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Abstract
This study investigates a unique asymmetric quasi-zero stiffness (QZS) property from the
pressurized fluidic origami cellular structure, and examines the feasibility and efficiency of using
this nonlinear property for low-frequency vibration isolation. This QZS property of fluidic
origami stems from the nonlinear geometric relationships between folding and internal volume
change, and it can be programmed by tailoring the constituent Miura-Ori crease design. Different
fluidic origami cellular structure designs are introduced and examined to obtain a guideline for
achieving QZS property. A proof-of-concept prototype is fabricated to experimentally validate
the feasibility of acquiring QZS. Moreover, a comprehensive dynamic analysis is conducted
based on numerical simulation and harmonic balance method approximation. The results suggest
that the QZS property of fluidic origami can successfully isolate base excitation at low
frequencies. In particular, this study carefully examines the effects of an inherent asymmetry in
the force–displacement curve of pressurized fluidic origami. It is found that such asymmetry
could significantly increase the transmissibility index with certain combinations of excitation
amplitude and frequency, and it could also induce a drift response. Outcome of this research can
lay the foundation for new origami-inspired multi-functional metamaterials and meta-structures
with embedded dynamic functionalities. Moreover, the investigations into the asymmetry in
force–displacement relationship provide valuable insights for many other QZS structures with
similar properties.
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1. Introduction

The ancient Japanese art of Origami is essentially a technique
of developing topologically intricate three-dimensional
shapes by folding. Its beauty and simplicity have fostered a
surge of interest from the science, mathematics, architecture,
and engineering communities. For example, molecular biol-
ogists used origami method to fold single-stranded DNA
molecules into predetermined shapes, which can be used to
form complex self-assembled nanostructures (Andersen et al
2009, Dietz et al 2009, Ke et al 2009, Shih and Lin 2010).
Plant biologists examined the deployment of seed capsules,

leaves, and flowers based on origami folding principles
(Kaino et al 2000, Street 2002, Harrington et al 2011).
Mathematicians developed computational tools that can
design the appropriate crease patterns for achieving desired
shape reconfigurations by folding (Tachi 2010a, 2010b,
Waitukaitis and van Hecke 2016). Engineers also investigated
the feasibility of utilizing origami for a wide variety of
applications. For example, it is possible to fold flat sheet into
stiff and lightweight structures such as sandwich panels with
fold cores (Schenk and Guest 2013), folded plate shell
structures (Yoshimura 1951), and cellular solids (Kamrava
et al 2017). Moreover, it can be advantageous to leverage the

Smart Materials and Structures

Smart Mater. Struct. 28 (2019) 065006 (15pp) https://doi.org/10.1088/1361-665X/ab143c

0964-1726/19/065006+15$33.00 © 2019 IOP Publishing Ltd Printed in the UK1

https://orcid.org/0000-0003-2657-4953
https://orcid.org/0000-0003-2657-4953
https://orcid.org/0000-0002-0355-1655
https://orcid.org/0000-0002-0355-1655
mailto:ssadegh@clemson.edu
https://doi.org/10.1088/1361-665X/ab143c
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-665X/ab143c&domain=pdf&date_stamp=2019-05-01
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-665X/ab143c&domain=pdf&date_stamp=2019-05-01


kinematics (aka. shape reconfiguration) of origami folding to
advance the deployable aerospace structures (Miura 1985,
Zirbel et al 2013, Schenk et al 2014), self-folding robots
(Felton et al 2014, Peraza-Hernandez et al 2014, Na et al
2015), medical stents (Kuribayashi et al 2006), and flexible
electronics (Song et al 2014). Recently, there has been a
paradigm shift from harnessing the kinematics of origami to
utilizing the mechanics of folding for engineering purposes
(Li et al 2018). As a result, we are witnessing the rapid
emergence of origami mechanical metamaterials. These
metamaterials are typically made of multiple stacked origami
sheets with carefully designed crease patterns (Tachi 2011,
Schenk and Guest 2013, Cheung et al 2014, Eidini 2016), and
the intricate relationships between folding and constituent
sheet deformations can impart the origami metamaterials with
unique and even unorthodox mechanical properties. For
example, it has been demonstrated that origami-based meta-
materials and meta-structures can exhibit negative and flip-
ping Poisson’s ratio (Schenk and Guest 2013, Eidini and
Paulino 2015, Yasuda and Yang 2015, Sadeghi and Li 2019,
Fang et al 2016), self-locking and discrete stiffness jumps
(Fang et al 2018, Fang et al 2016, Kamrava et al 2017), and
elastic multi-stability (Daynes et al 2014, Hanna et al 2014,
Silverberg et al 2015, Waitukaitis and van Hecke 2016, Fang
et al 2017, Sengupta and Li 2018). In addition, the stacked
origami topology features naturally embedded tubular chan-
nels, which can be pressurized to generate adaptive functions.
This is the idea behind the so-called pressurized fluidic ori-
gami cellular structure (referred simply as ‘fluidic origami’
hereafter), which arises from combining the physical princi-
ples behind the plant nastic movements and the design variety
of the origami art (figure 1). By utilizing the relation between
folding motion and the enclosed internal fluid volume, fluidic
origami is able to exhibit many interesting characteristics. For
example it has been studied for its capabilities to achieve
shape transformation, stiffness control, and recoverable col-
lapse (Li and Wang 2015, Li et al 2016).

