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ABSTRACT We develop analytical and simulation tools for evolve-and-resequencing experiments and apply them to a new study of
rapid evolution in Drosophila simulans. Likelihood test statistics applied to pooled population sequencing data suggest parallel
evolution of 138 SNPs across the genome. This number is reduced by orders of magnitude from previous studies (thousands or tens
of thousands), owing to differences in both experimental design and statistical analysis. Whole genome simulations calibrated from
Drosophila genetic data sets indicate that major features of the genome-wide response could be explained by as few as 30 loci under
strong directional selection with a corresponding hitchhiking effect. Smaller effect loci are likely also responding, but are below the
detection limit of the experiment. Finally, SNPs showing strong parallel evolution in the experiment are intermediate in frequency in the
natural population (usually 30–70%) indicative of balancing selection in nature. These loci also exhibit elevated differentiation among
natural populations of D. simulans, suggesting environmental heterogeneity as a potential balancing mechanism.
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IN evolve-and-resequencing (E&R) experiments, popula-
tions evolve within one or more controlled environments

and are then surveyed with genomic sequencing (Nuzhdin
and Turner 2013; Long et al. 2015). A remarkable volume of
data is produced; allele frequency changes at hundreds of
thousands of loci within replicated populations. Researchers
typically focus on the small fraction of sites exhibiting the
largest or most consistent changes, but a wealth of informa-
tion resides in the “background response,” the evolution of
polymorphisms that are not direct targets of selection (the
overwhelming majority of the genome). In this paper, we
present an analytical framework for E&R studies, first to pro-
vide more detailed predictions regarding whole genome
evolution, and second to robustly detect loci under parallel

selection across replicate populations. We apply the method
to a new E&R experiment on Drosophila simulans designed to
answer two major questions: First, what is the genomic basis
of rapid adaptation to a novel environment? And second,
what do the features of the genetic response tell us about
the maintenance of polymorphisms in nature?

The genetic basis of rapid adaptation

The traditional view is that adaptive evolution is slow relative
to the ecological processes that influence contemporary pop-
ulations (Slobodkin 1980; Gillespie 1991). In this paradigm,
genetic change does not interact with ecological and demo-
graphic processes over the short term (few to several gener-
ations), encompassed by ecological processes (Thompson
1998; Hendry and Kinnison 1999; Palumbi 2001; Hairston
et al. 2005). However, examples of rapid phenotypic evolu-
tion have been known since the mid-20th century (Kettlewell
1958; Ford 1964; Johnston and Selander 1964) and its prev-
alence has become increasingly appreciated in recent years.
Rapid evolution has profound practical consequences for bi-
ological control of pathogens, pests and invasive species,
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fisheries management, and biodiversity conservation
(Conover and Munch 2002; Darimont et al. 2009), especially
in the context of accelerating climate change (Ward and Kelly
2004). Indeed, this growing appreciation for rapid evolution
has spawned new subdisciplines such as eco-evolutionary
dynamics (Ellner et al. 2011). Rapid evolution of ecologically
important traits has been documented in invertebrates
(Ellner et al. 1999; Daborn et al. 2002), vertebrates
(Reznick et al. 1997; Grant 1999), plants (Franks and Weis
2008), yeast (Lang et al. 2013; Levy et al. 2015), and pro-
karyotes (Barrick et al. 2009). Biochemical (Ghalambor et al.
2015; Huang and Agrawal 2016), morphological (Losos et al.
1997; Grant 1999), life history (Rose 1984; Hairston and
Walton 1986; Reznick et al. 1997), and behavioral (Turner
and Miller 2012; Stuart et al. 2014) phenotypes can evolve
substantially in just a handful of generations when popula-
tions experience new selective regimes. However, less is
known about the genomic changes that occur during rapid
adaptation to novel environments, especially in multicellular
eukaryotes (Messer et al. 2016; Jain and Stephan 2017).

A key question is whether the standing genetic variation
within populations is sufficient for adaptation to a novel
environment, or if new mutations are required. In sexual
eukaryotes, abundant standing variation is indicated by the
observation that artificial selection can immediately, andoften
dramatically, change the mean of almost any variable trait
(Lewontin 1974). Still, it is possible that natural selection
may fail where artificial selection succeeds if the alleles that
respond in artificial selection experiments are encumbered
with deleterious side effects. E&R studies seem an ideal al-
ternative to artificial selection experiments in this regard.
While the researcher controls fitness with artificial selection,
organisms “select themselves” in an E&R experiment. Pleio-
tropic effects on general vigor will be a major determinant of
selection on alleles with favorable trait effects in an E&R
experiment, but much less so in an artificial selection exper-
iment. E&R experiments to date provide limited information
on the evolutionary potential of natural populations, but only
because most were initiated from laboratory-adapted popu-
lations or small numbers of founders. Here, we describe an
E&R experiment usingD. simulans, with replicate experimen-
tal populations initiated from large numbers of wild-caught
individuals, to investigate the earliest stages of adaptive
evolution.

Genome-wide evolution in E&R studies

E&R experiments using Drosophila have addressed questions
about the number and kinds of loci under selection, the rel-
ative frequency of hard vs. soft selective sweeps, temporal
dynamics, and the effect of selection on genome-wide pat-
terns of diversity (Burke et al. 2010; Turner et al. 2011;
Orozco-terWengel et al. 2012; Remolina et al. 2012; Turner
and Miller 2012; Huang et al. 2014; Tobler et al. 2014; Kang
et al. 2016; Barghi et al. 2017; Michalak et al. 2017; Schou
et al. 2017). In a review of E&R studies, Nuzhdin and
Turner (2013) noted a striking “excess of significance” in that

thousands of polymorphisms respond to selection. The num-
ber of loci that selection can act on simultaneously is an
important and long-standing controversy in evolutionary
genetics (Haldane 1957; Sved et al. 1967; Barton 1995),
but we generally expect that the more loci affecting fitness,
the smaller the allele frequency change per locus. It is thus
surprising that so many SNPs exhibit a large change in E&R
experiments. There are numerous potential reasons for ex-
cessive significance, perhaps the simplest that testing proce-
dures are anticonservative.

Hitchhiking (Maynard Smith and Haigh 1974) is the most
likely driver of excessive significance in E&R experiments:
most significant tests are neutral SNPs in linkage disequilib-
rium (LD) with selected loci (Huang et al. 2014). Hitchhiking
requires an initial association between loci in the ancestral
population(s) and also minimal subsequent recombination
over the course of selection. Relevant to both, natural and
laboratory-adapted D. melanogaster populations are poly-
morphic for large inversions and have dramatically sup-
pressed recombination near centromeres (Corbett-Detig
and Hartl 2012; Kapun et al. 2014; Tobler et al. 2014), po-
tentially resulting in a large number of false-positive candi-
date SNPs (Tobler et al. 2014; Franssen et al. 2015; Barghi
et al. 2017). We chose D. simulans for this study to evaluate
rapid evolution in a population largely free of inversion poly-
morphism. LD declines rapidly with the physical distance be-
tween sites in D. simulans (Signor et al. 2018), but as
emphasized by Nuzhdin and Turner (2013), sampling of hap-
lotypes to form experimental populations can generate
higher levels of LD (even at considerable physical distance)
than are present in the natural population. The contribution
of these sampling-generated associations to parallel evolu-
tion of replicate E&R populations can be mitigated by found-
ing experimental replicates from distinct samples of the
natural population.

Identifying selected loci

A variety of analytic techniques have been developed for E&R
studies, applied both at the scale of individual SNPs [e.g.,
Burke et al. (2010)] and for windows of closely linked poly-
morphisms (Kelly et al. 2013; Beissinger et al. 2014, 2015). In
some cases, tests have been designed to the specific features
of the experiment (Turner et al. 2011; Turner and Miller
2012; Huang et al. 2014). Most frequently, the number of
sequencing reads called to each alternative SNP base in each
population are used as counts in a contingency table analysis;
Fisher’s exact test for a single evolutionary replicate (Burke
et al. 2010) or the Cochran–Mantel–Haenszel test (CMH) to
aggregate signal across replicates (Orozco-terWengel et al.
2012; Huang et al. 2014; Kofler and Schlötterer 2014;
Franssen et al. 2015; Barghi et al. 2017). As emphasized by
Orozco-terWengel et al. (2012), contingency tables test only
whether allele frequency differs between population, not
whether differences imply selection. For this, researchers
have employed simulations of neutral evolution to establish
a threshold for the CMH statistic. Here, we implement a CMH
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testing pipeline, including neutral simulations, as a contrast
to our likelihood/permutation method.

