,
which are re-named as z0 and V0, respectively, inside of

2735

E. D. Sanders et al.

(a)

(b)

Fig. 4 Short column: a Domain, boundary conditions, and constraint
specification (the red material controlled by g1 is 6.67 times stiffer
than the green material controlled by g2); b finite element mesh (color
online)

UpdateScheme. Then after reshaping the array on line 70
of PolyMat (inside of the UpdateScheme function), z0
should be replaced by V0 on line 77. Note that the code
provided in Appendix E and in the downloadable version,
adopt this density + ZPR filter implementation.

The three filtering techniques discussed here are summa-
rized in Table 8 in Appendix B. A comparison of the density
filter acting alone with the density + sensitivity filter and the
density + ZPR filter is provided in Section 7.1.

5.2 Avoidingmixing at material interfaces

Although composition of the penalty function, mW , and
material interpolation function, mM , penalizes material
mixing (see Fig. 3c), some mixing may occur due to
overlapping “gray” regions that arise due to the filter

Table 2 Input parameters used for the short column

Number of elements 2,000

SIMP penalty parameter, p 3

Material interpolation factor, γ 1

ZPR move limit, δ 0.2

Convergence tolerance 0.01

max. num. iterations (per R) 100

operation. We optimize the symmetric short column shown
in Fig. 4 with two candidate materials (red and green
represent materials with E1 = 1 and E2 = 0.15, respec-
tively), and vary the filter radius to show the effect it has
on material mixing. For this demonstration, we adopt the
density filter + ZPR filter, but all three filtering schemes
discussed in Section 5.1 yield similar results for this simple
example. The optimization parameters used in this study are
provided in Table 2. As the filter radius is reduced in Fig.
5a, b, and c, the length scale of the mixing region decreases
until there is no mixing in Fig. 5c (when no filter is applied).
Note, however, that when no filter is considered, some voids
appear at the interface of the two materials (Fig. 5c). To
achieve the crisp boundaries shown in Fig. 5d and e, without
any material mixing and without the appearance of voids,
we use the converged filtered solutions from Fig. 5a and
b, respectively, as the initial guess and re-run without any
filter. In general, this approach is effective at removing the
material mixing caused by the filter. Note that in some
problems small oscillations are observed when the filter
is turned off and the maximum number of iterations must
be used as the stopping criterion. Alternatively, gradually
reducing the filter radius tends to mitigate the oscillatory
behavior.

5.3 Continuation on thematerial interpolation
parameters

Continuation on the penalty parameter is a technique
often used for single-material topology optimization in
which the penalty parameter is set to recover the convex
problem at the start (e.g., p = 1 for SIMP) and is
gradually increased to achieve the required penalization
on intermediate densities as the optimization progresses.
For multi-material topology optimization, we introduce a
second mixing penalty parameter, 0 ≤ γ ≤ 1, that leads to
a convex formulation when γ = 0 and penalizes material
mixing when γ > 0. The material interpolation function,
re-written to accommodate continuation:

mM

(
w′

�

) = ε+(1 − ε)

m∑
i=1

w�i

m∏
j=1
j �=i

(1−γw�j)E
0
i , � = 1, . . . , N

(37)

is identical to (20) when γ = 1. Figure 6 shows how the
material interpolation function, mE , changes as p and γ

are increased from 1 to 4 and 0 to 1, respectively. Note
that the penalty parameter, p, controls the curvature of the
surface of mE and the material interpolation parameter,
γ , controls the allowable magnitude of mE when both
materials are fully dense (e.g., for the 2-material case in

2736

PolyMat: an efficient Matlab code for multi-material topology optimization

Fig. 5 Demonstration of how
material mixing is influenced by
the filter radius, R, using the
short column in Fig. 4. The
results in the left column are
based on a constant filter with
radius a R = 0.1; b R = 0.03;
and c no filter. The results in the
right column, d and e, are
obtained from the converged
solutions in (a) and (b),
respectively, without any filter.
(color online)

(a) (d)

(b) (e)
Remove

filter

Remove

filter

No filter

(c)

Fig. 6 Continuation on the
material interpolation
parameters: a p = 1, γ = 0; b
p = 1.5, γ = 0.3; c
p = 2, γ = 0.5; d
p = 3, γ = 1; e p = 4, γ = 1

(b)(a)

(d) (e)(c)

1

0.5

00

0.5

1

0

0.5

1.5

1

1

0.5

00

0.5

1

0

0.5

1.5

1

1

0.5

00

0.5

1

0

0.5

1.5

1

1

0.5

00

0.5

1

0

0.5

1.5

1

1

0.5

00

0.5

1

0

0.5

1.5

1

2737

E. D. Sanders et al.

Fig. 6, γ controls the height of the point at y�1 = 1
and y�2 = 1). In Fig. 6a, when p = 1 and γ = 0,
the material interpolation is convex and material mixing is
favorable. As γ is increased toward 1, mixing is increasingly
penalized. Note that the specific continuation scheme (i.e.,
increments of p and γ) is heuristic and different schemes
will lead to different results. Similarly to continuation for
single-material topology optimization, continuation on the
multi-material interpolation parameters often leads to an
improved objective value in the final design, but not always.

5.4 Passive regions

The multi-material formulation provides a simple frame-
work for incorporating passive regions, i.e., regions that are
assigned solid or void at the start and do not participate in
the optimization. Since PolyMesher can be used to define
meshes on complex domains (e.g., with holes), we focus
here on passive regions in which the elements in the passive
region are solid. When multiple materials are available, a
passive solid region implies that all of the design variables in
that region associated with one candidate material are equal
to one and the design variables in that region associated with
all other candidate materials are equal to zero.

