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ABSTRACT

There is much interest in integrating millimeter wave ra-
dios (mmWave) into wireless LANs and 5G cellular networks
to benefit from their multi-GHz of available spectrum. Yet,
unlike existing technologies, e.g., WiFi, mmWave radios re-
quire highly directional antennas. Since the antennas have
pencil-beams, the transmitter and receiver need to align their
beams before they can communicate. Existing systems scan
the space to find the best alignment. Such a process has been
shown to introduce up to seconds of delay, and is unsuitable
for wireless networks where an access point has to quickly
switch between users and accommodate mobile clients.

This paper presents Agile-Link, a new protocol that can
find the best mmWave beam alignment without scanning
the space. Given all possible directions for setting the an-
tenna beam, Agile-Link provably finds the optimal direction
in logarithmic number of measurements. Further, Agile-Link
works within the existing 802.11ad standard for mmWave
LAN, and can support both clients and access points. We have
implemented Agile-Link in a mmWave radio and evaluated
it empirically. Our results show that it reduces beam align-
ment delay by orders of magnitude. In particular, for highly
directional mmWave devices operating under 802.11ad, the
delay drops from over a second to 2.5 ms.
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1 INTRODUCTION

The ever-increasing demands for mobile and wireless data
have placed a huge strain on wireless networks [10, 43].
Millimeter wave (mmWave) frequency bands address this
problem by offering multi-GHz of unlicensed bandwidth,
200x more than the bandwidth allocated to today’s WiFi
and cellular networks [30, 34]. They range from the 24GHz
ISM band all the way to hundreds of GHz [1]. They are
expected to play a central role in dealing with increased
multimedia traffic, the introduction of new high data-rate
applications such as virtual reality, and the anticipated surge
in IoT wireless devices [2, 4]. This role has been cemented
with new standards that incorporate mmWave technologies
into 5G networks [25, 34], and 802.11 wireless LAN [22].

Millimeter wave radios however do not play well with mo-
bile devices or dynamic environments, a key challenge that
has been emphasized in the standards [22, 28]. Specifically,
mmWave signals attenuate quickly with distance; hence they
need to use highly directional antennas to focus their power
on the receiver. Luckily, due to their small wavelength (mil-
limeter scale), it is possible to pack hundreds or thousands of
antennas in a small area, creating an array with many anten-
nas, and hence a very narrow beam, as shown in Figs. 1(a)
and (b). Yet, since the beam is very narrow, communication
is possible only when the transmitter’s and receiver’s beams
are well aligned. Current solutions for aligning the beams
scan the entire space, trying various beam alignments until
they find the best one. This process can take up to several
seconds [39, 47]. Such a long delay makes the deployment of
mmWave links infeasible in wireless networks, where the ac-
cess point has to keep realigning its beam to switch between
users and accommodate mobile clients.

To understand the problem, consider a phased array with
many antennas. Its beam-width can be a few degrees or even
smaller. The naive approach to finding the best alignment
would have the transmitter and receiver scan the 3D space
with their beams to find the direction of maximum power,
as shown in Fig. 1(b). The receiver has to repeat the scan for
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Figure 1: mmWave Communication (a) An example of mmWave phased arrays where hundreds of antennas are packed in a small
area [21]. (b) mmWave radios need to align their beams to establish a communication link. (c) mmWave phased arrays use a set of phase

shifters to steer the beam.

each choice of beam direction on the transmitter side. Thus,
the complexity of this exhaustive search is O(N?), where
N is the number of possible beam directions. To speed up
the search, the 802.11ad standard decouples the steering at
the transmitter and receiver. In particular, the transmitter
starts with a quasi-omnidirectional beam, while the receiver
scans the space for the best beam direction. The process is
then reversed to have the transmitter scan the space while
keeping the receiver quasi-omnidirectional [22, 46] (see §6.1
for the details). This approach reduces the search complexity
to O(N). Still, for a beam of a few degrees, the delay can be
hundreds of milliseconds to seconds [39, 47], which would
easily stall realtime applications.

But, can one identify the best alignment without scanning
the space of all possible signal directions? In principle, "yes".
There is much past work that shows that mmWave signals
travel along a small number of paths, e.g., 2 or 3 paths [6, 34].
This means that the space of possible signal directions is
sparse. One would hope to use the sparse recovery theory
to estimate the direction of the best alignment using a loga-
rithmic number of measurements [9, 11, 18], hence avoiding
excessive delays.

Problem Formalization: The objective of beam alignment
is to measure the signal power along each spatial direction.
Let x be an N-element vector that denotes the signal along
various spatial directions. Since in practice the signal arrives
only along few directions K, we can say that x is K-sparse. Let,
h; be the signal at the i antenna, as shown in Fig. 1(c). Based
on the standard antenna array equation [44], we can write
h = F’x, where F’ is the inverse Fourier transform matrix.
We can steer the antenna beam by applying a phase shift to
each antenna a; = e /279 (see Fig. 1(c)). For each setting of
the phase shifters, we can measure the received power as
y; = |a;F’x|, where the notation |.| refers to the magnitude of
the signal and a; is a vector whose elements are the applied
phase shifts. Note that knowing the magnitude is the same
as knowing the power since power is magnitude squared. In
802.11ad, each measurement corresponds to sending a special
frame. Each time a frame is sent, the signal incurs a random
phase due to the Carrier Frequency Offset (CFO) between
the transmitter and receiver [22, 32] (see §4.1 for details).
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Thus, one cannot compare the phase of two measurements;
only the magnitude of the measurements is relevant. Since
we want to know the power along each spatial direction, the
problem can be formulated as:

estimate each |x;|, given measurements y; = |a;F'x|.

Of course, one way to solve this problem is to use N mea-
surements, each time setting a to one row of the Fourier
matrix. This corresponds to measuring one direction every
time, as proposed in 802.11ad. Alternatively, one could lever-
age that the vector x is sparse, and hope to solve the problem
in a logarithmic number of measurements. Unfortunately,
however, using off-the-shelf algorithms like compressive
sensing or the sparse FFT does not work since neither of
them deal with the scenario where the measurements return
the magnitude of the complex signal, i.e., the presence of
the |.| term [9, 11, 18]. To the best of our knowledge, no al-
gorithm with provable logarithmic guarantees exist for this
problem.

Our Design & Analysis: This paper introduces Agile-Link,
the first solution that provably finds the best beam alignment
in a logarithmic number of measurements. At a high-level, it
works as follows: Instead of creating a narrow beam and sam-
pling the power along one spatial direction each time, Agile-
Link manipulates the phase shifters to create multi-armed
beams, which can sample multiple spatial directions simul-
taneously (see Fig 2(a)). Since a multi-armed beam combines
the power along multiple directions, the receiver cannot im-
mediately tell which direction has produced the resulting
power. Agile-Link however uses a combination of random-
ized multi-armed beams, which together provide enough
information to identify the signal power along all spatial
directions. We formally analyze Agile-Link and prove that it
can deliver the best alignment in O(K log N) measurements,
where K is the number of paths traveled by the signal. Since
K is typically 2 or 3 paths [6, 34], Agile-Link significantly
reduces the beam alignment delay.

