
USING MULTI-STABLE ORIGAMI MECHANISM FOR PERISTALTIC GAIT 
GENERATION: A CASE STUDY 

Priyanka Bhovad* and Suyi Li 
Department of Mechanical Engineering 

Clemson University 
Clemson, SC, USA 

ABSTRACT 
This study proposes and examines a novel approach to generate 
peristaltic locomotion gait in a segmented origami robot. Specif-
ically, we demonstrate how to harness elastic multi-stability em-
bedded in a soft origami skeleton to create an earthworm-like 
locomotion. Origami is attractive for building soft robots be-
cause it can exhibit the essential compliance and reduce the part 
count. Most importantly, it can work as an actuation mechanism. 
Moreover, embedding multi-stability into an origami skeleton al-
lows it to remain in any of the stable states and switch between 
different states via a series of jumps. In this paper, we use two 
serially connected bistable Kresling segments, each featuring a 
generalized crease pattern design and a foldable anchoring 
mechanism, to develop a driving module for crawling soft robot. 
Multi-stability analysis of this dual-segment module reveals a 
four-phase actuation cycle, which is then used to generate the 
peristaltic gait. Instead of controlling the segment deformations 
individually like in earthworm and other crawling robots; we 
only control the total length of our driving module. This ap-
proach can significantly reduce the total number of actuators 
needed for locomotion and simplify the control requirements. 
The purpose of this paper is to combine the best features of multi-
stable mechanisms and origami to advance the state of art of 
earthworm inspired crawling soft robot. Our results demonstrate 
the potential of using multi-stable origami mechanisms to gen-
erate locomotion gaits without the need of complex controllers. 

1. INTRODUCTION
In recent years, the field of soft robotics has grown significantly 
and we are closer than ever to building truly soft machines that 
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can collaborate with humans in various scenarios [1,2]. One im-
portant challenge of this field is to create soft robots capable of 
navigating with ease in a constrained working environment and 
with minimal hazard to people and/or objects nearby. To this end, 
researchers have successfully developed a wide variety of bio-
mimetic soft robots capable of crawling, hopping, climbing, roll-
ing, walking, swimming, etc. [1,2]. In this work, we focus on the 
gait generation for crawling soft robots mimicking a major mode 
of limbless terrestrial locomotion, namely peristalsis. 

Peristaltic locomotion is observed in many soft segmented 
invertebrates, such as earthworms, for movement in different ter-
rains [3]. The metameric segmentation of an earthworm coupled 
with the unique musculature allows each segment to deform in-
dependently and swiftly to generate locomotion gaits suitable for 
different conditions such as burrowing through soil, crawling on 
uneven surface, and climbing steep angles. These segments can 
be categorized as contracting, anchoring and extending [4]. To-
gether they constitute a “driving module” for generating the per-
istaltic gait. The number and type of segments participating in 
each driving module can be varied to adapt to the local terrain.  

Let’s consider an example of earthworm peristalsis locomo-
tion (Figure 1). In this example, the earthworm body has three 
driving modules, each consisting of two contracting, anchoring 
and extending segments. There are two unactuated segments be-
tween adjacent modules. An actuation cycle of peristalsis can be 
split into multiple phases of actuation period Δt. A cycle of peri-
stalsis is then defined as time required for the earthworm to re-
turn to the first phase. The gait length is defined as the distance 
travelled by the earthworm during one cycle of peristalsis [3]. 
During an actuation phase (e.g. from t0 to t0 + Δt), contracting 
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segments deform to fully-contracted shapes (i.e. minimum 
length) and become anchoring segments. Similarly, extending 
segments deform to fully-extended shapes (i.e. maximum length) 
and become unactuated segments. By the end of the actuation 
phase (i.e. at t = t0 + Δt), the anchoring segments become extend-
ing segments and the unactuated segments become contracting 
segments. These deformations are achieved by engaging the cir-
cular and longitudinal muscles within each segment [3]. The two 
muscle groups work antagonistically: contracting the circular 
muscles decreases segment diameter and increases its length, 
while contracting the longitudinal muscles increases segment di-
ameter and reduces its length. The fully-contracted segments use 
external claw-like bristles on the body called ‘setae’ to anchor 
themselves to the environment. This (temporary) anchoring 
helps to produce forward movement; while the peristaltic wave 
travels in the opposite direction (Figure 1). At the end of each 
actuation phase, the driving modules move in the opposite direc-
tion of earthworm locomotion direction. Thus, the coordinated 
morphing of metameric segments in driving module generates 
wave-like locomotion gait called the ‘peristalsis’.  