To consider passive regions in the implementation, the
design variables associated with the passive elements must
be set to zero or one during initialization. Thus, we define
two additional cell arrays, SElemInd and SMatInd,
which contain a vector of element indices for each passive
region and the corresponding solid material index for each
passive region, respectively. These cell arrays can be defined
within the constraint files in a similar way to how we
defined ElemInd and MatInd (see an example in Fig. 2c).
Then, all four cell arrays, ElemInd, MatInd, SElemInd,

and SMatInd, are passed to the InitialGuess function
to set the initial densities of both the optimizable and non-
optimizable regions. It is also important to ensure that
element indices corresponding to the passive regions are left
out of the ElemInd array so that they are never passed to
UpdateScheme and will remain as initialized throughout
the optimization.

One additional detail is that the matrix associated with
the regularization mapping, P, should be modified so that it
does not alter the design variables associated with elements
in the passive regions. To do so, we pass fem.SElem,
a vector of all passive element indices, to PolyFilter,
so that all entries associated with indices of the passive
elements are assigned zero during assembly of P (refer
to Talischi et al. (2012b) for additional detail on the
PolyFilter function).

6 Efficiency

We study the efficiency of PolyMat using the MBB beam
problem in which the design domain is a rectangle of
length 6 and height 1. Due to symmetry, only half of the
domain is discretized into a 300 × 100 orthogonal mesh.
In each case, the optimization is run for 200 iterations and
no continuation of the material interpolation parameters or
filter radius are considered. We use SIMP with p = 3
and a constant filter radius of R = 0.025. All runs are
performed using Matlab R2018a on a desktop computer
with an Intel(R) Xeon(R) CPU E5-1660 v3, 3.00 GHz
processor and 64.0 GB of RAM.

Since PolyMat is structured similarly to PolyTop, we
expect the two codes to perform similarly when the number
of materials and constraints are relatively low. In Table 3,

Table 3 Code runtime
breakdown comparison of
PolyTop (1 material, 1
constraint), PolyMat (1
material, 1 constraint), and
PolyMat (5 materials, 2
constraints) for the MBB beam
design run for 200 iterations
(times are in seconds with
percentage of total runtime of
PolyScript in parentheses)

PolyTop PolyMat PolyMat

(1 mat., 1 constr.) (1 mat., 1 constr.) (5 mat., 2 constr.)

Computing P 2.94 (2.6%) 3.01 (2.7%) 2.94 (2.4%)

Assembling K 46.99 (42.4%) 47.11 (42.3%) 46.62 (37.8%)

Solving KU = F 36.67 (33.1%) 37.96 (34.0%) 38.75 (31.4%)

Mapping Z, E, and V 0.125 (0.1%) 0.16 (0.1%) 1.33 (1.1%)

Computing constraints 0.02 (0.0%) 0.13 (0.1%) 0.29 (0.2%)

Computing constraint sensitivities 0.05 (0.0%) 0.15 (0.1%) 1.95 (1.6%)

Computing compliance sensitivities 8.42 (7.6%) 8.63 (7.7%) 14.08 (11.4%)

Design update 6.53 (5.9%) 1.79 (1.6%) 3.96 (3.2%)

Plotting the solutions 7.09 (6.4%) 7.83 (7.0%) 8.09 (6.6%)

Total time of PolyScript 110.91 111.50 123.33

The bold in table is to emphasize the total runtimes

2738

PolyMat: an efficient Matlab code for multi-material topology optimization

we compare the breakdown of code runtime for a single-
material design with a single global volume constraint and
note that the performance of the two codes is indeed similar.
Note that the two codes differ by less than one second. The
last column of Table 3 also breaks down the code runtime
for a PolyMat run of the same MBB beam problem
with five candidate materials and two volume constraints,
and it is shown that the increased CPU time for a typical
multi-material problem (about 12 s) is small relative to
PolyTop.

Additionally, we study the efficiency degradation of
PolyMat as the number of constraints and the number
of materials increases. In Fig. 7a, the total CPU time is

Number of materials

10 12 14 160 2 4 6 8

0

50

100

150

200

250

300

350

400

C
P

U
 t
im

e
 (

s
)

(b)

R = 0.015

R = 0.025

R = 0.05

R = 0.08

0

50

100

150

200

250

300

350

400

C
P

U
 t

im
e

 (
s
)

Number of constraints

10 12 14 160 2 4 6 8

(a)

R = 0.015

R = 0.025

R = 0.05

R = 0.08

Fig. 7 CPU time (seconds) for the MBB beam problem with a 300 ×
100 orthogonal mesh run for 200 iterations: a a single candidate
material controlled by a varying number of local volume constraints
on sub-regions of the domain; and b a single global volume constraint
controlling a varying number of candidate materials

Fig. 8 Domain, boundary conditions, and constraint specification for
the curved beam problem in which five global constraints (vj =
0.06, j = 1, . . . , 5) each control a single candidate material (color
online)

reported for the MBB beam problem, considering a single
candidate material and a local volume constraint controlling
each of 1, 2, 4, 8, and 16 sub-regions, that is, 1 × 1, 2 × 1,
2 × 2, 4 × 2, and 4 × 4 sub-regions, respectively. Increased
cost due to an increased number of constraints manifests
itself in additional time for the ZPR update, since the
UpdateScheme function must be accessed a number of
times in each iteration. However, the ZPR update accounts
for a relatively small percentage of the total runtime, and
thus, as indicated in Fig. 7a, the computational cost does not
significantly increase as the number of constraints increases.
In fact, it takes less than 10 additional seconds to run the
problem with 16 constraints as compared to the problem
with a single constraint.

material number
4 5

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

21

Yo
un

g’
s

M
od

ul
us

,

3

Fig. 9 Young’s modulus (and color used in the result visualization)
of the five candidate materials available to the curved beam problem
(color online)

2739

E. D. Sanders et al.

In Fig. 7b, the total CPU time is reported for the
MBB beam problem, considering a single global volume
constraint controlling 1, 2, 4, 8, and 16 candidate materials,
that is, 30,000, 60,000, 120,000, 240,000, and 480,000
design variables, respectively. As the number of materials
increases, more memory is required to store the design
variables. Thus, as illustrated in Fig. 7b, the computational
cost increases from about 2 min for a single candidate
material to about 6.5 min for sixteen candidate materials.