Agile-Link has additional important features. First, Agile-
Link is compatible with the 802.11ad protocol, i.e., a Agile-
Link device can work with a non-Agile-Link device to find
the best alignment while using the 802.11ad protocol. In this



case, the Agile-Link device finds the best alignment on its
side in a logarithmic number of measurements whereas the
traditional 802.11ad device takes a linear number of measure-
ments. Second, by the results of [7, 31], our measurement
complexity of O(K log N) is asymptotically optimal for small
K —i.e., it cannot be further reduced.

Implementation & Empirical Results: We have also im-
plemented Agile-Link and evaluated it using mmWave radios,
each equipped with a phased array that has 8 antennas. We
also use simulations to explore its scaling behavior to large
arrays with hundreds of antennas, which are expected in
the future [8]. We compare Agile-Link with two baselines:
an exhaustive scan of the space to find the best beams, and
the quasi-omnidirectional search proposed in the 802.11ad
standard. Our evaluation reveals the following findings.

e In comparison with the exhaustive search, Agile-Link re-
duces the search time by one to three orders of magnitude
for array sizes that range from 8 antennas to 256 antennas. In
comparison to the quasi-omni directional search, Agile-Link
reduces the number of measurements by 1.5X to 16.4x for
the same range of array sizes. In particular, for large arrays
with 256 antennas, Agile-Link reduces the alignment delay
from over a second to 2.5ms.

e The quasi-omnidirectional search yields poor performance
in scenarios with multi-path effects. This is because using
a quasi-omnidirectional antenna allows the signals along
different paths to combine destructively, which yields low
power and prevents accurate detection of the best signal
direction. Further, due to imperfections in the quasi-omni
directional patterns [20, 27], some paths can get attenuated
and hence this approach can choose the wrong direction to
align its beam. In contrast, Agile-Link performs well both in
single path and multipath scenarios.

2 RELATED WORK

(a) mmWave Solutions & Research: Research on fast beam
alignment for mmWave can be divided into two classes:
empirical and simulation-based. Past empirical work has
demonstrated the large delays incurred during beam align-
ment [39, 47]. It also proposed failover protocols that switch
to the next best beam when the current beam becomes
blocked [16, 40]. This approach however assumes that the
signal propagation paths are known a priori and hence one
can quickly switch to a failover direction.

Much of the previous work on fast beam alignment is
simulation-based. Most of this work proposes enhancements
to the standard that impose a form of hierarchy to speed up
the search [26, 41, 45]. Hierarchical algorithms, however, are
not robust to multipath. This is due to the fact that different
paths can combine destructively and cancel each other at
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any level of the hierarchy. In §3(b), we present an example
that illustrate this case. Furthermore, in practice, hierarchical
search requires feedback from the client to guide the access
point at every stage of the hierarchy, which incurs significant
protocol delay [35].

Our work is closest to past work that leverages compres-
sive sensing to speed up the search for best beam alignment.
The work in [5, 12] requires a more complex architecture
with a quadratic number of phase shifters, and multiple trans-
mit receive chains (typically 10 to 15 [5]). The best known
results for such complex architecture can guarantee a log-
arithmic number of measurements only for scenarios with
no multi-path ( X is strictly 1), and only for the average case
error [5]. The work in [35] also uses compressive sensing to
speed up the search but it does not provide any theoretical
guarantees. In comparison, Agile-Link can provably find the
best alignment in a logarithmic number of measurements
and its guarantees apply to the worst case behavior. In §6.5,
we empirically compare the performance of Agile-Link with
the compressive sensing scheme proposed in [35].

Some past theoretical work applies the standard compres-
sive sensing and assumes it can correctly obtain the phase
of the measurements [13, 33]. This approach does not work
with practical 802.11ad or cellular radios because it ignores
CFO (Carrier Frequency Offset) which corrupts the phase of
the measurements [32, 35] as we describe in §4.1.

Finally, some companies [8, 36, 38] offer mmWave systems
but they take along time to steer the beam or require complex
hardware, making them unsuitable for mobile clients [39, 47].
Also, some research on mmWave focuses on point-to-point
links for Data Centers [17] or cellular and WiFi applica-
tions [16, 29, 39, 40, 47]. These works typically use a horn
antenna to direct the beam, which requires mechanical steer-
ing and is unsuitable for mobile links.

(b) Sparse Recovery Theory: The theoretical problem we
consider falls under “sparse phase retrieval” [23, 24]. Gener-
ally, the goal is to recover an approximation of a K-sparse
vector, x, from M measurements of the form |Bx|. The pres-
ence of the absolute value is what makes this problem differ-
ent from the usual compressive sensing [9, 11] and sparse
FFT [14, 15, 18, 19]. In our context, we have an extra restric-
tion that the matrix B is of the form AF’, where F’ is the
inverse Fourier transform and all entries in A have unit mag-
nitude, i.e., |a;;| = 1 for all i, j. To the best of our knowledge,
this form has not been considered before.

Some of our proof techniques are inspired by past work
on sparse FFT, particularly the work in [14, 15] which used
boxcars filters for sparse Fourier transform algorithms. How-
ever, the technical development of our proofs is different due
to the leakage between multiple beam arms, which requires
extra layers of randomization. Furthermore, our results and
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Figure 2: lllustrative example of Agile-Link’s algorithm

problem are different due to the restrictions on our measure-
ments that do not exist in sparse FFT.

(c) Massive MIMO Beamforming: Massive MIMO [37] has
many antennas, but the signal from each antenna is received
and manipulated independently. In contrast, a mmWave
phased array receives only the combined signal from its
antennas. Thus, beamforming techniques in standard and
massive MIMO do not apply to mmWave phased array.

