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Abstract. We construct stable manifolds for a class of singular evolution

equations including the steady Boltzmann equation, establishing in the process
exponential decay of associated kinetic shock and boundary layers to their

limiting equilibrium states. Our analysis is from a classical dynamical systems

point of view, but with a number of interesting modifications to accomodate
ill-posedness with respect to the Cauchy problem of the underlying evolution

equation.

1. Introduction. In this paper we study decay rates at infinity of (possibly) large-
amplitude relaxation shocks

u(x, t) = u∗(x− st), lim
τ→±∞

u(τ) = u±, (1.1)

of kinetic-type relaxation systems

A0ut +Aux = Q(u), (1.2)

on a general Hilbert space H, where A0, A are given (constant) bounded linear
operators and Q is a bounded bilinear map. More generally, we study existence and
properties of stable/unstable manifolds for a class of singular evolution equations
arising through the study of such profiles.

Making the change of variables τ = x− st we obtain that the profiles u∗ satisfy
the equation (A − sA0)uτ = Q(u). By frame-indifference, we may without loss of
generality take s = 0, yielding

Auτ = Q(u). (1.3)
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2 ALIN POGAN AND KEVIN ZUMBRUN

We are interested in the singular case, as arises for example for Boltzmann’s equa-
tion [5, 16, 17, 26], that the linear operator A is self-adjoint, one-to-one, but not
invertible.

This is a crucial point of the current paper, since in the case when the linear
operator A has a bounded inverse, one would reduce equation (1.3) to an evolution
equation with bounded linear part, that can be treated similarly as in the case of
nonlinear equations on finite dimensional spaces. The case at hand, when the linear
operator A does not have a bounded inverse, requires a different approach, since
(1.3) or its linearization along equilibria might not be well-posed; therefore it is
not clear if one can use the usual variation of constants formula to look for mild
solutions. Rather, we use the frequency domain reformulation of these equations
following the approach in [14] and [15].

Other cases of non-well-posed equations in the sense that they do not generate
an evolution family either in forward or backward time on the entire space, arise
in the study of modulated waves on cylindrical domains (see [29, 35, 36]), Morse
theory (see [1, 2, 33], the theory of PDE Hamiltonian systems (see [34]), and the
theory of functional-differential equations of mixed type (see [18]). The particular
form (1.3), however, in which the singularity arises through the coefficient of the
τ -derivative with other terms bounded, does not seem to have been treated before,
and does not appear to be amenable to the methods of these previous works; see
the discussion of Section 1.4.1. This is the class of singular evolution equation to
which we refer in the title of the paper.

The examples we are interested in arise in certain kinetic and discrete kinetic
relaxation approximation models, in particular, the Boltzman equation

ft + ξ1fx = Q(f), x ∈ R1, ξ ∈ R3, (1.4)

where f = f(t, x, ξ) denotes density at time t, spatial point x of particles with
velocity ξ and Q is a bilinear collision operator (cf. [10]). After rescaling by

〈ξ〉 :=
√

1 + |ξ|2, (1.4) can be put in form (1.2), with A is equal to the operator of
multiplication by the function ξ1/〈ξ〉 and H an appropriate weighted L2 space1 in
the variable ξ. For details of this reduction, see [26]. In [24, 25, 26, 37], Métivier,
Texier and Zumbrun obtained existence results for a somewhat larger class of mod-
els of shocks with small amplitude ε := ‖u+−u−‖, in particular yielding exponential
decay rates as τ = (x− st)→ ±∞; see also the earlier papers [5, 16] in the specific
case of Boltzmann’s equation. These results were obtained by fixed-point iteration
on the whole line, using in an essential way the small-amplitude assumption to con-
struct initial approximations based on a formal fluid-dynamical approximation by
Chapman-Enskog expansion.

Here, our interest is in treating large-amplitude profiles, without a priori informa-
tion on the shape of the profile, by dynamical systems techniques that would apply
also in the case of boundary layers, where the solution is not necessarily defined
on the whole line. Our larger goal is to develop dynamical systems tools analogous
to those of [9, 21, 22, 23, 38, 39, 40, 41, 44, 45], sufficient to treat 1- and multi-D
stability by the techniques of those papers. See in particular the discussion of [40,
Remark 4.2.1(4), p. 55], proposing a path toward stability of Boltzmann shock pro-
files. For this program, the proof of exponential decay rates and the establishment

1Namely, the standard choice weighted by the square root of the Maxwellian at u+ (resp. u−)
as in [10, 26].
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of a stable manifold theorem are essential first steps. For a corresponding center
manifold theorem, see [32].

1.1. Assumptions. In [26, Section 4] it is shown that the Boltzman equation with
hard-sphere potential can be recast as an equation of form (1.2) where the linear op-
erator A and the nonlinearity Q satisfy the hypotheses (H1)-(H2) below. Following
[26], we assume these throughout.

Hypothesis (H1) The linear operator A is bounded and self-adjoint on the Hilbert
space H. There exists V a proper, closed subspace of H with dimV⊥ < ∞ and
B : H×H→ V is a bilinear, symmetric, continuous map such that Q(u) = B(u, u).

Hypothesis (H2) At u± (necessarily equilibria, Q(u±) = 0), linearized operators
Q′(u±) satisfy (i) Q′(u±) is self-adjoint and kerQ′(u±) = V⊥, and (ii) There exists
δ± > 0 such that Q′(u±)|V ≤ −δ±IV.

We adjoin to (H1)-(H2) the following two hypotheses, also satisfied for Boltz-
mann’s equation.

Hypothesis (H3) The linear operator A is one-to-one.

Hypothesis (H4) The linear operator PV⊥A|V⊥ is invertible on the finite dimen-

sional space V⊥, where PV⊥ denotes the operator of orthogonal projection onto
V⊥.

Hypothesis (H3) for Boltzmann’s and related kinetic equations reflects the fact
that A is a multiplication operator on a weighted L2 space, possessing only essential
and no point spectrum. Hypothesis (H4) amounts to the assumption that the associ-
ated finite-dimensional linearized equilibrium flow PV⊥(A0)|V⊥ht +PV⊥A|V⊥hx = 0

of (1.2) about u± be noncharacteristic, where h := PV⊥u. It is readily seen to be the
condition that the center subspace of the linearized flow of (1.3) about u± consist
entirely of the trivial, equilibrium subspace V⊥, which is the condition under which
we may expect exponential decay to equilibrium; see [17, 32] for further discussion.

1.2. Results. First, we show that linearized equation Au′ = Q′(u±)u is equivalent
to an equation of the form u′ = Su, where S generates not a C0-semigroup, but
rather a bi-semigroup [3, 14].

Definition 1.1. The linear operator S is said to generate a bi-semigroup if it has
the decomposition S = S1 ⊕ (−S2) on a direct sum decomposition of the entire
space H = H1 ⊕ H2, where Sj , j = 1, 2, generate C0-semigroups on Hj , j = 1, 2.
The bi-semigroup is called stable if the semigroups generated by Sj , j = 1, 2 are
stable on Hj , j = 1, 2.

We recall that the first order linear differential operator with constant coefficients
∂τ − S is invertible on function spaces such as L2(R,H) if and only if the equation
u′ = Su has an exponential dichotomy on R. We note that for any u0 ∈ V⊥ the
function u(τ) = u0 is a solution of equation Au′ = Q′(u±)u. Therefore, equation
Au′ = Q′(u±)u does not have an exponential dichotomy on the entire space H;
instead it exhibits an exponential dichotomy on a direct complement of the finite
dimensional space V⊥. To prove this result, we reduce the equation by using the
decomposition

A =

[
A11 A12

A21 A22

]
: V⊥⊕V→ V⊥⊕V, Q′(u±) =

[
0 0
0 Q′22(u±)

]
: V⊥⊕V→ V⊥⊕V.
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Indeed, if u is a solution of equation Au′ = Q′(u±)u, then the pair (h, v) defined by
v = PVu and h = PV⊥u, satisfies the system

(A22 −A21A
−1
11 A12)v′ = Q′22(u±)v, h = −A−1

11 A12v.

We introduce the linear operators Sr
± = (A22 − A21A

−1
11 A12)−1Q′22(u±). These

are densely defined, and indeed generate bi-semigroups. Our dichotomy results are
summarized in the following theorem.

Theorem 1.2. Assume Hypotheses (H1)-(H4). Then,

(i) The bi-semigroup generated by Sr
± = (A22 − A21A

−1
11 A12)−1Q′22(u±) is expo-

nentially stable on V;
(ii) The linear space H can be decomposed into linear stable, center and unstable

subspaces, H = V⊥ ⊕Hs
± ⊕Hu

± such that

(a) for any u0 ∈ V⊥ the function u(τ) ≡ u0 is a solution of equation Au′ =
Q′(u±)u;

(b) for any u0 ∈ Hs
± the solution of equation Au′ = Q′(u±)u on R+ with

u(0) = u0 decays exponentially at +∞;
(c) for any u0 ∈ Hu

± the solution of equation Au′ = Q′(u±)u on R− with
u(0) = u0 decays exponentially at −∞.

From this point, we turn our attention towards our main goal, the existence of
stable/unstable manifolds of solutions of equation (1.3) near the equilibria u+/u−,
respectively. The first step is to show that this equation can be reduced to an
equation of the form

Γu′ = Eu +D(u,u), (1.5)

where D(·, ·) is a bounded, bilinear map, Γ is a one-to-one, self-adjoint, bounded
linear operator, E is a self-adjoint, bounded, negative definite and the linear oper-

ator Γ−1E generates a stable bi-semigroup {TΓ,E
s/u (τ)}τ≥0 on a Hilbert space X. To

construct the manifolds, we introduce a notion of mild solutions of equation (1.5)
on R± using the results from Theorem 1.2. Next, we apply, formally, the Fourier
transform in (1.5) and then we solve for Fu. In this way we obtain that mild
solutions of equation (1.5) on say R+ satisfy equation

u(τ) = TΓ,E
s (τ)u(0) +

(
KΓ,ED(u,u)

)
(τ), τ ≥ 0. (1.6)

Here KΓ,E is the Fourier multiplier defined by the operator-valued function de-
fined by RΓ,E(ω) = (2πiωΓ − E)−1. The linear operator KΓ,E is well-defined and
bounded on L2(R,X). To construct stable manifolds of evolution equations on
finite-dimensional spaces, one uses a fixed point argument to solve equation (1.6)
on the space C0(R,X), of continuous functions decaying at ±∞, or on L∞(R,X).
However, in our infinite-dimensional case such an argument does not seem to be
possible, since the Fourier multiplier KΓ,E cannot be extended to a bounded linear
operator on L∞(R,X), see Example 3.4. Therefore, a crucial point of our construc-
tion is to find a proper subspace of L∞(R,X) that is invariant under KΓ,E . Since
the operator-valued function RΓ,E is bounded, one can readily check that H1(R,X)
is invariant under KΓ,E . However, equation (1.6) is a functional equation on the
half-line, not the full line. Moreover, since not every trajectory of the operator val-
ued function RΓ,E belongs to L2(R,X), it turns out that the space H1(R+,X) is not
invariant under KΓ,E . To deal with this setback, we parameterize equation (1.6).
In Section 3 we find solutions u such that u(0) = v0 − E−1D(u(0),u(0)) where
v0 is a parameter in a dense subspace. Substituting in equation (1.6), we conclude
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that to construct our stable/unstable manifold it is enough to prove existence of
solutions of equation

u = TΓ,E
s (·)PΓ,E

s v0 + (KΓ,ED(u,u))|R+
− TΓ,E

s (·)PΓ,E
s E−1D(u(0),u(0)), (1.7)

where PΓ,E
s denotes the projection onto the stable subspace XΓ,E

s parallel to the
unstable subspace XΓ,E

u . An important step of our construction is to find an appro-
priate subspace of parameters v0 such that the trajectory TΓ,E

s (·)PΓ,E
s v0 belongs

to H1(R+,X). To achieve this goal, we use that the linear operators Γ and E are
self-adjoint and bounded, hence the bi-semigroup generator Γ−1E is similar to a
multiplication operator by a real valued function bounded from below on some L2

space. See Section 3 for the details of this construction.

Theorem 1.3. Assume Hypotheses (H1)-(H4). Then, for any integer r ≥ 1 there
exists a Cr local stable manifold M +

s near u+ and a Cr local unstable manifold
M−

u near u−, expressible in w± = u − u± as Cr embeddings J +
s and J −

u of

H+
s ∩ dom

(
|Ã−1Q′22(u+)| 12

)
and H−u ∩ dom

(
|Ã−1Q′22(u−)| 12

)
with norms

‖h‖
dom
(
|Ã−1Q′22(u±)|

1
2

) =
(
‖h‖2H +

∥∥|Ã−1Q′22(u±)| 12h
∥∥2

H

) 1
2

into H with the standard norm, that are locally invariant under the forward flow of
equation Au′ = Q(u) and expressible as the union of orbits of all solutions w± ∈
H1(R±,H) such that w± is sufficiently small in H1(R±,H) norm. (Recall that

Ã = A22 −A21A
−1
11 A12).

Finally, we use this result to prove that H1 shock or boundary layer profiles
decay exponentially.

Corollary 1. Assume Hypotheses (H1)-(H4). Let u∗ ∈ H1(R,H) be a solution of
equation Auτ = Q(u), H1-convergent to u± in the sense that u∗−u± ∈ H1(R±,H),

and let −ν± := −ν
(
Ã,Q′22(u±)

)
< 0 be the decay rate of the bi-semigroup generated

by the pair
(
Ã,Q′22(u±)

)
. Then, there exist α ∈ (0,min{ν+, ν−}) such that u∗−u± ∈

H1
α(R±,H). In particular, there exists α > 0 such that ‖u∗(τ) − u±‖ ≤ c(α)e−α|τ |

for any τ ∈ R±.