Despite these remarkable developments, current state-of-
the-art mainly focuses on the kinematics and quasi-static
applications of origami folding. However, origami-inspired
structures and materials could also show interesting dynamic
characteristics under excitations due to the richness of folding
geometry. Nevertheless, studying the dynamic characteristics
of origami-based structures is still a nascent field and there are
only a few researches conducted in this area hitherto. Yasuda
et al (2016) studied the nonlinear elastic wave propagation in
a multiple degree-of-freedom origami metamaterial consisting
of Tachi–Miura polyhedron (TMP) cells. They investigated
the feasibility of harnessing the geometry-induced non-
linearity of the TMP-based tubular metamaterials for tunable
vibration and impact mitigation. Fang et al (2017) studied the
dynamic characteristics of a bi-stable stacked Miura-Ori
(SMO) structure and investigated its application in vibration
isolation at certain frequencies. Ishida et al proposed a
cylindrical truss structure, inspired by the Kresling folding
pattern, for vibration isolation and investigated its perfor-
mance numerically and experimentally (Ishida et al 2017a,
2017b, Inamoto and Ishida 2018). This vibration isolation

function stems from a quasi-zero stiffness (QZS) property
obtained by combining the bi-stability of the Kresling pattern
and a linear spring. Other than these studies, there are no other
literatures on the dynamics induced by origami folding.
Therefore, the foremost vision of this research is to expand
our knowledge and understand on how to harness the folding-
induced mechanical properties to foster a new family of multi-
functional origami structures and material systems with
dynamic applications. To this end, we introduced a unique
QZS characteristics from the pressurized fluidic origami and
investigated the feasibility of using this mechanical property
for low-frequency vibration isolation (Sadeghi and Li 2017).
Unlike the cylindrical truss structure studied by Ishida et al
the QZS properties of the fluidic origami does not arise from
mechanical springs but rather stems from interaction between
internal pressure and folding. This provides a unique mech-
anism for developing an adaptive QZS vibration isolator.

Exploiting quasi-zero-stiffness has been an important
topic in low-frequency vibration isolation for decades. For a
passive vibration isolator consisting of a mass (m) supported
by a linear spring (k), vibration isolation occurs in frequencies
over k m2 (Thomson and Dahleh 1997). Consequently, one
would prefer a smaller stiffness (k) to increase the usable

Figure 1. The concept of pressurized fluidic origami cellular
structure. (a) Crease pattern of the underlying Miura-Ori. (b) Folded
Miura-Ori sheets with compatible designs can be stacked and
connected to form a space-filling cellular architecture shown in (c).
(d) The fluidic origami features naturally embedded tubular
channels, which can be pressurized pneumatically. Such pressur-
ization induces the desired quasi-zero stiffness property.
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frequency bandwidth; however, this would result in a very
small static load carrying capacity. Implementing nonlinear
springs with QZS property can be an advantageous solution
for this problem. Using the QZS property, the dynamic
stiffness of the system would be close to or ideally zero at the
equilibrium position, while the static stiffness remains large.
Therefore, the system can minimize the vibrations transmis-
sion at very low frequencies without sacrificing the static load
carrying capacity. Recently, researchers have proposed dif-
ferent types of QZS isolation devices that have been utilized
in various engineering fields, e.g. vibration isolation of pre-
cision instruments, vibration resonance test of aircraft, sus-
pensions and seats of vehicles and even gravitational wave
detection (Hao and Cao 2015). Several methods of creating
and harnessing the QZS property have been proposed, such as
combining vertical and oblique linear springs (Carrella et al
2007, Carrella 2008, Kovacic et al 2008), incorporating load-
bearing elastic elements of positive stiffness with devices of
negative stiffness (Alabuzhev et al 1989), using structural
buckling (Lee et al 2007, Fulcher et al 2014), and electro-
magnetic negative stiffness elements (Zhou and Liu 2010).
Moreover, it is worth noting that a lot of valuable resources

on the dynamic analysis of QZS isolation systems can be
found in the literature. From analyzing the transmissibility
characteristics of a third-order Duffing dynamic system
(Carrella et al 2009a, 2012) to studying frequency char-
acteristics of complex intrinsic behaviors, such as primary,
sub/super harmonic and chaotic motions that possibly occur
in the QZS systems (Hao and Cao 2015). In the authors’
previous publication, it was shown that QZS property could
arise from combining the pressure-induced stiffness and the
nonlinear geometric relationships between folding and inter-
nal volume (Sadeghi and Li 2017). The QZS property is
naturally embedded in the structure without the need of any
additional springs like in other devices; furthermore, it is
feasible to obtain a wide range of appropriate Miura-Ori
designs to reach QZS.

The previous study by the authors, however, mainly
focused on the design principles of obtaining the QZS prop-
erty in fluidic origami without any experimental validation,
and a comprehensive investigation on its dynamic responses
from a low-frequency base excitation is lacking. Such
dynamics study is indeed crucial for understanding its per-
formance potentials and limitations as a vibration isolator.
Moreover, the reaction force–displacement relationship of the
fluidic origami exhibits a strong asymmetry. The influence of
such asymmetry on the base excitation isolation can be sig-
nificant at certain input frequencies and magnitudes. There are
a few relevant studies dealing with asymmetries rising from
equilibrium offset or a constant external force based on sys-
tems with otherwise symmetric force–displacement curves
(Kovacic et al 2008, 2009, Abolfathi 2012, Huang et al 2014,
Abbasi et al 2016). The asymmetry in fluidic origami, on the
other hand, is unique in that it is an inherent property stem-
ming from the folding kinematics, so understanding its
influence is crucial for the dynamic analysis. Therefore, the
objective of this study is to conduct a thorough analytical and
experimental investigation on obtaining QZS property in
fluidic origami, and then elucidate the influences of asym-
metry in its QZS property for low-frequency vibration isola-
tion. Results of this study can lay the foundation for the
emergence of a new category of multi-functional, origami-
based metamaterials and metastructures with adaptive
dynamic functionalities.