Peristalsis is very well suited for building soft robots capa-
ble of moving through confined spaces because this locomotion 
mechanism does not require complex external appendages like 
legs or wheels. For example, a well-designed earthworm-like ro-
bot can burrow through rubble for disaster relief. Moreover, the 
individual segments used in the peristaltic locomotion serve as 
both skeletal structure and actuation mechanism. This approach 
can reduce structural complexity and decrease the overall mass 
of soft robot. Due to these potential advantages, there have been 
many studies to build soft crawling robots that can imitate the 
peristaltic locomotion [5–9].  

A key challenge in the development of these soft robots is 
the design of kinematic and actuation mechanisms that can ef-
fectively and efficiently create the retrograde peristalsis wave 
(aka. locomotion gait) to move the robot forward. Gait genera-
tion schemes and driving actuators among these robots are vastly 
different, such as inflating and deflating pneumatic channels[5], 
SMA coil actuator mesh [6], SMA spring actuated origami struc-
ture [7], magnetic fluid filled segments [8] and servo actuator 
driven compliant modular mesh [9]. While these locomotion 
mechanisms could successfully generate the peristalsis gait, 
many of them require complex control architecture and high-
power electromechanical actuators. For example, the slow actu-
ation speed of SMA actuators and bulky pressurization control 
systems for pneumatic mechanisms are still some of the un-
addressed challenges limiting the viability and portability of soft 
robots. 

In this paper, we will elucidate a novel concept of directly 
exploiting the multi-stability embedded in an origami skeleton to 
generate peristaltic locomotion gait without the need of compli-
cated actuation mechanisms or controllers. Multi-stability of a 
structure or a material system is a property of exhibiting more 
than one stable equilibria (or states), which can be characterized 
as the potential energy minima within the deformation range. A 

multi-stable system can remain at any of the stable equilibria and 
switch between different states via rapid jump (or snap-through) 
actions. Therefore, by a careful application of external loads, one 
can switch the system between its different stable states in a pre-
dictable way.  

Originally a recreational art; origami has attracted a lot of 
attention from scientific community in recent years. As opposed 
to traditional mechanisms with rigid linkages connected by 
moveable joints, an origami mechanism consists of a flat sheet 
folded at the pre-defined creases resulting in an intricate 3-D ge-
ometry. It imparts compliance to the soft robot without compro-
mising on the structural strength. Therefore, using an origami 
unit for a soft robot skeleton can reduce the part count and com-
plexity [10–14], while imparting unique capabilities such as self-
packaging, multi-functional metamorphosis [15], and reduced 
power requirements [8,9]. Additionally, the scale-independent 
nature of origami signifies that we could create robots ranging 
from macro-scale to micro-scale using the same basic principles.  

An earthworm like crawling robot segment ideally requires 
a tubular cross-section and an ability to produce large length 
changes (Figure 1). In particular, we are looking for bistable ori-
gami units that are elastically stable at both, fully-extended and 
fully-contracted shape. We found that the Kresling pattern based 
cylindrical origami satisfies these requirements. The robotic 
skeleton based on Kresling can be lightweight and soft yet struc-
turally robust. Most importantly, multiple Kresling segments 
connected together can constitute a multi-stable driving module, 
which can be used for peristaltic gait generation. These proper-
ties make a Kresling segment very attractive candidate for build-
ing a crawling soft robot. To the best of our knowledge, this is 
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Figure 1: The concept of peristaltic locomotion. The driving mod-
ule consists of contracting, (temporarily) anchoring, and extend-
ing segments. The earthworm body moves forward while the per-
istalsis wave travels backward. Δt denotes the actuation period. 
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the first work to directly use the multi-stability concept to gener-
ate peristaltic locomotion gait. 

