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ABSTRACT

There is much interest in integrating millimeter wave ra-

dios (mmWave) into wireless LANs and 5G cellular networks

to benefit from their multi-GHz of available spectrum. Yet,

unlike existing technologies, e.g., WiFi, mmWave radios re-

quire highly directional antennas. Since the antennas have

pencil-beams, the transmitter and receiver need to align their

beams before they can communicate. Existing systems scan

the space to find the best alignment. Such a process has been

shown to introduce up to seconds of delay, and is unsuitable

for wireless networks where an access point has to quickly

switch between users and accommodate mobile clients.

This paper presents Agile-Link, a new protocol that can

find the best mmWave beam alignment without scanning

the space. Given all possible directions for setting the an-

tenna beam, Agile-Link provably finds the optimal direction

in logarithmic number of measurements. Further, Agile-Link

works within the existing 802.11ad standard for mmWave

LAN, and can support both clients and access points.We have

implemented Agile-Link in a mmWave radio and evaluated

it empirically. Our results show that it reduces beam align-

ment delay by orders of magnitude. In particular, for highly

directional mmWave devices operating under 802.11ad, the

delay drops from over a second to 2.5 ms.
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1 INTRODUCTION

The ever-increasing demands for mobile and wireless data

have placed a huge strain on wireless networks [10, 43].

Millimeter wave (mmWave) frequency bands address this

problem by offering multi-GHz of unlicensed bandwidth,

200× more than the bandwidth allocated to today’s WiFi

and cellular networks [30, 34]. They range from the 24GHz

ISM band all the way to hundreds of GHz [1]. They are

expected to play a central role in dealing with increased

multimedia traffic, the introduction of new high data-rate

applications such as virtual reality, and the anticipated surge

in IoT wireless devices [2, 4]. This role has been cemented

with new standards that incorporate mmWave technologies

into 5G networks [25, 34], and 802.11 wireless LAN [22].

Millimeter wave radios however do not play well with mo-

bile devices or dynamic environments, a key challenge that

has been emphasized in the standards [22, 28]. Specifically,

mmWave signals attenuate quickly with distance; hence they

need to use highly directional antennas to focus their power

on the receiver. Luckily, due to their small wavelength (mil-

limeter scale), it is possible to pack hundreds or thousands of

antennas in a small area, creating an array with many anten-

nas, and hence a very narrow beam, as shown in Figs. 1(a)

and (b). Yet, since the beam is very narrow, communication

is possible only when the transmitter’s and receiver’s beams

are well aligned. Current solutions for aligning the beams

scan the entire space, trying various beam alignments until

they find the best one. This process can take up to several

seconds [39, 47]. Such a long delay makes the deployment of

mmWave links infeasible in wireless networks, where the ac-

cess point has to keep realigning its beam to switch between

users and accommodate mobile clients.

To understand the problem, consider a phased array with

many antennas. Its beam-width can be a few degrees or even

smaller. The naive approach to finding the best alignment

would have the transmitter and receiver scan the 3D space

with their beams to find the direction of maximum power,

as shown in Fig. 1(b). The receiver has to repeat the scan for
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(a) A mmWave phased array (b) Beam alignment in mmWave radios (c) Phased array’s architecture.

Figure 1: mmWave Communication (a) An example of mmWave phased arrays where hundreds of antennas are packed in a small

area [21]. (b) mmWave radios need to align their beams to establish a communication link. (c) mmWave phased arrays use a set of phase

shifters to steer the beam.

each choice of beam direction on the transmitter side. Thus,

the complexity of this exhaustive search is O (N 2), where
N is the number of possible beam directions. To speed up

the search, the 802.11ad standard decouples the steering at

the transmitter and receiver. In particular, the transmitter

starts with a quasi-omnidirectional beam, while the receiver

scans the space for the best beam direction. The process is

then reversed to have the transmitter scan the space while

keeping the receiver quasi-omnidirectional [22, 46] (see §6.1

for the details). This approach reduces the search complexity

to O (N ). Still, for a beam of a few degrees, the delay can be

hundreds of milliseconds to seconds [39, 47], which would

easily stall realtime applications.

But, can one identify the best alignment without scanning

the space of all possible signal directions? In principle, "yes".

There is much past work that shows that mmWave signals

travel along a small number of paths, e.g., 2 or 3 paths [6, 34].

This means that the space of possible signal directions is

sparse. One would hope to use the sparse recovery theory

to estimate the direction of the best alignment using a loga-

rithmic number of measurements [9, 11, 18], hence avoiding

excessive delays.

Problem Formalization: The objective of beam alignment

is to measure the signal power along each spatial direction.

Let x be an N -element vector that denotes the signal along

various spatial directions. Since in practice the signal arrives

only along few directionsK , we can say that x isK-sparse. Let,
hi be the signal at the i

th antenna, as shown in Fig. 1(c). Based

on the standard antenna array equation [44], we can write

h = F′x, where F′ is the inverse Fourier transform matrix.

We can steer the antenna beam by applying a phase shift to

each antenna ai = e−j2πϕi (see Fig. 1(c)). For each setting of

the phase shifters, we can measure the received power as

yj = |ajF′x|, where the notation |.| refers to the magnitude of

the signal and aj is a vector whose elements are the applied

phase shifts. Note that knowing the magnitude is the same

as knowing the power since power is magnitude squared. In

802.11ad, eachmeasurement corresponds to sending a special

frame. Each time a frame is sent, the signal incurs a random

phase due to the Carrier Frequency Offset (CFO) between

the transmitter and receiver [22, 32] (see §4.1 for details).

Thus, one cannot compare the phase of two measurements;

only the magnitude of the measurements is relevant. Since

we want to know the power along each spatial direction, the

problem can be formulated as:

estimate each |xi |, given measurements yj = |ajF′x|.
Of course, one way to solve this problem is to use N mea-

surements, each time setting a to one row of the Fourier

matrix. This corresponds to measuring one direction every

time, as proposed in 802.11ad. Alternatively, one could lever-

age that the vector x is sparse, and hope to solve the problem

in a logarithmic number of measurements. Unfortunately,

however, using off-the-shelf algorithms like compressive

sensing or the sparse FFT does not work since neither of

them deal with the scenario where the measurements return

the magnitude of the complex signal, i.e., the presence of

the |.| term [9, 11, 18]. To the best of our knowledge, no al-

gorithm with provable logarithmic guarantees exist for this

problem.

Our Design & Analysis: This paper introduces Agile-Link,

the first solution that provably finds the best beam alignment

in a logarithmic number of measurements. At a high-level, it

works as follows: Instead of creating a narrow beam and sam-

pling the power along one spatial direction each time, Agile-

Link manipulates the phase shifters to create multi-armed

beams, which can sample multiple spatial directions simul-

taneously (see Fig 2(a)). Since a multi-armed beam combines

the power along multiple directions, the receiver cannot im-

mediately tell which direction has produced the resulting

power. Agile-Link however uses a combination of random-

ized multi-armed beams, which together provide enough

information to identify the signal power along all spatial

directions. We formally analyze Agile-Link and prove that it

can deliver the best alignment in O (K logN ) measurements,

where K is the number of paths traveled by the signal. Since

K is typically 2 or 3 paths [6, 34], Agile-Link significantly

reduces the beam alignment delay.

