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We present a structural topology optimization framework considering material nonlinearity by means of a tai-
lored hyperelastic formulation. The nonlinearity is incorporated through a hyperelastic constitutive model,
which is capable of capturing a range of nonlinear material behavior under both plane strain and plane stress
conditions. We explore both standard (i.e. quadrilateral) and polygonal finite elements in the solution process,
and achieve smooth convergence in both the optimization process and the solution of nonlinear state equations.

Numerical examples are presented, which demonstrate that the topology optimization framework can effectively
capture the influence of various material behaviors, load levels and loading conditions (i.e. plane stress versus
plane strain) on the optimal topologies.

1. Introduction

The field of topology optimization considering nonlinear structural
problems is vibrant and growing. In topology optimization of nonlinear
structural problems, one can find different optimal topologies from
those that are obtained only considering linear material behavior, re-
flecting the influence of nonlinearity on the performance of structure.
In the literature, most work focuses on problems of elastic material
under finite displacement or strain, which introduce challenges in sol-
ving the nonlinear state equations due to global and local instabilities
and excessive distortion of low-density elements. To overcome these
challenges, various techniques have been proposed in the literature. For
instance, to avoid the influence of low density elements on the con-
vergence of nonlinear structural analysis, Buhl et al. [15] propose to
relax the convergence criterion of the Newton-Raphson method at the
nodes surrounded by low-density elements. From another perspective,
Kawamoto [27] proposes to replace the Newton—-Raphson method with
the Levenberg-Marguardt method and demonstrates its effectiveness in
alleviating the numerical difficulties in solving the nonlinear structure
equations. Yoon and Kim [50] adopt an element connectivity para-
metrization scheme to overcome the numerical instability of low den-
sity elements, in which the structural topology is parametrized by a set
of zero length elastic links. Instead of optimizing the density of the fi-
nite element, they optimize the density of the links (which relates to the
stiffness of the link). Wang et al. [48] propose an interpolation scheme
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to stabilize numerical instability of low density elements, which inter-
polates between the true stored-energy function and the stored-energy
function of linear elasticity based on element densities. As a result, they
use the true stored-energy function for solid elements and the
stored-energy function of linear elasticity for low density elements.
In addition, Van Dijk et al. [46] introduce a deformation scaling
technique to scale down the deformation of the low density elements
and Luo et al. [32] develop an additive hyperelastic technique that is
able to alleviate excessive deformation and instability of low-density
elements. For material nonlinearity, on the other hand, the topology
optimization literature typically considers non-tension/non-compres-
sion [14,16,24,36], bilinear materials [17,22,31] in the continuum
setting and asymmetric tension and compression stress limit [1] or
tension and compression stiffness [52] in the truss layout optimization.
In addition, we also mention the work by Pedersen [35], in which a
power-law material model is studied, and the work by Taylor and co-
authors [43-45], in which piecewise-linear material models capable of
controlling strain hardening/softening levels are considered. More
general nonlinear material models, which can capture not only the in-
fluence of tension/compression asymmetry but also that of different
load levels on the layout of optimal designs, however, are rarely con-
sidered. For instance, when a non-tension/non-compression or bilinear
material is considered, because the moduli in both tension and com-
pression are constants, the influence of varying load level on the layout
of optimized designs may not be fully captured.
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Nomenclature

e Linearized strain tensor

o Cauchy stress tensor

Cc Tangent modulus tensor

. The ath principal strain

ng Principal direction (eigenvector) associated with g,
Go The ath principal stress

W Stored energy function in terms of principal strains
Aa The ath principal stretch

ay Material parameter in the Ogden-based model

Bq Material parameter in the Ogden-based model

g Material parameter in the Ogden-based model

No Material parameter in the Ogden-based model

A U Lame’s constants

D Matrix representation of C

o Stress vector @ = [g11, 02, G12]"

e Strain vector & = [, &2, ¥#,]"

Y12 Shear strain

(o)} A discretization of the domain Q

T The boundary of the mesh where traction is applied
T The boundary of the mesh where displacement is applied
K Discrete global displacement space

E A generic element of the mesh

Eg Young’s modulus

v Poisson’s ratio

\Y Gradient operator

I, Potential energy of the discretization

U Global nodal displacement vector

R Global residual vector

Fine Global internal force vector

Foo Global external force vector

K Global tangent stiffness matrix

u® Global nodal displacement vector at kth Newton’s itera-
tion

£ Step size at kth Newton’s iteration

T Parameter in the line search algorithm

K Step size reduction parameter in the line search algorithm

I Objective function of topology optimization

g Volume constraint function of topology optimization

A Element area vector

p The vector of design variables

Pe The design variable of the eth element

P The filtered vector of design variables

Be The filtered design variable of the eth element

P Density filter matrix

Vinax Maximum allowable volume fraction

n Damping ratio of the OC update

move Move limit of the OC update

In the work of Ramos Jr. and Paulino [37], a topology optimization
formulation considering a general hyperelastic material model under
small deformation is proposed for truss layout optimization using the
ground structure method. This optimization formulation is proven to be
convex provided that the tangent stiffness matrix is positive definite, is
free of issues related to global and local instabilities, and is able to
capture the influence of both material behavior and load level on the
layout of the optimal structures. More recently, this optimization for-
mulation was extended to incorporate a discrete filter to improve the
computational efficiency [52] and to address multi-material topology
optimization [51].