Figure 7 also shows that an increase in the filter radius
leads to increased computational time for a given number of
constraints and materials. The increase is more pronounced
as the number of materials increases; however, based on
numerical experimentation, the increased CPU time due to
an increased filter radius is negligible. As a side note, we
also observe that although only the stiffest material arises

(a)

Density filter

(b)

Density + sensitivity filter

(c)

Density + ZPR filter

Fig. 10 Curved beam optimized for five global constraints (vj =
0.06, j = 1, . . . , 5), each controlling one of the 5 candidate materials
in the entire domain, without continuation on the material interpolation
parameters (p = [3, 3] and γ = [1, 1]), and with filter reduction
(R = [0.03, −1]). The designs are shown for the a density filter; b
density + sensitivity filter; and c density + ZPR filter. (color online)

in all of the designs obtained in this efficiency study (aside
from the 5-material, 1-constraint example in Table 3), the
designs are similar, but not identical, since the initial guess
is different in each case.

7 Numerical examples

Five numerical examples illustrate use of the PolyMat
code. Domain and constraint files for each example are
provided with download of PolyMat (see Appendix C for
a list of examples provided with PolyMat). In all cases,
the box constraints, ρ and ρ, are 0 and 1, respectively, the
move limit used in the ZPR update is 0.2, and the stopping
criterion is either the maximum number of iterations or

(a)

(b)

(c)

Density filter

Density + sensitivity filter

Density + ZPR filter

Fig. 11 Curved beam optimized for five global constraints (vj =
0.06, j = 1, . . . , 5), each controlling one of the 5 candidate materials
in the entire domain, with continuation on the material interpolation
parameters (p = [1, 1.5, 2, 3, 4], γ = [0, 0.3, 0.5, 1, 1]), and with
filter reduction (R = [0.03, 0.03, 0.03, 0.03, −1]). The designs are
shown for the a density filter, b density + sensitivity filter, and c
density + ZPR filter. (color online)

2740

PolyMat: an efficient Matlab code for multi-material topology optimization

the infinity norm of the change in design variables with
convergence tolerance of 0.01 (whichever is met first).
Convergence plots for selected examples are provided in
Appendix A.

7.1 Comparison of the filtering techniques

The first example is used to compare the density filter acting
alone to the density filter in combination with a sensitivity
filter (i.e., density + sensitivity filter) and the density filter
in combination with a ZPR filter (i.e., density + ZPR filter).
Additionally, we compare the results using the continuation
scheme presented in Section 5.3 to those with constant
material interpolation parameters (p and γ). For these
comparisons we consider the curved beam problem shown
in Fig. 8 with dimensional parameters H = 1.25, L = 2,
c1 = (xc1, yc1, rc1) = (0, 0, 1.5), c3 = (0, 0.25, 0.5),
and the load parameter P = 1. Using PolyMesher, the
domain is discretized into 30,000 polygonal finite elements
with a vertical line of symmetry (symmetry is on the mesh
only, i.e., symmetry is not enforced on the design variables).
As shown in Fig. 9, the candidate materials have Young’s
moduli regularly spaced in the range [0.2, 1] and each
material is assigned a color according to Matlab’s “jet”
colormap, such that a material with Young’s modulus equal
to one is shown in dark red and a material with Young’s
modulus equal to zero is shown in dark blue.

In Fig. 10 the density filter is compared with the density
+ sensitivity filter and the density + ZPR filter considering
constant SIMP penalty parameter (p = [3, 3]), mixing
penalty parameter (γ = [1, 1]), and filter reduction (R =
[0.03,−1]). The problem is run for a maximum of 500
iterations before turning the filter off, after which is it run
for a maximum of 25 additional iterations. This example
captures the key observations made from comparisons of
many different problems using various parameters. First,
the density filter acting alone tends to result in designs
with smaller strips or islands of different materials than
the density + sensitivity filter or the density + ZPR filter.
Additionally, the objective function tends to be lowest with
the density + ZPR filter and highest with the density +
sensitivity filter. Lastly, the density filter acting alone tends
to require more iterations to converge according to the
infinity norm of the change in design variables, and as a
result, the maximum number of iterations often controls.
The latter two observations also hold, in general, for single-
material problems.

In Fig. 11 the density filter is compared with the density
+ sensitivity filter and the density + ZPR filter considering
continuation on the SIMP and mixing penalty parameters
(p = [1, 1.5, 2, 3, 4], γ = [0, 0.3, 0.5, 1, 1]) and filter
reduction (R = [0.03, 0.03, 0.03, 0.03,−1]). The first four

continuation steps are each run for a maximum of 200
iterations and the final continuation step (when the filter is
turned off) is run for a maximum of 25 additional iterations.

(a)

(b)

(c)

Fig. 12 Domain and boundary conditions for the Michell cantilever
with circular support: a in case 1, a single global constraint (v1 = 0.45)
controls all fifteen candidate materials; b in case 2, fifteen global
constraints (vj = 0.45/15, j = 1, . . . , 15) each control a single
candidate material; and c in case 3, thirty local constraints (vj =
0.45, j = 1, . . . , 30) that are symmetric about the horizontal center
line each control a single candidate material (color online)

2741

E. D. Sanders et al.

material number
10 15

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

51

Yo
un

g’
s

M
od

ul
us

,

Fig. 13 Young’s modulus (and color used in the result visualization)
of the fifteen candidate materials available in all three of the Michell
cantilever cases (color online)

Here, similar observations are made to those without
continuation on the material interpolation parameters. One
additional note is that filter reduction in combination with
continuation on the material interpolation parameters tends
to cause disconnected members when the density filter acts
alone. Note also that in this case, the chosen continuation
scheme on the material interpolation parameters causes
increased objective values in all three cases.