Agile-Link has additional important features. First, Agile-

Link is compatible with the 802.11ad protocol, i.e., a Agile-

Link device can work with a non-Agile-Link device to find

the best alignment while using the 802.11ad protocol. In this
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case, the Agile-Link device finds the best alignment on its

side in a logarithmic number of measurements whereas the

traditional 802.11ad device takes a linear number of measure-

ments. Second, by the results of [7, 31], our measurement

complexity ofO (K logN ) is asymptotically optimal for small

K –i.e., it cannot be further reduced.

Implementation & Empirical Results:We have also im-

plemented Agile-Link and evaluated it usingmmWave radios,

each equipped with a phased array that has 8 antennas. We

also use simulations to explore its scaling behavior to large

arrays with hundreds of antennas, which are expected in

the future [8]. We compare Agile-Link with two baselines:

an exhaustive scan of the space to find the best beams, and

the quasi-omnidirectional search proposed in the 802.11ad

standard. Our evaluation reveals the following findings.

• In comparison with the exhaustive search, Agile-Link re-

duces the search time by one to three orders of magnitude

for array sizes that range from 8 antennas to 256 antennas. In

comparison to the quasi-omni directional search, Agile-Link

reduces the number of measurements by 1.5× to 16.4× for

the same range of array sizes. In particular, for large arrays

with 256 antennas, Agile-Link reduces the alignment delay

from over a second to 2.5ms.

• The quasi-omnidirectional search yields poor performance

in scenarios with multi-path effects. This is because using

a quasi-omnidirectional antenna allows the signals along

different paths to combine destructively, which yields low

power and prevents accurate detection of the best signal

direction. Further, due to imperfections in the quasi-omni

directional patterns [20, 27], some paths can get attenuated

and hence this approach can choose the wrong direction to

align its beam. In contrast, Agile-Link performs well both in

single path and multipath scenarios.

2 RELATEDWORK

(a)mmWave Solutions&Research:Research on fast beam

alignment for mmWave can be divided into two classes:

empirical and simulation-based. Past empirical work has

demonstrated the large delays incurred during beam align-

ment [39, 47]. It also proposed failover protocols that switch

to the next best beam when the current beam becomes

blocked [16, 40]. This approach however assumes that the

signal propagation paths are known a priori and hence one

can quickly switch to a failover direction.

Much of the previous work on fast beam alignment is

simulation-based. Most of this work proposes enhancements

to the standard that impose a form of hierarchy to speed up

the search [26, 41, 45]. Hierarchical algorithms, however, are

not robust to multipath. This is due to the fact that different

paths can combine destructively and cancel each other at

any level of the hierarchy. In §3(b), we present an example

that illustrate this case. Furthermore, in practice, hierarchical

search requires feedback from the client to guide the access

point at every stage of the hierarchy, which incurs significant

protocol delay [35].

Our work is closest to past work that leverages compres-

sive sensing to speed up the search for best beam alignment.

The work in [5, 12] requires a more complex architecture

with a quadratic number of phase shifters, andmultiple trans-

mit receive chains (typically 10 to 15 [5]). The best known

results for such complex architecture can guarantee a log-

arithmic number of measurements only for scenarios with

no multi-path ( K is strictly 1), and only for the average case

error [5]. The work in [35] also uses compressive sensing to

speed up the search but it does not provide any theoretical

guarantees. In comparison, Agile-Link can provably find the

best alignment in a logarithmic number of measurements

and its guarantees apply to the worst case behavior. In §6.5,

we empirically compare the performance of Agile-Link with

the compressive sensing scheme proposed in [35].

Some past theoretical work applies the standard compres-

sive sensing and assumes it can correctly obtain the phase

of the measurements [13, 33]. This approach does not work

with practical 802.11ad or cellular radios because it ignores

CFO (Carrier Frequency Offset) which corrupts the phase of

the measurements [32, 35] as we describe in §4.1.

Finally, some companies [8, 36, 38] offer mmWave systems

but they take a long time to steer the beam or require complex

hardware, making them unsuitable for mobile clients [39, 47].

Also, some research on mmWave focuses on point-to-point

links for Data Centers [17] or cellular and WiFi applica-

tions [16, 29, 39, 40, 47]. These works typically use a horn

antenna to direct the beam, which requires mechanical steer-

ing and is unsuitable for mobile links.

(b) Sparse Recovery Theory: The theoretical problem we

consider falls under “sparse phase retrieval” [23, 24]. Gener-

ally, the goal is to recover an approximation of a K-sparse
vector, x, fromM measurements of the form |Bx|. The pres-
ence of the absolute value is what makes this problem differ-

ent from the usual compressive sensing [9, 11] and sparse

FFT [14, 15, 18, 19]. In our context, we have an extra restric-

tion that the matrix B is of the form AF′, where F′ is the
inverse Fourier transform and all entries in A have unit mag-

nitude, i.e., |ai j | = 1 for all i, j. To the best of our knowledge,

this form has not been considered before.

Some of our proof techniques are inspired by past work

on sparse FFT, particularly the work in [14, 15] which used

boxcars filters for sparse Fourier transform algorithms. How-

ever, the technical development of our proofs is different due

to the leakage between multiple beam arms, which requires

extra layers of randomization. Furthermore, our results and

434



30

60
90

120

150

180 0

30

60
90

120

150

180 0

30

60
90

120

150

180 0

30

60
90

120

150

180 0

30

60
90

120

150

180 0

30

60
90

120

150

180 0

30

60
90

120

150

180 0

30

60
90

120

150

180 0

  0.2

30

60
90

120

150

180 0

  0.2

30

60
90

120

150

180 0

Figure 2: Illustrative example of Agile-Link’s algorithm

problem are different due to the restrictions on our measure-

ments that do not exist in sparse FFT.

(c)MassiveMIMOBeamforming:MassiveMIMO [37] has

many antennas, but the signal from each antenna is received

and manipulated independently. In contrast, a mmWave

phased array receives only the combined signal from its

antennas. Thus, beamforming techniques in standard and

massive MIMO do not apply to mmWave phased array.

3 ILLUSTRATIVE EXAMPLE

(a) Single Path Example: We start by explaining the intu-

ition of our algorithm. Consider a case where the transmitter

is at a 60o angle with respect to the receiver. For clarity, as-

sume a 2D setting. The same argument can be extended to 3D.

We would like the receiver to detect that the best alignment

is along the 60o angle without scanning the space.

Agile-Link avoids the need to scan all spatial directions

by using multi-armed beams, which simultaneously sample

the signal along multiple directions. Say for example, that

there are 16 possible directions in space, i.e., N = 16. Agile-

Link can sample all of these directions using 4 multi-armed

beams, each covering N /4 = 4 directions in space. Fig. 2(a)

shows four suchmulti-armed beams, and Fig. 2(b) shows how

together they cover the whole space of directions. Such set

of multi-armed beams operates like a hash function, where

N = 16 directions are hashed into 4 bins, and each bin covers

N /4 = 4 distinct directions. The value of the bin represents

the combination of the signals that hash into it. For example,

if the signal is coming along the 60o direction and 60o hashes

30

60
90

120

150

180 0

Figure 3: Example of hierarchical search with multipath.

to bin number 1, then only bin one will have energy whereas

the other bins will have no energy, as shown in Fig. 2(c). Thus,

one can ignore directions that hash to bins 2,3, and 4, and

focus only on directions that hash to bin 1. This significantly

reduces the search space to the directions that hash to the

first bin (i.e., the first multi-armed beam).