The genome-wide response in an E&R experiment (evolu-
tion at both selected and neutral loci) depends on the number/
position of selected loci, how loci interact to determine fitness,
the nature and extent of LD, the recombination map, and
the experimental design. Given these myriad factors, we do
not have a clear picture of how much hitchhiking is to be
expected in a typical E&R experiment and thus a means to
infer direct targets of selection. Here, we build a simulation
framework to predict the full observed response of an E&R
experiment (Kofler and Schlötterer 2014; Vlachos and Kofler
2018). The design of the experiment (how replicate popula-
tions are founded, howmany individuals reproduce, and how
many generations) is directly reiterated in this model to pre-
dict change of every polymorphism in the genome. The sim-
ulation is parameter rich, but prior work on D. simulans and
its close relative D. melanogaster underpin essential assump-
tions (e.g., the recombination map, patterns of LD in nature)
and observations from our specific experiment specify other
features such as the number and genomic positions of poly-
morphisms and initial allele frequencies. Finally, we extract
essential information not only from the extreme outliers (pu-
tative targets of selection), but from observations on the “typ-
ical SNP.” The amount and variability of change at neutral
loci dispersed across the genome is an indicator of genetic
draft and thus of selection (Gillespie 2001; Neher and
Shraiman 2011). The simulation model provides important
insights on the observed experimental results, not only in
terms of the number of significant tests but also on the
allele frequency spectrum (AFS) at fitness determining loci.

Methods

The experiment

Founding populations: The ancestral populations of this
experiment are from the offspring of wild-collected mated
D. simulans females collected from compost piles at Orchard
Pond Organic Farm in Tallahassee, Florida (Universal Trans-
verse Mercator Grid coordinates 16N 761030 3386162)
between October 28 and November 25, 2014. From each
wild-collected female, we collected two male and two female
offspring after verifying that male offspring wereD. simulans.
One male and one female offspring were flash-frozen imme-
diately to represent the founding generation (kept at 280�
until DNA extraction). The other male and female were used
to found replicate laboratory populations. We initially estab-
lished six replicate population cages, using one male and one
female offspring of 250 wild-caught mated females per rep-
licate and using the offspring of different wild female progen-
itors in each replicate. Approximately 3 weeks after founding
these populations (December 2–3, 2014), the six cages were
combined two at a time to form the A, B, and C population
replicates. Equal numbers of flies were used from the pair of
cages and mixed to create new cages. Thus, each of the A, B,

and C populations was founded with �1000 individuals
descended from non-overlapping sets of 500 wild-caught,
mated female parents. The rapid progression from collect-
ing wild flies to establishment of experimental populations
minimized inbreeding of founders.

Laboratory rearing and maintenance: Flies were housed in
plexiglass containers, 6028 cm3 in volume, supplied with six
177-ml plastic bottles containing 50 ml of standard corn-
meal-yeast-dextrosemedia. Every 2weeks, we replaced three
of the six bottles with bottles containing fresh media; each
bottle remained in a cage for 4 weeks. We replaced plexiglass
containers every 28 days, in sync with a media change. Only
dead flies were removed when cages were cleaned, and as a
consequence, populations had overlapping generations. We
censused cages approximately every 5 weeks using digital
images, obtaining population estimates: A (mean = 1277,
range = 832–1635), B (mean = 849, range = 672–1147),
and C (mean = 1187, range = 963–1620). Images were
counted three times and the numbers of the three counts
were averaged. Means might be underestimated if flies were
obscured by other flies in the images.

We maintained populations under constant lighting and
temperature conditions (12 hr light/dark cycle, 25�) for
�195 days from initial collection (population A: founded
from females collected October 8–November 1, 2014, de-
scendants preserved May 12, 2015; B: founders collected
November 4–11, descendants preserved May 22; C: founders
collected November 19–25, descendants preserved June 5).
That is, populations were sampled�7months after collection
of the wild founders. From the last generation of each pop-
ulation, we collected 500 males and 500 females by aspira-
tion. We snap-froze flies on dry ice at 280� until DNA
extraction. For DNA extraction and sequencing, we pooled
the 1000 preserved offspring of the founding females to form
ancestral samples A0, B0, and C0. Similarly, we pooled the
1000 flies collected at the end of the experiment to form
descendant samples (A7, B7, and C7), with “7” designating
months since population founding. We extracted and se-
quenced libraries simultaneously for all six populations.

Library preparation and level of sequencing: We homoge-
nized whole flies (500 males and 500 females from each
ancestral and descendant population) and extracted DNA
using DNAzol reagent (Thermo Fisher). We fragmented DNA
using a Covaris E220 Ultrasonicator and size selected to pro-
duce insert lengths of 380–480 bp. We prepared one sequenc-
ing library for each population using the NEBNext Ultra DNA
Library kit for Illumina (New England Biolabs, Beverly, MA)
followingmanufacturers recommendations, a unique index for
each [New England Biolabs (NEB) indices 13–15 for A0, B0,
and C0; indices 16, 18, and 19 for A7, B7, and C7, respec-
tively]. In the first sequencing run, we multiplexed ancestral
population samples into one lane, and sequenced multiplexed
descendant populations in three additional lanes. Because one
library (C7) was overrepresented in the resulting data, we
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performed an additional sequencing run using the five
remaining libraries (A0, B0, C0, A7, and B7), which were
multiplexed and run on a single lane. All sequencing was
conducted using an Illumina HiSeq 2500 instrument at the
Translational Science Lab at Florida State University, using
V3 chemistry. We sequenced 150 bp on each of the paired
ends. In total, we sequenced DNA from 6000 flies.

Sequence analysis: We edited read pairs (fastq format) from
each population sample using Scythe (https://github.com/
vsbuffalo/scythe/) to remove adaptor contamination and
then with Sickle (https://github.com/najoshi/sickle/) to
trim low-quality sequences. We used the mem function of
BWA (Li 2013) to map read pairs to version r2.02 of the D.
simulans reference genome, updated from the build pub-
lished by Hu et al. (2013). We used picard-tools-1.102 to
eliminate PCR duplicates from the mapping files; an impor-
tant step given that PCR duplicates represent pseudoreplica-
tion in bulked population samples. Prior to variant calling, we
applied the RealignerTargetCreator and IndelRealigner to
each population bam file (McKenna et al. 2010). Bam files
were input to Varscan v2.3.6 to call SNPs and indels. We
piped the output from Samtools (Li et al. 2009) mpileup
(version 1.2) to the varscan (Koboldt et al. 2009) functions
mpileup2snp (for SNPs) and mpileup2indel (for indels). We
obtained the read count (number of alleles) and reference
allele frequency at each variant site for each sample. We sup-
pressed indels in downstream analyses as well as all SNPs
within 5 bp of an indel, and limited attention to the major
chromosomes (X, 2R, 2L, 3R, and 3L).

We scored read depths within each population prior to
filtering. The median depth at X-linked loci was very close to
3/4 the corresponding value for autosomal loci (ratio = 0.77
for ancestral populations and 0.75 for descendant popula-
tions). For subsequent analysis, we eliminated polymor-
phisms if the read depth across populations was too low for
meaningful tests or atypically high across samples. For in-
clusion of a SNP, we required at least 60 reads per population
for X-linked and 80 for autosomal loci. We excluded SNPs if
the total read depth within ancestral and descendant popu-
lations (considered separately) was greater than the 95th
percentile of the corresponding depth distribution, with sep-
arate filtering for autosomal and X-linked sites (the latter
have lower coverage). Afterfiltering, 291,272 SNPs remained
(58,647, 49,940, 69,010, 71,289, and 42,386 on 2L, 2R, 3L,
3R, and X, respectively). The read depth and allele frequency
at each SNP in each population is reported in Supplemental
Material, Table S1.