Another observation that is not illustrated with this
example is that even for a symmetric problem with a
symmetric mesh, the density + ZPR filter is more inclined to
result in slightly asymmetric results (an example is provided
in Section 7.2). The remaining examples adopt the density
+ ZPR filter with filter reduction, and all but the serpentine
example in Section 7.4 adopt continuation on the material
interpolation parameters.

7.2 Michell cantilever

In this example, we use a “Michell” cantilever with circular
support (Michell 1904) to illustrate the three main types of
volume constraints that can be specified with PolyMat:
(1) global constraints that control many materials; (2) global

Table 4 Input parameters used for all three cases of the Michell
cantilever with circular support (brackets indicate continuation and
R = −1 indicates no filter)

Number of elements 90,000

SIMP penalty parameter, p [1, 1.5, 2, 3, 4]
Material interpolation factor, γ [0, 0.3, 0.5, 1, 1]
Filter radius, R [0.05, 0.05, 0.05, 0.05, −1]
Max. number of iterations
(per continuation step)

200

(a)

(b)

(c)

Fig. 14 Michell cantilever with circular support, optimized for: a a
single global constraint (v1 = 0.45) controlling all 15 materials in
the entire domain; b 15 global constraints (vj = 0.45/15, j =
1, . . . , 15), each controlling one of the 15 candidate materials in the
entire domain; and c 30 local constraints (vj = 0.45, j = 1, . . . , 30),
each controlling a single candidate material in a sub-region of the
domain (color online)

2742

PolyMat: an efficient Matlab code for multi-material topology optimization

constraints that control a single material; and (3) local
constraints that control one or more materials. The domain
and boundary conditions for the Michell cantilever are
provided in Fig. 12a, where the dimensional parameters
are defined as H = 4, L = 5, and r = 1, and the
load P = 1. The sub-regions and materials associated
with each constraint for cases 1, 2, and 3 are provided in
Fig. 12a–c, respectively. In all three cases, fifteen candidate
materials are available. As shown in Fig. 13, the candidate
materials have Young’s moduli regularly spaced in the
range [0.0667, 1] and each material is assigned a color
according to Matlab’s “jet” colormap, such that a material
with Young’s modulus equal to one is shown in dark red
and a material with Young’s modulus equal to zero is
shown in dark blue. Note that the materials are assigned in
random order to the constraints to highlight the fact that the
ZPR algorithm is order-independent. Using PolyMesher,
we construct a 90,000-element polygonal finite element
mesh with a horizontal line of symmetry (symmetry is
on the mesh only, i.e., symmetry is not enforced on the
design variables). Continuation on the material interpolation
parameters (p and γ) is considered. In the final continuation
step, the filter is turned off. The optimization parameters
used for all three cases are provided in Table 4.

In case 1, we consider a single global volume constraint
(v1 = 0.45) that controls all elements in the domain and all
candidate materials. The Matlab code used to generate the
cell arrays, ElemInd and MatInd, for case 1 is as follows:

In case 2, we consider fifteen global volume constraints
(vj = 0.45/15, j = 1, . . . , 15): one for each of the fifteen
candidate materials. The Matlab code used to generate the
cell arrays, ElemInd and MatInd, for case 2 is as follows:

material number

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

21

Yo
un

g’
s

M
od

ul
us

,

3

Fig. 15 Young’s modulus (and color used in the result visualization)
of the three candidate materials available in the curved beam problem
(color online)

Table 5 Input parameters used for the curved beam problem (brackets
indicate continuation and R = −1 indicates no filter)

Number of elements 100,000
SIMP penalty parameter, p [1, 1.5, 2, 3, 4]
Material interpolation factor, γ [0, 0.3, 0.5, 1, 1]
Filter radius, R [0.016, 0.016, 0.016, 0.016, −1]
Max. number of iterations
(per continuation step)

200

Finally, in case 3, we consider fifteen local volume
constraints on each side of the domain’s horizontal line of

(a)

(b)

Fig. 16 Curved beam problem: a domain, boundary conditions,
constraint specification, and passive region specification; and b
optimized design (color online)

2743

E. D. Sanders et al.

symmetry (i.e., thirty local constraints, vj = 0.45, j =
1, . . . , 30), such that a single material is available in each
sub-region. The Matlab code used to generate the cell
arrays, ElemInd and MatInd, for case 3 is as follows:

Note that in the code listing for case 3, Dist is a cell
array in which each cell represents a constraint and contains
the distance values of each element for the sub-region
associated with that constraint. In particular, PolyMesher
is used to generate the sub-regions for case 3, which are
defined by the “nodes” and “elements” of a polygonal mesh
with 15 “elements” on each side of the horizontal line of
symmetry of the Michell domain intersected with a circle of
radius H that is tangent to the point of load application.

The designs obtained for cases 1, 2, and 3 are provided
in Fig. 14. As expected, when one global constraint controls
all fifteen candidate materials (Fig. 14a), the final design
is composed only of the stiffest candidate material. When

(c)(b)

(a)

Fig. 17 Serpentine problem: a domain and boundary conditions; b
the single region used to define a single global volume constraint
with volume fraction, v1 = 0.5, (top) and resulting optimized design

(bottom); and c the 84 sub-regions used to define 84 local volume con-
straints each with volume fraction, vj = 0.5, j = 1, . . . , 84, (top) and
resulting optimized design (bottom)

2744

PolyMat: an efficient Matlab code for multi-material topology optimization

each material is controlled by a separate global constraint
(Fig. 14b), all fifteen candidate materials appear in the final
design and they are distributed such that the stiffer materials
are located where stress is expected to be high and more
compliant materials are located where stress is expected to
be low. In the case of local volume constraints (Fig. 14c),
all of the constraint boundaries are respected. Also note that
the design in Fig. 14b is not perfectly symmetric about the
horizontal centerline.