At this stage, we know that the signal could have come

from the directions covered by the first bin i.e., 0o, 60o, 90o

and 120o. But we do not know which among them is the

correct direction. Thus, we change the hash function and try

again. To do so, we use a second set of multi-armed beams

which together hash the whole space of directions into a set

of bins. The hash however is randomized with respect to the

previous hash so that directions that got hashed together

are unlikely to hash together again. Figs. 2(d,e,f) show an

example of hashing the spatial directions into bins after ran-

domizing the multi-armed beams and hence randomizing

which directions map into which bins. The first bin now

collects energy along 30o, 80o, 110o and 140o. Since the sig-

nal is arriving along 60o, it will be captured by the third bin

which is represented in blue in Fig. 2(f). Hence, in this second

hashing, only the energy of the third bin will be large. This

suggests that the signal arrived along one of the directions

that mapped to the third bin which in this case are 40o, 60o,

105o and 150o. Since the 60o direction is the only common

candidate from both the first hashing and the second hash-

ing, Agile-Link picks it as the direction of the signal. Thus,

Agile-Link is able to find the correct direction from which

the transmitter’s signal arrives without having to scan all

possible directions.1

(b) Multipath Example: But, what if the signal arrives

alongmultiple paths? For example, in Fig. 3, the signal arrives

along three directions: p1, p2 and p3. Paths p1 and p2 are

higher power than p3 because they are significantly shorter;

and the best beam alignment is along the direction of p1
which delivers the highest power.

1While the above example describes the algorithm for recovering one of N

possible direction, Agile-Link can recover the optimal direction at a finer

resolution by taking a continuous weight over possible choice of directions

as described in detail in §4.
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Let us compare two beam alignment algorithms: Hierarchi-

cal Search and Agile-Link. As explained in §2, multiple past

proposals use a hierarchy of beams to speed up the search for

the best alignment [26, 41, 45]. Proposals differ in the details,

but they use wide beams at the top of the hierarchy – e.g.,

they might start with two wide beams, check which beam

returns more power, then zoom in on the part of the space

that returns more power and use narrower beams to explore

it. Like Agile-Link, Hierarchical Search needs only a loga-

rithmic number of measurements. The problem is that using

wide beams means nearby signal directions would collide

within the same beam. Since RF signals are waves, the collid-

ing signals can combine destructively to cancel each other’s

power. In our example, p1 and p2 have close directions and
thus will collide in the wide beam. Say that p1 and p2 have
opposite phases, they will cancel each other’s power, making

it look as if the signal from the left-half of the space (i.e.,

directions 90o to 180o ) had more power. As a result, Hierar-

chical Search will zoom in on those directions and explore

them with narrower beams until it finds path p3, which is the

worse alignment out of the three signal directions. Note that

this failure mode can be quite common and does not require

the phases of p1 and p2 to be exact opposite; it is sufficient

that they point away from each other so that the resulting

power degradation makes it look as if p3 were higher power.
In contrast, Agile-Link does not use wide beams, where

nearby directions are bound to collide. Agile-Link uses multi-

armed beams where the arms in each beam can be random-

ized. Even if two paths collide in one multi-armed beam,

our randomization ensures that the same two paths will not

collide in other multi-armed beams, as formalized in §4.2.

Hence, Agile-Link can recover all possible paths and then

pick the best path to align the beam. At a high level, the sys-

tem operates as multiple randomized hash functions, which

can be provably resolved to recover all signal directions even

in the presence of multipath.

4 AGILE-LINK

This section describes Agile-Link in detail. For clarity, we

describe the algorithm assuming only the receiver has an an-

tenna array whereas the transmitter is omni-directional. The

extension to the case where both transmitter and receiver

have antenna arrays is described in §4.4.

4.1 Problem Statement

Recall that the problem is defined as follows: Let x be a K-
sparse N -element complex vector that denotes the signal

along various spatial directions. The objective is to estimate

the power (i.e., magnitude) of the signal along each direction,

|xi |, using a small number of measurements of the form

yj = |ajF′x|, where F′ is the inverse Fourier matrix, and aj is

a vector of phase shifts, |ai j | = 1, that are under our control.

Before describing our solution to this problem, it is impor-

tant to understand why one can only measure the magnitude,

not the phase. Every measurement involves sending a frame

from transmitter to receiver. Since the oscillators on the

transmitter and receiver always experience some CFO (Car-

rier Frequency Offset) [32], the signal of each frame incurs

an additional unknown phase shift. Further, this phase shift

changes across frames. Correcting the CFO across measure-

ment frames is not supported in the 802.11ad standard [22].

Furthermore, such a correction will be very hard due to the

high frequencies of mmWave. For example, a small offset of

10 ppm at such frequencies can cause a large phase misalign-

ment in less than hundred nanoseconds.

4.2 Agile-Link’s Algorithm

Agile-Link works in two stages. First, it randomly hashes the

space into bins (using multi-armed beams) such that each

bin collects power from a range of directions. Second, it uses

a voting mechanism to recover the directions that have the

power. Below, we describe these two stages in detail.

1. Hashing Spatial Directions into Bins

Agile-Link hashes the signal along various directions to bins

using multi-armed beams. Let us refer to the arms in each

multi-arm beam as the sub-beams. Let R be the number of

sub-beams in each beam, B the number of bins in each hash

function, and L the number of hash functions. Each setting

of the phase shifter vector, a, creates a different beam pattern

and the resulting measurement y = |aF′x| will correspond
to the power in the directions covered by the beam pattern.

So how do we create good multi-armed beams? It should

be clear that, given the structure of the measurements, we

can create a beam that points in one direction, s , by setting a
to the s-th row in the Fourier matrix. Thus, to create a multi-

armed beam, Agile-Link divides the vector a into R segments

each of lengthN /R i.e., a[1:N /R], a[N /R+1:2N /R], · · · , a[(R−1)N /R:N ].

Each segment then sets its sub-beam towards a different di-

rection. This is done by setting the segment a[1+(r−1)N /R:rN /R]

to the corresponding segment in the desired row of the

Fourier matrix. Formally, if an index i belongs to the r -
th segment pointing towards the direction sr , then ai =
(Fsr )i · e−j2πtr /N , where tr is a random integer between

0, . . .N − 1, and (Fsr )i is the i-th entry in row sr in the

Fourier matrix. The term e−j2πtr /N results in a phase shift

of the sub-beam without changing its direction.2

Due to the properties of the Fourier transform, the sub-

beam created by each segment will be wider than a single

2An earlier version of this algorithm appeared in a short workshop paper

which is not cited due to anonymity. The algorithm we present in this paper

is more efficient and can provide proven guarantees.
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Figure 4: Hashing Beam Patterns (a) Agile-Link hashes well

spread directions into a bin; (b) All the bins of Agile-Link’s hash

function where the same color corresponds to the same bin.

beam created by the full array by a factor of R, so each sub-

beam covers R adjacent directions. Since there are R such

sub-beams, the multi-armed beam created by this setting of

the vector awill cover R2 directions. Now, if we wish to hash

the space of directions into B bins, then each will cover R2

directions and hence B = N /R2.