The remaining sections of this paper are organized as
follows. Section 2 recapitulates the nonlinear geometrical
relationships between origami folding and the desired QZS
characteristics. A design criterion for obtaining the QZS
property is also presented. Section 3 discusses the exper-
imental verification of the existence of QZS property in a
proof-of-concept fluidic origami prototype. Section 4 details
the dynamic analysis of utilizing the investigated asymmetric
QZS property for base excitation isolation. The behavior of
the fluidic origami is analyzed numerically, and harmonic
balance method (HBM) is also used to provide deeper
insights into the fundamental dynamic characteristics.
Section 5 concludes this paper with summary and discussion.

Figure 2. The design and kinematics of fluidic origami. (a) The
geometry of a tubular channel in fluidic origami, showing the
definition of a, b, γ, and θ of the two Miura-Ori sheets. The unit cell
is highlighted, and in this plot, the tubular channel has three unit
cells (aka. N=3). (b) The strongly nonlinear relationships between
geometric quantities and folding angle. In this plot, aII=aI=b,
and γ=70°. The normalized volume V V NaI

3=ˆ and normalized
length L L Na .I=ˆ
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2. Folding kinematics and the origin of QZS property

In this section, we briefly discuss the physical principles
underpinning the QZS property in fluidic origami, which lays
the foundation for the further dynamic investigations. The
concept of fluidic origami is based on the idea that connecting
Miura-Ori folded sheets along their zig-zag crease lines can
create a space-filling cellular topology with naturally
embedded tubular features (figure 1) (Li and Wang 2015).
Miura-Ori is a periodic tessellation, thus one can concentrate
on studying the unit cell shown in figure 2(a) as a repre-
sentative of the whole structure. Three geometric parameters,
which remain unchanged regardless of folding, determine the
design of Miura-Ori folding pattern. They are the length of
two adjacent crease lines (a, b), and the sector angle (γ)
between these two lines. Miura-Ori folding pattern is rigid
foldable, therefore the facet material can be assumed rigid and
the creases can be treated as ideal hinges. With these
assumptions, the folding motion of Miura-Ori has one degree-
of-freedom that can be described by the dihedral folding angle
(θ) defined between the x–y reference plane and the con-
stituent facets (figure 2(a)). To ensure kinematic compatibility
so that Miura-Ori sheets do not separate from each other
during folding, one needs to apply two geometric constraints:
b b b,II I= = and a acos cos ,I I II IIg g= where the sub index
I and II represents to the two Miura-Ori sheets in a unit cell
(Schenk and Guest 2013). In this way, the folding angles of
the two Miura-Ori sheets are directly related so that
cos tan cos tan ,I I II IIq g q g= and the rigid folding of the
fluidic origami retains one degree of freedom.

In this study, we choose the folding angle Iq as the
independent variable to describe the folding motion so that
the unit cell length can be calculated as follows (Li and
Wang 2015):

L
b2 cos tan

1 cos tan
. 1I I

2
I

2
I

q g

q g
=

+
( )

Based on these governing geometric relationships, the
enclosed volume of the unit cell can be derived as follows
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Equations (1), (2) describe the kinematic connections
between the external geometries and internal volume change
of fluidic origami. Based on these relationships, one can
predict that the fluidic origami will fold to a configuration
with maximum enclosed volume when it is subject to internal
pressure (Li et al 2016). This is due to the entropy increase
from inner energy reduction by volume expansion (Gramüller
et al 2014). Pressurization also imparts nonlinear stiffness to
the structure (aka. pressure-induced stiffness (Li et al 2016)).
If the fluidic origami structure is subject to external
mechanical loads along the x direction (defined in figure 2(a)),
the reaction force due to internal pressure can be calculated as

follows based on virtual work principle:

F P
V

L
P

V Ld

d

d

d

d

d
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where dL is the change in origami length along the external
force exertion direction. The pressure-induced stiffness can be
defined as the variation of the reaction force with respect to
the infinitesimal deformation so that (Li et al 2016):

k
F

L

d

d
. 4L = ( )

Figure 3. Pressure-induced stiffness of the fluidic origami unit cell
based on PV=const. (a) The reaction force-folding angle relation-
ship, showing the influence of sector angle (γ). (b) The influence of γ
angle on the force-deformation relationship. (c) Reaction force-
deformation curves based on different initial pressures (Pi). In all of
these figures: a=b=38 mm.
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By observing the force–displacement relationship in
equation (3) or the corresponding pressure-induced stiffness,
we can investigate the feasibility of obtaining QZS in fluidic
origami. To this end, we consider the following scenario of
pressurization. The fluidic origami is pressurized with an ideal
gas at an initial pressure (Pi) until it folds and settles at the
configuration with maximum possible internal volume (Vi).
Then the structure is sealed so that the total amount of pres-
surized gas inside is kept constant. After this, if the fluidic
origami deforms via folding due to an external force, its
internal pressure (P) and enclosed volume (V ) will change
accordingly. The ideal gas law states that PV nRT ,= where n
is the amount of substance of gas (in moles), R is the universal
gas constant, and T is the absolute temperature of the gas. We
assume that the change in internal volume due to folding
occurs slowly so the gas temperature (T) is constant. More-
over, n is constant due to the sealing of fluidic origami.
Therefore, we can conclude that:

PV P V const, 5i i= = ( )

and the reaction force equation (3) can be updated as follows:

F
P V

V

V Ld

d

d

d
. 6L

i i

I I

1

q q
= -

-⎛
⎝⎜

⎞
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Based on equation (6), it can be seen that the reaction
force and pressure-induced stiffness of the fluidic origami are
functions of the internal volume (V ) and the length (L) of the
unit cell. Figure 2(b) shows that these two geometric variables
are strongly nonlinear functions of the folding angle ( Iq ).
Therefore, we can also expect the pressure-induced reaction
force and stiffness are strongly nonlinear with respect to
the overall folding deformation. It is possible to prescribe the
behavior of the force–displacement curve and obtain the
desired QZS characteristic for vibration isolation by choosing
the appropriate design for the Miura-Ori pattern. In the fol-
lowing subsections, two different design cases are presented,
the first case is identical stacked Miura-Ori sheets (ISMO) and
the second one is non-identical stacked Miura-Ori sheets
(NISMO).