Comparison to other data sets: We attempted to ascertain
SNPs investigated in this experiment within two other recent
sequencing studies of D. simulans. Machado et al. (2016) and
Signor et al. (2018) also mapped D. simulans reads to the
genome assembly published by Hu et al. (2013). However,
each study used different versions of this genome build with
different coordinates for homologous sites: version r2.01a for

Machado et al. (2016), version r2.01b for Signor et al.
(2018), version r2.02 for this paper. To compare loci, we
extracted the 100 bp sequence containing each of our
291,272 SNPs in the r2.02 reference genome and mapped
these sequences to the two previous genome builds (using
BWA and Samtools as described above). In most but not all
cases, the r2.02 sequence mapped to a single unique location
in the r2.01a and r2.01b genomes. Comparing homologous
sites, we find that polymorphism observed in one study is
often not reported in one or both of the others. This may be
biological (if one of the alleles is fixed in the other popula-
tions) or bioinformatic (the polymorphism is present but not
ascertained in the other populations), but the latter is clearly
a major factor. Signor et al. (2018) report many more poly-
morphisms than Machado et al. (2016) or this study, despite
sequencing a much smaller collection of flies (170 inbred
lines), probably because variants are more confidently called
in inbred lines, each sequenced to high depth, than in pooled
population samples. Despite these issues, it is reassuring that
when we do observe the same polymorphism across samples,
the same bases are typically identified as alternatives in each
population. This is demonstrated for a relevant set of loci in
Table S2.

Machado et al. (2016) identified D. simulans SNPs exhib-
iting clinal variation, and this set was also enriched among
clinal SNPs in D. melanogaster, suggesting that spatially vary-
ing selection operates on these loci. They surveyed eight nat-
ural populations of D. simulans over a geographic transect
(Florida to Maine). We reanalyzed these data to test whether
putatively selected loci from the present study are more or
less geographically divergent than neutral loci. We deter-
mined the mean Fst (Wright 1943) within windows around
our significant loci and compared this value to a null distri-
bution established by randomly sampling windows from the
genome as a whole (all ascertained loci). In this context, an
ascertained locus is the sequence flanking each of our
291,272 SNPs (r2.02 build) that can be uniquely and per-
fectly matched to a sequence in the main chromosomes of
the r2.01a build. Given a set of SNPs, we calculated Fst at
each site based on the counts of reads for each allele in each
population. We excluded SNPs not scored in all eight popu-
lations or with ,125 reads in total. When windows overlap-
ped, a SNP was only used once. Scoring individual reads as
binary variables (0 if reference, 1 if alternate), the one-way
ANOVA provides an unbiased estimate for the within and
among group variance. Fst is the ratio of among group to total
variance. We averaged Fst across all sites for each specific
dataset. We conducted these calculations for a range of win-
dow sizes.

Analysis of evolutionary change at SNPs

Null divergence: The raw data for each polymorphism is
12 numbers: the counts of reads for each alternative SNP
base in each of the six populations (A0, B0, C0, A7, B7, and
C7). The statistical treatment of data are based on trans-
formed allele frequencies (Fisher and Ford 1947; Walsh
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and Lynch 2018). If pAandpD are allele frequencies in an-
cestral and descendant populations, respectively, then
xA ¼ 2sin21ð ffiffiffiffiffi

pA
p Þ and xD ¼ 2sin21ð ffiffiffiffiffi

pD
p Þ, with x measured

in radians (the A/D subscript denotes ancestral and descen-
dant, respectively). This angular transformation is useful be-
cause, to a first approximation, the variance in change owing
to genetic drift and sampling is independent of the true allele
frequency (Fisher and Ford 1947). As a consequence, a com-
mon test can be applied across polymorphisms despite differ-
ing initial allele frequencies (Kelly et al. 2013). At a neutral
autosomal SNP, divergence ðxD 2 xAÞ is normally distributed
with mean 0 and variance 1

2nA
þ 1

2nD
þ 1

mA
þ 1

mD
þ t

2Ne
, where m

is read depth at the locus after sequencing, n is number of
diploid individuals sampled for sequencing, Ne is the effective
population size, and t is the number of generations. While
five of these quantities are known, Ne is not. However, we can
use the observed variance in divergence to estimate Ne. We
focus on autosomal loci given thatNe differs between autosomes
and the X chromosome (Charlesworth 2009), and 85% of our
SNPs are on the autosomes. We estimate the “null variance,” v,
on a population and chromosome specific basis using:

v ¼ V*2Vrd; (1)

where V* is a robust estimator for the variance in divergence
between ancestral and descendant populations and Vrd is the
read depth variance. V* is calculated from the interquartile
range of the distribution of changes in allele frequency (Kelly
et al. 2013). Vrd is estimated from the average of 1

mA
þ 1

mD

across all SNPs. v aggregates the dispersive processes shared
by all neutral SNPs; stochastic changes in allele frequency
over the course of the experiment as well as the sampling
of flies into bulks and any differential representation of the
DNAs from each fly within the DNA pool. To estimate v for
each chromosome, we consider SNPs with 0.05 , pA, 0.95
to avoid boundary effects. In the neutral case,

E½v� ¼ t
2Ne

þ Vs; (2)

where Vs is the total variance associated with bulk formation.
With selection, v may be determined as much (or more) by
genetic draft than by genetic drift.

Tests for selection: Divergence between ancestral and de-
scendant populations is statistically independent between
replicates because each populationwas founded from distinct
flies and there was no gene flow between replicates. With
neutrality, E½xA 2 xD� ¼ 0 and the variance is given by n, mA,
and mD. The likelihood for this null model at each SNP (LL0)
is the product of three normal densities. We contrast the
likelihood of the data under this model to an alternative
allowing parallel evolution across replicates: E½xD 2 xA� ¼ d,
where d is the (shared) change in allele frequency driven by
parallel selection across replicate populations. For this alter-
nativemodel, themaximum likelihood estimate (MLE) ofD is
d̂ ¼ wAdxAþwBdxBþwCdxC

wAþwBþwC
, where the dx terms are the observed

ðxA 2 xDÞ in each replicate and the w are replicate specific
weights: w ¼ 1

vþ 1
mA

þ 1
mD

[see Monnahan and Kelly (2017) for

derivation]. The likelihood ratio test (LRT-1) for parallel evo-
lution is 2(LL1–LL0). This is not a strict likelihood in the sense
that n are treated as constants and not free parameters, but
the error is minimal given that n are estimated from the ag-
gregate of thousands of variant sites (Monnahan and Kelly
2017). Also, we use permutation (and not the parametric
chi-squared distribution) to assess genome-wide significance
LRT-1. To create a permutation replicate, we randomly scram-
bled observed standardized divergences across SNPs within
each replicate population and then calculate LRT-1 at each
SNP. The distribution of divergences (across SNPs within each
population) is preserved by this procedure and so the test is
based entirely on consistency of response of the sameSNPacross
replicates (Table 1). We extracted the largest LRT-1 value from
each permuted data set and repeated the procedure 1000 times.
Importantly, LRT-1 is specific to each SNP and its value is not
affected by the (correlated) responses of neighboring SNPs.

A second likelihood ratio, LRT-2, tests for heterogeneous
divergence among populations. Here, we allow the expected
change, E½xD 2 xA�, to be population specific. With three rep-
licates, there are three free parameters. The MLE for the dis-
tinct d of each population is simply the observed xD 2 xA.
LRT-2 ¼ 2ðLL2 2 LL1Þ. We compare LRT-2 to the chi-squared
distribution with two degrees of freedom. Permutation cannot
be used for LRT-2 because the null hypothesis, that selection is
consistent across replicates, is not reiterated by randomizing
SNP locations (Table 1).

We apply two additional tests at the scale of genomic
windows. LRT-1 significance requires the same SNP to show
a strong parallel response, which may not occur at a selected
site because allele frequency estimates are encumbered with
substantial error. Closely linked sites that all respond to
selection owing to hitchhiking will exhibit differing signals
across replicate populations, owing to differing estimation
error. Linked SNPs might also exhibit different phase with the
selected locus in different replicate populations. To capture
theselection signalat such loci,wedelineatednonoverlapping
windows, each of 25 adjacent SNPs.Within each replicate, we
identified the SNP with the maximum absolute value of
(standardized) divergence between ancestor and descendant
in each window (the maximum value for the window). We
then used the sum of window-specific scores across replicates
as a test statistic; loci exhibiting a strong response across
replicates will have large sums (extreme windows test in
Table 1). We established a significance threshold by permut-
ing entire windows, preserving the linkage relationships
among neighboring sites. The selection regimes that are dis-
tinctly measured by LRT-1 (parallel selection) and LRT-2
(heterogeneous selection) could both contribute positively
to the extreme windows test.