In this work, we present a continuum topology optimization fra-
mework considering a general hyperelastic material model under small
deformation derived from the Ogden model [33]. Both plane strain and
plane stress conditions are addressed. Unlike the work by Pedersen
[35], which adopts power law nonlinear elastic models with strain
softening behavior, our constitutive model is flexible in controlling
tension-compression asymmetry and exhibits strain hardening re-
sponses (i.e. no limit points in the stress-strain relationship), which
allows us to confidently utilize a load control strategy in solving the
nonlinear state equations. To efficiently solve the resulting nonlinear
state equation, we introduce the Armijo-type inexact line search scheme
to the standard Newton’s method, which significantly improves con-
vergence performance.

Another issue in topology optimization considering nonlinear
structural problems is the actual definition of the objective function. In
contrast to the case when linear material behavior is assumed, various
types of objective functions exist for nonlinear optimization problems,
see, e.g., [15,28,30,37,39]. In this work, we choose the objective
function
as the total potential energy function at the equilibrium state (see, e.g.
[371). This objective is also adopted and studied in references
[25,29,30,37,52]. The advantages of this objective function are that
there is no need to compute the adjoint vector in the sensitivity ana-
lysis, and its sensitivity is guaranteed to be non-positive.

The remainder of the paper is organized as follows. Section 2 puts
forth the hyperelastic constitutive model under small strain and spe-
cializes it to two-dimensional plane strain and plane stress conditions.
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Section 3 reviews the nonlinear finite element analysis and introduces
the Armijo-type inexact line search scheme. In Section 4, we present the
topology optimization formulation proposed in this work and address
its corresponding sensitivity analysis. In Section 5, four representative
numerical examples are presented to showcase the effectiveness and
robustness of the proposed topology optimization framework. Section 6
contains several concluding remarks. In summary, this research sys-
tematically outlines an effective topology optimization framework for
continuum structures considering material nonlinearity only.

2. Hyperelastic constitutive model under small deformation

Hyperelastic material models in the literature are typically for finite
deformations. In this section, we introduce an isotropic hyperelastic
model that accommodates the small deformation assumption based on
the Ogden model [33]. Under small deformation, the linearized strain
tensor ¢ is given by

1 .
e=—[Vu + (Vu)"],
where u is the displacement field and V stands for the gradient op-
erator.

The strain tensor can be alternatively expressed in terms of its
principal strains &, using the spectral representation [11,34]

3
£ = E Eqlg @ Mg,
a=1 (2)

where n, is the principal direction (eigenvector) associated with g, and
® denotes the usual tensor product. For isotropic hyperelastic solids,
the stored-energy W is a function of g,, i.e. W(g,, &,, 3). The stress and
strain tensors are coaxial for isotropic solids [34], meaning that the
following spectral representation holds

Oa

Ny
= aT(Els £,83, a=1,.,3

3
g = Z Talle @ Rg,
= 08

(3
where G, are the principal stresses.

Similarly, the tangent modulus tensor C can also be expressed in the
following spectral representation [11]:
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We note that the coefficients of the second term on the right hand side
of the above expression become singular when g, and &g are identical.

In such cases, these coefficients should be replaced by their limits [11]
Gy —0Op _

56 _
lim 99s _ 90
aéﬁ

tg—ia Ex — € 555 (5)

2.1. Ogden-based material model

The stored-energy function utilized in this work is derived from the
compressible Ogden model provided in references [23,33]

No
n =1 =4 Q,
\I”(él, 52, 53) = Z a_q(ll 44 &Zq + /13q — 3}
g=1 "4
No
+ 27— [ dpdsy=afs — 1],
q=1 %qFq (6)

where a, B, ny and No are material parameters; and A, =&, + 1,
a =1, 2,3, are the principal stretches under small deformation. Ac-
cording to Eq. (3), the specific form of the principal stresses for this
Ogden-based material is expressed as
No
Gal®r 2,8 = 2, 7, [(1+ 8% = (1 + 8) 7%,
q=1

(7)

where J = (1 + £))(1 + €;)(1 + £€3). In addition, the coefficients in the
tangent modulus tensor of the Ogden-based material is given by

No
> 1y (g = D(Eg + 1)

q=1 ’
Ba _ ]+ + 87, (1 + agB)I b

a=p

No
D0+ e N1 + £, xg B M, a £ B
g=1

(8)

For consistency with the linear elasticity theory, the above derived
constitutive model must satisfy the following three conditions in the
undeformed state (5, =0, =1,2,3): (D) ¥=0;(iD)d.=0,a=1, 2, 3;
and (iii) Cyy = A58 + u(dx 6y + 636) where A and p are the Lamé
constants. Based on Egs. (6) and (7), conditions (i) and (ii) are satisfied
by definition. By comparing condition (iii) with the tangent modulus
tensor given in Eq. (4), we obtain the following relations between the
set of material parameters in the Ogden-based material and the Lamé
constants:

No 1 No
A= Z quaq,ﬁ'q and u= B E 7,%.
= o ©)

2.2. Ogden-based model under plane strain conditions

In the subsequent subsections, we simplify the Ogden-based con-
stitutive model under plane strain and plane stress conditions. For both
conditions, we assume that the principal strain &; is in the out-of-plane
direction. The associated principal stress &5 is thus decoupled from the
problem. For better connection with the finite element (FE) im-
plementation, we adopt the matrix-vector notation (the Voigt notation)
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[11]. We define the stress and strain vectors as g = [0y, 023, 012]" and
£ = [g1, &0, ¥,]", where ¥, = &, + & is the shear strain. The tangent
modulus matrix D takes the usual form:

Cin Cuzn Cun
D= Czz Caziz |-

sym. Cia12

(10)

2.2.1. Ogden-based model under plane strain condition

Under the plane strain condition, §; = 0 and &3 is decoupled from
the problem. We can express the in-plane principal strains (assuming
€, > €, without loss of generality) at a general strain state £ as [7]

&+ &

)
2 2 2
— 2 2
5 it & \/(EM 322) " (m) )
2 2 2 (11)

Their associated principal directions are given by n; = [cos(8), sin(6)]"
and n, = [—sin(8), cos(6)]” where 0 is the angle between the principal
direction ny and the basis vector e in the Cartesian frame of reference.
The in-plane principal stresses are evaluated based on Eq. (7) as
5’33(51, €5, 0) a=1,2.

Based on relation (3), the transformation between the principal
stress and stress vector o can be expressed as

I g1(&, €2, 0)
N 72(EL €2, O) |

(12)
where the transformation matrix T is given by
[ (cos(8))* (sin(®))* sin(26)/2
| sin(8))? (cos(8))? —sin(28)/2 | (13)

In addition, when g; > €,, the tangent modulus matrix D is given by

9T (€1, 2, 0)/08, 0T 1(E1, Ea, 0)/0F
D=1 T
95 5(%y, £, 0)/08; 0T 1(Ey, E4, 0)/0E;

o o 1 — cos(48) cos(48) —1  —sin(40)
(e 82 0) — 95(F0 €2, 0) 1 —cos(49)  sin(49)
e —e) sym. cos(46) + 1

14)

When §, = &,, the two principal directions n; and n, are not unique.
In fact, any pair of orthogonal unit vectors can be considered principal
directions in this case. Moreover, the above expression for D will not
hold because its second term will become singular. In this case, the
tangent modulus matrix D can be evaluated by taking the limit of the
second term when & — &, and assuming a simple choice of principal

directions, namely n,=[1,0]" and n, = [0, 1] (corresponding to
0 = 0). Based on (5), we have that

85 1(E1, €2, 0)/08, 86 ,(E, Ea, 0)/58, 0

0T 5(E1, Ea, 0)/0E, 0T 4(&1, €, 0)/08, 0

D=

0 0 5185 1(8,, &2, 0)/28,

— 95,(5), £2, 0)/05,]
(15)

Moreover, in the limit of strain state £ goes to 0, D reduces to the
standard material modulus for linear elasticity under plane strain
condition [20].

2.2.2. Ogden-based model under plane stress condition
Under plane stress condition, the principal strain §; is non-zero, but
the corresponding principal stress 63 is 0. This yields the following
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nonlinear equation to solve the out of plane principal strain &;:

N
ZOJ 1 [+ &5t — (1 + &7 =0,

= (16)

where &, and €, (again, assuming £, > €;) are the in-plane principal
strains. Denoting the solution to the above nonlinear equation as
£3(£,, ,), the in-plane principal stresses are computed as & ,(&,, ,, £3).
a = 1, 2 according to Eq. (7). The stress vector @ is then computed using
the principal stresses and the same transformation given in Eq. (12).

When &, > §,, the tangent modulus matrix D can be obtained as
follows

b r 05 /08, 05 ,/08, (65 1/65) (983/08,) (9C 1/0E:) (OF3/9E,) -
= +
35 ,/08, d7,/d8, (05 2/081) (88%/3%1) (8 2/0%;) (08%/0%2)

e e = o |17 COS(46) cos(40) — 1 —sin(46)
T 1(E1, Sz,:;} - C{z(sl, £, EY) |- om(d) sn(4d |,
G- Sym. cos(48) + 1
a7
where
983 Y00 (1 + &) + &7 00,0
€ T2, (1 + &) a2 (g — 1) + (1 + 8572, (1 + agB )T ks’
=12 (18)

and the expressions for the other quantities in (17) are the same as in
the plane strain case.

Similarly to the plane strain case, when g, = §&,, the tangent modulus
matrix D takes the following form

07 ,/d8, 0G/0%, 0
D 662/551 632/652 0
0 0 %(551/’5?.1 — 0T 41/38,)
(8o 1/3€3) (0€3/0E,) (9T 1/8E3) (9E3/0E,) 0
(85 5/ 085) (983/98)) (95 o/ 383) (E3/8Ey) 0

+
0 0

%a& 1/ 98 (0E;/ 08, '
— 0g%/08y)
(19)

Moreover, in the limit, as the strain state £ goes to 0, D reduces to
the standard material modulus for linear elasticity under plane stress
condition [20].

3. Nonlinear finite element formulation

The nonlinear finite element formulation presented here follows
references [11,18,26,49]. Consider a two-dimensional discretization 2y,
with boundary d£j, to be a finite element discretization (be it triangular,
quadrilateral or polygonal) of the domain into a total of M non-over-
lapping finite elements with N nodes. We denote I'}, and I'} to be the
portions of the boundary where traction t (assumed to be independent
of the displacement) and displacement are prescribed, respectively,
such that T}, n T} = @ and I'}, U '} = 6Q,. We also denote E € 2y, as a
generic element of the mesh. Body forces are neglected throughout the
paper.

The principle of minimum potential energy states that the equili-
brating displacement wy, = {uy,, Up,}" is the one that minimizes the
potential energy I7, among all the kinematically admissible displace-
ments vp:
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I, (1) = min
vheKn

2 Jo ey = [ evds

EEQy (20)
where K, stands for the finite dimensional displacement space. In the
above expression, the first term on the right hand side is the internal
energy of the discrete system and the second term is the external work
done by the tractions.