The remaining parts of this paper are organized as follows. 
In section 2, we discuss the design of a generalized bistable 
Kresling segment which allows the user to freely prescribe its 
length at two different stable states to meet the different locomo-
tion requirements. In section 3, we derive the formulation to an-
alyze the multi-stable characteristics of a driving module con-
sisting of multiple bistable segments. We use this formulation to 
perform the multi-stability analysis of Kresling based driving 
module. In section 4, we describe the peristaltic locomotion gait 
generation based on the results obtained from section 3. We con-
clude by summarizing the main findings in section 5.   

 
2. DESIGN OF GENERALIZED KRESLING SEGMENT 
The Kresling pattern was first investigated by Biruta Kresling 
[16] and a similar pattern was extensively studied by Guest and 
Pellegrino as well [17]. The geometric design and bistability of  
‘traditional’ Kresling pattern has been discussed in depth in 
many studies [13,18,19]. The traditional Kresling pattern is de-
signed as a flat-foldable mechanism, that is, its length at fully-
folded stable state is exactly zero. Here, we propose and describe 
a ‘generalized’ Kresling pattern that can be tailored to feature a 
non-zero length at fully-folded state. This opens up new design 
spaces of Kresling pattern and can in particular accommodate the 
thickness of realistic sheet materials.  

The design parameters of the generalized Kresling pattern 
are: n (number of sides of the base and top polygon), p (side 
length of the base and top polygon), λi (angle ratio), and Lfc (Kres-
ling segment length at the fully-folded stable state). The corre-
sponding crease pattern consists of equally spaced mountain and 
valley creases as shown in Figure 2(a). The first and last valley 
creases are glued together to generate a rotationally symmetric 
twisted polygonal prism. The base and top of the cylinder create 
regular polygons which are assumed rigid during the folding mo-
tion. To design the generalized Kresling pattern, we start from 
the traditional Kresling, with its geometry given by, 
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where ϕ is half the internal angle of the base and top polygon, R 
is the radius of the base and top polygon, θ is the angle between 
the radius vector and polygon side as shown in Figure 2(b). The 
top polygon of traditional Kresling segment is translated away 
from the bottom polygon by a distance of Lfc to create the gener-
alized Kresling. The resulting crease pattern is no longer flat-
foldable; but retains an identical range of rotation as viewed from 
the top. The new lengths of mountain and valley crease and the 
angle of inclination of valley crease are given by, 
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Here, the subscript i refers to the parameters for traditional Kres-
ling and subscript g refers to those for generalized pattern. The 
fully-folded length (Lfc) of the segment is set as per the user re-
quirement. The angle of rotation (α) is used to characterize the 
unfolding and folding motion of a segment. The vertices of Kres-
ling segment can be written in cylindrical co-ordinate system (R, 
α, L) and the lengths of mountain (b) and valley (l) crease calcu-
lated,   
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We use equivalent truss-frame approach to analyze the mechan-
ics of generalized Kresling segment folding [19]. It can be as-
sumed that the length of the diagonal crease (l) remains constant 
and only mountain crease (b) is compressed throughout the fold-
ing motion [17]. With this assumption, the derivative of l w.r.t. α 
is zero so that, 
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Figure 2: Generalized Kresling pattern (a) Crease pattern depict-
ing the design parameters. The creases marked with (*) are 
glued together to create a Kresling segment. The geometric pa-
rameters for traditional Kresling are shown in brackets, (b) Iso-
metric view and Top view of folded Kresling segment depict the 
important geometric parameters and the sign convention for an-
gle of rotation α. 
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From the fully-folded geometry we can determine the upper 

limit for α to be, αfc =2λiθ. The lower limit for α can be computed 
by substituting Equation (5) in (6), which states that the length 
of the mountain crease is equal to bg in fully-open and fully-
folded configurations, 
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Thus, we have closed form solutions for describing the fold-

ing kinematics. Equations (4) and (5) can now be written in 
terms of the rotation angle ( fo fc    ). The strain (ε) and 
strain energy (U) due to folding can now be calculated as,  
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Here, K is the material stiffness coefficient. For the purpose 