3 ILLUSTRATIVE EXAMPLE

(a) Single Path Example: We start by explaining the intu-
ition of our algorithm. Consider a case where the transmitter
is at a 60° angle with respect to the receiver. For clarity, as-
sume a 2D setting. The same argument can be extended to 3D.
We would like the receiver to detect that the best alignment
is along the 60° angle without scanning the space.
Agile-Link avoids the need to scan all spatial directions
by using multi-armed beams, which simultaneously sample
the signal along multiple directions. Say for example, that
there are 16 possible directions in space, i.e., N = 16. Agile-
Link can sample all of these directions using 4 multi-armed
beams, each covering N /4 = 4 directions in space. Fig. 2(a)
shows four such multi-armed beams, and Fig. 2(b) shows how
together they cover the whole space of directions. Such set
of multi-armed beams operates like a hash function, where
N = 16 directions are hashed into 4 bins, and each bin covers
N/4 = 4 distinct directions. The value of the bin represents
the combination of the signals that hash into it. For example,
if the signal is coming along the 60° direction and 60° hashes
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Figure 3: Example of hierarchical search with multipath.

to bin number 1, then only bin one will have energy whereas
the other bins will have no energy, as shown in Fig. 2(c). Thus,
one can ignore directions that hash to bins 2,3, and 4, and
focus only on directions that hash to bin 1. This significantly
reduces the search space to the directions that hash to the
first bin (i.e., the first multi-armed beam).

At this stage, we know that the signal could have come
from the directions covered by the first bin i.e., 0°, 60°, 90°
and 120°. But we do not know which among them is the
correct direction. Thus, we change the hash function and try
again. To do so, we use a second set of multi-armed beams
which together hash the whole space of directions into a set
of bins. The hash however is randomized with respect to the
previous hash so that directions that got hashed together
are unlikely to hash together again. Figs. 2(d,e,f) show an
example of hashing the spatial directions into bins after ran-
domizing the multi-armed beams and hence randomizing
which directions map into which bins. The first bin now
collects energy along 30°, 80°, 110° and 140°. Since the sig-
nal is arriving along 60°, it will be captured by the third bin
which is represented in blue in Fig. 2(f). Hence, in this second
hashing, only the energy of the third bin will be large. This
suggests that the signal arrived along one of the directions
that mapped to the third bin which in this case are 40°, 60°,
105° and 150°. Since the 60° direction is the only common
candidate from both the first hashing and the second hash-
ing, Agile-Link picks it as the direction of the signal. Thus,
Agile-Link is able to find the correct direction from which
the transmitter’s signal arrives without having to scan all
possible directions.!

(b) Multipath Example: But, what if the signal arrives
along multiple paths? For example, in Fig. 3, the signal arrives
along three directions: py, p, and ps. Paths p; and p, are
higher power than ps; because they are significantly shorter;
and the best beam alignment is along the direction of p;
which delivers the highest power.

!While the above example describes the algorithm for recovering one of N
possible direction, Agile-Link can recover the optimal direction at a finer
resolution by taking a continuous weight over possible choice of directions
as described in detail in §4.



Let us compare two beam alignment algorithms: Hierarchi-
cal Search and Agile-Link. As explained in §2, multiple past
proposals use a hierarchy of beams to speed up the search for
the best alignment [26, 41, 45]. Proposals differ in the details,
but they use wide beams at the top of the hierarchy - e.g.,
they might start with two wide beams, check which beam
returns more power, then zoom in on the part of the space
that returns more power and use narrower beams to explore
it. Like Agile-Link, Hierarchical Search needs only a loga-
rithmic number of measurements. The problem is that using
wide beams means nearby signal directions would collide
within the same beam. Since RF signals are waves, the collid-
ing signals can combine destructively to cancel each other’s
power. In our example, p; and p, have close directions and
thus will collide in the wide beam. Say that p; and p, have
opposite phases, they will cancel each other’s power, making
it look as if the signal from the left-half of the space (i.e.,
directions 90° to 180°) had more power. As a result, Hierar-
chical Search will zoom in on those directions and explore
them with narrower beams until it finds path ps, which is the
worse alignment out of the three signal directions. Note that
this failure mode can be quite common and does not require
the phases of p; and p, to be exact opposite; it is sufficient
that they point away from each other so that the resulting
power degradation makes it look as if p; were higher power.

In contrast, Agile-Link does not use wide beams, where
nearby directions are bound to collide. Agile-Link uses multi-
armed beams where the arms in each beam can be random-
ized. Even if two paths collide in one multi-armed beam,
our randomization ensures that the same two paths will not
collide in other multi-armed beams, as formalized in §4.2.
Hence, Agile-Link can recover all possible paths and then
pick the best path to align the beam. At a high level, the sys-
tem operates as multiple randomized hash functions, which
can be provably resolved to recover all signal directions even
in the presence of multipath.

4 AGILE-LINK

This section describes Agile-Link in detail. For clarity, we
describe the algorithm assuming only the receiver has an an-
tenna array whereas the transmitter is omni-directional. The
extension to the case where both transmitter and receiver
have antenna arrays is described in §4.4.

4.1 Problem Statement

Recall that the problem is defined as follows: Let x be a K-
sparse N-element complex vector that denotes the signal
along various spatial directions. The objective is to estimate
the power (i.e., magnitude) of the signal along each direction,
|x;], using a small number of measurements of the form
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y; = |a;F’x|, where F’ is the inverse Fourier matrix, and a; is
a vector of phase shifts, |a;;| = 1, that are under our control.

Before describing our solution to this problem, it is impor-
tant to understand why one can only measure the magnitude,
not the phase. Every measurement involves sending a frame
from transmitter to receiver. Since the oscillators on the
transmitter and receiver always experience some CFO (Car-
rier Frequency Offset) [32], the signal of each frame incurs
an additional unknown phase shift. Further, this phase shift
changes across frames. Correcting the CFO across measure-
ment frames is not supported in the 802.11ad standard [22].
Furthermore, such a correction will be very hard due to the
high frequencies of mmWave. For example, a small offset of
10 ppm at such frequencies can cause a large phase misalign-
ment in less than hundred nanoseconds.

4.2 Agile-Link’s Algorithm

Agile-Link works in two stages. First, it randomly hashes the
space into bins (using multi-armed beams) such that each
bin collects power from a range of directions. Second, it uses
a voting mechanism to recover the directions that have the
power. Below, we describe these two stages in detail.

1. Hashing Spatial Directions into Bins
Agile-Link hashes the signal along various directions to bins
using multi-armed beams. Let us refer to the arms in each
multi-arm beam as the sub-beams. Let R be the number of
sub-beams in each beam, B the number of bins in each hash
function, and L the number of hash functions. Each setting
of the phase shifter vector, a, creates a different beam pattern
and the resulting measurement y = |aF’x| will correspond
to the power in the directions covered by the beam pattern.
So how do we create good multi-armed beams? It should
be clear that, given the structure of the measurements, we
can create a beam that points in one direction, s, by setting a
to the s-th row in the Fourier matrix. Thus, to create a multi-
armed beam, Agile-Link divides the vector a into R segments

each of length N/Ri.e, a[1.n/R], a[N/R+1:2N/R]> * * * » A[(R-1)N/R:N]-

Each segment then sets its sub-beam towards a different di-
rection. This is done by setting the segment a(y(-—1)N/r:rN/R]
to the corresponding segment in the desired row of the
Fourier matrix. Formally, if an index i belongs to the r-
th segment pointing towards the direction s”, then a; =
(Fsr); - €727t /N where t, is a random integer between
0,...N — 1, and (Fsr); is the i-th entry in row s” in the
Fourier matrix. The term e/27%/N results in a phase shift
of the sub-beam without changing its direction.?