Finally, we calculated the Spearman rank correlation (R)
of window scores in pairwise contrasts between populations
(A vs. B, A vs. C, and B vs. C). The average R measures the
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general tendency for magnitude of change per locus to vary
consistently across independent replicate populations. Unlike
the first three tests, it is not based on outliers. The permuta-
tion procedure for extreme windows is suitable here, except
with the R values recalculated with each permuted data set
and entire windows permuted. We first applied the window
rank correlation test to the entire data set (�11,500 win-
dows) and then to a more restricted collection of windows
(�8500). The latter excluded regions near centromeres and
telomeres (low recombination) and also excluded windows
that were diagnosed as significant by the extreme windows
test.

The simulator

The program tracks each chromosome of each individual in
thepopulationas a series of binary values (theallele present at
each locus). The position of each of the 291,272 SNPs in the
simulation matches positions in the experiment. To optimize
use of computer memory, the program compresses genotypic
information using the method of Sukumaran and Holder
(2011). The population is defined as Nm male and Nf female
diploid adults formed each generation (only one X haplotype
in males). Each subsequent generation is formed by ran-
domly selecting parents and synthesizing gametes from those
parents to create a new set of Nm males and Nf females. In
simulations with selection, individuals are chosen with prob-
abilities proportional to their fitness (which is a function of
the genotype at the subset of “selected” loci). We first con-
sider neutral evolution and then two different models of se-
lection. In the truncation selection model, individuals have
fitness 1 if their genetic score (a sum of effects across loci)
exceeds the threshold and 0 otherwise. In the multiplicative
model, each site affecting fitness has a selection coefficient
(s) of 1, 1+s, or 1+2s. Individual fitness is a product across
loci. For both selection models, we assume that hemizygous
male genotypes have the “homozygous” effect, e.g., 1 or 1
+2s. A simulation replicate starts with creation of the found-
ing population (described below) followed by sampling of
three distinct experimental populations, each propagated
for 15 generations (selection occurring in 14 of those gener-
ations if indicated).

We do not have a precisemeasure of generation time in the
population cages, but our estimate for the simulations is based
on the observation that D. simulans and D. melanogaster have
very similar life history parameters under standard labora-
tory conditions (Sameoto and Miller 1966; Sevenster and
Vanalphen 1993). We used the effective generation time in
population cages of D. melanogaster of 13–15 days estimated
by Frydenberg (1962), consistent with several experiments
of this type (Crow and Chung 1967; Muir and Bell 1981). In
each population, we simulate data collection to mimic the
actual experiment with read depths at polymorphic sites
equivalent to the observed values.

Two modeling challenges are how to synthesize the
“founding haplotypes,” i.e., the genome sequences of gener-
ation 0 individuals, and how to impose recombination events

in a realistic manner along chromosomes. Regarding the first
challenge, the sequence data from our pooled generation
0 samples (A0, B0, and C0) provide strong information about
allele frequencies, but not about haplotype structure in the
ancestral population. Strong information about haplotype
structure is provided by the inbred lines sequencing of
Signor et al. (2018), but this is for a different population of
D. simulans. LD between alleles is often idiosyncratic to pop-
ulation, and for this reason, we do not extract specific LD
values from the Signor et al. (2018) lines. Instead, we use
these sequences (downloaded from https://zenodo.org/
record/154261#.W2hyqhhKhrk) to estimate the overall
strength of association between loci, or more precisely, the
probability distribution of LD conditional on the frequencies
of alleles at each locus and the distance between sites (Table
S3; python scripts included in File S1). We established dis-
tinct probability tables for autosomes and the X chromosome
[see Table 1 of Signor et al. (2018)] and also noted elevated
LD in low recombination regions of the genome (near cen-
tromeres and telomeres; Figure S1 and Table S4). We sepa-
rated these regions and calculated LD probability tables
based on the “normal recombination” regions of the X and
autosomes (Table S3). However, to simulate LD within re-
duced recombination areas, we adjusted the probabilities to
produce average LD values similar to those observed in
low recombination regions in the real data. We found that
increasing the probability of the lowest value for D’
(Lewontin 1964) by 10% and reducing the probability of
all intermediate values by 20% yielded a good match be-
tween simulated and observed values for average r2 vs. ge-
nomic distance (Table S4).

Initial allele frequencies and SNP locations were copied
directly from the ancestral populations (estimated from the
A0, B0, andC0data). The foundingpopulation of a simulation
replicate is synthesized by stochastically sampling LD values
conditional on allele frequencies and locations. The three
experimental replicates within a simulation replicate are
sampled from the same founding population, but different
simulation replicates will have distinct founding populations
owing to the stochastic determination of LD. Given a founding
population, we sample the haplotypes of each animal in each
replicate population as a vector of 0s and 1s (reference or
alternative base at each SNP). We use a “target locus” ap-
proach for generating this vector, which is the length of the
number of SNPs on each chromosome arm. A total of 238 of
the 291,272 SNPs are denoted as target loci, located at
�500 kb intervals across the genome. In simulations with
selection, the fitness determining loci are a subset of the tar-
get loci. To simulate a haplotype, we first randomly sample
alleles at target loci given site-specific allele frequencies. We
assume no LD between target loci so these samples are in-
dependent. Given the allele at a target locus, we fill in SNPs
sequentially by moving out from each target locus. The
remaining 291,034 SNPs are “partners” to a specific target
locus (the closest one), which is always within 250 kb. The
probability of obtaining a particular allele (0 or 1) at a
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partner site is determined by the allele frequency at that site,
the identity of the allele at its target locus, and the LD be-
tween these sites (determined previously when the founding
population was simulated). We use the target locus approach
because the full vector for a chromosome is not accurately
described as a Markov chain. Table S4 indicates much
greater LD is observed between distant SNPs than is
obtained if one simulates a chromosome by progressing
sequentially and conditioning only on the last SNP. Our
simulations with selection specify the fitness determining
loci as a subset of the targets. We thus reiterate the linkage
between selected and neutral loci that is essential to hitch-
hiking. However, the target locus approach may fail to ac-
curately describe (and likely underestimate) associations
between closely linked neutral loci (when neither are tar-
get loci).

Gamete formation depends on the overall rate of crossover
per chromosome and the locational distribution of these
events. We assume no recombination in males. True et al.
(1996) provide reasonable estimates for the map length (re-
combination probabilities) per chromosome arm in D. simu-
lans females: 2L: 0.570, 2R: 0.655, 3L: 0.555, 3R: 0.830, and
X: 0.590. The location of crossovers, when they occur, is
probabilistic. Fine-scale recombination data are available
from D. melanogaster (Comeron et al. 2012), but not yet for
D. simulans. For the present study, we simulate recombina-
tion given the overall rates from True et al. (1996), but use
the location distribution from D. melanogaster (Comeron
et al. 2012), which exhibits reduced recombination rates near
telomeres and centromeres. Recombination probabilities as a
function of genomic location (500 kb intervals) are reported
in Table S5. This component of the simulation will be im-
proved when fine-scale recombination data from D. simulans
becomes available.

For each parameter set (specified values forNm andNf, the
number and location of selected sites, selection coefficients at
each site, etc.), we simulate the entire experiment 1000 times.
We then subject the simulated data from each replicate to the
same analysis pipeline as applied to the real data. We first
consider neutral evolution to confirm the validity of Equa-
tions 1 and 2 for estimating Ne, and also to provide the null
distribution for the CMH tests that are subsequently applied
to both real and simulated data. We next consider a range of
cases with both truncation and multiplicative selection. We
evaluate these outputs in relation to multiple aspects of the
observed results including the magnitude of allele frequency
change at selected loci, the mean and variability in the null
variance (v) across chromosomes and replicate populations,
and the distribution of test results obtained by differ-
ent testing procedures. The simulation programs were writ-
ten in C and are included in File S1.

Data availability

Table S1 summarizes responses at the full set of 291272
SNPs. Table S2 has the SNPs significant for LRT-1 where a
polymorphism was also observed in the other D. simulans

experiments. Table S3 contains the two locus haplotype fre-
quencies conditional on allele frequencies and the distance
between loci. Table S4 is a summary of LD estimates with
varying distance. Table S5 shows the crossover location dis-
tribution used for simulation. Table S6 shows the 138 poly-
morphisms with an LRT-1 value (test for parallel selection)
that exceed the permutation threshold of 47.0. Table S7
shows the maximum LRT-1 value (genome-wide) for each
of 1000 permutations of the data. Table S8 shows all SNPs
that were significant by either LRT-1 or CMH. Figure S1 re-
ports LD measured as r2 as a function of chromosomal loca-
tion from Signor et al. (2018). Figure S2 is the average
Spearman correlation obtained by permutation of windows
(simulations with selection) after excluding windows in
low-recombination regions and those containing LRT-1–
significant SNPs. Figure S3 is the distribution of significant
LRT-1 tests per experiment for 1000 simulations of the
base parameter set. File S1 is the code developed for anal-
ysis and simulation. Sequence data are available from the
NCBI trace archive (PRJNA 511980; BioSample accession
numbers SAMN10654443, SAMN10654444, SAMN10654445,
SAMN10654446, SAMN10654447, andSAMN10654448). Sup-
plemental material available at Figshare: https://doi.org/10.
25386/genetics.7124963.