of this analysis we normalize the strain energy U by K, and de-
fine the non-dimensional strain energy as, 
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   An origami mechanism is rigid foldable if all facets remain 
flat and rigid throughout the folding motion. On the other hand, 
if folding induces facet deformation, the origami is considered 
non-rigid foldable. The non-rigid foldability of cylindrical ori-
gami patterns like Kresling segment has been proven in literature 
[13,20]. The presence of bistability in a Kresling segment is due 
to the non-rigid foldable nature of the facets. That is, its facets 
are un-deformed at the two stable states, but they have to undergo 
some deformation while folding between the two stable states. 
The range of angle ratio for the bistability of Kresling segment 
is 0.5 1g    [13]. Higher angle ratio (λg) corresponds to 
stronger bistability (Figure 3(b)). Kresling segments with same 
fully-folded length can be designed to have different fully-open 
lengths by changing the angle ratio as shown in Figure 3(a).  
 
3. MULTI-STABLE MECHANISM USING GENERALIZED 
KRESLING SEGMENT 
In this study, we use a chain of serially connected, generalized 
Kresling segments as a driving module to demonstrate the use of 
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Figure 3: Generalized Kresling segment (a) The folding geometries of three different generalized Kresling segments that have the same 
length at fully-folded configuration (shown in (i)) but different lengths at fully-open configuration (shown in (ii), (iii), and (iv)). In this case, 
the angle ratio is different among these three segments, i.e. λiv> λiii> λii, as a result Liv > Liii > Lii. (b) Strain verses segment length and 
the normalized strain energy verses segment length for different angle ratios (λ). n=8, p=30 mm. It’s evident from the figure that the
bistability of the segment strengthens as λ increases. 
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multi-stability for peristaltic gait generation. We relax the meta-
meric (identical) segmentation requirement and allow the Kres-
ling segments in a module to feature different angle ratios. We 
analyze the resulting multi-stable system and identify its paths of 
deformation under end displacement control. Such deformation 
paths are referred to as “equilibrium paths” hereafter. We also 
examine how each Kresling segment deforms along the equilib-
rium paths.   

First, we describe how to identify the equilibrium paths of a 
Kresling based driving module. The potential energy landscape 
of such a multi-stable system lies on the (n+1)-dimensional 
hypersurface created by combining n-bistable segments. It can 
have a maximum of 2n stable configurations [21]. The problem 
of computing the equilibrium path followed by a multi-stable 
driving module under displacement control can be formulated as 
an optimization problem to find the local potential energy min-
ima corresponding to a prescribed total length [21,22]. The total 
potential energy (Etotal) and total length (Ltotal) of a driving mod-
ule are defined as, 
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where Li is current length of the segment #i and Ei is correspond-
ing potential energy. When the total length (Ltotal) of the system 
is prescribed, lengths of first n-1 segments  1 2 1, , , nL L L  can 
be specified as the minimizers and length of the last segment (

nL ) can be calculated based on a constraint equation. Thus, the 
optimization problem can be described as follows: 
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In other words, the input variable is the total length of driv-

ing module ሺLtotalሻ. It is varied from the minimum to the maxi-
mum value in incremental steps of ΔLtotal as follows, 
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where m is the total number of increments. For jth iteration 
(=2…m), the output is defined as the vector of individual seg-
ment lengths 1 1[ ]j j j

nL L L    corresponding to each j
totalL  

for which total energy of the system j
totalE  is minimized accord-

ing to the optimization problem defined in Equation(10). The fol-
lowing pseudo-code describes the optimization algorithm used: 

Step 1: Initialize the optimization problem using initial sta-
ble configuration,  
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Step 2: Each increment step j (=2…m), corresponds to a 
unique total length of the driving module. Define, 
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Here, j
totalL  is the total length of driving module. 0

jL is the in-
itial input specified to solve the optimization problem.  

Step 3: Solve the optimization problem described in Equa-
tion(10). The initial input 0

jL  is used as the first guess to find op-
timized lengths of the individual segments and corresponding to-
tal energy of the module, 

min
1 1[ ]   ,j j j

n totalL L     L and E  	

and the length of the last segment is written as, 
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Step 4: Set 1
0 1 1[ ]j j j

nL L L
   i.e. the output vector of 

individual segment lengths in jth iteration is provided as initial 
input for the next j+1th iteration. 

Step 5: Set j=j+1. Repeat the process till j=m.  
 