1.3. Applications to Boltzmann’s equation. As mentioned above, the assump-
tions (H1)-(H4) of Section 1.1 are abstracted from, and satisfied by, the steady
Boltzmann equation with hard sphere collision potential [26], after the change of co-

ordinates f → 〈ξ〉1/2f , Q → 〈ξ〉−1/2Q(〈ξ〉−1/2·), 〈ξ〉 :=
√

1 + |ξ|2, with A equal to
the operator of multiplication by the function ξ1/〈ξ〉. The Hilbert space H is deter-
mined by the slight strengthening of the classical square-root Maxwellian weighted

norm ‖f‖H := ‖〈·〉1/2M−1/2
u+ (·)f(·)‖L2 (used in the construction of the stable mani-

fold near u+), and ‖f‖H := ‖〈·〉1/2M−1/2
u− (·)f(·)‖L2 (used in the construction of the

unstable manifold near u−) [6, 10, 26], where

Mu(ξ) = ρ(4πe/3)−3/2e−|ξ−v|
2(4e/3)−1

denotes the Maxwellian distribution indexed by the hydrodynamic moments,

u = (ρ, vT , e)T ∈ R5

with ρ corresponding to density, v ∈ R3 velocity, and e internal energy. See [6, 10]
for further discussion, and [26] for a detailed treatment of the reduction to form
(1.2) considered here.
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Thus, Theorem 1.3 and Corollary 1 apply in particular to this fundamental case.
More generally, they apply to Boltzmann’s equation with any collision potential, or
“cross-section”, for which (H1)–(H4) are satisfied in the coordinates above, with the
crucial aspects being boundedness of the nonlinear collision operator as a bilinear
map and spectral gap of the linearized collision operator. This includes besides the
hard-sphere potential also the hard cutoff potentials of Grad [5, 26].

For the class of admissible cross-sections defined implicitly by (H1)-(H4), Corol-
lary 1 implies exponential decay of H1

loc Boltzmann shock or boundary layer profiles
of arbitrary amplitude, so long as such profiles (i) exist, (ii) are uniformly bounded,
and (iii) converge to their endstates in the weak sense that u∗−u± lies in H1(R±,H).
This fundamental property, a cornerstone of the dynamical systems approach to sta-
bility developed for viscous shock and relaxation waves, had previously been been
established for kinetic shocks only in the small-amplitude limit [16, 26].

However, we do not here establish existence of large-amplitude profiles; indeed,
the “structure problem,” as discussed by Truesdell, Ruggeri, Boillat, and others
[4], of existence and structure of large-amplitude Boltzmann shocks, is one of the
fundamental open problems in the theory.

1.4. Discussion and open problems. In our analysis, the Hilbert structure of H
and symmetry of A and Q′(u±) play an important role; see (H1)-(H2). This struc-
ture is implied, for example, by existence of a convex entropy for system (1.2) ([7]).
In the case of the Boltzmann equation, it is related to increase of thermodynamical
entropy and the Boltzmann H-Theorem; see [26, Notes on the proof of Proposition
3.5, point 2]. In the finite-dimensional setting, Hypotheses (H1) and (H2) reduce
essentially to the stability and Kawashima conditions of [8] (see (h1)-(h4) of the
reference).

Further insight may be gained using the invertible coordinate transformation
(−E)1/2 and spectral decomposition of (−E)−1/2Γ(−E)−1/2 to write the reduced
system Γu′ = Eu +D(u,u) of (1.5) formally as a family of scalar equations

(αλ∂τ − 1)uλ = Dλ(u,u), (1.8)

indexed by λ, where uλ is the coordinate of u associated with spectrum αλ, real,
in the eigendecomposition of (−E)−1/2Γ(−E)−1/2, with ‖u‖2X =

∫
|uλ|2dµλ, where

dµ(λ) denotes the spectral measure associated with (−E)−1/2Γ(−E)−1/2 and αλ
are bounded with an accumulation point at 0. In the first place, we see directly
that (Γ∂τ − E) is boundedly invertible on L2(R,X), with resolvent kernel given in
uλ coordinates by the scalar resolvent kernel

Rλ(τ, θ) = α−1
λ e(τ−θ)α−1

λ whenever (τ − θ)αλ < 0, (1.9)

which is readily seen to be integrable with respect to τ , hence bounded coordinate-
by-coordinate.

On the other hand, we see at the same time that the operator norm of the full
kernel R with respect to L2(µ) is

‖R(τ, θ)‖L2(µ)→L2(µ) = sup
αλ(τ−θ)<0

|α−1
λ e(τ−θ)α−1

λ | , (1.10)

yielding the upper bound ‖R(τ, θ)‖L2(µ)→L2(µ) . 1/|τ − θ| for all τ 6= θ. When Γ
does not have a bounded inverse, i.e., there exists a sequence αλj → 0 such that
[αλj/2, 2αλj ] has positive spectral measure we obtain also the lower bound

‖R(τ, θ)‖L2(µ)→L2(µ) & 1/|τ − θ| for τ − θ = αj → 0,
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showing that ‖R(τ, θ)‖L2(µ)→L2(µ) is unbounded.
Likewise, a construction as in Example 3.4 shows, when Γ does not have a

bounded inverse, that Γ∂τ −E is not boundedly invertible on L∞(R,X), motivating
our choice of spaces H1(R,X), H1(R+,X) in the analysis, rather than the usual
L∞(R,X). This implies, by contradiction, that the operator norm of the resolvent
kernel is not only unbounded but non-integrable (cf. [42]).

Using the finite-dimensional variation of constants formula scalar mode-by-scalar
mode, we may, further, express (1.8) as the fixed point equation

uλ(τ) = eα
−1
λ τΠSuλ(0) +

∫ τ

0

ΠSα
−1
λ eα

−1
λ (τ−θ)Dλ(u(θ),u(θ)) dθ

−
∫ +∞

τ

ΠUα
−1
λ eα

−1
λ (τ−θ)Dλ(u(θ),u(θ)) dθ, (1.11)

where ΠU and ΠS denote projections onto the stable and unstable subspaces deter-
mined by sgnαλ. In (1.11) and (1.12) below we denote the spectral components of
ΠS/Ug by ΠS/Ugλ for any g ∈ L2(µ), slightly abusing the notation. From (1.11) we
find after a brief calculation/integration by parts the derivative formula

u′λ(τ) = α−1
λ eα

−1
λ τ
(
ΠSuλ(0) +Dλ(u(0),u(0))

)
+

∫ τ

0

ΠSα
−1
λ eα

−1
λ (τ−θ)D′λ(u(θ),u(θ)) dθ

−
∫ +∞

τ

ΠUα
−1
λ eα

−1
λ (τ−θ)D′λ(u(θ),u(θ)) dθ, (1.12)

which shows that u ∈ H1(R+, L
2(µ)) only if α−1

λ eα
−1
λ τΠS

(
uλ(0)+Dλ(u(0),u(0))

)
∈

L2(R+, L
2(µ)), or

ΠS

(
uλ(0) +Dλ(u(0),u(0))

)
∈ dom((−E)−1/2Γ(−E)−1/2)1/2.

This is quite different from the usual finite-dimensional ODE or dynamical systems
scenario, and explains why we need to take some care in setting up the H1(R+,X)
contraction formulation. In particular, we find it necessary to parametrize not by
ΠSu(0) as is customary in the finite-dimensional ODE case, but rather by ΠSv0 :=
ΠS

(
uλ(0) +Dλ(u(0),u(0))

)
where u′λ(0) = α−1

λ v0.

1.4.1. Relation to previous work. The issue of noninvertibility of A for relaxation
systems (1.2) originating from kinetic models and approximations was pointed out
in [19, 20, 40]. This issue has been treated for finite-dimensional systems by Dressler
and Yong [8] using singular perturbation techniques; see also [11, 12, 28]. These
analyses concern the case that A has an eigenvalue at zero, and are of completely
different character from the analysis carried out here of the case that A has essen-
tial spectrum at zero, i.e., an essential singularity; they are thus complementary to
ours. In the present, semilinear setting, the case that A has a kernel is particularly
simple, giving a constraint restricting solutions (under suitable nondegeneracy con-
ditions) to a certain manifold, on which there holds a reduced relaxation system of
standard, nonsingular, type. For Boltzmann’s equation (1.4), Liu and Yu [17] have
investigated existence of invariant manifolds in a weighted L∞(x, ξ) Banach space
setting, using time-regularization and detailed pointwise bounds.

As noted earlier, the treatment of ill-posed equations u′−Su = f , and derivation
of resolvent bounds via generalized exponential dichotomies, has been carried out
in a variety of contexts [1, 2, 29, 33, 34, 35, 36]. The essential difference here is that
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the corresponding resolvent equation Γu′ − Eu = f associated with (1.5) rewrites
formally in the more singular form

u′ − Su = Γ−1f, S = Γ−1E,

for which the singularity Γ−1 enters not only in the generator S but also in the
source. Thus, the solution operator is not the one (∂τ − S)−1 deriving from (gen-
eralized) exponential dichotomies of the homogeneous flow, but the more singular
(Γ∂τ − E)−1 of (1.6), or, formally, the unbounded multiple (∂τ − S)−1Γ−1. This
explains the new features of unboundedness/nonintegrability of (the operator norm
of) the resolvent, alluded to below (1.10).

1.4.2. Open problems. Our H1 analysis suggests a number of interesting open ques-
tions. The first regards smoothing properties of the profile problem. In the finite-
dimensional evolution setting, regularity of solutions is limited only by regularity
of coefficients; here, however, that is not true even at the linear level. Certainly,
for further (e.g., stability) analysis, we require profiles of at least regularity H1,
and likely higher. Our arguments can be modified to construct successively smaller
stable manifolds in Hs(R+,H), any s ≥ 1, but for constructing profiles one would
like to intersect unstable/stable manifolds that are as large as possible, thus in the
weakest possible space. Hence, it is interesting to know, for H1 profiles of (1.1)
defined on the whole line, as opposed to decaying solutions defined on a half line,
is further regularity enforced? For small-amplitude profiles, “Kawashima-type” en-
ergy estimates as in [25, 26] show that the answer is “yes.” A very interesting open
question is whether one can find similar energy estimates in the large-amplitude
case yielding a similar conclusion. For related analysis in the finite-dimensional
case, see [23].

A second question in somewhat opposite direction is “what is the minimal reg-
ularity needed to enforce exponential decay?” Specifically, we have shown that
solutions of (1.3) that are sufficiently small in H1(R+,H) must decay pointwise
at exponential rate; moreover, they lie on our constructed local H1 stable man-
ifold. What about solutions that are merely small in L∞? A very interesting
observation due to Fedja Nazarov [27] based on the indefinite Lyapunov functional
relation 〈u,Au〉′ = 〈u,Q′(u±)u〉 − o(‖u‖2H) yields the L2-exponential decay result

eβ|·|‖u(·)‖ ∈ L2(R+) for some β > 0, hence (by interpolation) in any Lp, 2 ≤ p <∞.
However, it is not clear what happens in the critical norm p =∞; it would be very
interesting to exhibit a counterexample or prove decay.

A glossary of notation. For p ≥ 1, J ⊆ R and X a Banach space, Lp(J,X) are
the usual X-valued Lebesgue spaces on J , associated with Lebesgue measure dτ on
J . Similarly, Lp(J,X;w(τ)dτ) are the weighted spaces with a weight w ≥ 0. The
respective spaces of bounded continuous functions on J are denoted by Cb(J,X) and
Cb(J,X;w(τ)). Hs(R,X), s > 0, is the usual Sobolev space of X valued functions.
In the sequel we also use the notation Hs

α(R,X) = {f : eα|·|f ∈ Hs(R,X)}. The
identity operator on a Banach space X is denoted by I (or by IX if its dependence on
X needs to be stressed). The set of bounded linear operators from a Banach space
X to itself is denoted by B(X). For an operator T on a Hilbert space we use T ∗,
dom(T ), kerT , imT , σ(T ), ρ(T ), R(λ, T ) = (λ−T )−1 and T|Y to denote the adjoint,
domain, kernel, range, spectrum, resolvent set, resolvent operator and the restriction
of T to a subspace Y of X. If B : J → B(X) then MB denotes the operator of
multiplication by B(·) in Lp(J,X) or Cb(J,X). If X1 and X2 are two subspaces of
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X, then X1 ⊕ X2 denotes their direct (but not necessarily orthogonal) sum. The
Fourier transform of a Borel measure µ is defined by (Fµ)(ω) =

∫
R e
−2πixωdµ(x).

2. Stable bi-semigroups and exponential dichotomies of the linearization.
In this section we study the properties of the linearization of equation (1.3) (with
s = 0) at the equilibria u±:

L ± = A∂τ −Q′(u±). (2.1)

We can view the differential expression L ± as a densely defined, closed operator on
L2(R,H) with domain dom(L ±) = {u ∈ L2(R,H) : Au′ ∈ L2(R,H))}. Throughout
this section we assume Hypotheses (H1)-(H4).

It is well-known, see e.g. [13, 14], that the invertibility of L ± on L2(R,H) is
equivalent to the exponential dichotomy on H of equation

Au′ = Q′(u±)u. (2.2)

Remark 1. Under assumptions (H1) and (H2), the linear operator L ± is not
invertible on L2(R,H). Indeed, one can readily check that the linear operator
L ± is invertible on L2(R,H) with bounded inverse if and only if the operator

of multiplication by the continuous, operator valued function L̂ ±(ω) = 2πiωA −
Q′(u±) is invertible on L2(R,H) with bounded inverse. From the later we can infer
that Q′(u±) is invertible on H, which contradicts Hypothesis (H2).

We note that for any u0 ∈ V⊥ the constant function u(τ) = u0 is a solution
of equation (2.2). Hence, (2.2) cannot exhibit an exponential dichotomy on the
entire space H. In this section we prove that equations (2.2) exhibit an exponential
dichotomy on a direct complement of the finite dimensional space V⊥. Using the
decomposition

A =

[
A11 A12

A21 A22

]
: V⊥⊕V→ V⊥⊕V, Q′(u±) =

[
0 0
0 Q′22(u±)

]
: V⊥⊕V→ V⊥⊕V

(2.3)
and denoting by v = PVu and h = PV⊥u, one can readily check that equation (2.2)
is equivalent to the system{

A11h
′ +A12v

′ = 0,
A21h

′ +A22v
′ = Q′22(u±)v.