The weak form of the Euler-Lagrange equations of the above
minimization problem is given as

o
8T (uy,) = Z J; g(s(uh)): (vy)dx — '[1."51 ryds=0 Vo, €KY,
5

(21)

where K, stands for the space of kinematically admissible displace-
ments that vanish on I';.

The subsequent discussion uses matrix-vector notation in order to
provide a better connection with the computational implementation
aspect of the nonlinear finite element formulation. Denoting U € R?¥*!
as the vector collecting all of the nodal displacements of uy, we can
rewrite expression (21) into a system of nonlinear equations following
the standard finite element procedure:

oIt

(U) = Fp (U) — Fy = 0, (22)

where Fy,(U), F.,; and R(U) € R?¥*! are the internal force vector, the
external force vector and the residual vector, respectively. Accordingly,
the tangent stiffness matrix K € R®>2N of the nonlinear system of
Eq. (22) is given by

oR

Note that, with only material nonlinearity considered, the global
tangent stiffness matrix is guaranteed to be strictly positive definite
provided that the tangent modulus matrix is strictly positive definite
(no softening in the stress-strain relationship) and proper boundary
conditions are applied. Consequently, the potential energy of the finite
element discretization will be strictly convex and the equilibrating
displacement field will be unique. On the contrary, when geometric
nonlinearity is involved, the global tangent stiffness matrix K may lose
positive definiteness even though the tangent modulus matrix D is
positive definite, i.e., in the presence of geometric instability, and
multiple solutions can occur [11,49]. These difficulties render the
nonlinear finite element analysis involving geometrical nonlinearity
considerably challenging in topology optimization problems in which
the topologies are constantly updated.

In order to solve the system of nonlinear Eq. (22) in a robust
manner, Newton’s method, equipped with an inexact line search, is
adopted [6,52]. Denoting the global nodal displacement vector at the
kth iteration as U®, we update the nodal displacement vector in the
subsequent iteration as

k) = gk 4 E“‘)AU("), 24
where AU® is the update direction given by
AU® = K (UB)IR(UW), (25)

and £% (£% < 1) is the step size determined by an Armijo-type inexact
line search rule [6]. The parameter fck) is chosen such that a decrease of
the potential energy is guaranteed in the updated displacement,
namely,
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oll,
ou
M, (U®) + £®RU®) AU®

M(U® 4+ EOAU®)

IA

r
I, (U®) + Tg(k)[ (U(kn)] AU®

(26)

where 7 is a user-defined guard constant (we chose v = 10"* in our
implementation). Starting with £® =1, we employ a back-tracking
algorithm to find the largest &% that satisfies condition (26) in our
computational implementation. If the current step size £ violates
condition (26), we reduce it according to: £® = x£®), where the ex-
pression for the reduction factor « is given by

EOR(UE Y AU®
T T2y U® + EOAU®) — T, (UR) — EORUW)YTAUD]

27)

If the calculated value of « from the above equation is smaller than 0.1,
we simply choose x = 0.5. With the help of the aforementioned inexact
line search rule, the Newton’s method is ensured to converge to a sta-
tionary point of the potential energy [10], which is the unique solution
provided that the potential energy is convex with respect to the dis-
placement [37,52].

4. Topology optimization formulation

In this section, the topology optimization formulation considering
hyperelastic material behavior under small deformation is presented.
The matrix-vector convention introduced in the later part of Section 4 is
adopted for the nonlinear finite element formulations. For the given
discretization £2;,, composed of a total of N nodes and M finite elements,
the objective of the topology optimization problem is to maximize the
potential energy of the structure at its equilibrium state, which essen-
tially corresponds to maximizing the stiffness of the structure
[25,29,30,37,52]. In particular, if we denote p € R¥*! as the vector of
design variables, which take constant values between € and 1 over each
finite element where ¢ is a small positive number, we can express the
nested optimization formulation as

H;in fp)= mgn[—nh(f?‘ Up)]
st g = 28 = Vi <0
e<p <1, e=1..M
with R@, U(P)) = Em‘(p‘ U(P)) —Fy=0, (28)

where A € R¥*! is a vector containing the area of each element and
p e RMxl s a vector of filtered design variables. The parameter
e < < 1isa positive number assigned in order to prevent the tangent
stiffness matrix K from becoming singular [3,4,13,21].

To regularize the optimization problem, we adopt the commonly
used density filtering approach [12]. The filtered design variable g,, of
element E,, is computed via a convolution operator of the design vari-
able p, with its surrounding design variables as

_— ZJES(E) PklEll(l - Ix‘i’: —X;UR)
Y Drese Bl = S = x{/R

(29)

where S(e) is the set of indices of element E; whose centroid, x;, falls
within in a prescribed radius R of the centroid, x;, of element E,. For
meshes consists of uniform elements, the terms |E| and |Ej| (the areas
or volumes of elements Ej and E;, respectively) are typically omitted in
the above expression, which is the case in our paper. We also note that
one can alternatively expressed filter operation in the matrix notation
as [42]

7 =Pp, (30)
where the (e, j) component of P € R¥*™ is given as

_ max(0, (1 — ey — xj1/R))
¢ Zkes(e) (1 - Ix = xR (31)
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The potential energy [y, at the equilibrium state is given by

Me. UGN = ¥, [, ¥lo. (U ())dx = FLU (),

E.€cQp

(32)

and the stored-energy function in the eth element W(p,, £(U(p))) is in-
terpolated using the SIMP [8,9,38] relationship as

Y, £U(P))) = (p)"Ho(e(U (p))).

where W denotes the stored-energy function for solid material and p is
the penalization factor. We note that, for linear problem, this potential
energy reduces to the negative compliance of the structure, that is,
I,(p, U(p)) = —1/2F.,U(p) [29]. Therefore, the optimization for-
mulation (28) reduces to the classic compliance-minimization optimi-
zation when the material behaves linearly.