7.3 Curved beamwith passive regions

Here, we use the curved beam problem described in
Fig. 16a to demonstrate the ease with which we may
specify passive regions (i.e., regions that do not participate
in the optimization) using PolyMat. The dimensional
parameters defining the domain are H = 1.25, L =
2, c1 = (xc1, yc1, rc1) = (0, 0, 1.5), c2 = (0, 0, 1.4),
c3 = (0, 0.25, 0.5), and c4 = (0, 0.25, 0.6), and the
load parameter P = 1. The curved beam is discretized
into 100,000 polygonal finite elements via PolyMesher
and is designed considering three candidate materials with
properties given in Fig. 15. The top and bottom curved
surfaces are considered passive regions and are assigned
materials 1 and 2, respectively, in the constraint file. Note
that the elements with seeds inside of the passive regions
are assigned to SElemInd and not to ElemInd; thus,
they are not updated after initialization. Three constraints
each control one of the three candidate materials in the
optimizable region such that each of the three candidate
materials is limited to occupy no more than 10% of the
optimizable region volume, i.e., vj = 0.1, j = 1, . . . , 3.
Continuation on the material interpolation parameters (p
and γ) is considered. In the final continuation step, the
filter is turned off. The optimization parameters used for the
curved beam problem are provided in Table 5. The resulting
design is shown in Fig. 16c where it is clear that the passive
regions have been respected.

7.4 Exploring local volume constraints

In the final example, we explore how specifying the
constraint sub-regions and material properties in a clever
way can provide control over geometric features. First,
we consider a single candidate material and work with
the serpentine domain shown with boundary conditions
in Fig. 17a, where the centers of the circles are O1 =
(0, −2.6458) and O2 = (9, 5.2915), circles c1 and c14 each
have radius 8, circles c9 and c10 each have radius 4, and the
load P = 1. Figure 17b shows the result of an optimization
considering a single global constraint that limits the material

Table 6 Input parameters used for the serpentine problem (brackets
indicate continuation and R = −1 indicates no filter)

Number of elements 75,000

SIMP penalty parameter, p [3, 3]
Material interpolation factor, γ [1, 1]
Filter radius, R [0.1, −1]
Max. number of iterations (per continuation step) 500

to occupy no more than 50% of the total domain volume,
i.e., v1 = 0.5. Seeking a structure with finer details at the
left end, the domain is divided into the 84 sub-regions shown
in the top portion of Fig. 17c. The single candidate material
is limited to occupy no more than 50% of each sub-region
volume, i.e., vj = 0.5, j = 1, . . . , 84, and the resulting
design is provided in the bottom portion of Fig. 17c. As
expected, the design with more constraints has a higher
objective value. Table 6 lists additional parameters input to
PolyMat for both of the serpentine designs.

Next, we consider the donut-shaped domain with torsion
boundary conditions shown in Fig. 19a (Zegard and Paulino
2014), where the diameters of the inner and outer circles
are 0.25 and 2, respectively, and the load P = 1.
Five constraints are defined, each in a different sub-
region of the domain, and each controlling one of the
five candidate materials described in Fig. 18. Additional
input parameters are provided in Table 7. The resulting
design in Fig. 19b has no lines of symmetry, in contrast
to the single-material design provided in Fig. 19c, which
has five lines of symmetry and resembles a flower (perfect
symmetry is not achieved due to the polygonal mesh).
Notice that the complexity of features in the five-material
design is correlated with the stiffness of the candidate
material. For example, the portion of the structure made

material number
4 5

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

21

Yo
un

g’
s

M
od

ul
us

,

3

Fig. 18 Young’s modulus (and color used in the result visualization)
of the five candidate materials available in the flower problem (color
online)

2745

E. D. Sanders et al.

(a)

(b)

(c)

Fig. 19 Flower problem: a domain, boundary conditions, and
constraint specification for the multi-material design; b multi-material
design; c corresponding single-material design (color online)

Table 7 Input parameters used for the flower problem (brackets
indicate continuation and R = −1 indicates no filter)

Number of elements 100,000

SIMP penalty parameter, p [1, 1.5, 2, 3, 4]
Material interpolation factor, γ [0, 0.3, 0.5, 1, 1]

Filter radius, R [0.01, 0.01, 0.01, 0.01, −1]
Max. number of iterations
(per continuation step)

200

of the most compliant material, shown in cyan, has the
least complex geometry, and complexity gradually increases
clockwise around the domain as the materials become
stiffer. Additionally, the members tend to become thinner
as the materials increase in stiffness. Finally, if we identify
the “flower pedals” of the multi-material design as each
“Michell-like” structure touching each load point, the pedals
tend to become smaller moving clockwise around the
domain from the most compliant material (cyan) to the
stiffest material (red).

8 Conclusions

We have presented a multi-material framework for topology
optimization on unstructured polygonal meshes along with
an educational code written in Matlab called PolyMat.
PolyMat is built on top of the single-material version,
PolyTop (Talischi et al. 2012b), and adopts the modu-
lar structure defined there in which the optimization and
analysis routines are separate. A key difference between
PolyMat and PolyTop is that PolyMat can accommo-
date many materials and many volume constraints, which
may be specified to control any subset of the design vari-
ables, i.e., the volume constraints may be global or local
and may control a single candidate material or multiple
candidate materials. Using similar ideas as those used in
PolyMesher (Talischi et al. 2012a) for generating com-
plex domains, we can systematically define sub-regions of
arbitrary geometries within the design domain. These sub-
regions serve as boundaries of the local volume constraints
and/or passive regions, i.e., regions in which the design vari-
ables do not participate in the optimization. To accommo-
date such general volume constraints and passive regions,
we adopt the ZPR design variable update scheme, which
leverages separability of the dual subproblem to update
the design for each constraint, independently. As such, the
ZPR update only needs to know which design variables
are associated with each constraint, that is, the element and
material indices associated with each constraint. The design

2746

PolyMat: an efficient Matlab code for multi-material topology optimization

variables within a passive region are simply not assigned to
any constraint, and thus, are not updated after initialization.