Due to the properties of the Fourier transform, the sub-
beam created by each segment will be wider than a single

2 An earlier version of this algorithm appeared in a short workshop paper
which is not cited due to anonymity. The algorithm we present in this paper
is more efficient and can provide proven guarantees.
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beam created by the full array by a factor of R, so each sub-
beam covers R adjacent directions. Since there are R such
sub-beams, the multi-armed beam created by this setting of
the vector a will cover R? directions. Now, if we wish to hash
the space of directions into B bins, then each will cover R?
directions and hence B = N/R?.

But how do we pick the directions of the sub-beams in
each multi-armed beam? The best scenario is when the sub-
beams in each multi-armed beam are well spaced so that the
leakage from their side-lobes is minimized. Fig 4(a) shows an
example of well-spaced sub-beams, where we have a multi-
armed beam with two sub-beams directed 60° apart. In this
case, the beam pattern will hash directions that are 60° apart
into the same bin. By shifting the direction, we can then
create all different bins in the hash function, as shown in
Fig 4(b) where each color corresponds to a bin in the hash
function. Formally, the above process is achieved by setting
the direction of the r-th segment in bin b to be equal to
s, = Rb + rP, where P = N/R is the spacing between two
sub-beams corresponding to the same bin.

The question that remains is how do we randomize the
hashing process to make sure that two large signals are not
hashed to the same bin every time. Ideally, we can solve
this problem by randomly permuting the entries in of the
vector x. Physically, however we cannot permute x. Instead,
we leverage a nice property of the Fourier transform that
says that we can pseudo-randomly permute the input of the
Fourier transform (i.e., the entries of the vector x) by pseudo-
randomly permuting its output (i.e., the entries of the vector
F’x) [14, 15, 18]. In the simplest setting, suppose that we want
to permute the input samples according to: x’'(f) = x(c f),
where o is chosen at random for an appropriate distribution,
and all operations on indices are done modulo N. This is
equivalent to permuting the output X = F’x according to:
x'(t) = X(c7't), where o~ is the inverse of ¢ modulo N.
This enables us to “randomize” the positions of large entries
in x by rearranging the entries of F’x. This result is very
useful since we can easily permute F’x in our measurements
by simply permuting the elements in the vector a, i.e., by
permuting the phase shifts applied to the phase shifters on
each antenna.
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More generally, let us use the vector yixp = |ApxnF'X]
to refer to the B measurements performed as part of a hash
function, where A is a matrix of phase shifts. To permute
this hash function, we measure yxp = |AP’F’x|, where we
use the term |.| to refer to the magnitude of the individual
elements in the vector, and the matrix P’ is a generalized
permutation matrix.> That is, our phase shifter matrix is
equal to AP’ (note that each entry of the latter matrix has a
unit magnitude, i.e., it represents proper phase shifts). This
is equivalent to measuring |AF'Px|, for the corresponding
generalized permutation matrix P.

2. Recovering the Directions of the Actual Paths

After hashing the spatial directions into bins, Agile-Link
discovers the actual directions of the signal using a voting
scheme where each bin gives votes to all directions that hash
into that bin. After few random hashes, the directions that
have energy will collect the largest number of votes which
allows Agile-Link to recover them. Unfortunately, directly
applying this voting approach does not work well because
the side-lobes of the beams create leakage between the bins
and hence a strong path in one bin can leak energy into other
bins which corrupts the voting process. To overcome this
problem, Agile-Link takes into account the leakage between
the bins.

Specifically, Agile-Link models the beam patterns (exam-
ple of which are shown in Fig. 4(a) and Figs. 2(a) and (d),)
as a coverage function I(b, p, i) that indicates the coverage
of the direction i by the beam corresponding to the bin b,
assuming the indices are permuted by p. It is defined as:
I(b,p,i) = IabF’p(l—)Iz, where a’ is the vector defining the
settings of the phase shifters corresponding to bin b.

If we hash into B bins, we will have B such patterns and
collect B measurements y;y g corresponding to the bins. After
taking the magnitude squared of each measurement, we can
estimate the energy of the signal coming from direction i as:

B7
T(i,p) = ) y; x 1(b, p, i),
b=0

If the estimate T(i, p) exceeds a predefined threshold T then
we conclude that there is a signal coming from direction i.
Otherwise we conclude that there is no such signal.

—

(1)

4.3 Performance Analysis

A detailed analysis with full proofs is provided in the appen-
dix. Here, we note the main theorems and their implications.

3 P’ is a generalized permutation matrix if each row or column of P’ contains
exactly one non-zero entry, and that entry has unit magnitude. We use the
matrix P’ defined as in [18]: the i-th column of P’ contains the value @7’
in the row o (i — b), where w = e2™J/N and a, b, o are randomly chosen
parameters. This has the effect of rearranging the vector x by moving the
1 bj+oba

entry x; to x,(;) for p(i) = 07"i + a, and multiplying it by



THEOREM 4.1. Suppose that the vector x has at most K non-
zero entries, and that the energy x* of each non-zero entry x;
is at least 1/K. Furthermore, suppose that N is a prime. There
exists a setting of parameters T, R and B = O(K), so that for
each candidate direction i, we have that:

o Ifx; # 0 thenT(i, p) > T with probability at least 2/3
o Ifx; =0 thenT(i,p) < T with probability at least 2/3

The probability of correctness can be amplified by perform-
ing several (L) random hashes and aggregating the results.
There are multiple ways of performing the aggregation. A
simple approach is to use “hard voting”, i.e., conclude that
a signal is coming from a direction i if the signal from that
direction has been detected by the majority of hashes. By
Chernoff bound, this approach reduces the probability of
incorrect detection from 1/3 to e €'~ for some constant C”.
By letting L = O(log N), we can compute correct estimates
for all all indices i, with the probability of failure at most
1/N. The algorithm uses BL = O(K log N) measurements
and its running time complexity is O(NK log N).

The algorithm can be also used to provide estimations of
the values of |x;|%’s. The guarantees are provided by the fol-
lowing theorem. Note that no assumptions about the sparsity
of x are required, although the guarantees are meaningful
only for x;’s whose magnitude is large enough. This makes
the estimate resilient to the presence of small amounts of
noise at all coordinates.