But how do we pick the directions of the sub-beams in

each multi-armed beam? The best scenario is when the sub-

beams in each multi-armed beam are well spaced so that the

leakage from their side-lobes is minimized. Fig 4(a) shows an

example of well-spaced sub-beams, where we have a multi-

armed beam with two sub-beams directed 60o apart. In this

case, the beam pattern will hash directions that are 60o apart

into the same bin. By shifting the direction, we can then

create all different bins in the hash function, as shown in

Fig 4(b) where each color corresponds to a bin in the hash

function. Formally, the above process is achieved by setting

the direction of the r -th segment in bin b to be equal to

sr
b
= Rb + rP , where P = N /R is the spacing between two

sub-beams corresponding to the same bin.

The question that remains is how do we randomize the

hashing process to make sure that two large signals are not

hashed to the same bin every time. Ideally, we can solve

this problem by randomly permuting the entries in of the

vector x. Physically, however we cannot permute x. Instead,

we leverage a nice property of the Fourier transform that

says that we can pseudo-randomly permute the input of the

Fourier transform (i.e., the entries of the vector x) by pseudo-

randomly permuting its output (i.e., the entries of the vector

F′x) [14, 15, 18]. In the simplest setting, suppose that wewant

to permute the input samples according to: x′( f ) = x(σ f ),
where σ is chosen at random for an appropriate distribution,

and all operations on indices are done modulo N . This is

equivalent to permuting the output x̂ = F′x according to:

x̂′(t ) = x̂(σ−1t ), where σ−1 is the inverse of σ modulo N .

This enables us to “randomize” the positions of large entries

in x by rearranging the entries of F′x. This result is very
useful since we can easily permute F′x in our measurements

by simply permuting the elements in the vector a, i.e., by

permuting the phase shifts applied to the phase shifters on

each antenna.

More generally, let us use the vector y1×B = |AB×N F′x|
to refer to the B measurements performed as part of a hash

function, where A is a matrix of phase shifts. To permute

this hash function, we measure y1×B = |AP′F′x|, where we
use the term |.| to refer to the magnitude of the individual

elements in the vector, and the matrix P′ is a generalized

permutation matrix.3 That is, our phase shifter matrix is

equal to AP′ (note that each entry of the latter matrix has a

unit magnitude, i.e., it represents proper phase shifts). This

is equivalent to measuring |AF′Px|, for the corresponding
generalized permutation matrix P.

2. Recovering the Directions of the Actual Paths

After hashing the spatial directions into bins, Agile-Link

discovers the actual directions of the signal using a voting

scheme where each bin gives votes to all directions that hash

into that bin. After few random hashes, the directions that

have energy will collect the largest number of votes which

allows Agile-Link to recover them. Unfortunately, directly

applying this voting approach does not work well because

the side-lobes of the beams create leakage between the bins

and hence a strong path in one bin can leak energy into other

bins which corrupts the voting process. To overcome this

problem, Agile-Link takes into account the leakage between

the bins.

Specifically, Agile-Link models the beam patterns (exam-

ple of which are shown in Fig. 4(a) and Figs. 2(a) and (d),)

as a coverage function I (b, ρ, i ) that indicates the coverage
of the direction i by the beam corresponding to the bin b,
assuming the indices are permuted by ρ. It is defined as:

I (b, ρ, i ) = |abF′ρ (i ) |2, where ab is the vector defining the

settings of the phase shifters corresponding to bin b.
If we hash into B bins, we will have B such patterns and

collect Bmeasurements y1×B corresponding to the bins. After

taking the magnitude squared of each measurement, we can

estimate the energy of the signal coming from direction i as:

T (i, ρ) =
B−1∑
b=0

y2b × I (b, ρ, i ), (1)

If the estimate T (i, ρ) exceeds a predefined threshold T then

we conclude that there is a signal coming from direction i .
Otherwise we conclude that there is no such signal.

4.3 Performance Analysis

A detailed analysis with full proofs is provided in the appen-

dix. Here, we note the main theorems and their implications.

3 P′ is a generalized permutation matrix if each row or column of P′ contains
exactly one non-zero entry, and that entry has unit magnitude. We use the

matrix P′ defined as in [18]: the i-th column of P′ contains the value ωaσ i

in the row σ (i − b ), where ω = e2π j/N and a, b, σ are randomly chosen

parameters. This has the effect of rearranging the vector x by moving the

entry xi to xρ (i ) for ρ (i ) = σ
−1i + a, and multiplying it by ωb j+σba .
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Theorem 4.1. Suppose that the vector x has at most K non-

zero entries, and that the energy x2i of each non-zero entry xi
is at least 1/K . Furthermore, suppose that N is a prime. There

exists a setting of parameters T , R and B = O (K ), so that for
each candidate direction i , we have that:

• If xi � 0 then T (i, ρ) ≥ T with probability at least 2/3
• If xi = 0 then T (i, ρ) < T with probability at least 2/3

The probability of correctness can be amplified by perform-

ing several (L) random hashes and aggregating the results.

There are multiple ways of performing the aggregation. A

simple approach is to use “hard voting”, i.e., conclude that

a signal is coming from a direction i if the signal from that

direction has been detected by the majority of hashes. By

Chernoff bound, this approach reduces the probability of

incorrect detection from 1/3 to e−C ′′L for some constant C ′′.
By letting L = O (logN ), we can compute correct estimates

for all all indices i , with the probability of failure at most

1/N . The algorithm uses BL = O (K logN ) measurements

and its running time complexity is O (NK logN ).
The algorithm can be also used to provide estimations of

the values of |xi |2’s. The guarantees are provided by the fol-

lowing theorem. Note that no assumptions about the sparsity

of x are required, although the guarantees are meaningful

only for xi ’s whose magnitude is large enough. This makes

the estimate resilient to the presence of small amounts of

noise at all coordinates.

Theorem 4.2. Suppose that N is a prime. There exists a

setting of parameters R, B = O (K ), and a constant C > 1 so

that for each candidate direction i , we have:

Pr[|xi |2/C − ‖x‖22/K ≤ T (i, ρ) ≤ C |xi |2 + ‖x‖22/K] ≥ 2/3

Few points are worth noting. First, in practice, we drop

the assumption that N is prime. Second, we use soft voting

instead of the hard voting. Specifically, we estimate of the

strength of the signal along direction i as S (i ) =
∏L

l=1Tl (i, ρ),
where Tl (i, ρ) is defined as in Equation 1, for the l-th per-

mutation. The soft voting approach uses more information

about the measurements than hard voting, and hence its

practical performance is better. We extract the significant

coefficients of the signal xi by selecting the indices i with
the largest values of S (i ).