(2.4)

We note that Hypothesis (H4) holds if and only if the linear operator A11 is invertible
on V⊥. Integrating the first equation, we obtain that solutions u = (h, v) of (2.4)
that decay to 0 at ±∞, satisfy the conditions{

h = −A−1
11 A12v,

A21h
′ +A22v

′ = Q′22(u±)v.
(2.5)

To prove that equation (2.2) has an exponential dichotomy on a complement of V⊥
it is enough to show that equation

(A22 −A21A
−1
11 A12)v′ = Q′22(u±)v (2.6)

is equivalent to an equation of the form u′ = Su, where the linear operator S
generates a stable bi-semigroup on V. We recall that a linear operator generates a
bi-semigroup on a Banach or Hilbert space X, if there exist two closed subspaces Xj ,
j = 1, 2, of X, invariant under S, such that X = X1⊕X2 and S|X1

and−S|X2
generate

C0-semigroups on Xj , j = 1, 2. We say that the bi-semigroup is exponentially stable
if the two semigroups are exponentially stable. In the following lemma we collect
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some of the properties of the operator valued coefficients of the reduced equation
(2.6).

Lemma 2.1. Assume Hypotheses (H1)-(H4). Then,

(i) The linear operator Ã = A22 −A21A
−1
11 A12 is self-adjoint and one-to-one;

(ii) The linear operator Q′22(u±) is invertible with bounded inverse on V.

Proof. (i) Since the linear operator A is self-adjoint, from decomposition (2.3),

we obtain that A∗11 = A11, A∗22 = A22 and A∗12 = A21, which implies that Ã is

self-adjoint. To show that Ã is one-to-one, we consider v ∈ ker Ã and denote by
h = −A−1

11 A12v ∈ V⊥. Using again the decomposition (2.3), one can readily check
that A(h + v) = 0. From Hypothesis (H3) we infer that h = −v. Since v ∈ V
and h ∈ V⊥ we conclude that v = 0, proving (i). Since Q′22(u±) is self-adjoint and
Q′22(u±) ≤ −δ±IV by Hypothesis (H2), assertion (ii) follows shortly.

Next, we note that equation (2.6) is of the form:

Γu′ = Eu, (2.7)

where the linear operators Γ and E satisfy the following Hypothesis (S) below. In
what follows we treat equation (2.7) which is more general than (2.6). In particular,
we will show our bi-semigroup result without assuming that the linear operator Γ is
obtained from the linear A satisfying Hypotheses (H1)–(H4) by the row-reduction
method. Our goal is to prove that equation (2.7) is equivalent to an equation of the
form u′ = SΓ,Eu, where the linear operator SΓ,E generates a exponentially stable
bi-semigroup.

Hypothesis (S) We assume that X is a Hilbert space and the bounded linear
operators Γ, E ∈ B(X) satisfy the following conditions:

(i) Γ is self-adjoint and one-to-one;
(ii) The linear operator E is self-adjoint and E ≤ −δIX, for some δ > 0.

Since the linear operators Γ and E are bounded, one can readily check that the
linear operator

SΓ,E = Γ−1E : dom(SΓ,E) = {u ∈ X : Eu ∈ imΓ} → X, (2.8)

is closed on X. In the next lemma we prove that SΓ,E is hyperbolic and the basic
estimates satisfied by the norm of the resolvent operators. To formulate the lemma,
we introduce the operator valued function LΓ,E : R→ B(X) defined by LΓ,E(ω) =
2πiωΓ− E.

Lemma 2.2. Assume Hypothesis (S). Then,

(i) The linear operator LΓ,E(ω) = 2πiωΓ− E is invertible on X for any ω ∈ R;
(ii) supω∈R ‖LΓ,E(ω)−1‖ <∞;

(iii) iR ⊆ ρ(SΓ,E) and R(2πiω, SΓ,E) = (2πiω − SΓ,E)−1 =
(
LΓ,E(ω)

)−1
Γ for all

ω ∈ R;
(iv) There exists c > 0 such that ‖R(2πiω, SΓ,E)‖ ≤ c

1+|ω| for all ω ∈ R.

Proof. To prove (i) and (ii), we note that since Γ and E are self-adjoint operators
we have that ReLΓ,E(ω) = −E for any ω ∈ R. We obtain that

Re〈LΓ,E(ω)x,x〉 = −〈Ex,x〉 ≥ δ‖x‖2 for any ω ∈ R,x ∈ X, (2.9)

which implies that

‖LΓ,E(ω)x‖ ≥ δ‖x‖ for any ω ∈ R,x ∈ X. (2.10)
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It follows that LΓ,E(ω) is one-to-one and imLΓ,E(ω) is closed in X for any ω ∈ R.
Moreover, from (2.9) we infer that ker LΓ,E(ω)∗ = {0} for any ω ∈ R, proving (i).
Assertion (ii) is a consequence of (2.10).

Assertion (iii) follows from (i) and the definition of SΓ,E in (2.8). Indeed, since

ΓSΓ,Eu = Eu for any u ∈ dom(SΓ,E) one readily checks that
(
LΓ,E(ω)

)−1
Γ(2πiω−

SΓ,E)u = u for any u ∈ dom(SΓ,E). Moreover, since the linear operators Γ and
E are bounded, we have that E(2πiωΓ − E)−1 = 2πiωΓ(2πiωΓ − E)−1 − I, which
implies that

E
(
LΓ,E(ω)

)−1
Γu = E(2πiωΓ− E)−1Γu = 2πiωΓ(2πiωΓ− E)−1Γu− Γu ∈ imΓ

(2.11)

for any u ∈ X. It follows that
(
LΓ,E(ω)

)−1
Γu ∈ dom(SΓ,E) and

SΓ,E(LΓ,E(ω)
)−1

Γu = 2πiω(2πiωΓ− E)−1Γu− u

for any u ∈ X, proving (iii).

Proof of (iv). Using the same argument used to prove the resolvent equation, one
can show that

(2πiω1Γ−E)−1 − (2πiω2Γ−E)−1 = 2πi(ω2 − ω1)(2πiω1Γ−E)−1Γ(2πiω2Γ−E)−1

(2.12)
for any ω1, ω2 ∈ R. Setting ω1 = ω, ω2 = 0 and multiplying the equation by E from
the right we obtain that

(2πiωΓ− E)−1E + I = 2πiω(2πiωΓ− E)−1Γ = 2πiωR(2πiω, SΓ,E) (2.13)

for any ω ∈ R. Assertion (iv) follows readily from (ii) and (2.13).

Next, we prove that the linear operator SΓ,E generates a bi-semigroup by making
use of the structure of the linear operators Γ and E, especially the fact that these
operators are self-adjoint.

Lemma 2.3. Assume Hypothesis (S). Then, the linear operator SΓ,E is similar to
an operator of multiplication by some real-valued, measurable function HΓ,E : Λ→
R, such that |HΓ,E | is bounded from below, on L2(Λ, µ), where (Λ, µ) is some mea-
sure space. Therefore, SΓ,E generates an exponentially stable bi-semigroup, having
the representation:

XΓ,E
s = U−1

Γ,EL
2(Λ−, µ), XΓ,E

u = U−1
Γ,EL

2(Λ+, µ); (2.14)

TΓ,E
s/u (τ) = U−1

Γ,E T̃
Γ,E
s/u (τ)UΓ,E

∣∣XΓ,E
s/u

, for any τ ≥ 0. (2.15)

Here UΓ,E ∈ B(X, L2(Λ, µ)) is invertible with bounded inverse, Λ± := {λ ∈ Λ :

±HΓ,E(λ) > 0} and the C0-semigroups {T̃Γ,E
s/u (τ)}τ≥0 are defined by(

T̃Γ,E
s (τ)f̃

)
(λ) = eτHΓ,E(λ)f̃(λ), τ ≥ 0, λ ∈ Λ−, f̃ ∈ L2(Λ−, µ);(

T̃Γ,E
u (τ)f̃

)
(λ) = e−τHΓ,E(λ)f̃(λ), τ ≥ 0, λ ∈ Λ+, f̃ ∈ L2(Λ+, µ). (2.16)

Proof. Since the linear operator E is bounded, self-adjoint, invertible and negative-

definite, we have that Ẽ = (−E)
1
2 is a bounded, self-adjoint, invertible linear oper-

ator on X. One can readily check that

ẼSΓ,EẼ
−1 = ẼΓ−1EẼ−1 = −ẼΓ−1Ẽ. (2.17)
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Since the linear operator Γ and Ẽ are self-adjoint, we obtain that the linear operator

ẼSΓ,EẼ
−1 is self-adjoint. It follows that the linear operator ẼSΓ,EẼ

−1 is unitarily
equivalent to an operator of multiplication on some L2 space. Therefore, there
exists a measure space (Λ, µ), a real-valued, measurable function HΓ,E : Λ→ R and

a unitary, bounded, linear operator VΓ,E : X → L2(Λ, µ) such that ẼSΓ,EẼ
−1 =

V −1
Γ,EMHΓ,E

VΓ,E . It follows that

SΓ,E = U−1
Γ,EMHΓ,E

UΓ,E , where UΓ,E = VΓ,EẼ ∈ B(X, L2(Λ, µ)). (2.18)

Since VΓ,E is a unitary operator and Ẽ is invertible, we immediately infer that UΓ,E

is bounded with bounded inverse.
Next, we prove that the function |HΓ,E | is bounded from below. From (2.18) and

Lemma 2.2(iii) we conclude that

iR ⊆ ρ(SΓ,E) = ρ(MHΓ,E
) and R(2πiω, SΓ,E) = U−1

Γ,ER(2πiω,MHΓ,E
)UΓ,E

(2.19)
for any ω ∈ R. From (2.19) and Lemma 2.2(iv) we obtain that

esssupλ∈Λ

1

|2πiω −HΓ,E(λ)|
= ‖R(2πiω,MHΓ,E

)‖ ≤ c

1 + |ω|
for all ω ∈ R,

(2.20)
which implies that there exists ν = ν(Γ, E) > 0 such that

|HΓ,E(λ)| ≥ ν for µ almost all λ ∈ Λ. (2.21)

The representation (2.18) holds true when we modify the function HΓ,E on a set
of µ-measure 0, therefore we can assume from now on that the inequality (2.21) is
true for any λ ∈ Λ.

From (2.18) we can immediately infer that SΓ,E generates a bi-semigroup. Defin-
ing Λ± := {λ ∈ Λ : ±HΓ,E(λ) > 0}, from (2.21) we immediately conclude that

Λ± := {λ ∈ Λ : ±HΓ,E(λ) ≥ ν}, Λ = Λ+ ∪ Λ−, Λ+ ∩ Λ− = ∅. (2.22)

It follows that L2(Λ, µ) = L2(Λ+, µ) ⊕ L2(Λ−, µ). One can readily check that
M±χΛ∓HΓ,E

, the operators of multiplication by the functions ±χΛ∓HΓ,E generate

two C0-semigroups on L2(Λ±, µ) given by (2.16). Here χΛ∓ denotes the character-
istic function of the set Λ±. Assertions (2.14) and (2.15) are direct consequence
of representation (2.18). Finally, from (2.16) and (2.21) we conclude that the C0

semigroups {T̃Γ,E
s/u (τ)}τ≥0, and thus {TΓ,E

s/u (τ)}τ≥0, are exponentially stable.

We note that the main idea used to obtain the representation (2.18) is based
on the unitary equivalence of self-adjoint operators to multiplication operators,
which is spectral in nature. Thus, it is natural to refer to functions in L2(Λ, µ)
as spectral components of the generator SΓ,E . In the next lemma we give a spec-
tral representation of the operator valued function RΓ,E : R → B(X) defined by
RΓ,E(ω) = (2πiωΓ− E)−1.

Lemma 2.4. Assume Hypothesis (S). Then,

(i) The linear operators UΓ,E and E satisfy the identity

UΓ,EE
−1U∗Γ,E = −IdL2(Λ,µ); (2.23)

(ii) The operator-valued function RΓ,E has the following representation

RΓ,E(ω) = E−1S∗Γ,ER(2πiω, S∗Γ,E) = E−1U∗Γ,ER̃Γ,E(ω)(U∗Γ,E)−1 (2.24)
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for any ω ∈ R, where R̃Γ,E : R→ B(L2(Λ, µ)) is given by(
R̃Γ,E(ω)f̃

)
(λ) =

HΓ,E(λ)

2πiω −HΓ,E(λ)
f̃(λ), ω ∈ R, λ ∈ Λ, f̃ ∈ L2(Λ, µ). (2.25)

Proof. (i) Since the linear operator VΓ,E ∈ B(X, L2(Λ, µ)) is unitary, Ẽ2 = −E and

UΓ,E = VΓ,EẼ one can readily check that

UΓ,EE
−1U∗Γ,E = VΓ,EẼE

−1(VΓ,EẼ)∗ = −(VΓ,EẼ
−1)ẼV ∗Γ,E = −VΓ,EV

−1
Γ,E

= −IdL2(Λ,µ). (2.26)

Proof of (ii). From Lemma 2.2(iii), the definition of the linear operator SΓ,E in
(2.8) and Hypothesis(S)(i)-(ii) we obtain that R(2πiω, S∗Γ,E) = (2πiω − S∗Γ,E)−1 =

ΓRΓ,E(ω) for any ω ∈ R, which implies that

S∗Γ,E(2πiω − S∗Γ,E)−1 = S∗Γ,EΓRΓ,E(ω) = ERΓ,E(ω) for any ω ∈ R. (2.27)

Moreover, from (2.18) we infer that

S∗Γ,E(2πiω − S∗Γ,E)−1 = U∗Γ,EMHΓ,E
(2πiω −MHΓ,E

)−1(U∗Γ,E)−1

= U∗Γ,ER̃Γ,E(ω)(U∗Γ,E)−1 (2.28)

for any ω ∈ R. Since E is invertible by Hypothesis (S) (ii), assertion (2.24) follows
from (2.26), (2.27) and (2.28).