THEOREM 4.2. Suppose that N is a prime. There exists a
setting of parameters R, B = O(K), and a constant C > 1 so
that for each candidate direction i, we have:

Pr[|x;|?/C — |IxII3/K < T(i, p) < Clxil* + IIxII3 /K] = 2/3

Few points are worth noting. First, in practice, we drop
the assumption that N is prime. Second, we use soft voting
instead of the hard voting. Specifically, we estimate of the
strength of the signal along direction i as S(i) = ]_[{“:1 T;(i, p),
where T;(i, p) is defined as in Equation 1, for the [-th per-
mutation. The soft voting approach uses more information
about the measurements than hard voting, and hence its
practical performance is better. We extract the significant
coefficients of the signal x; by selecting the indices i with
the largest values of 5(i).

4.4 Extension of the Model to Both
Transmitter and Receiver

Here, we extend our model and algorithm to the case where
both transmitter and receiver have antenna arrays. In this
case, each measurement can be written as:

— |a!X / STX tx /alx
Yo = 1 N F XN X F ansal ()
where a”™ and a’* are vectors corresponding to a setting of

the phase shifters, F’ is an N X N inverse Fourier transform
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matrix and x"* and x'* are sparse vectors representing the
angle of arrival at the receiver and the angle of departure at
the transmitter respectively. Our goal is to recover x"* and
x'* from several measurements y.

We can reduce this problem to the problem solved earlier.
Specifically, we make B X B measurements of the form:

_ rx /TX tx 7 ALX
YixB = |ApNF X X nF ANl

3)
where A™ is the phase shift matrix as in Theorem 4.1, and
A™ is its transpose. Let AT* be the i-th column of A" and
AJ‘." be the j-th row ofAJt.x. Furthermore, let y; = }; Y; ;. We
observe that:

yi Z Yi,j — Z |A;‘xlerxxth/AJt'xl
J J
Z |A;"xlerx||thF/A§x|
J
|A;"xFIXrX|(Z |thFIA§X|) — |A;"xFIXrX|C
J

where C is a constant independent of i. Therefore, we can
recreate the measurements of the form needed by Theo-
rem 4.2 from the B? measurements provided by the matrix Y.
In this way we can test, for each i, whether x]* is non-zero,
and each test is correct with probability at least 2/3. By re-
peating the process L = O(log N) times, we can detect each
non-zero entry with high probability. The total number of
measurements is B2L = O(K?log N).*

Finally, while we described the algorithm for 1D antenna
arrays, the algorithm holds for 2D arrays as well. We simply
need to apply the hash function along both dimensions of
the array. For an N X N antenna array, the complexity will
be O(K?log N*?) and hence will continue to scale logarithmi-
cally with the number of antennas in the array.

5 AGILE-LINK IMPLEMENTATION

We have implemented Agile-Link by designing and building
a full-fledged mmWave radio capable of fast beam steering,
which is shown in Fig.5. The radio operates in the new 24GHz
ISM band and serves as a daughterboard for the USRP soft-
ware radios. Its physical layer supports a full OFDM stack up
to 256 QAM. Our implementation addresses critical system
and design issues that are described below.

(a) Heterodyne Architecture: Millimeter Wave hardware
is significantly more expensive than GHz hardware. Thus,
we leverage a heterodyne architecture where the mmWave

In general, the transmitter and receiver can pick the direction with the
highest power as the best direction to align their beams. In special cases,
where two paths are detected with the similar power, it might be hard to
map which path on the transmitter side corresponds to the which path
on the receiver side? This can be addressed by either incurring 4 extra
measurements to test the path pairs or by performing the soft voting jointly
over the path pairs.



Figure 5: Agile-Link Platform: The figure shows the phased
array and mmWave radio we built to operate as a daughterboard
for the USRP software radio.

uskp

Figure 6: Agile-Link’s Architecture. The figure shows block
diagrams for both Agile-Link’s transmitter and receiver.

signal is first taken into an intermediate frequency of a few
GHz, before the I and Q (real & imaginary) components are
separated. Such a design reduces the number of components
that need to operate at very high frequencies (e.g., mixers,
filters, etc) and replaces them with components that operate
at a few GHz, which are much cheaper.

The architecture of Agile-Link’s receiver is shown in Fig 6.
The first block is a mmWave phased array which allow us
to steer the beam electronically. The array consists of an-
tenna elements where each element is connected to a phase
shifter. The outputs of the phase shifters are combined and
fed to a single mmWave front-end. The front-end has a stan-
dard design of a low-noise amplifier (LNA), band-pass filter,
mixer, and a PLL. The mmWave front-end down-converts
the mmWave signal to an intermediate frequency (IF) and
feeds it to the daughterboard on the USRP which samples it
and passes the digitized samples to the UHD driver. This en-
ables easy manipulation of mmWave signals using standard
GNU-radio software and allows us to build an OFDM stack
that supports up to 256 QAM.

We have built the design in Fig. 6 using off-the-shelf com-
ponents. For the mmWave low-noise amplifier (LNA) and
power amplifier (PA), we use Hittite HMC-C020 and Quin-
star QLW-2440, respectively. For the mmWave mixer, we
use Marki M1R-0726MS. To generate local oscillator (LO)
signals, we use Analog Devices ADF5355 PLL and Hittite
HMC-C035 frequency doubler. The phased array includes
8 antenna elements separated by %, where each element is
connected to a Hittite HMC-933 analog phase shifter. We use
Analog Device AD7228 digital-to-analog converters (DAC)
and Arduino Due micro-controller board to digitally control
the phase shifters.

(b) Radio Performance: To test Agile-Link’s ability to de-
liver high data rates and long range using phased arrays, we
measure the SNR of the received signal for different distances
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Figure 7: Agile-Link Coverage. SNR at the receiver versus dis-
tance between the receiver and the transmitter.

between Agile-Link’s receiver and transmitter where the
transmit power complies with FCC part15. Fig. 7 shows the
SNR at the receiver versus the distance between transmitter
and receiver. The figure shows that Agile-Link’s implemen-
tation provides SNR of more than 30 dB for distances smaller
than 10m and 17 dB even at 100m which is sufficient for
relatively dense modulations such as 16 QAM [42].

6 EXPERIMENTAL EVALUATION

We evaluate Agile-Link’s ability to identify the best beam
alignment quickly and accurately. We ran experiments in a
lab area with standard furniture (desks, chairs, computers,
etc.). We also ran experiments in an anechoic chamber, where
we can accurately measure the ground truth. The anechoic
chamber walls are covered with RF absorbers to eliminate
multipath and isolate the space from exterior interference.
This isolation is necessary to measure the ground truth path
traveled by the signal without having RF reflections.