Note that the optimization algorithm above only gives one 

equilibrium path after each iteration, but multiple equilibrium 
paths are possible for a multistable system [22]. We can repeat 
the optimization process with different initial input variables to 
ensure all possible equilibrium paths are found. Once the equi-
librium paths are identified, then corresponding force-defor-
mation relationships can be obtained by differentiating the equi-
librium energy-deformation path.  

Now, we have enough background to analyze the multi-sta-
bility of a Kresling chain. For this work, we use a dual-segment 
driving module as a case study example. The aforementioned 
analysis method is applied to find the equilibrium paths followed 
by this dual-segment system, and corresponding design parame-
ters are listed in Table 1.  

Table 1: Parameters used for the Multi-stability analysis of 
Kresling based dual-segment driving module  

Parameters Segment-1 Segment -2 

n 8 8 
p (mm) 30 30 

λi 0.8 0.6 
Lfc (mm) 15 10 
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The results of the optimization algorithm applied to the 
Kresling based dual-segment driving module show two different 
equilibrium paths, each visiting three potential energy minima 
(Figure 4 (a)). The combined equilibrium paths describe the fold-
ing and unfolding deformation of two Kresling segments when 

the total length is controlled as shown in Figure 4. When the total 
length of a Kresling based module is increased from its minimum 
value to the maximum (referred as “extension phase” hereafter), 
it will follow the path of a→b→c→d→e. On the other hand, if 
the total length is decreased from the maximum to minimum 
(“contraction phase”), the Kresling based module deforms by 
following e→d*→f→g→a. We see two “jumps” between the 
equilibrium paths: one occurs during the extension phase (c→d) 
and the other occurs during the contraction phase (f→g). During 
these jumps, the two Kresling segments deform significantly, 
due to the rapid release of potential energy, without changing 
their total length. Such a phenomenon will be crucial for gener-
ating the peristaltic locomotion gait (as we detail in Section 4). 

More importantly, we also examine how individual segment 
deforms (or folds) during the extension and contraction phase, 
particularly at the jumps between equilibrium paths. The equi-
librium path followed by individual segments depends on their 
angle ratio λg. The segment with higher angle ratio will always 
follow path shown in Figure 4(b) and segment with lower angle 
ratio will always follow path shown in Figure 4(c). Without the 
loss of generality, we assume λ1 > λ2. If λ1 = λ2, we don’t observe 
any discernible jumps so this case will not be discussed.  

When λ1 > λ2, both jumps induce large length changes in the 
Kresling segments as shown in Figure 4(b,c). Accordingly, a cy-
cle of full extension followed by a contraction phase can be di-
vided into following six stages: 

Stage-I (a→b): The dual-segment Kresling module extends 
from its fully-contracted state at point a. In this stage, the length 
of segment-1 remains near its minimum, while segment-2 length 
increases monotonically along a→b and reaches its maximum.  

Stage-II (b→c→d): At the beginning of this stage, the seg-
ment-1 length starts to increases monotonically along b→c, 
while the segment-2 length remains at its maximum. When the 
jump from c to d occurs, Segment-1 quickly unfolds to its maxi-
mum length at d, and segment-2 length decreases to a low value. 
Note that the total length of two segments remains unchanged 
during this jump. 

Stage-III (d→e): For the rest of extension phase, segment-1 
length remains at its maximum and segment-2 length increases 
monotonically till it reaches e. Therefore, at the end of this stage, 
both segments are in fully-extended state.  

Stage-IV (e→d*): In this stage, the dual-segment Kresling 
module starts to contract in its total length from e. The length of 
segment-1 remains near its maximum, while segment-2 length 
decreases monotonically along e→d* and reaches its minimum.  

Stage-V (d*→f→g): Segment-1 length decreases monoton-
ically along d*→f, while segment-2 length remains at its mini-
mum. When the jump from f to g occurs, segment-1 quickly folds 
to minimum length configuration at g, and segment-2 length in-
creases to near maximum. 

Stage-VI (g→a): In this last stage of contraction, segment-
1 length remains at minimum and segment-2 length decreases 
monotonically till it reaches a. At the end of this stage, both seg-
ments return to their fully-contracted state. 