4.4 Extension of the Model to Both
Transmitter and Receiver

Here, we extend our model and algorithm to the case where

both transmitter and receiver have antenna arrays. In this

case, each measurement can be written as:

y1×1 = |arx1×N F′xrxN×1xtx1×N F′atxN×1 | (2)

where arx and atx are vectors corresponding to a setting of

the phase shifters, F′ is an N × N inverse Fourier transform

matrix and xrx and xtx are sparse vectors representing the

angle of arrival at the receiver and the angle of departure at

the transmitter respectively. Our goal is to recover xrx and

xtx from several measurements y.
We can reduce this problem to the problem solved earlier.

Specifically, we make B × B measurements of the form:

YB×B = |Arx
B×N F

′xrxN×1x
tx
1×N F

′Atx
N×B | (3)

where Arx is the phase shift matrix as in Theorem 4.1, and

Atx is its transpose. Let Arx
i be the i-th column of Arx and

Atx
j be the j-th row of Atx

j . Furthermore, let yi =
∑

j Yi, j . We

observe that:

yi =
∑
j

Yi, j =
∑
j

|Arx
i F′xrxxtxF′Atx

j |

=
∑
j

|Arx
i F′xrx | |xtxF′Atx

j |

= |Arx
i F′xrx |(

∑
j

|xtxF′Atx
j |) = |Arx

i F′xrx |C

where C is a constant independent of i . Therefore, we can
recreate the measurements of the form needed by Theo-

rem 4.2 from the B2 measurements provided by the matrix Y.

In this way we can test, for each i , whether xrxi is non-zero,

and each test is correct with probability at least 2/3. By re-

peating the process L = O (logN ) times, we can detect each

non-zero entry with high probability. The total number of

measurements is B2L = O (K2 logN ).4

Finally, while we described the algorithm for 1D antenna

arrays, the algorithm holds for 2D arrays as well. We simply

need to apply the hash function along both dimensions of

the array. For an N × N antenna array, the complexity will

beO (K2 logN 2) and hence will continue to scale logarithmi-

cally with the number of antennas in the array.

5 AGILE-LINK IMPLEMENTATION

We have implemented Agile-Link by designing and building

a full-fledged mmWave radio capable of fast beam steering,

which is shown in Fig.5. The radio operates in the new 24GHz

ISM band and serves as a daughterboard for the USRP soft-

ware radios. Its physical layer supports a full OFDM stack up

to 256 QAM. Our implementation addresses critical system

and design issues that are described below.

(a) Heterodyne Architecture: Millimeter Wave hardware

is significantly more expensive than GHz hardware. Thus,

we leverage a heterodyne architecture where the mmWave

4In general, the transmitter and receiver can pick the direction with the

highest power as the best direction to align their beams. In special cases,

where two paths are detected with the similar power, it might be hard to

map which path on the transmitter side corresponds to the which path

on the receiver side? This can be addressed by either incurring 4 extra

measurements to test the path pairs or by performing the soft voting jointly

over the path pairs.
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Figure 5: Agile-Link Platform: The figure shows the phased

array and mmWave radio we built to operate as a daughterboard

for the USRP software radio.

Figure 6: Agile-Link’s Architecture. The figure shows block

diagrams for both Agile-Link’s transmitter and receiver.

signal is first taken into an intermediate frequency of a few

GHz, before the I and Q (real & imaginary) components are

separated. Such a design reduces the number of components

that need to operate at very high frequencies (e.g., mixers,

filters, etc) and replaces them with components that operate

at a few GHz, which are much cheaper.

The architecture of Agile-Link’s receiver is shown in Fig 6.

The first block is a mmWave phased array which allow us

to steer the beam electronically. The array consists of an-

tenna elements where each element is connected to a phase

shifter. The outputs of the phase shifters are combined and

fed to a single mmWave front-end. The front-end has a stan-

dard design of a low-noise amplifier (LNA), band-pass filter,

mixer, and a PLL. The mmWave front-end down-converts

the mmWave signal to an intermediate frequency (IF) and

feeds it to the daughterboard on the USRP which samples it

and passes the digitized samples to the UHD driver. This en-

ables easy manipulation of mmWave signals using standard

GNU-radio software and allows us to build an OFDM stack

that supports up to 256 QAM.

We have built the design in Fig. 6 using off-the-shelf com-

ponents. For the mmWave low-noise amplifier (LNA) and

power amplifier (PA), we use Hittite HMC-C020 and Quin-

star QLW-2440, respectively. For the mmWave mixer, we

use Marki M1R-0726MS. To generate local oscillator (LO)

signals, we use Analog Devices ADF5355 PLL and Hittite

HMC-C035 frequency doubler. The phased array includes

8 antenna elements separated by λ
2 , where each element is

connected to a Hittite HMC-933 analog phase shifter. We use

Analog Device AD7228 digital-to-analog converters (DAC)

and Arduino Due micro-controller board to digitally control

the phase shifters.

(b) Radio Performance: To test Agile-Link’s ability to de-

liver high data rates and long range using phased arrays, we

measure the SNR of the received signal for different distances
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Figure 7: Agile-Link Coverage. SNR at the receiver versus dis-

tance between the receiver and the transmitter.

between Agile-Link’s receiver and transmitter where the

transmit power complies with FCC part15. Fig. 7 shows the

SNR at the receiver versus the distance between transmitter

and receiver. The figure shows that Agile-Link’s implemen-

tation provides SNR of more than 30 dB for distances smaller

than 10m and 17 dB even at 100m which is sufficient for

relatively dense modulations such as 16 QAM [42].

6 EXPERIMENTAL EVALUATION

We evaluate Agile-Link’s ability to identify the best beam

alignment quickly and accurately. We ran experiments in a

lab area with standard furniture (desks, chairs, computers,

etc.). We also ran experiments in an anechoic chamber, where

we can accurately measure the ground truth. The anechoic

chamber walls are covered with RF absorbers to eliminate

multipath and isolate the space from exterior interference.

This isolation is necessary to measure the ground truth path

traveled by the signal without having RF reflections.

6.1 Compared Schemes

We compare the following three schemes:

• Exhaustive Search: In this approach, for each setting of

the transmitter’s beam direction, the receiver scans all differ-

ent directions. The combination of transmitter and receiver

beams that delivered the maximum power is picked as the

direction of the signal.

• 802.11ad Standard: The standard has three phases[22].

The first stage is called Sector Level Sweep (SLS). In this stage,

the AP transmits in all possible directions, and the client sets

its receiver beam pattern to a quasi-omnidirectional beam.

The process is then repeated with the AP setting its receiver

antenna to quasi-omnidirectional and the client sweeping

through all transmit directions. At the end of this stage, the

AP and client each pick the γ directions that deliver the

largest power. Note that while some proposals amend the

standard to perform SLS with hierarchical beams, hierarchi-

cal search is not robust to multipath as described in §3. The

second stage is calledMultiple sector ID Detection (MID). This
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stage repeats the process above but with the transmit beam

set to quasi-omni-directional and the scan being performed

with the receive beam. This stage compensates for imper-

fections in the quasi omnidirectional beams. The third stage

is called Beam Combining (BC). In this stage, each of the γ
best directions at the AP are tried with each of the γ direc-

tions at the client. Hence, γ 2 combinations are tested and

the combination of transmit and receive beams that deliver

the maximum power is selected and used for beamforming

during data transmission. In our experiments, we set γ = 4.