6.1 Compared Schemes

We compare the following three schemes:

e Exhaustive Search: In this approach, for each setting of
the transmitter’s beam direction, the receiver scans all differ-
ent directions. The combination of transmitter and receiver
beams that delivered the maximum power is picked as the
direction of the signal.

e 802.11ad Standard: The standard has three phases[22].
The first stage is called Sector Level Sweep (SLS). In this stage,
the AP transmits in all possible directions, and the client sets
its receiver beam pattern to a quasi-omnidirectional beam.
The process is then repeated with the AP setting its receiver
antenna to quasi-omnidirectional and the client sweeping
through all transmit directions. At the end of this stage, the
AP and client each pick the y directions that deliver the
largest power. Note that while some proposals amend the
standard to perform SLS with hierarchical beams, hierarchi-
cal search is not robust to multipath as described in §3. The
second stage is called Multiple sector ID Detection (MID). This
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stage repeats the process above but with the transmit beam
set to quasi-omni-directional and the scan being performed
with the receive beam. This stage compensates for imper-
fections in the quasi omnidirectional beams. The third stage
is called Beam Combining (BC). In this stage, each of the y
best directions at the AP are tried with each of the y direc-
tions at the client. Hence, y? combinations are tested and
the combination of transmit and receive beams that deliver
the maximum power is selected and used for beamforming
during data transmission. In our experiments, we set y = 4.
e Agile-Link: We run the algorithm described in §4.2. We
set K to 4 since past measurement studies show that the
mmWave channel has only 2 to 3 paths [6, 34, 39, 40].

6.2 Beam Alignment Accuracy vs. the
Ground Truth

We first evaluate whether Agile-Link can detect the best
alignment of the receiver’s and transmitter’s beams. To per-
form this evaluation, we need to know the ground truth,
i.e., the actual direction of the signal. Thus, we run this ex-
periment in an anechoic chamber, where we can accurately
measure the ground truth. For each experiment, we place
Agile-Link’s transmitter and receiver at two different loca-
tions. We then change the orientation of the transmitter’s
and receiver’s antenna arrays with respect to each other
for all angles between 50° and 130° with increments of 10°.
Since there is only a single line-of-sight path in the anechoic
chamber, this path will appear at a different direction at the
transmitter and at the receiver depending on the orienta-
tion of the antenna arrays. Hence, this allows us to test any
combination of directions from which the strongest path
can leave the transmitter and arrive at the receiver. For each
setting, the transmitter transmits measurement frames (as
required in 802.11ad) which the receiver uses to compute
the directions of the best beam alignment. We then steer the
beams based on the output of the alignment and measure
the SNR achieved by this alignment.
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exhaustive search.

We will use the SNR loss in comparison to the optimal
alignment, i.e., how much SNR could we have gained had we
known the ground truth as our accuracy meter. We calculate
this metric by measuring the SNR achieved by our beam
alignment and subtract it from the SNR achieved by the opti-
mal alignment: SNR;oss = SNRoptimal —SNRagite—Link- The
lower the SNR loss, the higher is our accuracy in detecting
the direction of the signal.

Fig. 8 plots a CDF of the SNR loss for Agile-Link’s beam
searching scheme, the exhaustive search and the 802.11ad
standard, in comparison to the optimal alignment. The figure
reveals two interesting points. First, it shows that Agile-Link
performs better than the two baselines in that it has min-
imal SNR loss. While all schemes have a median SNR loss
below 1dB, the 90" percentile SNR loss for both exhaustive
search and the standard is 3.95dB which is higher than the
1.89dB SNR loss of Agile-Link. This is due to the fact that
the standard and exhaustive search choose to steer using the
best beam from a discrete set of N beams which they tested.
However, the space of beam directions is continuous and the
best beam may not exactly align with the discretization cho-
sen by the algorithms. In this case, they will end up picking
the closest beam in the discrete set, which may not be the
exact optimal one. SNR loss is further exacerbated by the
fact that this can happen on both sides i.e., the transmitter
and the receiver. In contrast, Agile-Link uses the beams as
a continuous weight over the possible choice of directions
(Equation 1) and picks the direction that maximizes the over-
all weight, as described in §4.2. Thus, Agile-Link can discover
the direction of the path beyond the N directions used by
exhaustive search and the standard.

Furthermore, the figure shows that the standard and ex-
haustive search have similar performance. This might seem
surprising since one may expect exhaustive search to find
a better beam alignment since it spends more time search-
ing the space. However, it is important to recall that the
standard differs from the exhaustive search only in the first
stage where it uses a quasi-omnidirectional beams to limit
the search space to a few top candidates. In the final the



stage, however, the standard tries all possible combinations
of these candidate beams. Since there is only one path in
this experiment, as long as the best beam is picked as one of
the candidate beams in the first stage, the standard will con-
verge to the same beam alignment as the exhaustive search.
However, we will show next that this does not continue to
hold in multipath settings.

6.3 Alignment Accuracy in Multipath
Environments

We repeat the above experiments in an office environment,
where due to multipath, the signal can arrive from differ-
ent directions. However, in this case, we do not know the
ground truth for the direction of strongest path and hence
we measure the SNR loss relative to the exhaustive search
baseline: SNR}o5s = SNRExhaustive — SNRAgile-Link- Note
that since exhaustive search tries all possible combinations
of directions, it maintains its performance with multipath.

Fig. 9 plots a CDF of SNR loss for Agile-Link and the
802.11ad standard with respect to the exhaustive search. The
figure shows that the standard performs much worse in mul-
tipath scenarios. Specifically, instead of having a similar SNR
to the exhaustive search as before, the median and 90" per-
centile SNR loss (with respect to exhaustive search) are 4dB
and 12.5dB, respectively. This is because the standard is us-
ing its phased array as a quasi-omnidirectional antenna and
hence the multiple paths can combine destructively, in which
case the information is lost. Further, due to imperfections
in the quasi-omnidirectional patterns, some paths can get
attenuated and hence the standard can easily choose the
wrong direction to align its beam. In contrast, Agile-Link
performs well even in the presence of multipath. Specifically,
the median and 90*” percentile SNR loss with respect to ex-
haustive search are 0.1dB and 2.4dB, respectively. Finally,
the figure also shows that sometimes Agile-Link’s SNR loss
with respect to exhaustive search is negative. This is because
in some cases, Agile-Link performs better that exhaustive
search for the same reasons described above.

6.4 Beam Alignment Latency

Next we would like to evaluate the gain in reducing latency
that Agile-Link delivers over the two baselines. However,
since our radio has a fixed array size we cannot empirically
measure how this gain scales for larger arrays. Hence, we
perform extensive simulations to compute this gain for larger
arrays and we use the empirical results from our 8-antenna
array to find the delay for this array size.