Results

A total of 138 polymorphisms were genome-wide significant
for LRT-1, indicating parallel adaptation (Figure 1, Figure 2,
and Table S6). The LRT-1 value for these SNPs was larger
than the most extreme single test in 95% of the permuted
data sets (47.0 is the permutation threshold; Table S7).
These sites do not all represent distinct selected loci; signif-
icant variants were often closely linked. Figure 1 illustrates
the largest LRT-1 value per 100 kb window along each chro-
mosome. There is clearly an aggregation of strong signal in
regions of low recombination. The clumping of LRT in these
regions nicely parallels the pattern of high LD among distant
sites (Figure S1). If we bin significant tests that are closely
linked (within 1 mb), then 30 distinct loci are evident as
putative targets of selection across the genome (gold trian-
gles in Figure 1).

There was only one genome-wide significant test for het-
erogeneous selection (LRT-2) across replicate populations: X
chromosome position 14,386,563 (P= 2.813 1029) and the
extreme window test yielded only 21 significant loci, all of
which contained SNPs that were significant for LRT-1 (Figure
1 and Table S9). The window rank correlation, which tests
for correlation in allele frequency change across each pair of
populations, was significantly positive. With all windows
included (Figure 3), the average R across pairwise contrasts
of populations was 0.11; much greater than any value
obtained by permutation. If we exclude highly divergent
windows and those in low recombination regions, the aver-
age R is reduced to 0.061, which is still highly significant
(P , 0.001; Figure S2).
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The striking feature of the SNPs that evolved in parallel
(identified by LRT-1) was that nearly all have intermediate
frequencies in the natural population (Figure 2A). The overall
AFS in the ancestral population (blue bars) is typical of
natural population samples of D. simulans (Signor et al.
2018). Less than half of SNPs have a minor allele frequency
(MAF) .0.1; however, among SNPs testing positive for par-
allel evolution (orange bars), however, 98% of SNPs testing
positive for parallel evolution had MAF.0.1 in the ancestral
population and 88% had MAF . 0.2 (orange bars). This
pattern is unchanged if we thin the data by taking only the
most significant SNP within each of the 30 loci remaining
after binning (see above). Among these SNPs, MAF , 0.1
for only one SNP and . 0.2 for 26 out of 30.

Large change at intermediate frequency polymorphisms is
notageneral featureof thedata.Acrossall SNPs,divergence in
transformed allele frequency was essentially homoscedastic,
although this is not true of untransformed frequencies (Figure
2B). The overall distribution of changes in transformed fre-
quencies was also highly normal (Figure 2C), justifying use of
the angular transform (Fisher and Ford 1947). The null var-
iance in divergence (v) varied substantially among chromo-
somes and replicate populations (Table 2) with an autosomal
average of v= 0.0185. We estimated Ne using Equation 1:
15
2Ne

¼ 0:01852 3
2000 , yielding Ne = 440.9. Here, 15 is the es-

timated total number of generations (14 of selection plus the
production of one progeny generation, assuming a 14-day
generation time) and 3/2000 is Vs, the estimated variance
owing to three sampling events, each involving 1000 diploid
flies (from ancestrally sampled females to ancestral DNA
pool, from ancestrally sampled females to generation 0 of
the experimental population, and from the final generation
of the descendant population into the descendant DNA pool).
In this calculation, we are ignoring any differential represen-
tation of individual fly DNA within the pools and also the
unknown relatedness of flies between ancestral pool and an-
cestral population 0 (which depends on number of sires per
wild-caught pregnant female). Accommodation of these fac-
tors might slightly change the estimated Ne but would not
affect the LRT tests for selection. Each of the tests in Table 1
depends only on v and not on the underlying components
(drift vs. bulk sampling variance). The numerical estimate
for Ne is used only to establish a null distribution for the CMH
test whenwe contrast it to LRT-1 (see Simulation results below).

Genomic regions containing LRT-1–significant SNPs
exhibit elevated geographical variation (high Fst) in the
Machado et al. (2016) natural population survey (Table 3).

With our filters, the genome-wide mean Fst was 0.0150
across the eight populations (n = 2,340,197 SNPs) and
nearly unchanged if we focus on windows around the
281,917 SNPs that could be ascertained in the r2.01a genome
build (Fst = 0.0151, n = 330,597 SNPs). Among LRT-1–
significant SNPs, wewere able to ascertain 119 out of 138 loci
for subsequent Fst calculation. Mean Fst around putatively
selected sites declined with window size (Table 3), but was
always much greater for selected loci than for the back-
ground genome (45–65% inflation). The Fst estimates for
selected loci always exceeded even the highest values
obtained by resampling (P , 0.001 for all window sizes).

Simulation results

We first performed neutral simulations with Nm = Nf =
220 following the empirical estimate of Ne reported above.
As predicted by Equations 1 and 2, the mean v across each
autosome of each simulated population was very close to the
average from Table 2 (0.0185). The LRT distributions were
slightly inflated relative to the predicted chi-squared distri-
butions (mean LRT-1 = 1.06 instead of 1.0, mean LRT-2 =
2.09 instead of 2.0), which suggests that chi-squared P-values
might be marginally anticonservative. However, not a single
LRT-1 value from any of the 1000 simulation experiments
exceeded the permutation threshold (47.0) from the real
data. These neutral simulations also established the null dis-
tribution for the CMH tests, which have been used to test for
parallel evolution in E&Rexperiments. We extracted the larg-
est CMH value from each simulation replicate and found the
95th percentile of these maxima: 71.5. Imposing this thresh-
old on the SNP-specific CMH values in the real data, we found
that 402 tests exceed 71.5 (Table S8), which is �3 times the
number from LRT-1. All but one of the LRT-1–significant
SNPs were within the CMH set.

For simulations with selection, Figure 4 contrasts multi-
plicative and truncation selection models over a range of
parameter sets in which 30 loci determine fitness (number
based on observed results). In these simulations, the selected
loci were uniformly positioned over each chromosome. The
initial frequencies at selected sites were taken from the 30 se-
lected loci in the real data with the specific allele frequency
assigned to each SNP randomized with each simulation rep-
licate. The direction of allelic effect was random except when
the minor allele was,20%. In this situation, the minor allele
increased fitness (as in the real data, Table S6). The average
allele frequency change (x-axis) increased with the strength
of selection by either model, but the magnitude of stochastic

Table 1 A summary of the tests introduced in this study

Test statistic Signal to be measured Null distribution

LRT-1 Parallel selection at individual SNPs Permutation of SNPs or x2 with 1 d.f.
LRT-2 Heterogeneous selection at individual SNPs x2 with 2 d.f.
Extreme windows Loci with extreme response across replicates Permutation of windows
Window rank correlation Consistency of response across replicates Permutation of windows
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change generated by linked selection was much greater for
multiplicative than truncation selection. Here, stochastic
change at neutral loci (drift and draft combined) is measured
by v on the y-axis. In the real experiment, the average esti-
mated allele frequency change at the 30 selected loci was
�0.36. At this point in Figure 4, v � 0.0185 with truncation
selection but is much greater with multiplicative selection
(v � 0.032).

From the Figure 4 simulations, we chose the truncation
model with 63% selected as our base parameter set, given the
match to observed allele frequency change andmean v. It also
matched the real experiment with respect to the total number
of significant LRT-1 tests per simulation replicate (Figure S3)
as well as the genomic location of significant tests. Specifi-
cally, there was aggregation of strong signal in regions of low
recombination, illustrated with four randomly chosen repli-
cates in Figure 5 (compare with 3L in Figure 1). Unexpect-
edly, the 30-locus model generated a large genome-wide

correlation of divergence within genomic windows between
replicate populations using the window rank correlation test,
which matches the association observed in the data (see
shaded distribution in Figure 3). The simulations also reiter-
ated the observed window correlation even if low recombi-
nation regions are suppressed (Figure S2). Finally, the
parameter set with 1600 zygotes and 63% of individuals se-
lected yields an adult population size close to our estimated
values from the experiment (�1000).