• Agile-Link:We run the algorithm described in §4.2. We

set K to 4 since past measurement studies show that the

mmWave channel has only 2 to 3 paths [6, 34, 39, 40].

6.2 Beam Alignment Accuracy vs. the
Ground Truth

We first evaluate whether Agile-Link can detect the best

alignment of the receiver’s and transmitter’s beams. To per-

form this evaluation, we need to know the ground truth,

i.e., the actual direction of the signal. Thus, we run this ex-

periment in an anechoic chamber, where we can accurately

measure the ground truth. For each experiment, we place

Agile-Link’s transmitter and receiver at two different loca-

tions. We then change the orientation of the transmitter’s

and receiver’s antenna arrays with respect to each other

for all angles between 50o and 130o with increments of 10o.

Since there is only a single line-of-sight path in the anechoic

chamber, this path will appear at a different direction at the

transmitter and at the receiver depending on the orienta-

tion of the antenna arrays. Hence, this allows us to test any

combination of directions from which the strongest path

can leave the transmitter and arrive at the receiver. For each

setting, the transmitter transmits measurement frames (as

required in 802.11ad) which the receiver uses to compute

the directions of the best beam alignment. We then steer the

beams based on the output of the alignment and measure

the SNR achieved by this alignment.

We will use the SNR loss in comparison to the optimal

alignment, i.e., how much SNR could we have gained had we

known the ground truth as our accuracy meter. We calculate

this metric by measuring the SNR achieved by our beam

alignment and subtract it from the SNR achieved by the opti-

mal alignment: SNRloss = SNRoptimal −SNRAдile−Link . The
lower the SNR loss, the higher is our accuracy in detecting

the direction of the signal.

Fig. 8 plots a CDF of the SNR loss for Agile-Link’s beam

searching scheme, the exhaustive search and the 802.11ad

standard, in comparison to the optimal alignment. The figure

reveals two interesting points. First, it shows that Agile-Link

performs better than the two baselines in that it has min-

imal SNR loss. While all schemes have a median SNR loss

below 1dB, the 90th percentile SNR loss for both exhaustive

search and the standard is 3.95dB which is higher than the

1.89dB SNR loss of Agile-Link. This is due to the fact that

the standard and exhaustive search choose to steer using the

best beam from a discrete set of N beams which they tested.

However, the space of beam directions is continuous and the

best beam may not exactly align with the discretization cho-

sen by the algorithms. In this case, they will end up picking

the closest beam in the discrete set, which may not be the

exact optimal one. SNR loss is further exacerbated by the

fact that this can happen on both sides i.e., the transmitter

and the receiver. In contrast, Agile-Link uses the beams as

a continuous weight over the possible choice of directions

(Equation 1) and picks the direction that maximizes the over-

all weight, as described in §4.2. Thus, Agile-Link can discover

the direction of the path beyond the N directions used by

exhaustive search and the standard.

Furthermore, the figure shows that the standard and ex-

haustive search have similar performance. This might seem

surprising since one may expect exhaustive search to find

a better beam alignment since it spends more time search-

ing the space. However, it is important to recall that the

standard differs from the exhaustive search only in the first

stage where it uses a quasi-omnidirectional beams to limit

the search space to a few top candidates. In the final the
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stage, however, the standard tries all possible combinations

of these candidate beams. Since there is only one path in

this experiment, as long as the best beam is picked as one of

the candidate beams in the first stage, the standard will con-

verge to the same beam alignment as the exhaustive search.

However, we will show next that this does not continue to

hold in multipath settings.

6.3 Alignment Accuracy in Multipath
Environments

We repeat the above experiments in an office environment,

where due to multipath, the signal can arrive from differ-

ent directions. However, in this case, we do not know the

ground truth for the direction of strongest path and hence

we measure the SNR loss relative to the exhaustive search

baseline: SNRloss = SNRExhaustive − SNRAдile−Link . Note
that since exhaustive search tries all possible combinations

of directions, it maintains its performance with multipath.

Fig. 9 plots a CDF of SNR loss for Agile-Link and the

802.11ad standard with respect to the exhaustive search. The

figure shows that the standard performs much worse in mul-

tipath scenarios. Specifically, instead of having a similar SNR

to the exhaustive search as before, the median and 90th per-

centile SNR loss (with respect to exhaustive search) are 4dB

and 12.5dB, respectively. This is because the standard is us-

ing its phased array as a quasi-omnidirectional antenna and

hence the multiple paths can combine destructively, in which

case the information is lost. Further, due to imperfections

in the quasi-omnidirectional patterns, some paths can get

attenuated and hence the standard can easily choose the

wrong direction to align its beam. In contrast, Agile-Link

performs well even in the presence of multipath. Specifically,

the median and 90th percentile SNR loss with respect to ex-

haustive search are 0.1dB and 2.4dB, respectively. Finally,

the figure also shows that sometimes Agile-Link’s SNR loss

with respect to exhaustive search is negative. This is because

in some cases, Agile-Link performs better that exhaustive

search for the same reasons described above.

6.4 Beam Alignment Latency

Next we would like to evaluate the gain in reducing latency

that Agile-Link delivers over the two baselines. However,

since our radio has a fixed array size we cannot empirically

measure how this gain scales for larger arrays. Hence, we

perform extensive simulations to compute this gain for larger

arrays and we use the empirical results from our 8-antenna

array to find the delay for this array size.

(a) Reduction in the Number of Measurements: Since each

measurement in 802.11ad requires sending a special frame,

one way to measure delay is in terms of the number of mea-

surements frames. Fig. 10 plots the reduction in the number

Figure 11: 802.11ad Beacon Interval Structure

of measurements that Agile-Link achieves over exhaustive

search and the standard. For an 8-antenna phased array,

Agile-Link reduces the number of measurements by 7× and

1.5× compared to exhaustive search and standard, respec-

tively. Further, the gain increases quickly as the number of

antennas increase. This is due to the scaling property of

each algorithm and whether it is quadratic, linear, or log-

arithmic. For arrays of size 256, Agile-Link is 16.4× better

than the standard and three orders of magnitude better than

exhaustive search.

(b) Reduction in Search Time: Next, we look at the amount of

time it takes to find the best alignment in each scheme under

the 802.11adMAC protocol. The standard is still evolving; our

description is based on [22]. Since the delays in exhaustive

search are unacceptable in practice, we consider only Agile-

Link and the beam alignment scheme in the standard.

The 802.11ad has a protocol for when the AP and clients

search the space to align their beams [22, 28]. The delay pro-

duced through this process differs from simply multiplying

the number of measurement frames by the duration of each

measurement. This is due to three main reasons: 1) The pro-

tocol allows for beam scan (called beam training) only during

certain intervals. If the client cannot collect all necessary

measurements, it needs to wait until the next opportunity

to perform more measurements. 2) Different clients contend

for the beam alignment slots; hence, the delay will increase

depending on the number of clients. 3) When the AP sweeps

its beam, all clients can collect measurements; hence this

part can be amortized.