(a) Reduction in the Number of Measurements: Since each
measurement in 802.11ad requires sending a special frame,
one way to measure delay is in terms of the number of mea-
surements frames. Fig. 10 plots the reduction in the number
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Figure 11: 802.11ad Beacon Interval Structure

of measurements that Agile-Link achieves over exhaustive
search and the standard. For an 8-antenna phased array,
Agile-Link reduces the number of measurements by 7x and
1.5% compared to exhaustive search and standard, respec-
tively. Further, the gain increases quickly as the number of
antennas increase. This is due to the scaling property of
each algorithm and whether it is quadratic, linear, or log-
arithmic. For arrays of size 256, Agile-Link is 16.4X better
than the standard and three orders of magnitude better than
exhaustive search.

(b) Reduction in Search Time: Next, we look at the amount of
time it takes to find the best alignment in each scheme under
the 802.11ad MAC protocol. The standard is still evolving; our
description is based on [22]. Since the delays in exhaustive
search are unacceptable in practice, we consider only Agile-
Link and the beam alignment scheme in the standard.

The 802.11ad has a protocol for when the AP and clients
search the space to align their beams [22, 28]. The delay pro-
duced through this process differs from simply multiplying
the number of measurement frames by the duration of each
measurement. This is due to three main reasons: 1) The pro-
tocol allows for beam scan (called beam training) only during
certain intervals. If the client cannot collect all necessary
measurements, it needs to wait until the next opportunity
to perform more measurements. 2) Different clients contend
for the beam alignment slots; hence, the delay will increase
depending on the number of clients. 3) When the AP sweeps
its beam, all clients can collect measurements; hence this
part can be amortized.

To better understand the above constraints, let us de-
scribe at a high-level how 802.11ad performs beam-forming
training. The AP periodically transmit beacon intervals (BI),
which typically last for 100 ms [28]. Each BI has a beacon
header intervals (BHI), followed by a data transmission inter-
val (DTI), as shown in Fig. 11. The search for the best align-
ment is done during the BHI. Each BHI consists of one beacon
transmission interval (BTI) which is used by the AP to train
its antenna beam, and eight association beam-forming train-
ing (A-BFT) slots, which are randomly selected by clients to
train their beams. Finally, each A-BFT slot consists of up to
16 SSW frames, where each frame is used to perform one
measurement and has a duration of 15.8us [3, 22]. Each BI



One Client Four Clients
Size | 802.11ad | Agile-Link | 802.11ad | Agile-Link
8 0.51ms 0.44ms 1.27ms 1.20ms
16 1.01ms 0.51ms 2.53ms 1.26ms
64 4.04ms 0.89ms 304.04ms 2.40ms
128 | 106.07ms 0.95ms 706.07ms 2.46ms
256 | 310.11ms 1.01ms 1510.11ms 2.53ms

Table 1: Beam alignment latency for different array size

has a maximum of 8 beam training slots. All clients con-
tend for training in those slots. If the client cannot finish its
training during one A-BFT, it can contend for further slots
during the same or following BI. Yet, waiting for the next BI
increases the delay by 100ms.

As explained in §6.1, 802.11 performs beam refinement
where each of y best directions at the AP and client are com-
pared again. To simplify the computation, we conservatively
ignore the 802.11ad beam refinement since it only increases
the delay of 802.11ad, and improves the relative gains of
Agile-Link. Also when simulating 4 client, we assume that
the contention succeeded without collision. This is a con-
servative assumption since Agile-Link requires significantly
fewer measurement slots and hence, given the same number
of slots, the collision probability between clients is smaller
in Agile-Link. Finally, the AP trains its beam during the BTI,
and uses frames similar to those used for the client beam
training. The AP doesn’t need to repeat this training per
client.

Table 1 shows the beam alignment delay for different
antenna-array sizes, for the case of one client and 4 clients.
As the number of antennas in the array increases, the delay
in 802.11ad increases quickly. In contrast, Agile-Link can
operate within the same standard, but it extracts more in-
formation from each measurement, hence keeping the the
delay low even for large antenna arrays. In particular, for
antenna arrays of 256 elements, the proposed 802.11 beam
alignment algorithm takes hundreds of milliseconds for one
user and over 1.5 seconds for 4 users. In contrast, Agile-Link
keeps the delay below 1.01ms and 2.53ms, respectively.

6.5 Comparison with Beam Alignment
using Compressive Sensing

Concurrent to our work, the authors of [35] proposed a
scheme that leverages compressive sensing to speed up the
search for the best beam alignment. Here, we compare Agile-
Link with that scheme. On the theoretical front, both al-
gorithms exploit sparsity to speed up the search. However,
Agile-Link provably finds the best alignment in a logarith-
mic number of measurements, while [35] does not provide
any theoretical guaranties (note that the standard compres-
sive sensing analysis does not apply because the algorithm
of [35] only uses the magnitudes of the measurements). In
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Figure 13: Hashing Beam Patterns Beam patterns of the first
16 measurements for (a) Agile-Link and (b) Compressive Sensing
Beam Alignment.

the following, we compare the two schemes empirically to
better understand the difference in their performance.

To be fair to both schemes, we use the same channel in-
formation from our measurements and run trace driven sim-
ulations for antenna arrays of 16 elements. This guarantees
that we apply both schemes on the same set of channels.
We fix the signal direction of the transmitter. The receiver
tries both schemes (one after the other) until it finds the op-
timal beam alignment. We repeat the experiment 900 times
for different channel values, where the channels are taken
from empirical measurements in our testbed. Fig. 12 plots
the required number of measurements to find the correct
direction for both Agile-Link and the compressive sensing
scheme. As before, the required number of measurements is
defined as the number of measurements until the resulting
beam power is within 3dB of the correct optimal beam power.
The figure shows that Agile-Link requires significantly fewer
measurements. Specifically, Agile-Link needs a median of 8
measurements and a 90th percentile of 20 measurements. In
contrast, the compressive sensing scheme needs a median
of 18 measurements and a 90th percentile of 115 measure-
ments. Interestingly, the figure shows that the tail of the
compressive sensing scheme is pretty high.

To understand the root cause of this behavior, let us look
at the beam patterns generated by both schemes. Fig. 13
plots the beam patterns of the first 16 measurements for
both schemes. Each color refers to a different multi-armed



beam.® The figure shows that beam shape of the compressive
sensing scheme is quite random and hence fails to sample
the space uniformly. Further, the figure shows the combina-
tion of the first 16 measurements. For Agile-Link it is clear
that the first 16 measurements span the space well and hence
minimize the probability of missing the right signal direction.
In contrast, the first 16 measurements from the compressive
sensing scheme do not manage to span the space and leave
many signal directions uncovered. Therefore, the compres-
sive sensing scheme has a fairly long tail.