To explore the difference in draft between truncation
and multiplicative selection, we calculated the variances
in allele frequency change (across all SNPs within each
generation) and the covariance in change across genera-
tions. The total change in allele frequency is the sum of

per-generation changes ðP
t

i¼1
DpiÞ and the variance is thus

Pt

i¼1
Var½Dpi� þ

Pt

i¼1

Pt

j6¼i
Cov½Dpi;Dpj�. As noted by Robertson

Figure 1 The maximum LRT-1 value (parallel selection) per 100 kb window along each chromosome is indicated by vertical bars. Triangles (x-axis)
indicate genome-wide significant LRT-1 tests with gold denoting the most significant test per “locus.” The floating dots indicate windows significant for
parallel change.
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(1961), selection can generate a positive correlation in
Dpi across generations even for neutral SNPs, which he
called the “inbreeding effect” of selection. In our simulations,
the stronger draft of multiplicative selection is caused by this
across-generation covariance (Table S10). With parameter
sets that yield the same average amount of change at selected

SNPs, the per-generation Var½Dpi� is similar between multi-
plicative and truncation models, and actually slightly higher
for truncation. However, Cov½Dpi;Dpj� is much greater with

multiplicative selection. The
Pt

i¼1
Var½Dpi� term contributes

only approximately one quarter of the variance in cumulative

Figure 2 (A) The allele frequency spectrum
is given for all SNPs in the ancestral popu-
lations (blue bars) and for those that tested
significant for parallel selection (orange
bars). The green broken lines denote pro-
portions observed in a simulation of parallel
selection on 30 loci with initial allele fre-
quencies sampled from genome-wide distri-
bution (see text). (B) The average absolute
change in z (blue bars) and of untrans-
formed allele frequency (orange bars) as a
function of initial allele frequency. The latter
is multiplied by 20 to be on same scale as
the former. (C) The distribution of changes
in z between ancestral and descendant pop-
ulations of replicate C (all SNPs). For B and
C, z is the difference in transformed allele
frequency (xA – xD) divided by the SD.

952 J. K. Kelly and K. A. Hughes



change with multiplicative selection, with the remainder due
to positive intergenerational covariances. The two compo-
nents are about equally important with truncation selection
(Table S10).

The distribution of individual reproductive success is very
different between truncation and multiplicative models (Fig-
ure S4). Truncation selection actually yields greater variance
in individual fitness, althoughmultiplicative selection ismore
likely to produce highly fecund individuals. However, the
overall draft effect depends on the multigenerational gene-
alogy of the population, on how likely highly fecund in-
dividuals are to beget highly fecund descendants. The
multigenerational dependence is evident in the “covariance
time lag” predicted by Robertson (1961). High values for
Var½Dpi� are evident in the first generation of selection, but
the magnitude of Cov½Dpi;Dpj� builds up incrementally over
the first few generations (Table S10).

Figure 6 compares LRT-1 and CMH tests for simulations of
the base parameter set using the thresholds from the real
experiment (47.0 for LRT-1, 71.5 for CMH). There were over
twice as many CMH as LRT-1 significant tests, mirroring the
results from the real data (Table S8). We can classify each
SNP as a causal site (leftmost group) or as a hitchhiker. The
latter is subdivided into three outcomes: within 10 kb of
selected SNP in a normally recombining region, over 10 kb
distant from a selected SNP in such a region, or within a low
recombination region that contains a selected locus. LRT-1
was considerably more precise in identifying causal SNPs
(Figure 6, top): 15.2% of LRT-1 tests were at causal loci in
the simulation vs. 8.6% for CHM. Both tests produced an
abundance of significant results in low recombination regions
under linked selection (rightmost grouping in Figure 6), but
distant hitchhikers in normal recombination regions were
more likely to appear as significant for CMH.

Much of the CMH/LRT-1 difference owes to the fact that
CMH was more permissive under the conditions of this
experiment (number of populations, read depths, etc.).
The CMH-limited category reduced the number of CMH

significant tests to the same number as for LRT-1 by inflating
the CHM threshold above 71.5 on a replicate specific basis
(Figure 6). This greatly reduced the difference between test-
ing methods. Precision in identifying causal sites was only
slightly higher for LRT-1 than CMH-limited (within 10%)
and many of the CMH significant tests that were far from
selected sites are erased. We also considered the effect of
increasing read depths because our experiment had relatively
low depths: 5–10% of the number of chromosomes sampled
into each bulk, except for C7 (25%). We performed sim-
ulations of the base parameter set but with read depths
increased 10-fold (Figure 6, bottom). To establish the
appropriate significance threshold for CMH, we repeated
the neutral simulations with elevated read depths (new
threshold = 437.0). As expected, the number of signifi-
cant tests increased for both methods (2.53 increase for
LRT-1, 1.93 for CMH). However, the fraction of tests at
selected sites declined. Nearly all selected sites were identi-
fied by both methods (average 29 out of 30) but the great
majority of new significant tests with increased read depth
were hitchhikers.

To evaluate the effects of LD on genome-wide patterns, we
simulated the ancestral population with no LD and ran the
base parameter set with all else unchanged (including limited
recombination within centromeric/telomeric regions). The
results were profoundly different. There was no effect on
themean (absolute) allele frequency change at selected sites,
but the number of significant LRT-1 tests declined dramati-
cally (from an average of 149 to 23.6). However, every single
significant LRT-1 test across 1000 simulation replicates oc-
curred at a causal site, illustrating the pronounced effect of
hitchhiking even in a species with relatively low LD.

We next manipulated the initial distribution of allele fre-
quencies at selected loci to address the question that emerges
from Figure 2A: does the intermediate frequency of signifi-
cant variants from the experiment imply that intermediate
frequency variants were the primary targets of selection in
the laboratory environment? We conducted simulations
using the base parameter set except with initial allele fre-
quencies of selected loci sampled from the genome-wide
distribution (blue bars in Figure 2A). This change actually
increased the average number of significant LRT-1 tests (from
149 to 182), but the number of significant tests at causal
SNPs declined. The increase in significant hitchhikers sug-
gests that linked selection has a more pronounced effect
when the favored allele is initially uncommon. The broken
lines (green) in Figure 2A illustrate the initial AFS of LRT-1
significant tests. There is a “pull to the middle,” that is, most
selected sites had an MAF, 0.1, but those with higher initial
frequencies were more likely to yield high LRT-1 (Figure 2A).
Despite this ascertainment effect (among selected sites, those
with intermediate frequency are more likely to be detected),
the real data contain an excess of SNPs with MAF . 0.3 that
yield significant tests (orange vs. green in Figure 3). The
pull to the middle in simulations with selection from the
background AFS reflects a biologically important feature:

Figure 3 The average Spearman correlation is indicated relative to the
distribution obtained by permutation of windows (open bars) and from
simulations with selection on 30 loci (solid bars = base parameter set).
These correlations were calculated with all windows included.
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positively selected loci with higher MAF are generating
greater variance in fitness when the population experiences
the novel laboratory environment.

Finally, the fact that simulations with 30 fitness determin-
ing loci reiterated most of observed results (number and
distribution of significant LRT-1 tests, mean v, correlations
of genomic window divergence) does not imply that only
30 loci were under selection in the real experiment. We mod-
ified our base parameter set to consider a version of the “in-
finitesimal model” by distributing fitness effects equally
across 238 loci (one every 500 kb across the genome). In
the resulting simulations, the mean v was close to the base
parameter set and the real data. However, very few loci
emerged as genome-wide significant for LRT-1 (only 6 out
of 1000 simulations yielded even one significant test). How-
ever, allowing effects to vary among loci greatly improved
model fit. In simulations with every seventh locus (34 in to-
tal) having 10 times the effect of surrounding “minor loci,”
significant LRT-1 tests were routinely observed at the major
loci. The mean number of significant tests per replication
(60.9) was lower than for the base parameter set, but some
replicates exceeded 100 tests approaching the observed
value. In these simulations, minor loci evolved, but allele
frequency changes were never sufficient to reach genome-
wide significance. Given that a distribution is more plausible
than constant effects across loci, these simulations indicate
that a longer experiment (30–50 generations instead of 14) is
necessary to detect the portion of response due to smaller
effect loci.