2.1. Case 1: identical stacked Miura-Ori sheets (ISMO)

With two identical Miura-Ori sheets, the previously discussed
relationships can be simplified because II Ig g g= = and
a a a.II I= = figures 3(a), (b) shows the force-deformation
curves of different ISMO tubes with 2 unit cells based on the
same crease lengths (a b 38 mm= = ) but different γ angles.
Initial pressure (Pi) is the same at 6.9 kPa. It can be seen that
when the sector angle γ is less than 69°, the reaction force
increases monotonically with deformation, implying a non-
linear positive stiffness. When γ>69°, the reaction force
curve has a segment of negative stiffness. The critical, quasi-
zero-stiffness can be achieved when the sector angle equals to
69°. At this particular sector angle, the length of the negative
stiffness segment in the reaction force curve converges to
zero. In other words, the tangent stiffness of the fluidic ori-
gami is positive throughout its deformation range except for

the QZS configuration, where the tangent stiffness equals
to zero.

There are several interesting properties from the ISMO
fluidic origami of 69 .g =  First of all, the QZS characteristic
is achievable regardless of the initial pressure (Pi). Secondly,
the magnitude of reaction force at the QZS point (Fcr) is
linearly proportional to the magnitude of initial pressure.
Finally, the deformation at the QZS point is only a function of
origami geometry and does not depend on the initial pressure
(figure 3(c)). In section 3, we will detail the benefits of these
properties in vibration isolation. In order to find a compre-
hensive design criterion to obtain the QZS characteristics, we
introduce a non-dimensional parameter w as follows:

w
l

Na
, 7=

D ( )

where Δl is the deformation range with negative stiffness in
the reaction force–displacement curve (figure 3(b)), and N is
the number of unit cells in a tubular channel. Δl needs to be
zero in order to achieve the QZS property in the force–
displacement curve. Figure 4(a) illustrates the result of the
parametric study on the correlation between w and the

Figure 4. Parametric studies for obtaining QZS properties. (a) The
relationship between the deformation range with negative stiffness
and ISMO design parameters. Grey region represents designs that
would not generate any negative stiffness. (b) The relation between
the deformation range with negative stiffness and NISMO design
parameters. In both cases, Miura-Ori designs that can give QZS
property are highlighted. The designs used in the following quasi-
static experiment (section 3) and dynamic analysis (section 4) are
highlighted.
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Miura-Ori design. It can be seen that for identical Miura-Ori
sheets, w is independent of the creases length ratio k a b=( )
and is only a function of sector angle (γ). Based on the
aforementioned governing equations and results presented in
the figure 4(a), we can conclude that QZS is reachable only
when 69g =  regardless of the crease lengths (a and b).

2.2. Case 2: NISMO sheets

To study the design criteria for obtaining QZS when the
fluidic origami consists of two different Miura-Ori sheets, we
introduce a new non-dimensional parameter (Γ) to quantify
the design difference between the two sheets:

a

a
. 8II

I
G = ( )

We can follow the same procedure as in the ISMO case
to obtain the design criteria for obtaining QZS property in the
NISMO case. The results of the parametric study in this case
is presented in figure 4(b). In the NISMO case, the designs
that can provide QZS depend on both the sector angles and
the ratio between crease line lengths. Therefore, the para-
metric study results in figure 4 can provide the design
guidelines to achieve QZS and further dynamic analyses
discussed in the section 4.

3. Proof-of-concept prototype and the quasi-
static test

To validate the feasibility of achieving the desired QZS
property in fluidic origami, we fabricate and test a proof-of-
concept prototype. This prototype is designed to possess the
characteristics of an origami structure with rigid facets and
hinge-like creases. To this end, facets are first waterjet cut
individually from a 0.25 mm thin stainless-steel sheet. Then
0.13 mm thin adhesive-back plastic films (ultra high mole-
cular weight Polyethylene) are used to connect the facets
together into a complete origami sheet with hinge-like soft
creases. This origami prototype resembles a NISMO structure
with four connected tubular channels, each consisting three
unit-cells (figure 5(a)). Design parameters used in this pro-
totype are summarized in table 1. The fluidic origami proto-
type is also equipped with two ‘zipper sheets’ to constrain the
overall deformation to rigid-folding only. These zipper-sheets
have the same designs as the smaller Miura-Ori sheet I used in
the main structure, but they are rotated about the lengthwise
x-axis (figure 5(a)). Because of this rotation, the zipper-sheet
can drastically increase the eigen-stiffness of undesired
deformations (e.g. bending and squeezing) without hindering
the rigid-folding deformation (Filipov et al 2015).

Furthermore, we remove the internal facets in the fluidic
origami prototype so that the four initially separated channels

Figure 5. Proof-of-concept experimental tests. (a) Schematic drawing showing the design and assembly of the fluidic origami prototype.
The zipper-sheets and internal facets are highlighted. (b) Finished prototype made from waterjet cut steel sheets and adhesive plastic films.
(c) In this figure, the fluidic origami prototype has been pressurized through a custom-made air pouch to its maximum internal volume
configuration. Note that the end valve has been closed and disconnected from the pressure supply to ensure a constant PV according to the
governing equation (6). (d) The experimental set-up for the quasi-static test.
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are combined into one (figures 5(a), (b)); this makes it much
easier to apply a uniform internal pressure. Removing the
internal facets, however, does not change the governing
relationship between internal pressure and reaction force as
defined in equation (6), because it does not alter the kinematic
relationships between rigid-folding, total volume, and overall
length of the fluidic origami. A custom-made cubic-shaped air
pouch is inserted to the fluidic origami to provide internal
pressurization. The pouch is made of 0.1 mm thin low-density
polyethylene film. The mass of the completed fluidic origami
prototype is about 200 grams.