To conclude this section, we use Lemma 2.3 to prove Theorem 1.2. We recall the
definition of the linear operators

Sr
± = Ã−1Q′22(u±). (2.29)

Proof of Theorem 1.2. From Lemma 2.1 we have that the linear operators Ã =
A22−A21A

−1
11 A12 and Q′22(u±) satisfy Hypothesis (S). Assertion (i) follows directly

from Lemma 2.3. Since equation (2.2) is equivalent to the system (2.5), we infer that
assertion (ii) follows readily from (i). Moreover, if we denote the stable/unstable

spaces of equation (2.6) by Vs/u
± , then the stable/unstable subspaces of equation

(2.2) are given by the formula

Hs/u
± =

{
(h, v) ∈ V⊥ ⊕ V : h = −A−1

11 A12v, v ∈ Vs/u
±
}
. (2.30)

One can readily check that H = V⊥ ⊕Hs
± ⊕Hu

±, proving the theorem.

3. Solutions of general steady relaxation systems. In this section we analyze
the qualitative properties of solutions of the steady equation

Auτ = Q(u) (3.1)

in H satisfying limτ→±∞ u(τ) = u± and its linearization along u±. In particular,
we are interested in describing the smoothness properties of these solutions. Also,
it is interesting to consider all of these equations on R±, respectively. Making the
change of variable w±(τ) = u(τ)− u± in (3.1) we obtain the equations

Aw±τ (τ) = 2B(u±, w±(τ)) +Q(w±(τ)). (3.2)

Here, we recall that Q(u) = B(u, u) is bilinear, symmetric, continuous on H.
Moreover, since the range of the bilinear map B is contained in V, denoting by
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h± = PV⊥w
± and v± = PVw

±, we obtain that equation (3.2) is equivalent to the
system{

A11h
±
τ (τ) +A12v

±
τ (τ) = 0,

A21h
±
τ (τ) +A22v

±
τ (τ) = Q′22(u±)v±(τ) +Q(h±(τ) + v±(τ)).

(3.3)

Integrating the first equation and using that limτ→±∞ w±(τ) = 0, we obtain that
solutions w± = (h±, v±) of (3.3) satisfy the condition h± = −A−1

11 A12v
±. Plug-

ging in the second equation of (3.3) we obtain that to prove the existence of a
stable/unstable manifold around the equilibria u+/u−, respectively, it is enough to
prove the existence of a stable/unstable manifold around equilibria PVu

+/PVu
−,

respectively, of equation

(A22 −A21A
−1
11 A12)v±τ (τ) = Q′22(u±)v±(τ) +Q

(
v±(τ)−A−1

11 A12v
±(τ)

)
. (3.4)

We note that it is especially important to study the solutions of equations (3.3) and
(3.4) close to ±∞, therefore we focus our attention on their solutions on R±, rather
than the entire line. To study these equations we use the properties of exponentially
stable bi-semigroups. We recall that if a linear operator S generates an exponentially
stable bi-semigroup, then the linear operator −S generates an exponentially stable
bi-semigroup as well. Making the change of variables τ → −τ in (3.4), we obtain
an equation that can be handled in the same way as the original equation, as shown
in [14, Section 4]. Therefore, to understand the limiting properties of solutions of
equations (3.4) at ±∞, we need to understand the limiting properties of solutions
of equations of the form

Γuτ (τ) = Eu(τ) +D(u(τ),u(τ)), τ ∈ R+. (3.5)

Here the pair of bounded linear operators (Γ, E) on a Hilbert space X satisfies
Hypothesis (S) and D : X× X→ X is a bounded, bilinear map.

In what follows the stable/unstable subspaces of X invariant under Γ−1E are

denoted by XΓ,E
s/u and the exponentially stable bi-semigroup generated by SΓ,E =

Γ−1E on X is denoted by {TΓ,E
s/u (τ)}τ≥0. Next, we introduce

ν(Γ, E) = essinfλ∈Λ|HΓ,E(λ)|. (3.6)

From (2.15), (2.16) and (3.6) it follows that there exists c(Γ, E) > 0 such that

‖TΓ,E
s/u (τ)‖ ≤ c(Γ, E)e−ν(Γ,E)τ for any τ ≥ 0. (3.7)

In addition, we denote by PΓ,E
s/u the projections onto XΓ,E

s/u parallel to XΓ,E
u/s , associ-

ated to the decomposition X = XΓ,E
s ⊕XΓ,E

u (direct sum, not necessarily orthogonal).
From (2.12) and the definition of the function RΓ,E we have that

RΓ,E(ω1)−RΓ,E(ω2) = 2πi(ω2 − ω1)RΓ,E(ω1)ΓRΓ,E(ω2) for all ω1, ω2 ∈ R.
(3.8)

A first step towards understanding equation (3.5) is to study the perturbed equation

Γuτ (τ) = Eu(τ) + f(τ), τ ∈ R+, (3.9)

for some function f ∈ L1
loc(R+,X) or f ∈ L2

loc(R+,X). For a function g defined on
a proper subset of R we keep the same notation g to denote its extension to R by 0.

Definition 3.1. We say that

(i) The function u : [τ0, τ1] → X is a smooth solution of (3.9) on [τ0, τ1] if u ∈
H1([τ0, τ1],X) satisfies (3.9);
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(ii) The function u : [τ0, τ1]→ X is a mild solution of (3.9) on [τ0, τ1] if it is square
integrable on [τ0, τ1] and satisfies

û(ω) = R(2πiω, SΓ,E)
(
e−2πiωτ0u(τ0)− e−2πiωτ1u(τ1)

)
+RΓ,E(ω)f̂|[τ0,τ1](ω) (3.10)

for almost all ω ∈ R;
(iii) The function u : R+ → X is a mild solution of (3.9) on R+ if u is a mild

solution of (3.9) on [0, τ1] for any τ1 > 0.

Our definition of mild solutions follows [14, Section 2], where it is shown that
the frequency domain reformulation given in (3.10) is much easier to handle than
the classical approach where one defines the mild solution by simply integrating
equation (3.9). We note that by taking Fourier transform in (3.9) and integrating
by parts, it is easy to verify that smooth solutions of equation are also mild solutions.

Remark 2. Denoting by GΓ,E : R→ B(X) the Green function defined by

GΓ,E(τ) =

{
TΓ,E

s (τ)PΓ,E
s if τ ≥ 0

−TΓ,E
u (−τ)PΓ,E

u if τ < 0
, (3.11)

we have that (i) there exists a constant c(Γ, E) such that ‖GΓ,E(τ)‖ ≤ ce−ν(Γ,E)|τ |

for any τ ∈ R, and (ii) FGΓ,E(·)x = R(2πi·, SΓ,E)x for any x ∈ X.

Next, we define the linear operator KΓ,E : L2(R,X) → L2(R,X) by KΓ,Ef =
F−1MRΓ,E

Ff . Here we recall that MRΓ,E
denotes the multiplication operator on

L2(R,X) by the operator valued function RΓ,E . From Lemma 2.2(ii) we have that
supω∈R ‖RΓ,E(ω)‖ < ∞, which proves that KΓ,E is well defined and bounded on
L2(R,X).

To prove our results we need to understand the properties of the Fourier multi-
plier defined by KΓ,E . Our first goal in this section is to show that the definition we
use for mild solutions of equation (3.9) can be seen as an extension of the classical
variation of constants formula. To prove such a result we need to understand some
of the smoothing properties of KΓ,E .

Lemma 3.2. Assume Hypothesis (S). Then, Γ(KΓ,Ef)(·) ∈ C0(R,X) for any f ∈
L2(R,X).

Proof. Let f ∈ L2(R,X) and g = KΓ,Ef . To prove the lemma we note that it is

enough to show that Γ̂g ∈ L1(R,X). Using the definition of KΓ,E we have that

Γ̂g(ω) = Γĝ(ω) = ΓK̂Γ,Ef(ω) = ΓRΓ,E(ω)f̂(ω) for all ω ∈ R. (3.12)

From Lemma 2.2 and the definition of SΓ,E in (2.8) and its associated bi-semigroup,
we have that

‖ΓRΓ,E(ω)‖ = ‖RΓ,E(ω)∗Γ∗‖ = ‖RΓ,E(−ω)Γ‖ = ‖R(−2πiω, SΓ,E)‖ ≤ c

1 + |ω|
(3.13)

for all ω ∈ R. From (3.12) and (3.13) we conclude that Γ̂g ∈ L1(R,X), proving the
lemma.

Now, we are ready to prove that (3.10) is a generalization of the variation of
constants formula.
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Lemma 3.3. Assume Hypothesis (S) and let f ∈ L2(R+,X). Then, u : R+ → X
is a mild solution of (3.9) on R+, square integrable on R+ and Γu ∈ C0(R+,X) if
and only if

u(τ) = TΓ,E
s (τ)PΓ,E

s u(0) + (KΓ,Ef)(τ) for all τ ≥ 0; (3.14)

Proof. First, we prove that any mild solution u of (3.9) on R+ which is square
integrable on R+ satisfies equation (3.14), provided Γu ∈ C0(R+,X). Since χ[0,τ1] →
χ[0,∞) simple as τ1 → ∞, from the Lebesgue dominated Convergence theorem we

obtain that uχ[0,τ1] → u and fχ[0,τ1] → f in L2(R+,X) ↪→ L2(R,X) as τ1 → ∞.

Since the linear operators F and KΓ,E are continuous on L2(R,X) we conclude
that

F
(
uχ[0,τ1] −KΓ,E(fχ[0,τ1])

)
→ F (u−KΓ,Ef) in L2(R,X) as τ1 →∞. (3.15)

Moreover, since u is a solution of (3.9) on [0, τ1] for all τ1 > 0 we have that

F
(
uχ[0,τ1] −KΓ,E(fχ[0,τ1])

)
(ω) = RΓ,E(ω)

(
Γu(0)− e−2πiωτ1Γu(τ1)

)
(3.16)

for all ω ∈ R. Since Γu ∈ C0(R+,X) from (3.16) it follows that

F
(
uχ[0,τ1] −KΓ,E(fχ[0,τ1])

)
(ω)→ RΓ,E(ω)Γu(0) as τ1 →∞, for all ω ∈ R.

(3.17)
From (3.15) and (3.17) we infer that

F (u−KΓ,Ef)(ω) = RΓ,E(ω)Γu(0) = R(2πiω, SΓ,E)u(0)

for almost all ω ∈ R. Taking inverse Fourier transform, from Remark 2(ii) we obtain
that

u(τ) = TΓ,E
s (τ)PΓ,E

s u(0) + (KΓ,Ef)(τ) for almost all τ ≥ 0. (3.18)

Next, we prove that equality (3.18) holds true for any τ ≥ 0. Indeed, multiplying the
equation by Γ from the left, we obtain that Γu = ΓTΓ,E

s (·)PΓ,E
s u(0) + Γ(KΓ,Ef)(·)

almost everywhere on R+. Since Γu is continuous on R+, {TΓ,E
s (τ)}τ≥0 is a strongly

continuous semigroup, and from Lemma 3.2 we have that Γ(KΓ,E)(·) is continuous,
we infer that the equality Γu = ΓTΓ,E

s (·)PΓ,E
s u(0) + Γ(KΓ,Ef)(·) holds everywhere

on R+. Since Γ is one-to-one on X, by Hypothesis (S)(i), it follows that equation
(3.14) holds true.

To finish the proof of lemma, we prove that under the assumption that f ∈
L2(R+,X), any function u : R+ → X satisfying equation (3.14) is square integrable
on R+, Γu ∈ C0(R+,X) and is a mild solution of (3.9) on [0, τ1] for any τ1 >
0. Indeed, since {TΓ,E

s (τ)}τ≥0 is an exponentially stable C0-semigroup on X and
KΓ,E is well-defined and bounded on L2(R,X), one can readily check that u is
square integrable on R+. Moreover, from Lemma 3.2 and (3.14) we conclude that
Γu ∈ C0(R+,X).

Let ϕ ∈ C∞0 (R) be a smooth, scalar function with compact support. Using the
elementary properties of the Fourier transform and convolution, from (3.8) and
(3.14) we obtain that

ϕ̂u(ω)−RΓ,E(ω)ϕ̂′Γu(ω) = (ϕ̂ ∗ û)(ω)−RΓ,E(ω)(ϕ̂′ ∗ Γ̂u)(ω)

=

∫
R
ϕ̂(ω − θ)û(θ)dθ −RΓ,E(ω)

∫
R

2πi(ω − θ)ϕ̂(ω − θ)Γû(θ)dθ
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=

∫
R
ϕ̂(ω − θ)

(
I − 2πi(ω − θ)RΓ,E(ω)Γ

)
û(θ)dθ

=

∫
R
ϕ̂(ω − θ)

(
I − 2πi(ω − θ)RΓ,E(ω)Γ

)
RΓ,E(θ)

(
Γu(0) + f̂(θ)

)
dθ

=

∫
R
ϕ̂(ω − θ)

(
RΓ,E(θ)− 2πi(ω − θ)RΓ,E(ω)ΓRΓ,E(θ)

)(
Γu(0) + f̂(θ)

)
dθ

= RΓ,E(ω)
(∫

R
ϕ̂(ω − θ)dθ

)
Γu(0) +RΓ,E(ω)

∫
R
ϕ̂(ω − θ)f̂(θ)dθ

= ϕ(0)RΓ,E(ω)Γu(0) +RΓ,E(ω)ϕ̂f(ω) for any ω ∈ R. (3.19)

Fix τ1 > 0 and let {ϕn}n≥1 be a sequence of functions in C∞0 (R) with the following
properties: 0 ≤ ϕn ≤ 1, ‖ϕ′n‖∞ ≤ cn, ϕn(τ) = 1 for any τ ∈ [0, τ1 − 1/n] and
ϕn(τ) = 0 for any τ /∈ (−1/n, τ1). Since the function u is defined on R+ and is
extended to R by 0, we conclude that

ϕ̂′nΓu(ω) + e−2πiτ1ωΓu(τ1) =

∫
R+

e−2πiτωϕ′n(τ)Γu(τ)dτ + e−2πiτ1ωΓu(τ1)

=

∫ τ1

τ1−1/n

ϕ′n(τ)
(
e−2πiτωΓu(τ)− e−2πiτ1ωΓu(τ1)

)
dτ

(3.20)

for any n ≥ 1 and ω ∈ R. Hence, the following estimate holds

‖ϕ̂′nΓu(ω) + e−2πiτ1ωΓu(τ1)‖ ≤ nc
∫ τ1

τ1−1/n

∥∥e−2πiτωΓu(τ)− e−2πiτ1ωΓu(τ1)
∥∥dτ

(3.21)
for any n ≥ 1 and ω ∈ R. Since Γu is continuous on R+, from (3.21) we infer

that ϕ̂′nΓu(ω) → −e−2πiτ1ωΓu(τ1) as n → ∞ for any ω ∈ R. Since ϕn → χ[0,τ1)

pointwise as n → ∞ and 0 ≤ ϕn ≤ 1, for any n ≥ 1, from the Lebesgue Domi-
nated Convergence Theorem we obtain that ϕnu→ χ[0,τ1]u and ϕnf → χ[0,τ1]f in

L2(R+,X) ↪→ L2(R,X) as n → ∞. Passing to the limit in (3.19) with ϕ = ϕn we
infer that

χ̂[0,τ1]u(ω) + e−2πiτ1ωRΓ,E(ω)Γu(τ1) = RΓ,E(ω)Γu(0) +RΓ,E(ω)χ̂[0,τ1]f(ω) (3.22)

for any ω ∈ R, which implies that (3.9) holds, proving the lemma.