Figure 4: Multi-stability analysis results for the dual-segment 
driving module. The gray, blue and red curves represent the 
equilibrium path followed during the extension and contraction 
phases. (a) Potential energy along the equilibrium path of the 
extension and contraction phase. The energy minima are shown 
with black dots, (b) The segment-1 length change throughout the 
folding motion, (c) The segment-2 length change throughout the 
folding motion. The phases-I to IV of gait generation (discussed 
in section-4) are shown here for more clarity. The energy 
landscape for the multi-stable Kresling module is superimposed 
as the color map to the plots to show the total energy variation 
in different stages. 
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4. PERISTALTIC GAIT GENERATION 
In this section, we propose the use of multi-stability described in 
Section 3 to generate the peristaltic locomotion gait. First of all, 
according to the retrograde peristalsis wave mechanism shown 
in Figure 1, some anchoring mechanism is required to keep the 
fully-contracted segments in place during locomotion. Such an 
anchoring function is typically achieved by expanding the seg-
ment radially when it is contracting in length. However, the 
Kresling segment itself does not contract or expand in its radial 
direction during unfolding and folding, so we need to implement 
some additional mechanism to fulfill the anchoring requirement. 
To this end, we take advantage of the folding kinematics of Kres-
ling segment and propose an origami anchor (Figure 5). Such an 
anchor is attached to the creases of Kresling segment and it is 

carefully designed to fold out (i.e. to increase the effective ra-
dius) while the Kresling segment contracts in length. This anchor 
is essentially two connected triangles that share a common side 
(ABD and CBD in Figure 5(a)). The side lengths lAB=p and 
lBC=bg, so that side AB can be glued to the side of polygonal base 
and side BC can be glued to the mountain crease of the Kresling. 
In this way, we can tweak the length of three other triangle sides, 
lAD, lBD and lCD, according to several anchoring requirements as 
discussed below.  

The first requirement is that only one Kresling segment in 
the driving module is anchored to the environment during any 
phase of the locomotion. To satisfy this, we designate a cutoff 
length: when the length of either Kresling segment is below this 
cutoff value, its anchors should be folded out enough to generate 
a contact with the surrounding environment. The cutoff length of 
segment-1 equals to its length at point c on its equilibrium path 

shown in Figure 4(b), and cutoff length of segment-2 equals to 
its length at point d in Figure 4(c). The second requirement is 
that the origami anchor should fold without interfering with any 
of the Kresling segment facets. The third requirement is that the 
anchoring point D should only travel a small distance along the 
longitudinal direction of Kresling segment during folding. After 
several design iterations, the anchor designs are chosen as shown 
in Table 2. 

Figure 5: The origami anchoring element design (a) The an-
choring element design parameters. (b) To-scale plot of the
segment at fully-folded and fully-open stable states. (c) The an-
choring element radius variation throughout the actuation cycle.
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Figure 6: To-scale schematic diagram of the peristaltic locomo-
tion gait generated by using the multi-stability of the dual-seg-
ment Kresling driving module. 
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With the help of the origami anchor, the peristaltic locomo-

tion gait can be created by using the multi-stability of dual-seg-
ment Kresling module. Since only one segment should be an-
chored during locomotion, section a→g of the equilibrium paths 
shown in Figure 4 cannot be used otherwise both segments will 
be below their cutoff lengths (aka. both anchored). Section d→e 
of the equilibrium paths cannot be used either because both seg-
ments will be above their cutoff length (aka. both free). There-
fore, we exploit the actuation cycle of g→c→d→f→g, and di-
vide this cycle into 4 phases of effective locomotion as discussed 
below (Figure 4 and Figure 6): 

Phase-I (g→c): In this phase, the rear end of the segment-1 
is anchored to the environment, and this segment is extending in 
length via unfolding. Meanwhile, segment-2 is extended at its 
near-maximum length. In this phase, the dual-segment module 
as a whole extends and moves forward. 

Phase-II (jump from c to d): During this phase, the Kresling 
module quickly jumps from point c of the equilibrium path to 
point d via releasing the stored potential energy. As a result, the 
anchor points switch from the rear end of segment-1 to the front 
end of segment-2. This is because during the jump, segment-1 
quickly extends above its cutoff length, reaches its maximum 
length, and loses the anchoring. At the same time, segment-2 
quickly contracts below its cutoff length, reaches near to its min-
imum length, and anchors to the environment. It is worth noting 
that during this rapid jump, the total length of the dual-segment 
does not change, thus the Kresling module overall stays at the 
same position, only the anchors are switched.  