The main structure is then connected to two 2.77 mm
thick clear cast acrylic end sheets using 0.635 mm thick piano
hinges to provide the required contact surface for the quasi-
static compression test. It is worth noting that this hinge only
anchor one origami facet to the end sheet (figure 5(d)), and
other facets in contact with the end sheets are free to move.
The compressive force–displacement curve of the pressurized
fluidic origami structure is tested on a tensile test machine
(ADMET eXpert 5601 with a 250lbf load cell, 3 mmmin−1

displacement rate) (figure 5(d)). The structure is pressurized
with initial pressure of 1.38 kPa until it reaches its maximum
volume (figure 5(c)). During testing, the pressurized air is
constrained inside the air pouch by closing the connected on/
off valve (figure 5(c)). Five sets of measurements are per-
formed; and figure 6 depicts the averaged force–displacement
curve, the corresponding standard deviation, and the analy-
tical prediction based on equation (6). The quasi-static test on
the fluidic origami structure exhibits a good repeatability

among the five sets of measurements, and the standard
deviation is about 3% of the average value in the QZS region.

Test results reported in figure 6 match the analytical
prediction well, especially, the pressure-induced QZS beha-
vior is evident. There are some discrepancies between test
results and analytical prediction, which are probably caused
by two reasons: one is the imperfect contact between air
pouch and inner surface of the facets, which is not considered
in the model. The other cause is non-rigid folding deforma-
tions (e.g. bending and squeezing) that are observed espe-
cially at higher internal pressures (Li and Wang 2015, Li et al
2016). In addition, one should notice a sudden jump in
reaction force before the fluidic origami is fully folded. This is
because the screws used to connect the zipper-sheets to the
main structure come into contact with the facets so further
folding is prevented. However, right before such a self-
locking occurs, we can clearly observe a gradual increase in
reaction force and effective stiffness beyond a QZS region,
which stems from the physics underlying the pressurized
fluidic origami. Therefore, despite the abovementioned dis-
crepancies, the presented results validate the existence of the
pressure-induced QZS in fluidic origami.

4. Dynamic analysis of fluidic origami with QZS
properties

In this section, we examine the effectiveness of utilizing the
fluidic origami for low-frequency base excitation isolation. To
avoid unnecessary complexities, here we use the design
parameters obtained in the ISMO case study, that is
a a a,II I= = b a,= and 69 .g =  However, the physical
principles and design insights obtained in this case study can
be applied to any other fluidic origami designs that can
exhibit QZS property. Figure 7 illustrates the system setup for
vibration isolation, where the fluidic origami is assumed
massless and a lumped mass (m=1 kg) is attached at the top.
In this way, one can describe the origami structure as a
combination of a nonlinear spring and a damping element
between the lumped mass and base. It is worth highlighting
that utilizing the QZS property for vibration isolation requires
that the static equilibrium of the mass-spring-damper system

Table 1. Design parameters used in the proof-of-concept prototype.

aI b aII γI γII

30 mm 30 mm 2.5aI 59° 78°

Figure 6. The force–displacement relationships. The dashed curve
represents the analytical result and the solid and dotted curve shows
the averaged experimental result. The shaded grey region represents
the standard deviation of the measurements.

Figure 7. Setup of the dynamic analysis. (a) Schematic diagram of
using fluidic origami for base vibration isolation. (b) The equivalent
discrete system.
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shown in figure 7 occurs at the QZS configuration. That is, the
weight of the lumped mass should be equal to the reaction
force at the QZS point mg F .cr=( ) To achieve this, we can
use the unique property of pressurized fluidic origami that the
magnitude of the reaction force at the QZS configuration is
linearly proportional to the magnitude of the initial pressure
(figure 3(c)). Therefore, the initial pressure can be adjusted
according to the following equation:

P mg
V

V

V

L

d

d
. 9i

i
1

QZS

= -
-

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ ( )

We can then write the governing dynamic equation of
motion as:

u u F u Y t2 cos , 102z+ + = W W̈ ( ) ( )

where, u x y= - is the relative displacement between the
lumped mass and base. F u( ) is the reaction force of the fluidic
origami. ζ is the damping coefficient, which is assumed be to
0.3 for this study based on a relevant study on the dynamics
of bistable origami structure (Fang et al 2017). It is worth
noting that this damping coefficient is not experimentally
measured, and it can change if the fluidic origami is fabricated
in a different way, but we do not expect a change in damping
can fundamentally alter the vibration isolation behavior of
fluidic origami. Ω is the excitation frequency, and Y is the
base excitation amplitude. The reaction force (F), which
exhibits the desired QZS characteristics, is determined based
on the fluidic origami constitutive relationship in equation (6)
and appropriate initial pressure according to equation (9). To
characterize the performance of the base excitation isolation,
we introduce a transmissibility index (TR), defined as the
ratio of the root mean squares of mass and base displacements

x t( ) and y t ,( ) respectively:

x t

y t
TR

rms

rms
. 11=

( ( ))
( ( ))

( )

The governing equation of motion (10) based on the
actual force–displacement curve (equation (6)) is solved
numerically using MATLAB ‘ode23s’ solver. The steady-
state time response (examples shown in figure 8) can be used
to calculate the TR.