To better understand the solutions of equation (3.5) we need to further study
the Fourier multiplier KΓ,E : in particular we are interested in finding suitable
subspaces of L2(R,X) that are invariant under KΓ,E . We note that the operator-
valued function RΓ,E is differentiable, and from Lemma 2.2(ii) we have that

sup
ω∈R
‖RΓ,E(ω)‖ <∞, sup

ω∈R
|ω|‖R′Γ,E(ω)‖ <∞. (3.23)

From the Mikhlin-Hormander multiplier theorem we conclude that the Fourier mul-
tiplier KΓ,E is well-defined and bounded on Lp(R, X) for any p ∈ (1,∞). In the
case of first-order differential equations on finite dimensional spaces one proves the
existence of the stable manifold by using a fixed point argument on L∞(R+,X) or
C0(R+,X). In the example below, we prove that the Fourier multiplier KΓ,E is not
a bounded, linear operator on L∞(R+,X). Therefore, to prove the existence result
of a stable manifold of solutions of equation (3.1), we need to find a proper subspace
of L∞(R+,X) invariant under KΓ,E .
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Example 3.4. Let X = `2, Γ : `2 → `2 defined by Γx = (− 1
enxn)n≥1 for any

x = (xn)n≥1 ∈ `2, E = −Id`2 . Then, one can readily check that the pair (Γ, E)
satisfies Hypothesis (S). Moreover, the Fourier multiplier KΓ,E = F−1MRΓ,E

F
does not map L2(R+, `

2) ∩ L∞(R+, `
2) into L∞(R+, `

2).
Indeed, we have that

RΓ,E(ω)x = (
en

en − 2πiω
xn)n≥1 = (F̂n(ω)xn)n≥1 (3.24)

for any ω ∈ R and x = (xn)n≥1 ∈ `2. Here, the sequence of functions Fn : R → R
is defined by

Fn(τ) =

{
0 if τ ≥ 0
enee

nτ if τ < 0
. (3.25)

It follows that the following representation holds true:

(KΓ,Ef)(τ) =
(

(Fn ∗ fn)(τ)
)
n≥1

for any f = (fn)n≥1 ∈ L2(R+, `
2) ∩ L∞(R+, `

2)

(3.26)
and τ ∈ R. Let g : R+ → `2 be defined by g(τ) = (gn(τ))n≥1, where gn =
χ[e−(n+1),e−n), n ≥ 1. Here we recall that χJ denotes the characteristic function of
the set J ⊆ R. We compute

‖g(τ)‖2`2 =
∞∑
n=1

χ2
[e−(n+1),e−n)(τ) =

∞∑
n=1

χ[e−(n+1),e−n)(τ) = χ(0,e−1)(τ) (3.27)

for any τ ≥ 0. We conclude that g ∈ L2(R+, `
2) ∩ L∞(R+, `

2). Moreover, from
(3.25), we obtain that

(Fn ∗ gn)(τ) =

∫
R
Fn(τ − s)gn(s)ds =

∫ e−n

e−(n+1)

enee
n(τ−s)ds = ee

nτ (e−1 − e−e)

(3.28)
for any τ ∈ [0, e−(n+1)) and n ≥ 1. Therefore, for any m ∈ N and any τ ∈
[0, e−(m+1)] we have that

‖(KΓ,Eg)(τ)‖2`2 =
∞∑
n=1

|(Fn ∗ gn)(τ)|2 ≥
m∑
n=1

e2enτ (e−1 − e−e)2 ≥ m(e−1 − e−e)2.

(3.29)
Assume for a contradiction that KΓ,Eg ∈ L∞(R+, `

2). From (3.29) we infer that
‖KΓ,Eg‖∞ ≥

√
m(e−1 − e−e) for any m ∈ N, which is a contradiction.

Next, we study if the Sobolev space H1(R+,X) is invariant under KΓ,E . First,
we note that g ∈ H1(R+,X) if and only if g ∈ L2(R+,X) and the function ω →
2πiωĝ(ω)− g(0) belongs to L2(R,X). Here, we recall that if a function g is defined
on a proper subset of R, we use the same notation to denote its extension by 0 to the
whole line. Using Lemma 2.2(ii) we can show that the space H1(R,X) is invariant
under KΓ,E . However, by using the same argument, we can check that H1(R+,X) is

not invariant under KΓ,E since RΓ,E(·)x /∈ L2(R,X) for any x ∈ X\dom(|SΓ,E |1/2).
Our goal is to prove the existence of an H1 stable manifold by using a fixed point
argument on equation (3.14) for f = D(u,u). Since H1(R+,X) is not invariant
under KΓ,E , we need to rearrange the equation first by adding a correction term to
KΓ,E . We parameterize equation (3.14) as follows: we look for solutions u satisfying
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u(0) = v0 − E−1f(0) for some v0 to be chosen later. Therefore, equation (3.14) is
equivalent to

u = TΓ,E
s (·)PΓ,E

s v0 + (KΓ,Ef)|R+
− TΓ,E

s (·)PΓ,E
s E−1f(0). (3.30)

For any f ∈ H1(R+,X) we define the function

K mod
Γ,E f := (KΓ,Ef)|R+

− TΓ,E
s (·)PΓ,E

s E−1f(0).

Clearly, K mod
Γ,E is a linear operator from H1(R+,X) to L2(R+,X). In what follows we

prove that K mod
Γ,E f ∈ H1(R+,X) for any f ∈ H1(R+,X) and compute its derivative.

Lemma 3.5. Assume Hypothesis (S). Then, K mod
Γ,E f ∈ H1(R+,X) for any f ∈

H1(R+,X) and (K mod
Γ,E f)′ = (KΓ,Ef

′)|R+
. Moreover, there exists c(Γ, E) > 0 such

that
‖K mod

Γ,E f‖H1(R+,X) ≤ c(Γ, E)‖f‖H1(R+,X). (3.31)

Proof. To prove our general result, we prove it for functions in a dense subset of
H1(R+,X). We introduce the subspace H 1

Γ = {f : R+ → X : there exists g ∈
H1(R+,X) such that f(τ) = Γg(τ) for any τ ≥ 0}. Since Γ ∈ B(X) is one-to-one
and self-adjoint, one can readily check that H 1

Γ is a dense subspace of H1(R+,X).

To prove the lemma we need to compute K̂ mod
Γ,E f .

Let g ∈ H1(R+,X) and f = Γg. From the definition of the Fourier multiplier
KΓ,E , from Remark 2(ii) we obtain that

K̂Γ,Ef(ω) = RΓ,E(ω)Γĝ(ω) = (2πiωΓ− E)−1Γĝ(ω) = R(2πiω, SΓ,E)ĝ(ω)

= ̂GΓ,E ∗ g(ω), (3.32)

for any ω ∈ R, which implies that KΓ,Ef = GΓ,E ∗ g. It follows that

(KΓ,Ef)(τ) =

∫ τ

−∞
TΓ,E

s (τ − s)PΓ,E
s g(s)ds−

∫ ∞
τ

TΓ,E
u (s− τ)PΓ,E

u g(s)ds

= −TΓ,E
u (−τ)

∫ ∞
0

TΓ,E
u (s)PΓ,E

u g(s)ds for any τ < 0. (3.33)

We infer that χR+
(KΓ,Ef) = KΓ,Ef +F1, where F1 : R→ X is the function defined

by F1(τ) = 0 for τ ≥ 0 and F1(τ) = TΓ,E
u (−τ)

∫∞
0
TΓ,E

u (s)PΓ,E
u g(s)ds for τ < 0. We

recall that the generator of the C0-semigroup {TΓ,E
u (τ)}τ≥0 is SΓ,E

u = −(SΓ,E)|XΓ,E
u

.

Therefore, we obtain that

F̂1(ω) =

∫ 0

−∞
e−2πiωτTΓ,E

u (−τ)xudτ = −
(
2πiω + SΓ,E

u

)−1
xu = −R(2πiω, SΓ,E)xu

= −RΓ,E(ω)Γxu (3.34)

for any ω ∈ R, where xu =
∫∞

0
TΓ,E

u (s)PΓ,E
u g(s)ds. Next, we define the function

F2 : R → X by F2(τ) = TΓ,E
s (τ)xs for τ ≥ 0 and F2(τ) = 0 for τ < 0, where xs =

PΓ,E
s E−1f(0). Similarly, since the generator of the C0-semigroup {TΓ,E

s (τ)}τ≥0 is
SΓ,E

s = (SΓ,E)|XΓ,E
s

, we have that

F̂2(ω) =

∫ ∞
0

e−2πiωτTΓ,E
s (τ)xsdτ =

(
2πiω − SΓ,E

s

)−1
PΓ,E

s E−1f(0)

= RΓ,E(ω)ΓPΓ,E
s S−1

Γ,Eg(0) = RΓ,E(ω)ΓS−1
Γ,EP

Γ,E
s g(0)

= RΓ,E(ω)ΓE−1ΓPΓ,E
s g(0) (3.35)
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for any ω ∈ R. From (3.33), (3.34) and (3.35) we conclude that

K̂ mod
Γ,E f(ω) = ̂χR+(KΓ,Ef)(ω)− F̂2(ω) = K̂Γ,Ef(ω) + F̂1(ω)− F̂2(ω)

= RΓ,E(ω)f̂(ω)−RΓ,E(ω)Γ

∫ ∞
0

TΓ,E
u (s)PΓ,E

u g(s)ds

−RΓ,E(ω)ΓE−1ΓPΓ,E
s g(0) (3.36)

for any ω ∈ R. In addition, from (3.33) we have that

(K mod
Γ,E f)(0) = −xu − PΓ,E

s S−1
Γ,Eg(0) = −

∫ ∞
0

TΓ,E
u (s)PΓ,E

u g(s)ds− S−1
Γ,EP

Γ,E
s g(0).

(3.37)

Since g ∈ H1(R+,X) we have that 2πiωĝ(ω) = g(0) + ĝ′(ω) for any ω ∈ R. From
(3.36) and (3.37) it follows that

2πiω ̂(K mod
Γ,E f)(ω)− (K mod

Γ,E f)(0)

= 2πiωRΓ,E(ω)f̂(ω)− 2πiωRΓ,E(ω)Γ

∫ ∞
0

TΓ,E
u (s)PΓ,E

u g(s)ds

− 2πiωRΓ,E(ω)ΓE−1ΓPΓ,E
s g(0) +

∫ ∞
0

TΓ,E
u (s)PΓ,E

u g(s)ds+ S−1
Γ,EP

Γ,E
s g(0)

= RΓ,E(ω)Γ
(
2πiωĝ(ω)

)
+
(
IX − 2πiωRΓ,E(ω)Γ

)(∫ ∞
0

TΓ,E
u (s)PΓ,E

u g(s)ds

+ E−1ΓPΓ,E
s g(0)

)
= 2πiωRΓ,E(ω)Γĝ′(ω) +RΓ,E(ω)Γg(0)−RΓ,E(ω)E

(∫ ∞
0

TΓ,E
u (s)PΓ,E

u g(s)ds

+ E−1ΓPΓ,E
s g(0)

)
= RΓ,E(ω)f̂ ′(ω) +RΓ,E(ω)

(
ΓPΓ,E

u g(0)− E
∫ ∞

0

TΓ,E
u (s)PΓ,E

u g(s)ds
)

(3.38)

for any ω ∈ R. Since g ∈ H1(R+,X) we obtain that
∫∞

0
TΓ,E

u (s)PΓ,E
u g(s)ds ∈

dom(SΓ,E
u ) ⊆ dom(SΓ,E) and

SΓ,E
u

∫ ∞
0

TΓ,E
u (s)PΓ,E

u g(s)ds = −PΓ,E
u g(0)−

∫ ∞
0

TΓ,E
u (s)PΓ,E

u g′(s)ds. (3.39)

Since SΓ,E
u = −(SΓ,E)|XΓ,E

u
, from (3.39) we obtain that

E

∫ ∞
0

TΓ,E
u (s)PΓ,E

u g(s)ds = ΓPΓ,E
u g(0) + Γ

∫ ∞
0

TΓ,E
u (s)PΓ,E

u g′(s)ds. (3.40)

Using Remark 2(ii), (3.38) and (3.40) we infer that

2πiω ̂(K mod
Γ,E f)(ω)− (K mod

Γ,E f)(0)

= RΓ,E(ω)f̂ ′(ω)−RΓ,E(ω)Γ

∫ ∞
0

TΓ,E
u (s)PΓ,E

u g′(s)ds

= F
(
KΓ,Ef

′ − GΓ,E(·)
∫ ∞

0

TΓ,E
u (s)PΓ,E

u g′(s)ds
)

(3.41)
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for any ω ∈ R. Arguing similarly as in (3.32), we have that KΓ,Ef
′ = GΓ,E ∗ g′,

which implies that

(KΓ,Ef
′)(τ) =

∫ τ

−∞
TΓ,E

s (τ − s)PΓ,E
s g′(s)ds−

∫ ∞
τ

TΓ,E
u (s− τ)PΓ,E

u g′(s)ds

= −TΓ,E
u (−τ)

∫ ∞
0

TΓ,E
u (s)PΓ,E

u g′(s)ds

= GΓ,E(τ)

∫ ∞
0

TΓ,E
u (s)PΓ,E

u g′(s)ds (3.42)

for any τ < 0. Since GΓ,E(τ)x = 0 for any τ ≥ 0 and any x ∈ XΓ,E
u , from (3.41)

and (3.42) we conclude that

2πiω ̂(K mod
Γ,E f)(ω)− (K mod

Γ,E f)(0) = F (χR+
KΓ,Ef

′)(ω) for any ω ∈ R. (3.43)

Since f ′ ∈ L2(R+,X) ↪→ L2(R,X) and KΓ,E is bounded on L2(R,X) from (3.43) we
infer that K mod

Γ,E f ∈ H1(R+,X) and (K mod
Γ,E f)′ = (KΓ,Ef

′)|R+
for any f ∈H 1

Γ .