To better understand the above constraints, let us de-

scribe at a high-level how 802.11ad performs beam-forming

training. The AP periodically transmit beacon intervals (BI),

which typically last for 100 ms [28]. Each BI has a beacon

header intervals (BHI), followed by a data transmission inter-

val (DTI), as shown in Fig. 11. The search for the best align-

ment is done during the BHI. Each BHI consists of one beacon

transmission interval (BTI) which is used by the AP to train

its antenna beam, and eight association beam-forming train-

ing (A-BFT) slots, which are randomly selected by clients to

train their beams. Finally, each A-BFT slot consists of up to

16 SSW frames, where each frame is used to perform one

measurement and has a duration of 15.8μs [3, 22]. Each BI
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Size

One Client Four Clients

802.11ad Agile-Link 802.11ad Agile-Link

8 0.51ms 0.44ms 1.27ms 1.20ms

16 1.01ms 0.51ms 2.53ms 1.26ms

64 4.04ms 0.89ms 304.04ms 2.40ms

128 106.07ms 0.95ms 706.07ms 2.46ms

256 310.11ms 1.01ms 1510.11ms 2.53ms

Table 1: Beam alignment latency for different array size

has a maximum of 8 beam training slots. All clients con-

tend for training in those slots. If the client cannot finish its

training during one A-BFT, it can contend for further slots

during the same or following BI. Yet, waiting for the next BI

increases the delay by 100ms.

As explained in §6.1, 802.11 performs beam refinement

where each of γ best directions at the AP and client are com-

pared again. To simplify the computation, we conservatively

ignore the 802.11ad beam refinement since it only increases

the delay of 802.11ad, and improves the relative gains of

Agile-Link. Also when simulating 4 client, we assume that

the contention succeeded without collision. This is a con-

servative assumption since Agile-Link requires significantly

fewer measurement slots and hence, given the same number

of slots, the collision probability between clients is smaller

in Agile-Link. Finally, the AP trains its beam during the BTI,

and uses frames similar to those used for the client beam

training. The AP doesn’t need to repeat this training per

client.

Table 1 shows the beam alignment delay for different

antenna-array sizes, for the case of one client and 4 clients.

As the number of antennas in the array increases, the delay

in 802.11ad increases quickly. In contrast, Agile-Link can

operate within the same standard, but it extracts more in-

formation from each measurement, hence keeping the the

delay low even for large antenna arrays. In particular, for

antenna arrays of 256 elements, the proposed 802.11 beam

alignment algorithm takes hundreds of milliseconds for one

user and over 1.5 seconds for 4 users. In contrast, Agile-Link

keeps the delay below 1.01ms and 2.53ms, respectively.

6.5 Comparison with Beam Alignment
using Compressive Sensing

Concurrent to our work, the authors of [35] proposed a

scheme that leverages compressive sensing to speed up the

search for the best beam alignment. Here, we compare Agile-

Link with that scheme. On the theoretical front, both al-

gorithms exploit sparsity to speed up the search. However,

Agile-Link provably finds the best alignment in a logarith-

mic number of measurements, while [35] does not provide

any theoretical guaranties (note that the standard compres-

sive sensing analysis does not apply because the algorithm

of [35] only uses the magnitudes of the measurements). In
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the following, we compare the two schemes empirically to

better understand the difference in their performance.

To be fair to both schemes, we use the same channel in-

formation from our measurements and run trace driven sim-

ulations for antenna arrays of 16 elements. This guarantees

that we apply both schemes on the same set of channels.

We fix the signal direction of the transmitter. The receiver

tries both schemes (one after the other) until it finds the op-

timal beam alignment. We repeat the experiment 900 times

for different channel values, where the channels are taken

from empirical measurements in our testbed. Fig. 12 plots

the required number of measurements to find the correct

direction for both Agile-Link and the compressive sensing

scheme. As before, the required number of measurements is

defined as the number of measurements until the resulting

beam power is within 3dB of the correct optimal beam power.

The figure shows that Agile-Link requires significantly fewer

measurements. Specifically, Agile-Link needs a median of 8

measurements and a 90th percentile of 20 measurements. In

contrast, the compressive sensing scheme needs a median

of 18 measurements and a 90th percentile of 115 measure-

ments. Interestingly, the figure shows that the tail of the

compressive sensing scheme is pretty high.

To understand the root cause of this behavior, let us look

at the beam patterns generated by both schemes. Fig. 13

plots the beam patterns of the first 16 measurements for

both schemes. Each color refers to a different multi-armed
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beam.5 The figure shows that beam shape of the compressive

sensing scheme is quite random and hence fails to sample

the space uniformly. Further, the figure shows the combina-

tion of the first 16 measurements. For Agile-Link it is clear

that the first 16 measurements span the space well and hence

minimize the probability of missing the right signal direction.

In contrast, the first 16 measurements from the compressive

sensing scheme do not manage to span the space and leave

many signal directions uncovered. Therefore, the compres-

sive sensing scheme has a fairly long tail.

7 CONCLUSION

This paper presents Agile-Link, a phased array mmWave sys-

tem that can find the best beam alignment without scanning

the entire space. Agile-Link delivers a mmWave beam align-

ment algorithm with provably logarithmic measurements for

the phased-array architecture commonly used in mmWave

access points and clients. It finds the correct alignment of

the beams between a transmitter and a receiver orders of

magnitude faster than existing radios. We believe Agile-Link

brings us closer towards practical mmWave networks.
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APPENDIX

A FORMAL PROOF OF THE ALGORITHM

A.1 Notation and Preliminaries

(a) Basic notation

• We use [N ] to denote {0 . . .N − 1}.
• We use S to denote the support of x.

• Weuse F to denote the Fourier transformmatrix, and F′
to denote the inverse Fourier transform matrix. Also,

we use Fi to denote the i-th row of F; same for F′.
Finally, we use x̂ to denote Fx.

• For two vectors x and y, we define the Hadamard prod-

uct ◦ of x and y as (x ◦ y)i = xiyi . We will use this

notion to mask out the coefficients outside of a given

segment.

• We use x ∗ y to denote the convolution of x and y.

• The vectors e0 . . . eN−1 denote the standard basis. I.e.,

(ep )i = 1 for p = i and (ep )i = 0 otherwise.

(b) Measurements and box car filter

Our measurements can be described using the notion of the

5Note these are the actual beams from substituting in the equations for both

schemes, while the beams in Fig. 4 are ideal beams. Agile-Link’s beams are

pretty close to the ideal beams whereas compressive sensing beams deviate

strongly from that ideal pattern.

boxcar filter, defined as follows. For parameter P , let H be

such that Hi =
√
N

P−1 if |i | < P/2 and Hi = 0 otherwise. It is

known that Ĥj =
sin (π (P−1)j/N )
(P−1) sin(π j/N ) .

Proposition A.1. Ĥ satisfies the following properties: (i)

Ĥ0 = 1; (ii) Ĥj ∈ [ 1
2π , 1] for |j | ≤ N

2P ; (iii) |Ĥj | ≤ 2
1+ |j |P/N if

P ≥ 3.

Claim A.2.

‖Ĥ‖22 =
∑
j

|Ĥj |2 ≤ 1 + 2N /P
∑
j

1/|j |2 ≤ C
N

P

for some constant C .