The sensitivity for the objective function is given by

_am, o,
e, 219

(33)

L

(. Up)) —
90,

U
® U, ©) (34)
Because equilibrium is satisfied for the structure at each optimization
step, the second term of the sensitivity vanishes according to (22). We
can simplify the above expression for the sensitivity of the objective
function as
M

)

o,

Pk
U -
. (p. Ulp)) 3,

af _
a—pe(F) =

M
—p 2 PP [ Wole(U (0)))dx,
a " S (35)
where we recall that Py, is the (k, ) component of the projection matrix
P defined in (31). Because the volume constraint is linear, its sensitivity
is simply given by
dg _ P'A
o 1l

(36)

We remark that no adjoint equation needs to be solved in calcu-
lating the sensitivity of the objective function. Additionally, the sensi-
tivity is guaranteed to be non-positive, which also ensures that we can
confidently use the efficient Optimality Criteria (OC) method to update
the design variables. For the kthe optimization step with design variable
p®, the OC method update the design variable as follows

max(e, o* — move) if o* (B,)? < max(e, g — move)

(+1) —

e, min(1, p‘,(k) + move) if p[fk) (B,)"” 2 min(1, p{,(k) + move)

(B,)" otherwise,

(37)
where move is a the move limit and 5 is the damping ratio. B, is defined
as

af /dp,

= - |
A3g/3p,

N
=P (38)
where A is the optimal Lagrangian multiplier determined through a
bisection approach so that the volume constraint is satisfied.

5. Numerical examples

This section presents four numerical examples that utilize the
Ogden-based constitutive model proposed in Section 2 to demonstrate
the influences of material parameters, load levels and loading condi-
tions (plane strain vs. plane stress) on the layout of the optimal to-
pology. We highlight that, in all the numerical examples, the nonlinear
finite element simulations are stable and the convergence histories are
smooth for fixed penalization parameter p and filter radius R.

In terms of the nonlinear finite element modeling, we consider a
quadrilateral mesh in the first example and polygonal meshes in the
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remaining examples. The polygonal meshes are constructed using the
software “PolyMesher” [41] and are solved using the polygonal finite
element method with Wachspress shape functions [47]. To integrate the
internal force vector and stiffness matrix of the polygonal finite ele-
ments, we use a 1st order triangulation rule together with the gradient
correction scheme of reference [19]. The Newton’s method is regarded
as converged once the normalized residual vector ||R||/||Fexl| is less
than 10~° times of its initial value.

In terms of the optimization process, the OC update scheme (37) is
used for all the numerical examples. Its damping factor and the move
limit are taken to be n = 0.5 and move = 0.2, respectively. For all the
examples, uniform initial guesses are used, which take the values of
0" = Vinax for all the elements in the mesh. With the convex material
model, the optimization problem is proven to be convex when penali-
zation parameter p = 1 [37,52]. Thus, similar to the classic minimum
compliance problem considering linear materials, we adopt a con-
tinuation of the penalization parameter p in order to achieve better
solutions [40]. The penalization parameter p is updated every two
iterations by p = p + Ap with Ap = .1 until a maximum value of p = 3
is reached. In addition, we also employ continuation scheme of the
radius R of the density filter in order to approach black and white de-
signs. We first conduct optimization with an initial filter radius R = R,
until either convergence (TOL = 0.05) or a prescribed maximum itera-
tion number (Iter,,, = 200) is achieved. The filter radius is then up-
dated every 10 iterations by R = R — AR with Ap = Ry/4 until a
minimum value R = Ry/4 is reached.

Furthermore, all the numerical examples consider a one term
stored-energy function, i.e, No = 1 in (6). For this particular case, we
have three independent material parameters, a;, f; and 5. Among
them, a; is a user-prescribed parameter that dictates the level of non-
linearity in the stress-strain curve. We remark that, although the Ogden
models are typically used for modeling elastomers and biological tissues
with positive ay, this work also includes Ogden models with negative ay
because, from an optimization/design perspective, it allows us to con-
sider material behaviors with larger compressive stiffness than the
tensile one, such as concrete. Once ay is prescribed, the other two
parameters, 31 and #,, are determined by the Young’s modulus E, and
Poisson’s ratio v of the solid via

x16°

—— Mat. Model 1: a; =1500
—— Mat. Model 2: a, = -1500

0,/Eo0

-2

€1 Plane Strain

-0.001 0.001
&

(a)

0.002
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Ey v

= —— and = —
h a(l +v) Ay 1—2v

(39)
Under plane stress condition, an explicit expression can be obtained for
the out-of-plane principal strain £; by solving the nonlinear algebraic
Eq. (16) as

B =[(1+E)(1 +E)] 1% — 1. (40)

In Fig. 1 (a) and (b), we plot the stress-strain responses &, vs. § under
biaxial stretch (i.e. &, =0 and &, # 0) for the plane strain and plane
stress conditions, respectively. Each figure considers two distinct aj,
namely & = 1500 and e = —1500. For all the cases, Young’s Modulus
and Poisson’s ratio are taken to be 70MPa and 0.3, respectively. It can
be observed from the figures that varying the material parameter ay
generates distinctive stress-strain response. For a solid with ¢; = 1500,
the response behavior in tension dominates under both plane strain and
plane stress conditions. For a solid with a; = —1500, we observe the
opposite behavior. Moreover, we also notice that the behavior is dif-
ferent under plane strain and plane stress conditions. For instance, the
solid with & = 1500 exhibits more apparent hardening behavior in
compression under the plane strain condition than under the plane
stress condition.