Next, we fix f ∈ H1(R+,X) and let {fn}n≥1 be a sequence of functions in H 1
Γ

such that fn → f as n→∞ in H1(R+,X). From Remark 2(i) we obtain that

‖TΓ,E
s (·)PΓ,E

s E−1fn(0)− TΓ,E
s (·)PΓ,E

s E−1f(0)‖2 ≤ c‖fn(0)− f(0)‖ ≤ c‖fn − f‖H1

(3.44)
for any n ≥ 1. Since the Fourier multiplier KΓ,E is bounded on L2(R,X), from
(3.44) we conclude that

(KΓ,Efn)|R+
− TΓ,E

s (·)PΓ,E
s E−1fn(0)→ (KΓ,Ef)|R+

− TΓ,E
s (·)PΓ,E

s E−1f(0)

as n → ∞ in L2(R+,X). Hence K mod
Γ,E fn → K mod

Γ,E f as n → ∞ in L2(R+,X).

Moreover, (K mod
Γ,E fn)′ = (KΓ,Ef

′
n)|R+

→ (KΓ,Ef
′)|R+

as n → ∞ in L2(R+,X). It

follows that K mod
Γ,E f ∈ H1(R+,X) and (K mod

Γ,E f)′ = (KΓ,Ef
′)|R+

.

To finish the proof of lemma, we need to prove (3.31). Indeed, since KΓ,E is
bounded on L2(R,X) we have that

‖K mod
Γ,E f‖2H1 = ‖(KΓ,Ef)|R+

− TΓ,E
s (·)PΓ,E

s E−1f(0)‖22 + ‖(KΓ,Ef
′)|R+

‖22
≤ 4‖KΓ,Ef‖22 + 4‖TΓ,E

s (·)PΓ,E
s E−1f(0)‖22 + c‖f ′‖22

≤ c‖f‖22 + c‖f ′‖22 + c‖f(0)‖2 ≤ c‖f‖2H1 . (3.45)

for any f ∈ H1(R+,X), proving the lemma.

Remark 3. Assume W : R → B(X) is a piecewise strongly continuous operator
valued function such that ‖W (τ)‖ ≤ ce−ν|τ | for all τ ∈ R. Then, for any α ∈ [0, ν)
we have that W ∗ f ∈ L2

α(R,X) and

‖W ∗ f‖L2
α
≤ c‖f‖L2

α
for any f ∈ L2

α(R,X). (3.46)

Proof. Fix α ∈ [0, ν). Since W decays exponentially, one can readily check that

‖(W ∗ f)(τ)‖2 ≤
(∫

R
e−

ν−α
2 |τ−s|e−

ν+α
2 |τ−s| ‖f(s)‖ds

)2

≤ 1

ν − α

∫
R
e−(ν+α)|τ−s| ‖f(s)‖2ds (3.47)
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for any τ ∈ R. Since
∫
R e
−(ν+α)|τ−s|e2α|τ |dτ ≤ 1

ν−αe
2α|s| for any s ∈ R, from (3.47)

we obtain that∫
R
e2α|τ |‖(W ∗ f)(τ)‖2dτ ≤ 1

ν − α

∫
R

(∫
R
e−(ν+α)|τ−s|e2α|τ |dτ

)
‖f(s)‖2ds

≤ 1

(ν − α)2

∫
R
e2α|s|‖f(s)‖2ds =

1

(ν − α)2
‖f‖2L2

α
, (3.48)

proving the remark.

Next, we analyze the invariance properties of weighted spaces under K mod
Γ,E .

In particular, we are interested in checking whether the weighted Sobolev space
H1
α(R+,X) is invariant under K mod

Γ,E . To prove this result we need the following
lemma:

Lemma 3.6. Assume Hypothesis (S) and let ψ ∈ H2(R) be a smooth scalar func-
tion. Then,

KΓ,E

(
ψf + ψ′(G ∗Γ,E ∗ f)

)
= ψKΓ,Ef for any f ∈ L2(R,X). (3.49)

Proof. To start the proof of lemma, we first justify that the left hand side of equation
(3.49) is well defined. Indeed, since ψ ∈ H2(R) we have that ψ,ψ′ ∈ L∞(R).
Moreover, from Remark 2(i) it follows that GΓ,E and thus G ∗Γ,E are exponentially

decaying, operator valued functions, which implies that G ∗Γ,E ∗ f ∈ L2(R,X) for any

f ∈ L2(R,X). We conclude that ψf +ψ′(G ∗Γ,E ∗f) ∈ L2(R,X) for any f ∈ L2(R,X).

From Remark 2(ii) we have that FGΓ,E(·)x = R(2πi·, SΓ,E)x for any x ∈ X.
From Lemma 2.2 we obtain that

FG ∗Γ,E(·)x =
(
FGΓ,E(−·)

)∗
x = R(−2πi·, SΓ,E)∗x =

(
RΓ,E(−·)Γ

)∗
x = ΓRΓ,E(·)x

(3.50)

for any x ∈ L2(R,X). Since ψ ∈ H2(R) we have that ψ̂, ψ̂′ ∈ L1(R). Taking Fourier
transform, from (3.8) and (3.50) we obtain that

̂ψKΓ,Ef(ω) = (ψ̂ ∗ K̂Γ,Ef)(ω) =

∫
R
ψ̂(ω − θ)K̂Γ,Ef(θ)dθ

=

∫
R
ψ̂(ω − θ)RΓ,E(θ)f̂(θ)dθ

=

∫
R
ψ̂(ω − θ)

(
RΓ,E(ω) + 2πi(ω − θ)RΓ,E(ω)ΓRΓ,E(θ)

)
f̂(θ)dθ

= RΓ,E(ω)

∫
R

2πi(ω − θ)ψ̂(ω − θ)ΓRΓ,E(θ)f̂(θ)dθ

+RΓ,E(ω)

∫
R
ψ̂(ω − θ)f̂(θ)dθ

= RΓ,E(ω)(ψ̂ ∗ f̂)(ω) +RΓ,E(ω)

∫
R
ψ̂′(ω − θ)ΓRΓ,E(θ)f̂(θ)dθ

= RΓ,E(ω)ψ̂f(ω) +RΓ,E(ω)

∫
R
ψ̂′(ω − θ)ĜΓ,E

∗
(θ)f̂(θ)dθ

= RΓ,E(ω)ψ̂f(ω) +RΓ,E(ω)

∫
R
ψ̂′(ω − θ) ̂G ∗Γ,E ∗ f(θ)dθ

= RΓ,E(ω)
(
ψ̂f(ω) + ̂ψ′(G ∗Γ,E ∗ f)(ω)

)
for any ω ∈ R. (3.51)

Assertion (3.49) follows readily from the definition of KΓ,E .
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Lemma 3.7. Assume Hypothesis (S). Then, K mod
Γ,E f ∈ H1

α(R+,X) for any f ∈
H1
α(R+,X) and α ∈ (0, ν(Γ, E)), where ν(Γ, E) is defined in (3.6). Moreover, there

exists c(Γ, E, α) > 0 such that

‖K mod
Γ,E f‖H1

α(R+,X) ≤ c(Γ, E, α)‖f‖H1
α(R+,X). (3.52)

Proof. Let {φn}n≥1 be a sequence of scalar functions in C∞(R) such that 0 ≤
φn ≤ 1, φn(τ) = 1 whenever |τ | ≤ n, φn(τ) = 0 whenever |τ | ≥ n + 1 and
supn≥1 ‖φ′n‖∞ <∞. We define the sequence of scalar functions {ψn} by the formula

ψn(τ) = eα〈τ〉φn(τ), where 〈τ〉 =
√

1 + |τ |2. Since α > 0 one can readily check that
ψn ∈ H2(R) for any n ≥ 1. Moreover, there exists a constant c0 > 0, independent
of Γ, E and α such that

|ψn(τ)| ≤ eατ , |ψ′n(τ)| ≤ c0eατ , for any τ ∈ R. (3.53)

Let f ∈ H1
α(R+,X) ↪→ H1(R+,X). First, we prove that K mod

Γ,E f ∈ L2
α(R+,X). We

note that (ψn)|R+
K mod

Γ,E f = (ψnKΓ,Ef)|R+
− (ψn)|R+

TΓ,E
s (·)PΓ,E

s E−1f(0) for any

n ≥ 1. Using Lemma 3.6, Remark 3 and (3.53) we estimate

‖(ψnKΓ,Ef)|R+
‖2 ≤ ‖ψnKΓ,Ef‖2 = ‖KΓ,E(ψnf + ψ′n(G ∗Γ,E ∗ f))‖2
≤ c‖ψnf + ψ′n(G ∗Γ,E ∗ f)‖2
≤ c(Γ, E)‖f‖L2

α
+ c(Γ, E)‖G ∗Γ,E ∗ f‖L2

α

≤ c(Γ, E, α)‖f‖L2
α

(3.54)

for any n ≥ 1. Moreover, since α ∈ (0, ν(Γ, E)) one can readily check that

‖(ψn)|R+
TΓ,E

s (·)PΓ,E
s E−1f(0)‖2 ≤ c(Γ, E, α)‖f(0)‖ ≤ c(Γ, E, α)‖f‖H1

α
(3.55)

for any n ≥ 1. From (3.54) and (3.55) we conclude that (ψn)|R+
K mod

Γ,E f ∈ L2(R+,X)

and ‖(ψn)|R+
K mod

Γ,E f‖2 ≤ c(Γ, E, α)‖f‖H1
α

for any n ≥ 1. Passing to the limit as

n→∞ we conclude that ‖K mod
Γ,E f‖L2

α
≤ c(Γ, E, α)‖f‖H1

α
.

From Lemma 3.5 we have that

K mod
Γ,E f ∈ H1(R+,X) and (K mod

Γ,E f)′ = (KΓ,Ef
′)|R+

.

Using again Lemma 3.6, Remark 3 and (3.53) we have that

‖(ψnKΓ,Ef
′)|R+

‖2 ≤ ‖ψnKΓ,Ef
′‖2 = ‖KΓ,E(ψnf

′ + ψ′n(G ∗Γ,E ∗ f ′))‖2
≤ c‖ψnf ′ + ψ′n(G ∗Γ,E ∗ f ′)‖2
≤ c(Γ, E)‖f ′‖L2

α
+ c(Γ, E)‖G ∗Γ,E ∗ f ′‖L2

α

≤ c(Γ, E, α)‖f ′‖L2
α
≤ c(Γ, E, α)‖f‖H1

α
(3.56)

for any n ≥ 1. It follows that ‖(ψn)|R+
(K mod

Γ,E f)′‖2 ≤ c(Γ, E, α)‖f‖H1
α

for any

n ≥ 1. Passing to the limit as n → ∞ we infer that (K mod
Γ,E f)′ ∈ L2

α(R+,X) and

‖(K mod
Γ,E f)′‖L2

α
≤ c(Γ, E, α)‖f‖H1

α
, proving the lemma.

4. Stable manifolds of general steady relaxation systems. In this section
we prove the existence of a local stable manifold of equation (3.1), by reducing the
equation to (3.4), as explained in Section 3. To prove this result, we prove it for
the general case of equation (3.5). First, we recall that from Lemma 3.3 we have
that mild solutions of equation (3.5) on R+ satisfy the equation

u(τ) = TΓ,E
s (τ)PΓ,E

s u(0) +
(
KΓ,ED(u(·),u(·))

)
(τ), τ ≥ 0. (4.1)



24 ALIN POGAN AND KEVIN ZUMBRUN

Using the parametrization u(0) = v0 −E−1D(u(0),u(0)), as in equation (3.30), to
prove our result it is enough to prove the existence of a stable manifold of equation

u = TΓ,E
s (·)PΓ,E

s v0 + K mod
Γ,E D(u(·),u(·)). (4.2)

In this section we prove that for v0 in a certain subspace of XΓ,E
s with ‖v0‖ small

enough there exists a unique solution of equation of (4.2), in the space H1
α(R+,X),

with α ∈ [0, ν(Γ, E)). Throughout this section we assume Hypothesis (S). Next,
we study the trajectories of the semigroup {TΓ,E

s (τ)}τ≥0 that belong to the space
H1
α(R+,X). First, we introduce the subspace

XΓ,E
1
2

=
{

x ∈ X :

∫
Λ

|HΓ,E(λ)| |(UΓ,Ex)(λ)|2dµ(λ) <∞
}
. (4.3)

The space XΓ,E
1
2

is a Banach space when endowed with the norm

‖x‖XΓ,E
1
2

=
∥∥|MHΓ,E

|1/2UΓ,Ex
∥∥
L2(Λ,µ)

, (4.4)

where UΓ,E is defined in (2.18) and MHΓ,E
is the operator of multiplication by

the function HΓ,E introduced in Lemma 2.3. From (2.18) it follows that XΓ,E
1
2

=

dom(|SΓ,E |
1
2 ) and that the norm ‖ · ‖XΓ,E

1
2

is equivalent to the graph norm on

dom(|SΓ,E |
1
2 ).

Lemma 4.1. Assume Hypothesis (S). Then TΓ,E
s (·)v0 ∈ H1

α(R+,X) for any α ∈
[0, ν(Γ, E)). Moreover, there exists c = c(Γ, E) > 0 such that

‖TΓ,E
s (·)v0‖H1

α(R+,X) ≤ c(Γ, E, α)‖v0‖XΓ,E
1
2

(4.5)

for any v0 ∈ XΓ,E
s ∩ XΓ,E

1
2

.