We also define a shifted version of H defined as (H t )i =
Hi−t . By the time-shift theorem it follows that |Ĥ t

i | = Ĥi .

Using this notation, we can write each measurement ab as

ab =

R−1∑
r=0

(Fsr
b
◦ HrN /R )ωtbr

Each segment of ab, whenmultiplied by a row of thematrix

F′, can be interpreted as follows.

Claim A.3. (Fi ◦ H) · F′p = Ĥi−p

Proof.

(Fi◦H)·F′p = Fi ·(F′p◦H) = �(F′p ◦ H)i = ( ˆF′p∗Ĥ)i = (ep∗Ĥ)i = Ĥi−p
�

(c) Pseudo-random permutations

We will use matrices Pρ,b parameterized by mappings ρ of

the form ρ (i ) = σ−1i + a mod N for σ ,a,b ∈ [N ] such that

• (Pρ,bx)ρ (i ) = xiω
τ (j ) for τ (j ) = b (j + σa)

• F′Pρ,b = P′ρ,bF for P′ρ,b as defined in the paper.

Note that τ is a permutation assuming b is invertible mod

N . We use R to denote the set of all mappings ρ as defined

above. For the analysis, we will assume that N is prime.

This will ensure that the elements ρ ∈ R are permutations.

Furthermore, in this case R is pairwise independent, i.e., for

any i � j, i ′ � j ′, we have

Prρ ∈R[ρ (i ) = i ′, ρ (j ) = j ′] = 1/N 2

It will be convenient to assume ‖x‖22 = 1. Then we can

define the threshold T to be ( 1
2(2π ) − 1

8π )
2 ( 1

2(2π ) )
2/K .

A.2 Proofs

Lemma A.4. Fix b and select ρ ∈ R uniformly at random.

Then, for any s :

E[I (b, ρ (s ))] = E
[
|abF′ρ (s ) |2

]
≤ CR/P

where C is the constant from Claim A.2.
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Proof.

E
[
|abF′ρ (s ) |2

]
= E

⎡⎢⎢⎢⎢⎣
|
R−1∑
r=0

((Fsr
b
◦ HrN /R )ωtbr )F′ρ (s ) |2

⎤⎥⎥⎥⎥⎦
(4)

= E
⎡⎢⎢⎢⎢⎣
|
R−1∑
r=0

Ĥ rN /R
sr
b
−ρ (s )ω

tbr |2
⎤⎥⎥⎥⎥⎦

(5)

=

R−1∑
r=0

E
[
|Ĥsr

b
−ρ (s ) |2

]
(6)

where in step 5 we used Claim A.3 and the independence

of the variables tbr , r = 0 . . .R − 1. Since i = sr
b
− ρ (s ) is

distributed uniformly at random in [N ], by Claim A.2:

R−1∑
r=0

E
[
|Ĥsr

b
−ρ (s ) |2

]
≤

R−1∑
r=0

1/N
∑
i

|Ĥi |2 ≤ R/N ·N /P ·C = CR/P

�

Lemma A.5. Suppose that |sr
b
− i | ≤ N

2P . Then

Pr[|abF′i |2 ≥ 1

4(2π )2
] ≥ 5/6

Proof.

|abF′i |2 = |
R−1∑
r ′=0

Ĥ r ′N /R

sr
′

b
−i ωtb

r ′ |2 (7)

= |Ĥsr
b
−iωtbr +

∑
r ′�r

Ĥsr
′

b
−iω

tb
r ′ |2 (8)

= |Ĥsr
b
−iωtbr − X |2 (9)

We know from Proposition A.1 that |Ĥsr
b
−iωtbr | ≥ 1

2π . We

will show that the probability of X ≥ 1
2(2π ) is at most 1/6. It

will follow that |abF′i |2 ≥ 1
4(2π )2

with the probability of at

least 5/6.
Recall that s0

b
, s1
b
. . . are separated by P . Therefore, for

r ′ � r , we have |sr ′
b
− i | ≥ P − |sr

b
− i | ≥ P − N

2P , which is

at least P/2 for B large enough. By the independence of the

variables tbr ′ and by Proposition A.1 we have:

E[X 2] = E[|
∑
r ′�r

Ĥsr
′

b
−iω

tb
r ′ |2]

=
∑
r ′�r

E[|Ĥsr
′

b
−iω

tb
r ′ |2]

≤ 2

R∑
d=1

(
2

1 + P/N · d (P/2)
)2

≤ 8/(P2/N )
R∑

d=1

(1/d )2 ≤ 8CN /P2

Since P = N /R and R2 = N /B, the latter expression

is bounded by 8C/B, which is less than 1
6(4π )2

for B large

enough. It follows that the probability of X 2 ≥ 1
(4π )2

=

6E[X 2] is at most 1/6. �

Proof of Theorem 4.1, Part (1). Suppose that s ∈ S . Se-
lect sr

b
that is closest to ρ (s ). Note that |sr

b
− ρ (s ) | ≤ N

2P ,

which by Lemma A.5 implies |abF′ρ (s ) |2 ≥ 1
4(2π )2

with the

probability of at least 5/6.
We now lower bound T (s ) as follows

T (s ) ≥ |abF′Pρ,bx|2 |abF′Pρ,bes |2 (10)

= |Yxs − X |2 |Y |2 (11)

whereY = ωτ (s )abF′ρ (s ) andX =
∑

s ′ ∈S−{s } ωτ (s ′)abF′ρ (s ′)xs ′ .

We can bound E[|X |2] as follows.
E[|

∑
s ′ ∈S−{s }

ωτ (s ′)xs ′a
bF′ρ (s ′) |2] (12)

=
∑

s ′ ∈S−{s }
x2s ′E[|abF′ρ (s ′) |2] (13)

≤
∑

s ′ ∈S−{s }
x2s ′CR/P (14)

= ‖x‖22CR/P ≤ C/B ≤ 1/K
1

6 · (8π 2)2
(15)

where we used Parseval’s identity, Lemma A.4 and that B
is large enough. Therefore, we have that Pr[X 2 ≥ 1

(8π )2
] ≤

1/6. By Lemma A.5 we have that, with probability at least

1 − 1/6 − 1/6, T (s ) ≥ ( 1
2(2π ) − 1

8π )
2 ( 1

2(2π ) )
2/K . �

Proof of Theorem 4.1, Part (2). Suppose that s � S . We

have

E[T (s )]

≤
B−1∑
b=0

Eρ (s ),ρ (s ′),τ [|
∑
s ′ ∈S

ωτ (s ′)x2s ′a
bF′ρ (s ′) |2 |abF′ρ (s ) |2]

=

B−1∑
b=0

Eρ (s ′),τ [|
∑
s ′ ∈S

ωτ (s ′)x2s ′a
bF′ρ (s ′) |2]Eρ (s )[|abF′ρ (s ) |2]

≤ CR/P
B−1∑
b=0

∑
s ′ ∈S

x2s ′E[|abF′ρ (s ′) |2]

≤ (CR/P )2B‖x‖22 ≤ C2/B ≤ T /3
where we assume that B is large enough. By Markov inequal-

ity it follows that Pr[T (s ) ≥ T ] ≤ 1/3. �
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