Discussion

In this E&R experiment, we observed parallel changes in al-
lele frequency at.100 SNPs, clustered into �30 distinct loci
across the genome. The AFS of these putatively selected sites
is strongly biased toward intermediate allele frequencies. The
source natural population clearly harbors abundant standing
variation to allow rapid adaptation in a novel environment. A
foundational principle of molecular population genetics is
that genetic drift is the primary driver of allele frequency
change at most polymorphisms. However, accumulating ex-
amples of rapid phenotypic and genomic evolution, as well as
the observation that allele frequencies vary cyclically in nat-
ural Drosophila populations (Bergland et al. 2014), challenge

this assumption (Gillespie 2001; Messer et al. 2016;
Hermisson and Pennings 2017). In this experiment, several
lines of evidence suggest that neutral SNPs were more af-
fected by linked selection than by classical genetic drift. Be-
low, we discuss these results in relation to themaintenance of
polymorphisms in nature, the genome-wide response to
strong selection, and the challenges to identifying targets of
selection when thousands of loci exhibit excessive change.

The maintenance of polymorphism

We hypothesize that our putatively selected polymorphisms
are enriched for loci under balancing selection in nature
(Bergland et al. 2014; Charlesworth 2015) based on two
features of the results. First, the AFS of SNPs that evolved
in parallel across replicates (significant for LRT-1, Table 1) is
strikingly different from the genomic background. The AFS
for all SNPs (blue bars in Figure 2A) exhibits the expected
preponderance of rare alleles (Moriyama and Powell 1996;
Przeworski et al. 2001), consistent with the idea that most
polymorphisms are neutral or nearly neutral (Wright 1931;
Ohta 1976). However, the polymorphisms that responded to
selection are intermediate in frequency (orange bars in Fig-
ure 2A). In molecular population genetics, the most common
AFS-based test for selection is Tajima’s D (Tajima 1989),
which has an expected value of zero under the equilibrium
neutral model. At the gene level, values .2 are typically
interpreted as evidence for balancing selection (assuming
that large number of alleles are sequenced). For our selected
SNPs, Tajima’s D = 4.88 (using the median ancestral read
depth of 324 for n). This is hugely inflated relative to the
neutral expectation, and also in comparison to the genomic
AFS (Kolmogorov–Smirnov statistic = 0.626, P , 2.2 3
10216).

Balancing selection can result in a stable MAF , 10% (in
the lowest category of Figure 2A), but deleterious variants
are unlikely to segregate at intermediate frequencies (higher
categories in Figure 2A). Neutral variants may occasionally
drift to intermediate frequencies, but the overall AFS of our
significant SNPs is not consistent with neutrality. Ascertain-
ment is an important consideration here: Does the excess of
intermediate frequency polymorphisms result simply because
change at these loci is easier to detect? For the great majority
of polymorphisms, the answer is clearly no. The averagemag-
nitude of change is as large for rare alleles as for common
(Figure 2B) because the angular transformation effectively

Table 2 The estimated null variance for each chromosome in each
replicate population

Chromosome
Estimated null variance of divergence (n)

Population A Population B Population C

2L 0.0174 0.0170 0.0159
2R 0.0171 0.0189 0.0163
3L 0.0228 0.0227 0.0200
3R 0.0190 0.0173 0.0176
X 0.0152 0.0179 0.0191

Table 3 The Fst estimates for windows around selected sites are
compared to the genome-wide distribution

Window size (bp) Number of SNPs Fst F0.025 F0.975 F0.999

200 332 0.0246 0.0107 0.0191 0.0218
500 718 0.0242 0.0116 0.0180 0.0200
1000 1246 0.0217 0.0123 0.0177 0.0192
2000 2446 0.0204 0.0126 0.0169 0.0189

F0.025, F0.975, and F0.999 refer to distribution percentiles from sample number of loci
(with matching window sizes) from all ascertained loci.
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normalizes the effects of genetic drift and experimental sam-
pling on allele frequency change (Fisher and Ford 1947;
Walsh and Lynch 2018). However, the transformation does
not eliminate the dependency for selection-driven change
because the variance in fitness is maximal at intermediate
allele frequency. The difference between blue and green in
Figure 2 illustrates that we are more likely to detect interme-
diate frequency alleles because they experience greater
change with the same strength of selection. However, even
after correcting for this effect, the real data still yield an
excess of significant SNPs with MAF . 0.3 (orange vs. green
in Figure 2A). Of course, all of these arguments are based on
distributions. No conclusion can be made about individual
SNPs simply from their allele frequency.

Another recent E&R experiment on D. simulans demon-
strates that evolution based on rare alleles is detectable, if
that is the basis of the response [see Figure 2 of Barghi et al.
(2017)]. In that study, significant SNPs generally had MAF,
0.2 and became more intermediate in frequency during
laboratory adaptation. There are a number of differences
between the studies that could explain the differing out-
comes. For example, the Barghi et al. (2017) founders were
derived from isofemale lines, whereas the founders in our
experiment were the offspring of wild-caught females. Re-
gardless of the reason, however, the results of Barghi et al.
(2017) indicate that rare, favorable alleles have detectable
signal. If we run our simulator using the base parameter set,
except replacing the observed AFS with an initial frequency
of 0.02 for all favorable alleles, the number of significant
LRT-1 tests actually increases.Mean allele frequency change at
selected SNPs is reduced (from 0.36 to 0.23), as is the number

of significant LRT-1 tests at those selected SNPs. However,
the inflation of hitchhiking, particularly beyond 10 kb, more
than compensates in producing significant tests.

Relevant to natural selection on our significant SNPs, the
genomic regions harboring these SNPs exhibit elevated dif-
ferentiation among natural populations of D. simulans in
eastern North America [Table 3; Machado et al. (2016)].
This pattern suggests that alternative alleles at our signif-
icant SNPs are responsive to environmental heterogeneity
(Lewontin and Krakauer 1973; Beaumont and Nichols
1996). We have emphasized that the laboratory environment
is a novel selective challenge to wild D. simulans, but it is also
relatively constant and homogeneous. With heterogeneity in
the natural environment (e.g., seasonal variation in temper-
ature or spatial structure in resource availability), a “multi-
niche polymorphism” (Levene 1953) can result if genotypes
vary in their environmental optima. Such polymorphisms will
not remain stable if environmental heterogeneity is elimi-
nated. We cannot predict which allele would increase in cap-
tivity without detailed information about genotype-specific
tolerances. However, it is likely that one genotype will, by
chance, match the laboratory environment better than alter-
natives, resulting in the eventual loss of the latter. Frequency-
dependent selection arising from competitive or social
interactions (Antonovics and Kareiva 1988) can also main-
tain polymorphism in nature that the laboratory environment
could remove or reduce.

Hitchhiking and excessive significance

Nuzhdin and Turner (2013) argue that the large number of
significant tests in recent E&R experiments (Turner et al.

Figure 4 The null variance (mean v across simula-
tion replicates) is reported for varying strengths of
truncation selection (blue) and multiplicative selec-
tion (orange). The vertical and horizontal lines in-
dicate the mean null variance (red) and mean allele
frequency change (gray) from the real experiment.
The fractions selected for truncation are 0.8, 0.75,
0.68, 0.65, 0.63, 0.625, 0.6, 0.55, and 0.5, respec-
tively (left to right in graph). The selection coeffi-
cients for multiplicative fitness were 0.07, 0.08,
0.09, 0.1, 0.11, 0.12, 0.13, 0.14, and 0.15, re-
spectively. Number of zygotes (preselection) was
1600 in all cases. The base parameter set is indi-
cated by arrow.
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2011; Orozco-terWengel et al. 2012; Turner and Miller
2012), must be due to overestimating the number of loci
under selection. Because a limited number of haplotypes
are sampled to initiate E&R experiments, non-random asso-
ciations between loci can occur between loci far apart in the
genome. This sampling effect, combined with traditional
hitchhiking, could produce large changes in allele frequency
at many sites that are not the direct targets of selection. For
the present experiment, we established each replicate popu-
lation with a distinct sampling of genotypes from nature,
which should reduce the scope for haplotype-sampled LD to
generate false positives. The finite number of haplotypes that
survive in each experimental population will yield idiosyn-
cratic associations between distant SNPs, but these associa-
tions should be population specific, and thus less likely to
generate consistent parallel changes across replicates.