Beside numerical simulation, another common method
for examining the QZS vibration isolators is to use odd order
polynomials to approximate the reaction force–displacement
curve around the QZS point, so that the established dynamic
analysis methods like HBM can be used. For example, a
third-order polynomial approximation can be applied to QZS
structures and effectively turns the overall system into a
classical Duffing oscillator (Carrella et al 2007, Kovacic et al
2008, Carrella et al 2009a, 2009b, 2012). Zhou et al (2015)
also used a cubic polynomial by truncating the Taylor series
expansion about the equilibrium to examine a cam-roller-
spring QZS isolator. Some other studies even used fifth odd
order polynomials (Neild and Wagg 2011, Shaw et al 2013).

Nonetheless, these odd order polynomial fittings are fun-
damentally similar in that they produce symmetric force dis-
placement curves with respect to the zero origin. That is,
f x f x ,= - -( ) ( ) where x is an arbitrary displacement from the
QZS point and f x( ) is the force–displacement relationship.
However, the force displacement curve of the fluidic origami
shown in figure 3 is strongly asymmetric. To understand how
such asymmetry influences the dynamic response and perfor-
mance of base excitation isolation, we apply both symmetric
(section 4.1) and asymmetric (section 4.2) polynomial fitting,

Figure 8. Numerical simulation of the fluidic origami isolator based on actual force–displacement curve according to equation (6). (a), (b)
Sample steady-state time response with Ω =0.1 Hz, Y=a and the corresponding FFT result. (c), (d) Another sample response with different
input (Ω =1 Hz, Y=a).
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and compare the corresponding HBM results to the dynamic
response based on the actual force–displacement curve.

4.1. Dynamic analysis based on symmetric polynomial fitting

A simple, symmetric cubic fitting assumes the reaction force
F u u ,3a( ) where the cubic stiffness coefficient α can be
found via the least square method (figure 7(a)). The governing
equation of motion (10) can be updated accordingly to:

u u u Y t2 cos . 123 2z a+ + = W W̈ ( )

This essentially represents a Duffing oscillator with a
zero linear stiffness term. Assuming a fluidic origami struc-
ture consisting of two internally connected unit cells (N=2)
and an initial pressure of P 13.8 KPa,= the cubic stiffness
coefficient turns out to be 81 020 N m .3a = -

The steady state solution of equation (12) can be
approximated by HBM, which is a powerful method for
analyzing the steady-state behavior of strongly nonlinear
dynamic systems (Hamdan and Burton 1993, Nayfeh 1993,
Carrella et al 2009a). According to HBM, the solution of
equation (12) can be approximated as:

u t U t U tcos sin . 131 2= W + W( ) ( )

Substituting the assumed u t( ) into the simplified dynamic
equation (12) and discarding higher order harmonic terms
give the following nonlinear polynomial equations:

U U U U U Y

U U U U U

2
3

4

3

4
0,

2
3

4

3

4
0,

14

2
1 2 1

3
1 2

2 2

2
2 1 2

3
2 1

2

z a a

z a a

-W + W + + - W =

-W - W + + =

⎧
⎨
⎪⎪

⎩
⎪⎪

( )

which can be solved numerically to obtain the two unknown
coefficients (U ,1 U2). Once these two coefficients are deter-
mined, equation (12) can be updated to provide the approx-
imate solution for the relative displacement u t( ) and then the
TR index. Figures 9(b), (c) show the TR obtained by num-
erical simulation and HBM corresponding to two different
base excitation amplitudes: Y Na0.125= and Y Na0.75 ,=
where a is the crease line length, and N is the number of cells.
For the small excitation amplitude, HBM results based on a
cubic fitting agree well with the numerical simulation; how-
ever, there are significant discrepancies at the higher excita-
tion amplitude. Such discrepancy in TR magnitude at higher
excitation amplitude is also shown in figure 9(d), which
depicts the comparison between cubic fitting prediction and
numerical simulation for a wide range of excitation ampli-
tudes with a constant frequency (Ω=0.1 Hz). Therefore, the
HBM results based on symmetric polynomial fitting cannot
accurately predict the qualitative behavior of the base isola-
tion behavior, especially at higher excitation amplitudes.

Besides the discrepancies in transmissibility predictions
at higher excitation amplitude, the symmetric cubic fitting
also fails to predict the emergence of a drift or zero-frequency
‘DC component’ observed in the numerical simulation based
on the actual-force displacement curve (figures 8(b), (d)).
Such a drift or DC component is especially evident at a higher

frequency (figure 8(b)) so that the lumped mass moves to
another position rather than the static equilibrium and oscil-
lates around that point. Indeed, it can be proven that for any
dynamic system described by a second order differential
equation of the form:

u cu f u F tcos , 15+ + = W̈ ( ) ( ) ( )

where the reaction force f u( ) is a summation of odd-order
polynomials exhibiting a symmetric behavior around the

Figure 9. Dynamic analysis based on symmetric cubic polynomial
fitting. (a) The setup of cubic polynomial fitting. (b), (c) Relation-
ships between TR and excitation frequencies at Y=0.125Na and
0.75Na, respectively. (d) The relationship between TR and excitation
amplitudes (Ω=0.1 Hz).
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origin:

f u u u u... , 16m
m

m
m

m
m

n
n

1
1

2
2a a a= + + +( ) ( )

and m i n1, 2, ...,i =( ) are odd and positive integers, the
system cannot exhibit any drift or zero frequency response.
To prove by contradiction, we assume the solution of
equation (15) includes a constant drift term U0 so that:

u U U t U tcos sin . 170 1 2= + W + W ( )