Proof. Fix v0 ∈ XΓ,E
s ∩ XΓ,E

1
2

, α ∈ [0, ν(Γ, E)) and let g̃0 = UΓ,Ev0 ∈ L2(Λ, µ).

From (2.14) we have that g̃0 ∈ L2(Λ−, µ), that is g̃0(λ) = 0 for any λ ∈ Λ+. Since

v0 ∈ XΓ,E
1
2

we infer that∫
Λ

|HΓ,E(λ)||g̃0(λ)|2dµ(λ) =
∥∥|MHΓ,E

|1/2g̃0

∥∥2

L2(Λ,µ)
= ‖v0‖2XΓ,E

1
2

<∞. (4.6)

From (2.15) it follows that TΓ,E
s (τ)v0 = U−1

Γ,E T̃
Γ,E
s (τ)g̃0 for any τ ≥ 0. We intro-

duce the function h̃0 : R+ → L2(Λ, µ) defined by
(
h̃0(τ)

)
(λ) := eατ

(
T̃Γ,E

s (τ)g̃0

)
(λ).

From (2.16) we have that
(
h̃0(τ)

)
(λ) = eτ(α+HΓ,E(λ))χΛ−(λ)g̃0(λ) for any τ ≥ 0

and λ ∈ Λ. Since HΓ,E(λ) ≤ −ν for any λ ∈ Λ−, from (4.6) we obtain that

h̃0 ∈ H1(R+, L
2(Λ, µ)) and

‖h̃0‖2H1 ≤
∫ ∞

0

e2τα‖T̃Γ,E
s (τ)g̃0‖2L2(Λ,µ)dτ

+

∫ ∞
0

∫
Λ−

|(α+HΓ,E(λ))eτ(α+HΓ,E(λ))g̃0(λ)|2dµ(λ)dτ

≤
∫ ∞

0

e2τ(α−ν)dτ ‖g̃0‖2L2(Λ,µ)

+

∫
Λ−

|α+HΓ,E(λ)|2|g̃0(λ)|2
(∫ ∞

0

e2τ(α+HΓ,E(λ))dτ
)

dµ(λ)
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≤ 1

2(ν − α)
‖UΓ,E‖2‖v0‖2 +

1

2

∫
Λ−

|α+HΓ,E(λ)||g̃0(λ)|2dµ(λ)

≤ 1

2(ν − α)
‖UΓ,E‖2‖v0‖2 +

1

2
|α|‖g̃0‖2L2(Λ,µ) +

1

2

∫
Λ

|HΓ,E(λ)||g̃0(λ)|2dµ(λ)

≤ 1

2

(
|α|+ 1

(ν − α)

)
‖UΓ,E‖2‖v0‖2 +

1

2
‖v0‖2XΓ,E

1
2

≤ c(Γ, E, α)‖v0‖2XΓ,E
1
2

. (4.7)

We conclude that TΓ,E
s (·)v0 ∈ H1

α(R+,X) and (4.5) holds true, proving the lemma.

We introduce the function ΨΓ,E : XΓ,E
s ∩XΓ,E

1
2

×H1
α(R+,X)→ H1

α(R+,X) defined

by

ΨΓ,E(v0, f) = TΓ,E
s (·)PΓ,E

s v0 + K mod
Γ,E D(f(·), f(·)). (4.8)

To prove that equation (4.1) has a unique solution on H1
α(R+,X), we show that

the function ΨΓ,E satisfies the conditions of the Contraction Mapping Theorem.
In what follows we will use the following notation to denote the closed balls of

H1
α(R+,X) and XΓ,E

s ∩ XΓ,E
1
2

centered at the origin

Ωα(ε) =
{
f ∈ H1

α(R+,X) : ‖f‖H1
α(R+,X) ≤ ε

}
,

Bs(0, ε) =
{
v0 ∈ XΓ,E

s ∩ XΓ,E
1
2

: ‖v0‖XΓ,E
1
2

≤ ε
}
. (4.9)

Lemma 4.2. Assume Hypothesis (S). If ν̃ ∈ (0, ν(Γ, E)), where ν(Γ, E) is defined
in (3.6), then

(i) There exist ε1 = ε1(Γ, E, ν̃) > 0 and ε2 = ε2(Γ, E, ν̃) > 0 such that ΨΓ,E

maps Bs(0, ε1)× Ωα(ε2) to Ωα(ε2) and

‖ΨΓ,E(v0, f)−ΨΓ,E(v0, g)‖H1
α(R+,X) ≤

1

2
‖f − g‖H1

α(R+,X) (4.10)

for any v0 ∈ Bs(0, ε1), f, g ∈ Ωα(ε2) and α ∈ [0, ν̃];
(ii) For any v0 ∈ Bs(0, ε1) equation u = ΨΓ,E(v0,u) has a unique, local solution

denoted u(·; v0) ∈ Ωα(ε2) ⊂ H1
α(R+,X) for any α ∈ [0, ν̃];

(iii) The function ΣΓ,E : Bs(0, ε1) → Ωα(ε2) defined by ΣΓ,E(x0) = u(·,v0) is of
class Cr for any α ∈ [0, ν̃].

Proof. (i) First, we introduce the function

Dα : H1
α(R+,X)×H1

α(R+,X)→ H1
α(R+,X) defined by Dα(f, g) = D(f(·), g(·)).

Since D(·, ·) is a bounded bilinear map on X, we infer that for any f, g ∈ H1
α(R+,X)

we have that Dα(f, g) ∈ H1
α(R+,X) and

(
Dα(f, g)

)′
= D(f(·), g′(·))+D(g(·), f ′(·)),

proving that Dα is well-defined. Also, one can readily check that Dα is a bilinear
map. Moreover, since H1

α(R+,X) ↪→ L∞α (R+,X) we have that

eατ‖f(τ)‖ ≤ ‖f‖L∞α (R+,X) ≤ ‖f‖H1
α(R+,X) for any τ ≥ 0. (4.11)

Using again that D(·, ·) is a bounded bilinear map on X, from (4.11) it follows that

‖Dα(f, g)‖2H1
α

=

∫ ∞
0

e2ατ‖D(f(τ), g(τ))‖2dτ

+

∫ ∞
0

e2ατ‖D(f(τ), g′(τ)) +D(g(τ), f ′(τ))‖2dτ
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≤
∫ ∞

0

e2ατ‖D‖2 ‖f(τ)‖2‖g(τ)‖2dτ

+ 2

∫ ∞
0

e2ατ‖D‖2
(
‖f(τ)‖2 ‖g′(τ)‖2 + g(τ)‖2 ‖f ′(τ)‖2

)
dτ

≤ ‖D‖2‖f‖2L∞α ‖g‖
2
L2
α

+ 2‖D‖2
(
‖f‖2L∞α ‖g

′‖2L2
α

+ ‖g‖2L∞α ‖f
′‖2L2

α

)
≤ 5‖D‖2‖f‖2H1

α
‖g‖2H1

α
, (4.12)

which proves that the bilinear map Dα is bounded on H1
α(R,X). From Lemma 3.7,

Lemma 4.1 and (4.12) we infer that ΨΓ,E(v0, f) ∈ H1
α(R+,X) and

‖ΨΓ,E(v0, f)‖H1
α
≤ ‖TΓ,E

s (·)v0‖H1
α

+ ‖K mod
Γ,E D(f, f)‖H1

α

≤ c ‖v0‖XΓ,E
1
2

+ c ‖Dα(f, f)‖H1
α

≤ c ‖v0‖XΓ,E
1
2

+ 2c‖D‖ ‖f‖2H1
α
≤ c (ε1 + ε2

2), (4.13)

for any v0 ∈ Bs(0, ε1) and f ∈ Ωα(ε2). Here the constant c = c(Γ, E, α) depends
on the constants from (3.52) and (4.5), therefore it can be it chosen such that

sup
α∈[0,ν̃]

c(Γ, E, α) <∞ for any ν̃ ∈ (0, ν(Γ, E)). (4.14)

It follows that for any ν̃ ∈ (0, ν(Γ, E)) there exist ε1 = ε1(Γ, E, ν̃) > 0 and ε2 =
ε2(Γ, E, ν̃) > 0 such that

c(Γ, E, α) ε2(Γ, E, ν̃) ≤ 1

16
and c(Γ, E, α) ε1(Γ, E, ν̃) ≤ ε2(Γ, E, ν̃)

2
(4.15)

for any α ∈ [0, ν̃]. From (4.13) and (4.15) we conclude that

ΨΓ,E maps Bs(0, ε1(Γ, E, ν̃))× Ωα(ε2(Γ, E, ν̃)) to Ωα(ε2(Γ, E, ν̃)) (4.16)

for any α ∈ [0, ν̃] and ν̃ ∈ (0, ν(Γ, E)). To finish the proof of (i) we prove (4.10).
We note that∥∥∥ΨΓ,E(v0, f)−ΨΓ,E(v0, g)

∥∥∥
H1
α

=
∥∥∥K mod

Γ,E

(
Dα(f, f)−Dα(g, g)

)∥∥∥
H1
α

≤ c(Γ, E, α)‖Dα(f, f)−Dα(g, g)‖H1
α
. (4.17)

To estimate the H1
α-norm of the right hand side of (4.17), we use that Dα(·, ·)

is bilinear and bounded on H1
α(R+,X), which implies that Dα(f, f) − Dα(g, g) =

Dα(f − g, f − g) + 2Dα(g, f − g). Since Dα(·, ·) is a bounded bilinear map on

H1
α(R+,X), we have that Dα(g, f−g) ∈ H1

α(R+,X) and
(
Dα(g, f−g)

)′
= Dα(g′, f−

g) + Dα(g, f ′ − g′) for any f, g ∈ H1
α(R+,X). It follows that

‖Dα(g, f − g)‖2H1
α

=

∫ ∞
0

e2ατ‖D(g(τ), f(τ)− g(τ))‖2dτ

+

∫ ∞
0

e2ατ‖
(
D(g, f − g)

)′
(τ)‖2dτ

≤ ‖D‖2
∫ ∞

0

e2ατ‖g(τ)‖2‖f(τ)− g(τ))‖2dτ

+ 2‖D‖2
∫ ∞

0

e2ατ‖g′(τ)‖2‖f(τ)− g(τ))‖2dτ
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+ 2‖D‖2
∫ ∞

0

e2ατ‖g(τ)‖2‖f ′(τ)− g′(τ))‖2dτ

≤ 2‖D‖2‖g‖2L∞α ‖f − g‖
2
H1
α

+ 2‖D‖2‖f − g‖2L∞α ‖g
′‖L2

α

≤ 2‖D‖2‖g‖2H1
α
‖f − g‖2H1

α
. (4.18)

From (4.12) and (4.18) we obtain that

‖Dα(f, f)−Dα(g, g)‖H1
α
≤ ‖Dα(f − g, f − g)‖H1

α
+ 2‖Dα(g, f − g)‖H1

α

≤ 2‖D‖‖f − g‖2H1
α

+ 2‖D‖‖g‖H1
α
‖f − g‖H1

α

≤ 4‖D‖
(
‖f‖H1

α
+ ‖g‖H1

α

)
‖f − g‖H1

α
(4.19)

Therefore, from (4.15), (4.17) and (4.19) have that

‖ΨΓ,E(v0, f)−ΨΓ,E(v0, g)‖H1
α
≤ 8c(Γ, E, α)ε2(Γ, E, ν̃) ‖f − g‖H1

α
≤ 1

2
‖f − g‖H1

α

(4.20)
for any v0 ∈ Bs(0, ε1(Γ, E, ν̃)), f, g ∈ Ωα(ε2(Γ, E, ν̃)), α ∈ [0, ν̃], ν̃ ∈ (0, ν(Γ, E)),
proving (i).

Assertion (ii) follows shortly from (i) by applying the Contraction Mapping The-
orem. By smooth dependence on parameters of solutions of fixed point mappings
(see, e.g., Lemma A.1), to prove (iii) it is enough to show that ΨΓ,E is of class Cr

on XΓ,E
s ∩ XΓ,E

1
2

×H1
α(R+,X). We note that

ΨΓ,E(v0, f) = TΓ,E
s (·)PΓ,E

s v0 + K mod
Γ,E Dα(f, f) for any f ∈ H1

α(R,X). (4.21)

Since ΨΓ,E is affine in v0, K mod
Γ,E ∈ B(H1

α(R+,X)) by Lemma 3.7 and the bilinear

map Dα is bounded on H1
α(R,X) by (4.12), from (4.21) we infer that ΨΓ,E is of

class Cr on XΓ,E
s ∩ XΓ,E

1
2

×H1
α(R+,X), proving the lemma.

Lemma 4.3. Assume Hypothesis (S). Then,

(i) (K mod
Γ,E f)(0) + PΓ,E

s E−1f(0) ∈ XΓ,E
u for any f ∈ H1(R+,X);

(ii) u(·; v0) is a mild solution of equation (3.5) on R+ satisfying the condition

PΓ,E
s u(0; v0) = v0 − PΓ,E

s E−1D(u(0; v0),u(0; v0)) (4.22)

for any v0 ∈ Bs(0, ε1(Γ, E, ν̃)).