The proposed topology optimization is computationally efficient in
the following two aspects. First, the adopted objective function does not
require solving an adjoint system. Second, the inexact line search
strategy greatly improves the robustness of Newton’s method in solving
nonlinear state equations and thus, avoids the need for multiple load
steps, even for high load levels. Since solving the nonlinear state
equation is always the most time-consuming part in nonlinear topology
optimization, this can improve the computational efficiency of the
nonlinear topology optimization.

5.1. Example 1: A simply supported square domain with a central load

In the first numerical example, the design domain isa 1 m by 1 m
square simply supported on the mid-points of its left and right sides. As
depicted in Fig. 2, a load F = 1000 N acts at the center of the square
domain. The design domain is discretized by 200 by 200 structured
quadrilateral elements. For the topology optimization, we prescribe the

6"10—3 : : .

—— Mat. Model 1: a, =1500
—— Mat. Model 2: a, =-1500 1

€1 Plane Stress

0
g1
(b)

-0.001 0.001 0.002

Fig. 1. Stress-strain curves &, v.s. & under biaxial stretch with (a) plane strain condition (i.e. &, = 0 and &, = Eo/cu/(1 + u)[l -1+ F:l)*“l”’“*z”)}) and (b) plane

stress condition (i.e. 8; = 0 and &5 = Ey/an/(1 + v){1 = [(1 + &)(L + &) ["=1w/(1=2}),
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Fig. 2. Illustration of the design domain and its load and boundary conditions.
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Fig. 3. Optimal topologies and convergence histories of the objective function for Example 1 considering (a) material with o; = 1500 and (b) material with
o, = —1500. We note that all the jumps in the convergence histories of the objective function are due to either the increase of penalization parameter p or the decrease

of the filter radius R.
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volume fraction to be 15% (i.e. V. = 0.15) and the initial filter radius
to be Ry =0.02 m. In order to study the influence of the material
parameter a; on the final topologies, we consider two materials with ay
equal to 1500 and — 1500, respectively (see Fig. 1). The Young’s Mod-
ulus Eg and Poisson’s ratio v of both materials are E, = 70 MPa and
v = 0.3. The plane strain condition is assumed (see Fig. 1 (a)). Figures 3
(a) and (b) show the final topologies and the convergence histories of
the objective function for the two materials (o = 1500 and &y = —1500).
We observe that, although the objective values are almost identical, the
optimal topologies obtained for the two materials are completely dif-
ferent: the one composed of the material with a; = 1500 is in the lower
half of the design domain while the one composed of the material with
a; = —1500 is in the upper half of the design domain. The difference in
the optimal topologies is due to the difference in tensile and compres-
sive responses of the two materials (see Fig. 1 (a)). For instance, the
material with aq = 1500 is stronger in tension than in compression; thus,
it performs better with structures that are dominated by tension
members (i.e., structures that mainly occupy the lower half design
domain). Regarding the convergence history, we remark that the opti-
mization problem possesses smooth convergence and all the jumps in
the convergence plots are caused by either increasing the penalization
parameter p or decreasing of the filter radius R.

5.2. Example 2: A simply supported rectangle domain with opposite loads

Unlike topology optimization considering linear material behavior,
which yields identical optimal topology regardless of the load levels,
topology optimization considering nonlinear material behavior allows
us to study the influence of the load level on the layout of the optimal
topologies. To demonstrate this point, we consider the design problem
illustrated in Fig. 4 (a), where a 2 m by 1 m rectangular design domain
is simply supported on the mid-points of its left and right boundaries.
The design domain is subjected to two loads of equal magnitude F
pointing in opposite directions and each acting on a point that is 0.7 m
away from the supports. While fixing the material parameters as
Ey =70 MPa, v = 0.3 and o; = 1500, we consider three load levels: (i)

Advances in Engineering Software 131 (2019) 217-231

F =50 N (small), (ii) F = 5000 N (medium), and (iii) F = 50000 N
(large). We prescribe the volume fraction to be 7% (i.e. V,,x = 0.07) and
the initial filter radius to be Ry = 0.03 m. In the finite element analysis,
plane strain conditions are considered and the design domain is dis-
cretized by a Centroidal Vornoi Tessellation (CVT) mesh as shown in
Fig. 4 (a). The CVT mesh is made up of 40,000 polygonal finite elements
whose statistics provided in Fig. 4 (b). In Fig. 5 (a)-(c), we show the
optimal topologies obtained by the three load cases (i)-(iii), respec-
tively, as well as the corresponding plots of convergence histories of
objective functions. When considering linear materials, the optimal
topology will always be identical to the one obtained with the small
load level (level i)). However, when nonlinear material behavior is
considered, completely distinctive optimal topologies are obtained for
the three load levels. It is observed from Fig. 5 (a)-(c) that, as the load
level increases, the members in the optimal topologies become thicker.