While founding experimental populations with distinct
samples from the natural population may reduce sampling
LD, it will not eliminate genuine long-distance LD that is
present in the natural population. Our treatment of LD in
the simulations is based on the inbred line sequencing of

Signor et al. (2018), which does reveal nontrivial levels of
LD, particularly in low recombination regions (Figure S1,
Tables S3 and S4). The simulations calibrated to this level
of LD indicate a pervasive effect of hitchhiking (Figure 3,
Figure 4, and Figure 5). Perhaps most surprising is that se-
lection on only 30 loci generates a genome-wide positive
association between locus-specific responses across indepen-
dent replicated populations (Figure 3 and Figure S2). It is
true that the Signor et al. (2018) data, on which we calibrate
our simulations, is itself a finite sample of �170 alleles. It
might thus have its own collection of sampling induced LD
values. However, artificial LD is most likely to occur between
rare variants that are accidentally captured in the same line
or lines. The hitchhiking in our simulations is driven by asso-
ciations between intermediate frequency alleles where
the minor haplotype is sampled into many sequenced lines
(and correspondingly into each of the replicated populations
of our simulations). Estimates of LD between intermediate
frequency alleles are far more robust. An important corollary
is that, among our significant SNPs (Table S6), we cannot
distinguish the actual targets of selection from hitchhikers.
While this is a clear limitation of the experiment, the inter-
mediate frequency result (Figure 2A) is not undermined by
hitchhiking. Change at a hitchhiking locus will only match
change at the selected locus if allelic association ismaximal, it
remains unbroken by recombination, and allele frequencies
are similar at the two loci (r2 near 1).

Significance testing

The number of significant tests (138 for LRT-1) is reduced by
orders of magnitude from previous E&R studies. The inde-
pendent founding of experimental populations (described
above) is one factor, but minimum depth thresholds also
caused many SNPs to drop out of the set tested for selection.
The simulation results of Figure 6, bottom suggest that
increased read depth would increase the number of sig-
nificant tests, although the predicted inflation is caused
overwhelmingly by the inclusion of additional hitchhikers
rather than novel selected sites. Differing testing methods
also contribute: we obtained two to three times as many
significant tests for CMH than LRT-1 when applied to the
same data set (either real or simulated). CMH and LRT-1
assimilate read counts in different ways. The contingency
table method (CMH) should work well when each sequenced
read is an independently sampled allele from the relevant
population (ancestral or descendant in this case). This is
not a requirement for LRT-1, but the independence assump-
tion likely holds fairly well for this experiment given that read
counts were far below the number of alleles in each popula-
tion. Thus, the difference in outcomes is mostly caused by the
different ways that significance thresholds are determined:
neutral simulation for CMH vs. permutation for LRT-1, with
the latter more conservative.

The four tests in Table 1 are intended to provide comple-
mentary information about the genome wide response to
selection. In this experiment, the extreme windows test was

Figure 5 The LRT test is applied to simulated data using the base param-
eter set (parameters reported in text). The maximum LRT test value for
parallel selection per 100 kb window along chromosome 3L. Each row
represents a different simulation.
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redundant with LRT-1 and only one SNP was genome-wide
significant for heterogeneous selection (LRT-2). This is sur-
prising because even if environmental conditions were ex-
actly the same across replicates, stochastic loss of alleles
could generate significant LRT-2 tests. Rare alleles in the
natural population might be randomly excluded from one
or more of the experimental replicates. If the rare allele is
favorable, it will increase where present but not where ab-
sent, yielding a heterogeneous response across replicates. Di-
rect inspection of the full panel of SNPs (Table S1) indicates
that this very rarely occurred. The minor allele was absent
from at least one replicate population at 13,856 SNPs (�5%

of cases). At these SNPs, polymorphic populations showed
very low average change. There were a small number of
SNPs with substantial change, but at these, the response
was limited to a single replicate and magnitude of allele fre-
quency change (0.10–0.15) was much lower than at LRT-1
significant SNPs (average change 0.35). These observations
further indicate that adaptive evolution mainly involved
alleles at intermediate frequency in the ancestral wild
population.

A biological reason for fewer significant SNPs here relative
to E&R experiments on D. melanogaster (Burke et al. 2010;
Turner et al. 2011; Orozco-terWengel et al. 2012) is that

Figure 6 The comparison between
LRT-1 and CMH tests is given for the
base parameter set using the ob-
served read depths (top), and when
we increase sequencing depth 10-fold
at each SNP (bottom). Tests are clas-
sified as at a fitness determining
locus, closely linked (within 10 kb) in
a normal recombination region, dis-
tantly linked in a normal recombina-
tion region, or linked but within a low
recombination region.
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inversions are rare in D. simulans (Lemeunier and Aulard
1992) and the genome-wide recombination rate is 30%
higher (True et al. 1996). Barghi et al. (2017) compared
genomic change in D. melanogaster and D. simulans after
�60 generations of hot laboratory conditions and found dif-
fering patterns between the two species. D. simulans had
fewer candidate SNPs, and the regions of the genome impli-
cated in response to selection were narrower and more dis-
tinct. Strikingly, almost all of chromosome arm 3R in D.
melanogaster (which contains several overlapping segregat-
ing inversions) exhibited a pattern consistent with selection.
In D. simulans, which lacks similar inversions on 3R, several
narrow, distinct regions on this chromosome arm exhibited
such a pattern. The authors attributed many of these differ-
ences in the frequency of segregating inversions and in cen-
tromeric recombination suppression.

Prospects

Predicting the evolutionary response to changing environ-
ments, and its genetic basis, are major goals of evolutionary
genetics.We combine a genomic sequencing experiment with
a simulation model tailored as closely as possible to the
relevant features of that experiment. The simulation demon-
strates that strong selection at a limited number of loci can
generate a genome-wide response involving thousands of
polymorphic sites through hitchhiking, consistent with the
observations of the experiment. Amore ambitious application
would be to use the simulator for formal inference, to identify
selected SNPs and the strength of selection on each. In
principle, the simulator could be employed for approximate
Bayesian computation (Beaumont et al. 2002) or as a trainer
for supervised machine learning (Schrider and Kern 2018).
However, Figure 4 indicates a question that should precede
any such attempt: what should we estimate? Allele frequency
change under multilocus selection depends on how locus-
specific effects combine to determine survival and repro-
duction. We found a generally better fit to the data with
truncation rather than multiplicative selection; the latter in-
ducing an excessive amount of draft to achieve the same
magnitude of allele frequency change at selected loci. While
our base parameter set with truncation selection reiterates
the major observations of the study, we do not think it
fully accurate. The conundrum is that while both models
(truncation and multiplicative selection) offer parameters
to estimate, interpretation is problematic if neither model
accurately describes the genotype-to-fitness mapping.

The contrast of truncation andmultiplicative selection also
illustrates how genetic draft depends on the genotype-to-
fitness mapping. With the same strength of selection on
30 fitness determining loci, multiplicative selection causes a
larger stochastic effect on neutral loci by generating a more
positive covariance in allele frequency change across gener-
ations (Robertson 1961, Table S10). This observation is con-
sistent with theoretical studies from over 50 years ago
indicating a lower “substitution load” for truncation than
multiplicative selection (Haldane 1957; Sved et al. 1967;

Kimura and Maruyama 1969; Wallace 1970). The data from
the experiment does not estimate generation to generation
changes in allele frequency, but it is noteworthy that we could
not find a neutral model sufficient to describe the start to end
“background response.” Adjusting Ne allows a neutral model
to predict the average change in frequency (mean v), but not
the elevated variability of change (Table 2) or the covariance
of change across independent replicated populations (geno-
mic windows, Figure 3). Of course, a dominant role for draft
in this experiment does not imply comparable importance in
natural populations. However, the methods and simulation
results described here suggest that genome-wide scoring of
large population samples, sustained through time to estimate
allele frequency trajectories, could shed considerable light
on the relative importance of drift vs. draft in natural
populations.

The most important biological conclusions from this ex-
periment follow from the AFS of significant loci (Figure 2).
The founding of our experimental populations may have
been a critical determinant of the intermediate frequency
result. Our ancestral populations were only one generation
removed from nature, did not experience population bottle-
necks, and did not undergo multiple generations of labora-
tory adaptation or inbreeding prior to the start of the
experiment. Laboratory adaptation, inbreeding, or popula-
tion contraction in the founders would likely have changed
the starting frequencies. This aspect of experimental design
not only affects patterns of evolution in an E&R experiment,
but also inferences regarding the selective forces acting on
these loci in nature.
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