Phase-III (d→f): In this phase, the front end of the segment-
2 remains anchored to the environment since this segment stays 
near its minimum length. While the segment-1 length decreases 
monotonically from its maximum, but without reaching the cut-
off length. As a result, the module as whole contracts and con-
tinues to move forward.  

Phase-IV (jump from f to g): During this jump, segment-1 
quickly contracts near to its minimum length and anchors to the 
environment, while segment-2 extends quickly to its maximum 
lengths and loses the anchoring. As a result, the anchor points 
switch from the front end of the module back to its rear end, but 
the driving module overall stays at the same location.  

After the second jump, the module is again at the start of 
Phase-I, so that the cycle of Phases-I to IV can be repeated to 
move the robot forward. The gait length can be approximated 
based on the deformation of two Kresling segments during 
Phases-I and III. 

It is important to note that in this dual-segment driving mod-
ule, we do not have a separate anchoring segment like in the 
earthworm shown in the Figure 1. Instead, we use the switching 
of anchor points during the jump at Phases-II and IV. Moreover, 
we do not actuate and control the segments individually like in 
the earthworm or other earthworm-inspired crawling robots. In-
stead, we only control the length of whole driving module, while 
the length of individual segments and the anchoring locations are 
“controlled” autonomously by the embedded multi-stability. 
This is an example of morphology assisted computation [23], 
which can significantly simplify the mechatronic system in a soft 
robot. 

  
5. SUMMARY AND CONCLUSION 
In this paper, we developed a unique approach of harnessing 
multi-stability for the crawling locomotion of earthworm-in-
spired, segmented soft robot. In particular, we showed that the 
elastic multi-stability embedded in an origami robot skeleton can 
be used to generate the peristaltic gait, and the required multi-
stable mechanism can be created by serially combining bistable 
segments.  

As a case study, we used generalized Kresling segments with 
different angle ratios, i.e. different bistability strengths, to create 
a dual-segment driving module of an earthworm inspired soft ro-
bot. Multi-stability analysis of this driving module revealed two 
jumps, one each in extension phase and contraction phase, which 
can induce rapid and large deformation of the two Kresling seg-
ments without changing their total length. We also proposed an 
origami based solution to fulfill the anchoring requirement. Fi-
nally, we combined the multi-stable Kresling based driving mod-
ule with the anchoring elements to successfully generate peristal-
tic gait with a four-phase actuation cycle. 

The results obtained from this case study can be used to de-
sign an origami based earthworm inspired soft robot. We have 
shown that, by carefully designing a multi-stable mechanism we 
can significantly reduce the number of actuators needed to con-
trol the robot. Also, we do not need a complex control architec-
ture to individually manipulate each segment of the driving mod-
ule. By simply controlling the length of the driving module as a 
whole and exploiting the embedded multi-stability, we can gen-
erate the peristaltic locomotion gait. Along with these benefits, 
we are also able to retain advantages of origami such as, self-
packaging and compliance.  

It is worth noting that the main focus of this work is to lay 
down the theoretical foundation for generating peristaltic gait us-
ing a multi-stable origami mechanism. The mechatronic design 
of the soft robot prototype, especially the mechanism for control-
ling the total module length, is beyond the scope of this work and 
will be taken up in the future. Currently, we are looking into mo-
tor-tendon system [12], pressurization, and SMA springs as pos-
sible candidates to control the length of the driving module. 

In summary, this research developed an analytical method 
to actuate a dual-segment driving module. This approach can be 
further extended to a multi-segment driving module to generate 

Table 2: Origami anchor designs used in the case study 
 

Parameters Segment-1 Segment -2 

lAD (mm) 9.9 13.3 
lBD (mm) 29.8 41.5 
lCD (mm) 48.8 25.0 
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more adaptable crawling locomotion gaits. Thus, a direct exploi-
tation of multi-stability embedded in origami can significantly 
advance the state of art of crawling soft robot research by sim-
plifying the mechanical and electrical design, reducing power re-
quirement and decreasing overall mass of the robot.  
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