7 CONCLUSION

This paper presents Agile-Link, a phased array mmWave sys-
tem that can find the best beam alignment without scanning
the entire space. Agile-Link delivers a mmWave beam align-
ment algorithm with provably logarithmic measurements for
the phased-array architecture commonly used in mmWave
access points and clients. It finds the correct alignment of
the beams between a transmitter and a receiver orders of
magnitude faster than existing radios. We believe Agile-Link
brings us closer towards practical mmWave networks.
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APPENDIX
A FORMAL PROOF OF THE ALGORITHM
A.1 Notation and Preliminaries

(a) Basic notation

e We use [N] to denote {0...N — 1}.

e We use S to denote the support of x.

e We use F to denote the Fourier transform matrix, and F/
to denote the inverse Fourier transform matrix. Also,
we use F; to denote the i-th row of F; same for F’.
Finally, we use X to denote Fx.

e For two vectors x and y, we define the Hadamard prod-
ucto of x and y as (x o y); = x;y;. We will use this
notion to mask out the coefficients outside of a given
segment.

e We use x * y to denote the convolution of x and y.

e The vectors ey . . .exn—; denote the standard basis. Le.,
(ep); = 1for p =i and (e,); = 0 otherwise.

(b) Measurements and box car filter
Our measurements can be described using the notion of the

5Note these are the actual beams from substituting in the equations for both
schemes, while the beams in Fig. 4 are ideal beams. Agile-Link’s beams are
pretty close to the ideal beams whereas compressive sensing beams deviate
strongly from that ideal pattern.
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boxcar filter, defined as follows. For parameter P, let H be
such that H; = P—\/ivl if [i| < P/2 and H; = 0 otherwise. It is

y _ sin(x(P-1)j/N)
known that Hj = W

PROPOSITION A 1 H satisfies the following properties: (i)
Hy = 1; (u)H € [5-,1] for|jl < (iii) |H| <
P >3

2 .
zp’ 17/ IP/N if

Craim A.2.
A A N
2 _ 2 12 o
IHIl; = % |H;|* <1+2N/P % 1/1jl scP

for some constant C.

We also define a shifted version of H defined as (H'); =
H;_;. By the time-shift theorem it follows that |Hl.t | = H;
Using this notation, we can write each measurement al as

=S

Each segment of a?, when multiplied by a row of the matrix
F’, can be interpreted as follows.

HrN/R

Cramm A3. (F;oH)-F, = ﬁ,-_p
ProoF.

(FioH)-F') = Fi:(FpoH) = (F/y o H), = (Fp); =

O

(c) Pseudo-random permutations

We will use matrices P, , parameterized by mappings p of
the form p(i) = o™i + @ mod N for o, a, b € [N] such that
b(j+oa)

P’,, pF for P, , as defined in the paper.

o (P 5X)p) = x;™) for 7(j) =

o 'P,;, =
Note that 7 is a permutation assuming b is invertible mod
N. We use R to denote the set of all mappings p as defined
above. For the analysis, we will assume that N is prime.
This will ensure that the elements p € R are permutations.
Furthermore, in this case R is pairwise independent, i.e., for
any i # j,i’ # j’, we have

Prperlp(i) = i', p(j) = j'1 = 1/N?
It will be convenient to assume ||x||22 = 1. Then we can

define the threshold T to be (2(2”) )z(ﬁ)Z/K.

A.2 Proofs

LEMMA A.4. Fix b and select p € R uniformly at random.
Then, for any s:

E[1(b, p(s))]

where C is the constant from Claim A.2.

= E [1a"F () ?] < CR/P

(ep*l:l)i =

Aip



Proor.

R-1
’ b /
E[la"F "] = E| ((Fs,;oH’N/R)wfr)Fp<s>lz] (4)
r=0
R-1 .
_ ArN/R -tk 2
= E|| Hsg_p(s)w I} (5)
r=0
R-1

0

~
I

where in step 5 we used Claim A.3 and the independence
of the variables t?, r = 0...R — 1. Since i = s, — p(s) is
distributed uniformly at random in [N], by Claim A.2:

R-1 R-1
E[|Hg_p] < Z 1/NZ |F;|? < R/N-N/P-C = CR/P
r=0 r=0 i
O
LEMMA A.5. Suppose that |s; — i S . Then
bR 12 s
F; >5/6
Pr|a”F';| 4(2 )2] /
Proor.
R-1 )
jaPF' [ = | VENRE ()
-~ sy, i

2 th 2 th 2
|Hs;_,~w T+ Z HS;'_I.O) | (8)

r'#r

A b
= Ay 0 = X2 (9)

We know from Proposition A.1 that II:I r ia)tf| > % We
will show that the probablhty of X > 2(2”) is at most 1/6. It
will follow that |aF’;]? > W with the probability of at
least 5/6.

Recall that sg,sll) . are separated by P. Therefore for
r’ # r, we have IsZ' —il=P-|s,—il 2 P- 2P’ which is
at least P/2 for B large enough. By the independence of the
variables trb, and by Proposition A.1 we have:

E[X’] = B[l ) Ay o' [
- Zr;rui ']
o
R 2
< 2 am)
< 8/(P%/N) ZR:(l/d)z < 8CN/P?

d=1
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Since P = N/R and R? = N/B, the latter expression
is bounded by 8C/B, which is less than 6(4#”)2 for B large

enough. It follows that the probability of X? > i 42)2 =
6E[X?] is at most 1/6.

PrRoOOF OF THEOREM 4.1, PART (1). Suppose that s € S. Se—
lect s, that is closest to p(s). Note that [s; — p(s)| < 2P’

which by Lemma A.5 implies |abF’p(s)|2 > 4(2 e with the
probability of at least 5/6.
We now lower bound T'(s) as follows

T(s) = |z\bF'PI,J,)(|2|abF’PpJ,es|2 (10)
= Yo, = XY (11)
where Y = w’(s)abF’p(s) and X = Y oes_(s) wf(sl)abF’p(S,)xs/.

We can bound E[IXIZ] as follows.

Zw

s’eS—{s}

xs'a F p(s’)| ] (12)

XZE[|aPF ] (13)

s’eS—{s}

IA

Z xXCR/P  (14)

s’eS—{s}

Ix|[2CR/P < C/B < l/Km (15)
where we used Parseval’s identity, Lemma A.4 and that B
is large enough. Therefore, we have that Pr[X? > @] <
1/6. By Lemma A.5 we have that, with probability at least

-0 T0) > (ol ~ ) U o

PrRoOOF OF THEOREM 4.1, PART (2). Suppose that s ¢ S. We
have

E[T(s)]

>~

M

1

Eppsnrll ) o

2 alF (s P1a"F ) 1]

b=0 s’eS
B-1
= Z ().l Z 0"t F (o) P1E o) [a"F ()]
b=0 s’eS
B-1
< CR/P Z Z L E[128F (1)
b=0 s’€S
< (CR/P)*B|Ix|l5 < C*/B < T/3
where we assume that B is large enough. By Markov inequal-
ity it follows that Pr[T(s) > T] < 1/3. m|
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