Applying HBM and collecting zero-frequency compo-
nents produces the following equation:
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It is obvious that 2k, m k l2 1 2 ,i - + -( ) and 2l are all
positive even integers. Since U ,0 U ,1 and U2 are real values,
equation (18) only has two possible solutions:

U
U U U

0,
0,

190

0 1 2

=
= = =

⎧⎨⎩ ( )

and only the first solution is non-trivial. Therefore, we can
conclude that for any dynamic system described by
equation (15), which has a symmetric reaction force–
displacement, it cannot produce any drift or zero-frequency
response as U 0.0 =

Therefore, it can be concluded that a symmetric
approximation of the force displacement curve could not fully
capture the dynamic behaviors of the fluidic origami. Our
results imply that the asymmetry of the fluidic origami force–
displacement relationship is crucial in that: (1) it could sig-
nificantly increase the TR at higher excitation amplitudes and
(2) it could induce a drift response. To validate these obser-
vations, we add even-order polynomials to our fitting to
introduce an asymmetry around the QZS point, and the
corresponding predictions are discussed in the following
subsection.

4.2. Dynamic analysis based on asymmetric polynomial fitting

It should be noted that the reaction-force displacement of the
fluidic origami is a complex nonlinear function; therefore, it is
extremely hard to replicate its exact behavior through poly-
nomial fitting. Obviously, a higher order polynomial fitting
can better replicate the force displacement curve of the fluidic
origami. Figure 10(a) shows the comparison between some
polynomial fittings, which indicates that one needs to con-
sider a ninth-order polynomial curve to obtain a quantitatively
accurate prediction. However, including a ninth-order poly-
nomials in HBM makes the study extremely arduous and
unreasonable. Alternatively, we can concentrate on qualita-
tively revealing the effects of asymmetry on the overall

system dynamics. For this reason, we use the simplest fitting
that can preserve the asymmetric behavior of the force–dis-
placement curve, that is, a combination of second and third
order polynomials. It is worth noting that there should not be
a linear term in the fitting in order to satisfy the zero stiffness
at the origin. With these considerations, force–displacement
function can be approximated as:

F u u u , 202
2

3
3a a= +( ) ( )

where the quadratic and cubic stiffness term 2a and 3a are
approximated by the least square method. Estimating the
values of these two stiffness terms are not trivial. Figure 8(b)
shows the actual force–displacement curve according to
equation (6) along with three different fitting results. These
fittings all include cubic and quadratic terms as in
equation (20), but differ in the displacement range where the
least square method is applied. It can be clearly seen that if
the range is too big, the fitting is not able to replicate the QZS
property of the actual force displacement-curve, that is, the
sign of stiffness changes to negative near origin. On the other
hand, if the range is too small, the fitting deviates significantly
from the actual force displacement curve. Therefore, one
needs to use the maximum displacement range for fitting as
long as the QZS property is qualitatively preserved at the
equilibrium point ( u a0.12<∣ ∣ in this case), which results
in: 333 004 N m , 51 260 N m .2

2
3

3a a= =- -

Figure 10. Fitting with quadratic and cubit polynomial terms.
(a) Comparison between some polynomial fittings with different orders
performed for range u a0.12 .<∣ ∣ The insert plot shows the corresp-
onding magnitude of fitting error ( u u urms rms .actual fit actual= -( ) ( ))/

(b) Actual force–displacement curve and the comparison of three
different fitting results based on cubic and quadratic polynomials with
different ranges of fitting.

10

Smart Mater. Struct. 28 (2019) 065006 S Sadeghi and S Li



By incorporating the quadratic and cubic fitting, the
equation of motion (10) can be updated to:

u u u u Y t2 cos . 212
2

3
3 2z a a+ + + = W W̈ ( )

Now we can use HBM to analyze the transmissibly at
large base excitation amplitude as well as the emergence of
drift (DC) component in the dynamic response. Substituting
the assumed solution in equation (17) into equation (21)
produces the following algebraic equations:

We Introduce two new variables, A1 and θ, so that:

U A
U A

cos ,
sin .

231 1

2 1

q
q

=
= -

⎧⎨⎩ ( )

The relative displacement (u) can be expressed in terms
of the new variables as:

u U A tcos , 240 1 q= + W +( ) ( )

where U0 represent the drift or DC component of the overall
dynamic response, and A1 represents the primary harmonics or
AC component. Through some mathematical manipulations,
it can be shown that U0 satisfies the following ninth-order
polynomial equation:
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which has a non-trivial real solution, indicating the
emergence of drift due to the asymmetry in force–
displacement curves. Figures 11(a), (b) show the system
time responses based on numerical simulation and HBM
for Y Na0.25= and 0.1 Hz.W = HBM based on the
asymmetric polynomial fitting successfully predicts the
drift (DC component) as well as the primary harmonics
(AC component).

Moreover, it can also be shown that the following rela-
tion holds between U0 and A :1

A
U U

U
. 261

2 2 0
2

3 0
3

1

2 2
3

2 3 0

a a

a a
= -

+

+
( )

And θ can be derived by solving the following equation:

U U A
tan

2

2 3
. 27

2
2 0 3 0

2 3

4 3 1
2

q
z

a a a
= -

W

-W + + +
( )

Once U ,0 A1 and q are solved, they can be substituted in
equation (24) to approximate the steady-state response. We
can then use this approximation to calculate the transmissi-
bility (TR) index. Figure 11(c) shows the TR results derived
by numerical simulation based on equation (10) and HBM
based on asymmetric fitting, respectively. Both results clearly
show a significant increase of TR at higher base excitation
amplitude. The discrepancy shown in this figure is a result of
fitting error from using a relatively low order polynomials.
However as mentioned earlier, the purpose of this approx-
imation using HBM is to qualitatively elucidate the effect of
asymmetry in force–displacement curves, thus the presented
result indeed provides valuable insights into the dynamic
behaviors of fluidic origami.