In order to demonstrate the effectiveness of the line search scheme
in improving the convergence of the standard Newton’s method, we
provide Tables 1 and 2 that summarize the convergence histories of the
nonlinear FE analysis in the 1st optimization step. Table 1 lists those
without the line search scheme (i.e. £ is always equal to 1), while
Table 2 lists the history of the normalized residual vector ||R||/||Fex||
when the line search scheme is applied. It is apparent from the com-
parison between the two tables that introduction of the line search
scheme in the Newton’s method significantly improves the convergence
performance. While the standard Newton’s method (without line
search) quickly diverges after the 1st nonlinear FE iteration for medium
and large load levels (see Table 1), incorporation of the line search
scheme ensures convergence of the nonlinear FE analysis in a reason-
able number of iterations for all load levels (see Table 2). This indicates
the effectiveness of the line search scheme in improving the robustness
of the nonlinear FE analysis, which may otherwise need multiple
loading steps, and eventually lead to the robustness of the optimization
process. From a computational perspective, the inexact line search
scheme constitutes a small fraction of the computational time in solving
the nonlinear state equations because it only requires several evalua-
tions of the potential energy function of the systems.

0.7m 0.7m
| -————

] n | n-gon # of

n-gons
0.5m F

4 []] 44
5 Q 5,407
6 <:> 30,467

7 O 4,081

8 O 1
# of Elements [ 40,000

(b)

Fig. 4. (a) Ilustration of the design domain with load and boundary conditions for Example 2. (b) Statistics of the composition of the CVT mesh.
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Fig. 5. Optimal topologies and convergence histories of the objective function for Example 2 considering (a) a small load level F = 50 N, (b) a medium load level

F = 5000, and (c) a large load level F = 50000. Again, we stress that all the jumps in the convergence histories of the objective function are due to either the increase
of penalization parameter p or the decrease of the filter radius R.
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Table 1
Convergence history of the normalized residual vector in the FE analysis, during the 1st optimization step, without application of line search (step length £ = 1).
F=50N F = 5000 N F = 50000 N
Tter. ¢ [IRI17]|Fexe] | Tter. ¢ [IR1/]|Fexe] | Tter. ¢ [IRI1/1|Fexel |
1 1 1 1 1 1 1 1 1
2 1 519 x 1072 2 1 5.70 x 10% 2 1 6.00 x 10%
3 1 4.18 % 107 [[R[|/]|Fexel| — = [[R[|/]|Feu| = =
4 1 2.80 x 1078
Table 2
Convergence history of the normalized residual vector in the FE analysis, during the 1st optimization step, with application of line search .
F=50N F = 5000 N F = 50000 N
Tter. ¢ R/ Pe] | Tter. ¢ [IR[1/]|Fexl| Trer. ¢ [IRI1/ P
1 1 1 1 1 1 1 1 1
2 1 5.19 x 102 2 0.125 6.37 2 0.0156 3.81
3 1 4.18 x 1074 3 0.4725 3.87 3 0.125 5.60
4 1 2.80 x 1078 4 1 1.28 4 0.1812 4.67
5 1 336 x 107! 5 1 1.74
6 1 4.94 % 1072 6 1 520 x 107!
7 1 170 x 1073 7 1 129 x 107!
8 1 2.50 x 1076 8 1 2.16 X 1072
9 1 110 x 1073
10 1 433 x 1076

5.3. Example 3: Top central load in a laterally constrained rectangular
domain

In the third numerical example, we demonstrate the effect of
loading states, i.e., plane strain v.s. plane stress conditions, on the
layout of the optimal topologies. As illustrated by Fig. 6 (a), we consider
a problem where a rectangular beam of dimensions 3 m by 1 m is fixed
on both left and right ends and subjected to a downward load at the
center of its top edge. In the optimization, the volume fraction is set to
15% (i.e. Vimax = 0.15) and the initial radius is chosen as Ry = 0.04 m. In
terms of the FE analysis, the design domain is discretized by a CVT
mesh composed of 40,000 elements, as shown in Fig. 6 (a), whose
statistics of composition is provided in Fig. 6 (b). While fixing the
material properties to be Ey, =70 MPa, v = 0.3 and a; = 1500, we

consider both plane strain and plane stress conditions and two load
levels F 4000 N and F = 5000 N. For the lower load level
(F = 4000 N), Fig. 7 (a) and (b) show the optimal topologies, con-
vergence histories and optimization histories for the plane strain and
plane stress conditions respectively. Similarly, Fig. 8 (a) and (b) show
the optimal topologies, convergence histories and optimization his-
tories for the plane strain and plane stress conditions, respectively, in
the case of the higher load level (F = 5000 N). By comparing Figs. 7 and
8, we conclude that, as we increase the load from F =4000 N to
F=5000 N, the optimal topology stays unchanged when the plane
strain condition is assumed. On the contrary, when assuming the plane
stress condition, the optimal topology obtained at the lower load level
(F = 4000 N) significantly differs from that obtained at the higher load
level (F = 5000 N). Based on Fig. 1 (a) and (b), an explanation of the
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8 O 2

# of Elements | 40,000

(b)

Fig. 6. (a) Illustration of the design domain with load and boundary conditions for Example 3. (b) Statistics of the composition of the CVT mesh.
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Fig. 7. Optimal topologies, convergence histories and optimization histories in the case of the lower load level F = 4000 N for (a) the plane strain and (b) the plane

stress conditions. Note: both optimal solutions are quite similar (cf. Fig. 8).