We provide results for examples with up to 15
candidate materials and up to 84 constraints, but the
formulation itself does not limit the number of candidate
materials or the number of volume constraints. Two
techniques are introduced to prevent material mixing. A
DMO interpolation scheme (Stegmann and Lund 2005) is
effective at achieving designs with discrete material regions;
however, it cannot remove the small regions of mixing that
arise at the interfaces between materials due to the density
filter. Thus, we also perform continuation on the filter radius
such that filter radius is smaller than the mesh size in the
final iterations, leading to final designs that contain no
mixing. Additionally, a new parameter introduced to the
DMO interpolation allows us to perform continuation on
both the material interpolation and penalization such that we
start with a convex problem and transition to a non-convex
problem in which both material mixing and intermediate
densities are penalized.

The ability to consider many materials, specify many
global or local volume constraints, easily define passive
regions, and ensure designs are (close to) free of material
mixing, leads to a very general and flexible setting for
multi-material topology optimization in which the designer
has increased freedom to control both the material and
geometric characteristics of the optimized design.

Acknowledgments GHP and EDS acknowledge the financial support
from the US National Science Foundation (NSF) under project
#1663244, and the endowment provided by the Raymond Allen Jones
Chair at the Georgia Institute of Technology. AP appreciates the
financial support from the Carlos Chagas Filho Research Foundation
of Rio de Janeiro State (FAPERJ) under grant E-26/203.189/2016,
and from Tecgraf/PUC-Rio (Group of Technology in Computer
Graphics), Rio de Janeiro, Brazil. Sandia National Laboratories
is a multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525. The information provided in this
paper is the sole opinion of the authors and does not necessarily reflect
the views of the sponsoring agencies.

Appendix A: Convergence plots for selected
problems

0

50

100

150

200

250

300

O
b
je

c
ti
v
e

0 200 400 600 800 1000

Iteration

(a)

Case 3: 30 local constraints

Case 2: 15 global constraints

Case 1: 1 global constraint

15-material Michell cantilever

(with p, - continuation)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

O
b
je

c
ti
v
e

1-material Serpentine

(w/o p, - continuation)

0 200 400 600 800 1000

Iteration

(b)

84 local constraints

1 global constraint

Fig. 20 Convergence plots: a 15-material Michell cantilever with
continuation on the material interpolation parameters and with filter
reduction in the final continuation step and b 1-material serpentine
without continuation on the material interpolation parameters and with
filter reduction after convergence

2747

E. D. Sanders et al.

Appendix B: Summary of filtering techniques

The three filtering techniques discussed in Section 5.1 are
summarized in Table 8.

Table 8 Summary of filtering techniques

Density filter Density + Sensitivity filter Density + ZPR filter

Design variables Z = {z�1, . . . , z�m}N�=1 Z = {z�1, . . . , z�m}N�=1 Z = {z�1, . . . , z�m}N�=1

Element densities Y = {y�1, . . . , y�m}N�=1 Y = {y�1, . . . , y�m}N�=1 Y = {y�1, . . . , y�m}N�=1

yi = Pzi , i = 1, . . . , m yi = Pzi , i = 1, . . . , m yi = Pzi , i = 1, . . . , m

Element stiffnesses E = mE (y1, . . . , ym) E = mE (y1, . . . , ym) E = mE (y1, . . . , ym)

Sensitivities of objective ∂f
∂zi

∂̃f
∂zi

= P̃i
∂f
∂zi

∂f
∂zi

P̃i = diag
(

1
zi

)
Pdiag (zi)

Fixed-point iteration z∗
�i = ρ + (B�i)

η
(
z0�i − ρ

)
z∗
�i = ρ +

(
B̃�i

)η (
z0�i − ρ

)
z∗
�i = ρ + (B�i)

η
(∑N

k=1 P�kz
0
ki − ρ

)

B�i = −
∂̃f

∂z�i
|Z=Z0

λj
∂gj
∂z�i

|Z=Z0

B̃�i = −
∂f

∂z�i
|Z=Z0

λj
∂gj
∂z�i

|Z=Z0

B�i = −
∂f

∂z�i
|Z=Z0

λj
∂gj
∂z�i

|Z=Z0

Reference Bendsøe and Sigmund (2003) This paper Sanders et al. (2018)

Appendix C: Library of example problems

The Matlab files needed to run each of the problems
discussed herein are provided with download of PolyMat.
Table 9 summarizes the problems and indicates which files
need to be called from PolyScript to run each.

2748

PolyMat: an efficient Matlab code for multi-material topology optimization

Ta
bl
e
9

E
xa
m
pl
es

pr
ov
id
ed

w
ith

P
o
l
y
M
a
t

D
om

ai
n

P
o
l
y
M
e
s
h
e
r
do

m
ai
n
fi
le

P
o
l
y
M
a
t
co
ns
tr
ai
nt

fi
le

D
es
cr
ip
tio

n

@
S
h
o
r
t
C
o
l
u
m
n
D
o
m
a
i
n

S
h
o
r
t
C
o
l
u
m
n
C
o
n
s
t
r
a
i
n
t
s

•D
ef
au
lts
:H

=
0.
5,

L
=

1,
P

=
1

•2
gl
ob
al
vo
lu
m
e
co
ns
tr
ai
nt
s,
ea
ch

co
nt
ro
lli
ng

1
of

2
ca
nd
id
at
e
m
at
er
ia
ls

@
M
b
b
D
o
m
a
i
n

M
b
b
C
o
n
s
t
r
a
i
n
t
s

•D
ef
au
lts
:H

=
1,

L
=

3,
P

=
1

•1
gl
ob
al
vo
lu
m
e
co
ns
tr
ai
nt

co
nt
ro
lli
ng

1
ca
nd
id
at
e
m
at
er
ia
l

@
M
i
c
h
e
l
l
D
o
m
a
i
n

C
as
e
1:

M
i
c
h
e
l
l
1
C
o
n
s
t
r
a
i
n
t
s

•D
ef
au
lts
:H

=
4,

L
=

5,
r

=
1,

P
=

1

C
as
e
2:

M
i
c
h
e
l
l
2
C
o
n
s
t
r
a
i
n
t
s

•C
as
e
1:

1
gl
ob
al
vo
lu
m
e
co
ns
tr
ai
nt

co
nt
ro
lli
ng

15
ca
nd
id
at
e
m
at
er
ia
ls

•C
as
e
2:

15
gl
ob
al
vo
lu
m
e
co
ns
tr
ai
nt
s,
ea
ch

co
nt
ro
lli
ng

1
of

15
ca
nd
id
at
e
m
at
er
ia
ls

@
M
i
c
h
e
l
l
D
o
m
a
i
n

C
as
e
3:

M
i
c
h
e
l
l
3
C
o
n
s
t
r
a
i
n
t
s

•D
ef
au
lts
:H

=
4,

L
=

5,
r

=
1,

P
=

1

•C
as
e
3:

30
lo
ca
lv

ol
um

e
co
ns
tr
ai
nt
s,
ea
ch

co
nt
ro
lli
ng

a
su
b-
re
gi
on

of
th
e
do
m
ai
n

an
d
1
of

15
ca
nd
id
at
e
m
at
er
ia
ls

@
C
u
r
v
e
d
B
e
a
m
D
o
m
a
i
n

C
u
r
v
e
d
B
e
a
m
C
o
n
s
t
r
a
i
n
t
s

•D
ef
au
lts
:H

=
1.
25
,L

=
2,

c 1
=

(x
c
1
,
y
c
1
,
r c
1
)
=

(0
,
0,
1.
5)
,

c 3
=

(0
,
0.
25

,
0.
5)
,P

=
1

•5
vo
lu
m
e
co
ns
tr
ai
nt
s,
ea
ch

co
nt
ro
lli
ng

1
of

5
ca
nd
id
at
e
m
at
er
ia
ls

•5
vo
lu
m
e
co
ns
tr
ai
nt
s,
ea
ch

co
nt
ro
lli
ng

1
of

5
ca
nd
id
at
e
m
at
er
ia
ls

2749

E. D. Sanders et al.

Ta
bl
e
9

(c
on
tin

ue
d)

D
om

ai
n

P
o
l
y
M
e
s
h
e
r
do

m
ai
n
fi
le
P
o
l
y
M
a
t
co
ns
tr
ai
nt

fi
le

D
es
cr
ip
tio

n

@
C
u
r
v
e
d
B
e
a
m
D
o
m
a
i
n

C
u
r
v
e
d
B
e
a
m
P
a
s
s
i
v
e
C
o
n
s
t
r
a
i
n
t
s

•D
ef
au
lts
:H

=
1.
25
,L

=
2,

c 1
=

(x
c
1
,
y
c
1
,
r c
1
)
=

(0
,
0,
1.
5)
,

c 2
=

(0
,
0,
1.
4)
,c

3
=

(0
,
0.
25

,
0.
5)
,c

4
=

(0
,
0.
25

,
0.
6)
,P

=
1

•2
pa
ss
iv
e
re
gi
on
s

•3
vo
lu
m
e
co
ns
tr
ai
nt
s,
ea
ch

co
nt
ro
lli
ng

1
of

3
ca
nd
id
at
e
m
at
er
ia
ls
in

th
e

op
tim

iz
ab
le
re
gi
on

@
S
e
r
p
e
n
t
i
n
e
D
o
m
a
i
n

S
e
r
p
e
n
t
i
n
e
1
C
o
n
s
t
r
a
i
n
t
s

•D
ef
au
lts
:O

1
=

(0
,
−2

.6
45
8)
,O

2
=

(9
,
5.
29
15

),
r c

1
=

8,
r c

9
=

4,

r c
10

=
4,

r c
14

=
8,

P
=

1

•1
gl
ob
al
vo
lu
m
e
co
ns
tr
ai
nt

co
nt
ro
lli
ng

1
ca
nd
id
at
e
m
at
er
ia
l

@
S
e
r
p
e
n
t
i
n
e
D
o
m
a
i
n

S
e
r
p
e
n
t
i
n
e
8
4
C
o
n
s
t
r
a
i
n
t
s

•D
ef
au
lts
:O

1
=

(0
,
−2

.6
45
8)
,O

2
=

(9
,
5.
29
15

),
r c

1
=

8,
r c

9
=

4,
r c

10
=

4,

r c
14

=
8,

P
=

1

•8
4
lo
ca
lv

ol
um

e
co
ns
tr
ai
nt
s,
ea
ch

co
nt
ro
lli
ng

1
of

1
ca
nd
id
at
e
m
at
er
ia
li
n
ea
ch

of
84

su
b-
re
gi
on
s

@
F
l
o
w
e
r
D
o
m
a
i
n

C
as
e
1:

F
l
o
w
e
r
1
M
a
t
C
o
n
s
t
r
a
i
n
t
s

•D
ef
au
lts
:d

1
=

0.
25
,d

2
=

2,
P

=
1

C
as
e
2:

F
l
o
w
e
r
5
M
a
t
C
o
n
s
t
r
a
i
n
t
s

•C
as
e
1:

5
lo
ca
lv

ol
um

e
co
ns
tr
ai
nt
s,
ea
ch

co
nt
ro
lli
ng

1
of

5
ca
nd
id
at
e
m
at
er
ia
ls

in
ea
ch

of
5
su
b-
re
gi
on
s

•C
as
e
2:

5
lo
ca
lv

ol
um

e
co
ns
tr
ai
nt
s,
ea
ch

co
nt
ro
lli
ng

th
e
sa
m
e
ca
nd
id
at
e
m
at
er
ia
l

in
5
su
b-
re
gi
on
s

2750

PolyMat: an efficient Matlab code for multi-material topology optimization

Appendix D: PolyScript

2751

E. D. Sanders et al.

Appendix E: PolyMat

2752

PolyMat: an efficient Matlab code for multi-material topology optimization 2753

E. D. Sanders et al.2754

PolyMat: an efficient Matlab code for multi-material topology optimization 2755

E. D. Sanders et al.

Appendix F: InitialGuess

2756

PolyMat: an efficient Matlab code for multi-material topology optimization

Appendix G: MultiMatIntFnc

2757

E. D. Sanders et al.

Appendix H: ConvertColors

The ConvertColors function is used to enable a result
visualization in which white represents void. To plot the
multi-material density in a given element, we sum the
RGB Colors associated with each material in the element,
scaled by the corresponding material densities, to find a
point on the unit RGB color cube representing the mixing
in that element. In general, the unit RGB color cube is
defined such that black represents void (0, 0, 0) and white
represents full mixing (1, 1, 1). Thus, ConvertColors is
called before the optimization loop in PolyMat to compute
a rigid body motion matrix, RBM, that can be applied to
the RGB color cube so that white is at the origin. Using

RBM, the RGB Colors specified by the user are converted
to the corresponding colors on the rotated unit RGB color
cube (e.g., red (1, 0, 0) goes to cyan (0, 1, 1), green (0, 1, 0)
goes to yellow (1, 1, 0), and blue (0, 0, 1) goes to magenta
(1, 0, 1)). These converted colors are scaled by the density
of each material and summed in line 30 of PolyMat to find
a point on the rotated unit RGB color cube representing the
mixing in a given element, where void elements have RGB
value (0, 0, 0). When rotated back to the original unit RGB
color cube, we re-gain the specified color scheme and the
void elements are now at (1, 1, 1), which represents white.
The code used to compute the RBM matrix and convert the
user-specified colors is provided in this Appendix.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

Bendsøe MP (1989) Optimal shape design as a material distribution
problem. Structural Optimization 1(4):193–202

Bendsøe MP, Sigmund O (2003) Topology optimization: theory,
methods, and applications. Springer, Berlin

Borrvall T, Petersson J (2001) Topology optimization using regular-
ized intermediate density control. Comput Methods Appl Mech
Eng 190:4911–4928

Bourdin B (2001) Filters in topology optimization. Int J Numer
Methods Eng 50(9):2143–2158

Chau KN, Chau KN, Ngo T, Hackl K, Nguyen-Xuan H (2017)
A polytree-based adaptive polygonal finite element method for
multi-material topology optimization. Comput Methods Appl
Mech Eng 332:712–739

Doan QH, Lee D (2017) Optimum topology design of multi-material
structures with non-spurious buckling constraints. Adv Eng Softw
114:110–120

Lieu QX, Lee J (2017) A multi-resolution approach for multi-material
topology optimization based on isogeometric analysis. Comput
Methods Appl Mech Eng 323:272–302

Michell AG (1904) The limits of economy of material in frame
structures. Philos Mag 8(6):589–597

Park J, Sutradhar A (2015) A multi-resolution method for 3D multi-
material topology optimization. Comput Methods Appl Mech Eng
285:571–586

Pereira A, Talischi C, Paulino GH, Menezes IFM, Carvalho MS
(2016) Fluid flow topology optimization in PolyTop: stability

2758

PolyMat: an efficient Matlab code for multi-material topology optimization

and computational implementation. Struct Multidiscip Optim
54(5):1345–1364

Sanders ED, Aguiló MA, Paulino GH (2018) Multi-material
continuum topology optimization with arbitrary volume and
mass constraints. Comput Methods Appl Mech Eng 340:798–
823

Sigmund O (1994) Design of material structures using topology
optimization. PhD thesis, Department of Solid Mechanics
Technical University of Denmark

Sigmund O (1997) On the design of compliant mechanisms using
topology optimization. J Struct Mech 25(4):493–524

Stegmann J, Lund E (2005) Discrete material optimization of
general composite shell structures. Int J Numer Methods Eng
62(14):2009–2027

Stolpe M, Svanberg K (2001) An alternative interpolation scheme
for minimum compliance optimization. Struct Multidiscip Optim
22(2):116–124

Talischi C, Paulino GH, Pereira A, Menezes IFM (2012a) PolyMesher:
a general-purpose mesh generator for polygonal elements written
in Matlab. Struct Multidiscip Optim 45(3):309–328

Talischi C, Paulino GH, Pereira A, Menezes IFM (2012b) PolyTop:
a Matlab implementation of a general topology optimization
framework using unstructured polygonal finite element meshes.
Struct Multidiscip Optim 45(3):329–357

Tavakoli R, Mohseni SM (2014) Alternating active-phase algorithm
for multimaterial topology optimization problems: a 115-line
matlab implementation. Struct Multidiscip Optim 49(4):621–
642

Zegard T, Paulino GH (2014) GRAND – ground structure based
topology optimization for arbitrary 2D domains using MATLAB.
Struct Multidiscip Optim 50(5):861–882

Zhang XS, Paulino GH, Ramos AS Jr (2018) Multi-material topology
optimization with multiple volume constraints: a general approach
applied to ground structures with material nonlinearity. Struct
Multidiscip Optim 57:161–182

Zhou M, Rozvany GIN (1991) The COC algorithm, part II:
Topological, geometrical and generalized shape optimization.
Comput Methods Appl Mech Eng 89(1-3):309–336

2759