4.3. Base excitation performance analysis

Now that we have an understanding on the influence of
asymmetry from the force–displacement relationship, in this
section, we comprehensively evaluate the base excitation
isolation performance of the fluidic origami based on the
actual force–displacement curve. Figure 12(a) represents the
correlations among the TR, normalized base excitation
amplitude, and excitation frequency. Different colors in this
figure represent the value of TR index, and the fluidic origami
is considered successful in performing its task when TR 1.<
The TR index is consistently below one except at very small
frequencies and high base excitation amplitudes (highlighted
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region in this figure), therefore, fluidic origami with QZS is
indeed an effective isolator.

We further analyze the contribution of drift (DC comp-
onent) and primary harmonics (AC component) to the overall
dynamic response. To this end, FFT analysis is applied to the
steady-state time responses corresponding to different exci-
tation frequencies and amplitudes. Figures 12(b), (c) show the
magnitudes of DC ( YDC ) and AC ( YAC ) components,
respectively.

It can be seen that at some regions of base excitation
frequency and amplitude, the TR index is high and dominated
by the AC component. Figure 12(d) shows such an example
where Y Na 1.4= and 0.1 Hz.W = In contrary, there are
some combinations of excitation frequencies and amplitudes
by which the DC components dominates, and an example
corresponding to Y Na 0.8= and 1HzW = is shown in
figure 12(e). The significant drift in the time response can
drive the TR index to near one. Therefore, unlike other QZS
vibration isolators with symmetric force–displacement

relationships, drift plays a considerable role in the system
dynamics. One needs to consider its effect carefully in order
to properly explain the base excitation isolation.

Another important factor that needs to be considered is
the limit of achievable displacement of the fluidic origami.
The length of fluidic origami is restricted by the kinematics of
folding, that is, the structure can only be stretched up to the
fully deployed state ( 0Iq =  shown in figure 2(b)). Therefore,
we have to ensure that the maximum relative displacement
u t( ) of the end mass does not exceed the maximum length of
fluidic origami.

As the first step to understand the effect of such a geo-
metric constraint due to folding, we show that the maximum
allowed displacement from the QZS configuration to the fully
deployed configuration is linearly related to the number of
unit cells in a fluidic origami tubular channel. It can be shown
that the folding angle at the QZS configuration ( QZSq ) does not
depend on the number of cells. Therefore, from equation (1)
we can write the maximum possible displacement from QZS
to the fully deployed state as:

x N
b b2 tan

1 tan

2 cos tan

1 cos tan
, 28QZS
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2

I

2
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2

g

g

q g

q g
D =

+
-

+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( )

Based on equation (28), the relationship between the
maximum possible displacement (Δx) and the number of cells
(N) is linear (figure 13(a)). This result can then be applied to
the parametric analysis result shown in figure 12(a) as a
constraint. That is, if the maximum end mass displacement is
larger than Δx at some frequencies and base excitation
magnitudes, the fluidic origami is no longer considered fea-
sible for vibration isolation. Figure 13(b) shows such a region
where the end mass displacement exceed the constraint of
folding. We can see that based excitation frequency and
amplitude combinations that leads to TR>1 is indeed
unachievable. In another words, as long as the fluidic origami
is not stretched to its maximum length, it can always perform
well as a low-frequency base excitation isolator. Moreover,
fluidic origami with more unit cells in its tubular channel can
isolate base excitation with larger amplitudes.

5. Summary and conclusion

This study analytically and experimentally examines a pres-
surized origami cellular structure with an asymmetric QZS
property, and investigates its use in low-frequency vibration
isolation. Fluidic origami consisting of SMO sheets has been
shown to exhibit many unique and interesting mechanical
properties related to stiffness. This research demonstrates that
by sealing the pressurized structure, it is possible to acquire
QZS property due to the intricate and nonlinear relationship
between folding and internal volume change. Design guide-
lines for achieving QZS are presented for two different cases:
One is ISMO and the other is NISMO. A proof-of-concept
prototype was tested to verify the existence of desired QZS
property. The appropriate fluidic origami designs are then
used for a comprehensive dynamic study of low-frequency

Figure 11. Sample steady-state time responses of system based on
(a) numerical simulation and (b) HBM for Y=0.25Na and
Ω=0.1 Hz. (c) The TR results derived by numerical simulation based
on equation (10) and HBM based on asymmetric fitting. Comparing
this result to that in figure 7(c), it is evident that the asymmetry plays a
crucial role in the high TR values at high excitation amplitude.
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base-excitation isolation. In particular, this study closely
examines the effects of inherent asymmetry in the force–
displacement relationships of fluidic origami. Via comparing
the approximation solutions based on HBM using both
symmetric and asymmetric polynomial fittings, we show that
the asymmetry in force–displacement curve can (1) induce a
significant drift (DC component) in the steady state time
response and (2) increase the TR at high excitation amplitude
and low frequency. These phenomena must be carefully
considered for evaluating the base excitation isolation per-
formance. Moreover, the kinematic constraint due to folding
is also considered to ensure that fluidic origami will not be
stretched beyond its maximum possible length. We show that
QZS property from fluidic origami can indeed provide
effective base excitation isolation at low-frequencies. The
internal pressure of fluidic origami can be adjusted to
accommodate changes in the end mass, making the cellular
structure tunable. Results of this study can lay the foundation
of origami-inspired metamaterials and meta-structures with
embedded dynamic functionalities. Moreover, investigations
into the asymmetry in force–displacement relationship pro-
vide valuable insights for many other QZS structures with
similar properties.
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