above described difference in the optimal topologies under the plane
strain and plane stress conditions is that, although the material behaves
similarly in tension under the plane strain and stress conditions, its
behavior in compression is different under these two conditions — the
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material is considerably softer under the plane stress condition than
under the plane strain condition at higher levels of compressive strain
(for a; = 1500). When plane stress condition is assumed, this softer
compressive behavior of the material promotes the final topology to
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Fig. 8. Optimal topologies, convergence histories and optimization histories in the case of the higher load level F = 5000 N for (a) the plane strain and (b) the plane
stress conditions. Note: optimal solutions are quite different (cf. Fig. 7).
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change from a compression dominated structure to a tension dominated consider a bridge design problem adapted from [5]. The dimensions
structure at the higher load level. and boundary conditions of this problem are shown in Fig. 9. In the
design domain, a non-designable layer (p = 1) of thickness 2 m is
placed at the height of 20 m, representing the bridge deck, and a uni-
formly distributed load q = 5 KN/m is applied on top of the non-des-
ignable layer. This design domain is then discretized by a mesh con-
sisting of 43200 structured quadrilateral elements in the FE analysis. As

5.4. Example 4: A bridge design

Finally, we use the last example to demonstrate the influence of
nonlinear material properties on practical designs. To this end, we
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Fig. 9. (a) Hlustration of the design domain with load and boundary conditions for Example 4.
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Fig. 10. Optimal topologies and convergence histories of the objective function for the bridge design example considering (a) material with @; = 1500 and (b)
material with &; = —1500. We note that all the jumps in the convergence histories of the objective function are due to either the increase of penalization parameter p

or the decrease of the filter radius R.

229



H. Chi, et al.

for the optimization parameters, the total volume fraction (including
the non-designable layer) is assumed to be V,,; = 15% and the initial
filter radius is taken to be R = 2 m. Moreover, throughout the opti-
mization process, once a supported node is completely surrounded by
void elements (i.e. p < 0.01, we remove the support on this node in the
FE analysis.) Assuming the plane stress condition, we consider two
materials with the same Young Modulus (E, = 70 MP) and Poisson’s
ratio (v = 0.3) but different a; parameters. The first material with
a; = 1500 is stronger in tension than compression while the other ma-
terial with a; = —1500 is strong in compression than tension (see Fig. 1
(b)). Fig. 10 (a) and (b) depict the final bridge designs obtained by
considering materials with ¢ = 1500 and &; = —1500, respectively, to-
gether with their corresponding convergence histories. It is immediate
that the two materials with different a; parameters lead to bridge de-
signs with distinct layouts. The material with o = 1500 is stronger in
tension, thus, considering it in the optimization yields a design which
resembles a suspension bridge as shown in Fig. 10 (a). On the other
hand, the material with & = —1500 is stronger in compression, hence,
considering it in the optimization leads to an arch bridge-like design as
shwon in Fig. 10 (b). In summary, this example demonstrates the ef-
fectiveness of the proposed topology optimization formulation in cap-
turing the influence of different material properties in the layout of
practical designs.

6. Concluding remarks

In this paper, we introduce an effective topology optimization fra-
mework considering hyperelastic materials under small deformations.
To account for material nonlinearity, we present a general constitutive
model based on the Ogden model under both plane strain and plane
stress conditions. By varying the material parameters, the constitutive
model captures a wide range of behavior, from tension-dominated
(stronger in tension) to compression-dominated (stronger in compres-
sion). Moreover, the convexity and strain hardening response of the
constitutive model ensure that the nonlinear state equations have a
unique solution and that we can confidently use a load control strategy
(i.e. the structure has no limit points).

The robustness of the topology optimization framework is reflected
in both the optimization formulation and the solution of the nonlinear
state equations. In terms of the optimization formulation, we choose the
objective function so that we do not need to solve for an adjoint vector
in the sensitivity analysis, which leads to improved computational ef-
ficiency. Additionally, the sensitivities are always non-positive (a de-
sirable feature). We also adopt two continuation schemes: one con-
tinuation for the penalization parameter in the material interpolation;
and another continuation to gradually reduce the radius of the density
filter at the final stage of the optimization, which is shown to promote
closely black and white designs. In terms of solving the nonlinear state
equations, the unknown displacement at every given optimization step
is always a unique minimizer of the potential energy provided that the
tangent modulus tensor remains positive definite. Thus, it is free of
global and local instabilities and multiple solutions that may occur
when geometrical nonlinearities are included. We further introduce an
inexact line search scheme in the standard Newton’s method when
solving the nonlinear state equations. The inexact line search scheme
significantly improves convergence performance in solving the non-
linear system of equations, which is in agreement with previous to-
pology optimization investigations [52]. The robust nonlinear struc-
tural analysis allows us to study problems with low volume fractions
(e.g. Example 2 of this paper), providing an interesting connection to
truss-like structures and truss-layout optimization [2]. We thoroughly
study the proposed topology optimization framework through four re-
presentative numerical examples, including a practical bridge design
example. In all the examples, the objective function always converges
smoothly, except for the steps where continuation of penalization factor
and/or filter radius are performed (as expected). We also demonstrate
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that, unlike the standard topology optimization considering linear
elastic material, the proposed optimization framework is capable of
capturing the influence of nonlinear material behavior, load levels and
loading conditions on the layout of optimal structures.
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