Proof. (i) First, we recall the definition of the subspace H 1
Γ = {f : R+ → X :

there exists g ∈ H1(R+,X) such that f(τ) = Γg(τ) for any τ ≥ 0}, which is dense
in H1(R+,X). Let g ∈ H1(R+,X) and f = Γg. From (3.37) we obtain that

(K mod
Γ,E f)(0) + PΓ,E

s E−1f(0) = −
∫ ∞

0

TΓ,E
u (s)PΓ,E

u g(s)ds− S−1
Γ,EP

Γ,E
s g(0)

+ PΓ,E
s E−1Γg(0)

= −
∫ ∞

0

TΓ,E
u (s)PΓ,E

u g(s)ds ∈ XΓ,E
u . (4.23)

From Lemma 3.5 we infer that the operator f → (K mod
Γ,E f)(0) + PΓ,E

s E−1f(0) :

H1(R+,X) → X is linear and bounded. Since H 1
Γ is dense in H1(R+,X), from

(4.23) we conclude that (K mod
Γ,E f)(0)+PΓ,E

s E−1f(0) ∈ XΓ,E
u for any f ∈ H1(R+,X).
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Proof of (ii) Fix v0 ∈ Bs(0, ε1(Γ, E, ν̃)). Since u(·; v0) is a solution of equation
(4.2), from (i) we obtain that

PΓ,E
s u(0; v0) = PΓ,E

s

(
v0 + (K mod

Γ,E D(u(·; v0),u(·; v0))(0)
)

= v0 − PΓ,E
s E−1D(u(0; v0),u(0; v0)),

proving (4.22). Moreover,

u(τ ; v0)− TΓ,E
s (τ)PΓ,E

s u(0; v0)

= TΓ,E
s (τ)PΓ,E

s (v0 − u(0; v0)) +
(
K mod

Γ,E D(u(·; v0),u(·; v0)
)
(τ)

= TΓ,E
s (τ)PΓ,E

s E−1D(u(0; v0),u(0; v0)) +
(
K mod

Γ,E D(u(·; v0),u(·; v0))
)
(τ)

=
(
KΓ,ED(u(·; v0),u(·; v0))

)
(τ) for any τ ≥ 0.

From Lemma 3.3 we conclude that u(·; v0) is a mild solution of equation (3.5) on
R+, proving the lemma.

Next, we define J Γ,E
s : Bs(0, ε1)→ X by

J Γ,E
s (v0) = PΓ,E

u u(0; v0)− PΓ,E
s E−1D(u(0; v0),u(0; v0)) (4.24)

and introduce the manifold

M Γ,E
s =

{
v0 + J Γ,E

s (v0) : v0 ∈ Bs(0, ε1)
}
. (4.25)

Next, we are going to show that the manifold M Γ,E
s is invariant under the forward

flow of equation (3.5). To prove this result we need to study the time translations
of solutions u(·; v0) of equation (4.2). To achieve this goal we need the results of
the next lemma.

Lemma 4.4. Assume Hypothesis (S). Then,

(i) The modified Fourier multiplier K mod
Γ,E satisfies the translation formula

(K mod
Γ,E f)(τ+τ0) =

(
K mod

Γ,E f(·+τ0)
)
(τ)+TΓ,E

s (τ)

∫ τ0

0

TΓ,E
s (τ0−s)PΓ,E

s E−1f ′(s)ds

(4.26)
for any f ∈ H1(R+,X), τ, τ0 ≥ 0;

(ii) TΓ,E
s (τ)v0 ∈ XΓ,E

s ∩ XΓ,E
1
2

for any τ ≥ 0 and v0 ∈ XΓ,E
s ∩ XΓ,E

1
2

. Moreover,

‖TΓ,E
s (τ)v0‖XΓ,E

1
2

≤ e−ν(Γ,E)τ‖v0‖XΓ,E
1
2

, lim
τ→0+

‖TΓ,E
s (τ)v0 − v0‖XΓ,E

1
2

= 0; (4.27)

(iii)
∫ τ0

0
TΓ,E

s (τ0 − s)PΓ,E
s E−1f(s)ds ∈ XΓ,E

1
2

for any f ∈ L2([0, τ0],X) and

∥∥ ∫ τ0

0

TΓ,E
s (τ0 − s)PΓ,E

s E−1f(s)ds
∥∥
XΓ,E

1
2

≤ c(Γ, E)
(∫ τ0

0

‖f(s)‖2ds
) 1

2

(4.28)

for any f ∈ L2([0, τ0],X).

Proof. (i) Let g ∈ H1(R+,X) and f = Γg. From (3.32) we have that KΓ,Ef =
GΓ,E ∗ g and KΓ,Ef(·+ τ0) = GΓ,E ∗ g(·+ τ0). It follows that

(KΓ,Ef)(τ + τ0) =

∫ τ+τ0

0

TΓ,E
s (τ + τ0 − s)PΓ,E

s g(s)ds

−
∫ ∞
τ+τ0

TΓ,E
u (s− τ − τ0)PΓ,E

u g(s)ds
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=

∫ τ

−τ0
TΓ,E

s (τ − θ)PΓ,E
s g(θ + τ0)dθ

−
∫ ∞
τ

TΓ,E
u (θ − τ)PΓ,E

u g(θ + τ0)dθ

=
(
GΓ,E ∗ g(·+ τ0)

)
(τ) +

∫ 0

−τ0
TΓ,E

s (τ − θ)PΓ,E
s g(θ + τ0)dθ

=
(
KΓ,Ef(·+ τ0)

)
(τ) +

∫ τ0

0

TΓ,E
s (τ + τ0 − s)PΓ,E

s g(s)ds (4.29)

for any τ ≥ 0. Since SΓ,E
s = (SΓ,E)|XΓ,E

s
is the generator of the C0-semigroup

{TΓ,E
s (τ)}τ≥0, we infer that the function τ → TΓ,E

s (τ)(SΓ,E
s )−1x : R+ → X is of

class C1 for any x ∈ X. Integrating by parts we obtain that∫ τ0

0

TΓ,E
s (τ + τ0 − s)PΓ,E

s E−1f ′(s)ds

=

∫ τ0

0

TΓ,E
s (τ + τ0 − s)PΓ,E

s S−1
Γ,Eg

′(s)ds

=

∫ τ0

0

TΓ,E
s (τ + τ0 − s)PΓ,E

s g(s)ds+ TΓ,E
s (τ)PΓ,E

s S−1
Γ,Eg(τ0)

− TΓ,E
s (τ + τ0)PΓ,E

s S−1
Γ,Eg(0)

=

∫ τ0

0

TΓ,E
s (τ + τ0 − s)PΓ,E

s g(s)ds+ TΓ,E
s (τ)PΓ,E

s E−1f(τ0)

− TΓ,E
s (τ + τ0)PΓ,E

s E−1f(0). (4.30)

From (4.29) and (4.30) we conclude that

(K mod
Γ,E f)(τ + τ0)

= (KΓ,Ef)(τ + τ0)− TΓ,E
s (τ + τ0)PΓ,E

s E−1f(0)

=
(
KΓ,Ef(·+ τ0)

)
(τ) +

∫ τ0

0

TΓ,E
s (τ + τ0 − s)PΓ,E

s g(s)ds

− TΓ,E
s (τ + τ0)PΓ,E

s E−1f(0)

=
(
K mod

Γ,E f(·+ τ0)
)
(τ) +

∫ τ0

0

TΓ,E
s (τ + τ0 − s)PΓ,E

s g(s)ds

− TΓ,E
s (τ + τ0)PΓ,E

s E−1f(0) + TΓ,E
s (τ)PΓ,E

s E−1f(τ0)

=
(
K mod

Γ,E f(·+ τ0)
)
(τ) + TΓ,E

s (τ)

∫ τ0

0

TΓ,E
s (τ0 − s)PΓ,E

s E−1f ′(s)ds (4.31)

for any τ ≥ 0, f ∈ H 1
Γ . Since H 1

Γ is dense in H1(R+,X), for any f ∈ H1(R+,X)
there exists {fn}n≥1 a sequence of functions in H 1

Γ such that fn → f as n→∞ in
H1(R+,X). It follows that fn(· + τ0) → f(· + τ0) as n → ∞ in H1(R+,X). Since
K mod

Γ,E is a bounded linear operator on H1(R+,X) by Lemma 3.5, we infer that

(K mod
Γ,E fn)→ (K mod

Γ,E f) and K mod
Γ,E fn(·+ τ0)→ K mod

Γ,E f(·+ τ0) (4.32)

as n→∞ in H1(R+,X). Moreover, one can readily check that∥∥∥ ∫ τ0

0

TΓ,E
s (τ0 − s)PΓ,E

s E−1f ′n(s)ds−
∫ τ0

0

TΓ,E
s (τ0 − s)PΓ,E

s E−1f ′(s)ds
∥∥∥
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≤ c(Γ, E)
(∫ τ0

0

e−2ν(Γ,E)(τ0−s)ds
)1/2

‖f ′n − f ′‖2 ≤ c(Γ, E)‖fn − f‖H1 (4.33)

for any n ≥ 1. Assertion (i) follows from (4.31), (4.32) and (4.33).

Proof of (ii). Let v0 ∈ XΓ,E
s ∩ XΓ,E

1
2

. We recall that from (2.14) we obtain that

g̃0 = UΓ,Ev0 ∈ L2(Λ, µ) and g̃0(λ) = 0 for any λ ∈ Λ+. From (2.15) we infer that∫
Λ

|HΓ,E(λ)| |(UΓ,ET
Γ,E
s (τ)v0)(λ)|2dµ(λ) =

∫
Λ

|HΓ,E(λ)| |(T̃Γ,E
s (τ)g̃0)(λ)|2dµ(λ)

=

∫
Λ−

e2τHΓ,E(λ)|HΓ,E(λ)| |g̃0(λ)|2dµ(λ) ≤ e−2ντ‖v0‖2XΓ,E
1
2

for any τ ≥ 0. (4.34)

From (4.34) we conclude that TΓ,E
s (τ)v0 ∈ XΓ,E

s ∩ XΓ,E
1
2

and ‖TΓ,E
s (τ)v0‖XΓ,E

1
2

≤

e−ν(Γ,E)τ‖v0‖XΓ,E
1
2

for any τ ≥ 0. Moreover, using (2.15) again we obtain that

∥∥TΓ,E
s (τ)v0 − v0

∥∥2

XΓ,E
1
2

=

∫
Λ

|HΓ,E(λ)|
∣∣∣(UΓ,E

(
TΓ,E

s (τ)v0 − v0)
)

(λ)
∣∣∣2dµ(λ)

=

∫
Λ−

(
1− e2τHΓ,E(λ)

)
|HΓ,E(λ)| |g̃0(λ)|2dµ(λ) (4.35)

Passing to the limit as τ → 0 in (4.35), from Lebesgue Dominated Convergence
Theorem, it follows that limτ→0+ ‖TΓ,E

s (τ)v0 − v0‖XΓ,E
1
2

= 0, proving (ii).

Proof of (iii). First, we introduce the function f̃ : R+ → L2(Λ, µ) by f̃(τ) =

UΓ,EP
Γ,E
s E−1f(τ) and let h̃0 = UΓ,E

( ∫ τ0
0
TΓ,E

s (τ0 − s)PΓ,E
s E−1f(s)ds

)
. To sim-

plify the notation, in what follows we denote by f̃(τ, λ) =
(
f̃(τ)

)
(λ). Since f ∈

L2([0, τ0],X) we infer that f̃ ∈ L2([0, τ0], L2(Λ, µ)), thus∫ τ0

0

∫
Λ

|f̃(τ, λ)|2dµ(λ)dτ = ‖f̃‖2L2([0,τ0],L2(Λ,µ)) ≤ c(Γ, E)

∫ τ0

0

‖f(s)‖2ds (4.36)

From (2.15) one can readily check that

h̃0(λ) =

∫ τ0

0

(
T̃Γ,E

s (τ0 − s)f̃(s)
)
(λ)ds =

∫ τ0

0

e(τ0−s)HΓ,E(λ)f̃(s, λ)ds (4.37)

for any λ ∈ Λ. From (4.37) we obtain that

|h̃0(λ)|2 ≤
∫ τ0

0

e2(τ0−s)HΓ,E(λ)ds

∫ τ0

0

|f̃(s, λ)|2ds =
1− e2τ0HΓ,E(λ)

2|HΓ,E(λ)|

∫ τ0

0

|f̃(s, λ)|2ds

≤ 1

2|HΓ,E(λ)|

∫ τ0

0

|f̃(s, λ)|2ds for any λ ∈ Λ. (4.38)

From (4.36) and (4.38) it follows that∫
Λ

|HΓ,E(λ)| |h̃0(λ)|2dµ(λ) ≤ 1

2

∫
Λ

∫ τ0

0

|f̃(τ, λ)|2dτdµ(λ)

≤ c(Γ, E)

∫ τ0

0

‖f(s)‖2ds <∞. (4.39)

We conclude that h̃0 ∈ dom(|MHΓ,E
|1/2) and

‖h̃0‖dom(|MHΓ,E
|1/2) ≤ c(Γ, E)‖f‖L2([0,τ0],X),
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proving the lemma.

Lemma 4.5. Assume Hypothesis (S). Then, the manifold M Γ,E
s is locally invariant

under the forward flow of equation (3.5).

Proof. Let ν̃ ∈ (0, ν(Γ, E)), α ∈ [0, ν̃] and assume u0 is a H1
α solution of equation

(3.5) such that u0(0) ∈M Γ,E
s . Then, there exists v0 ∈ B(0, ε1) such that u0(0) =

v0 + J Γ,E
s (v0). From (4.22) and (4.24) we obtain that u0(0) = u(0; v0). Since

u0 is a H1
α solution of equation (3.5), we have that u0 satisfies equation (4.1). It

follows that

u0(τ) = TΓ,E
s (τ)PΓ,E

s u0(0) +
(
KΓ,ED(u0,u0)

)
(τ)

= TΓ,E
s (τ)

(
PΓ,E

s u0(0) + PΓ,E
s E−1D(u0(0),u0(0))

)
+
(
K mod

Γ,E D(u0,u0)
)
(τ)

= TΓ,E
s (τ)

(
PΓ,E

s u(0; v0) + PΓ,E
s E−1D(u(0; v0),u(0; v0))

)
+
(
K mod

Γ,E D(u0,u0)
)
(τ)

= TΓ,E
s (τ)PΓ,E

s v0 +
(
K mod

Γ,E D(u0,u0)
)
(τ) for any τ ≥ 0. (4.40)

From Lemma 4.2 we infer that equation u = ΨΓ,E(v0,u) has a unique solution,
which implies that u0 = u(·; v0). Fix τ0 ≥ 0 and let uτ0 : R+ → X be the function
defined by uτ0(τ) = u0(τ + τ0) = u(τ + τ0; v0). Since u(·; v0) ∈ H1

α(R+,X) for any
α ∈ [0, ν̃], it follows that uτ0 ∈ H1

α(R+,X) for any α ∈ [0, ν̃]. From Lemma 4.4(i),
(4.22), (4.40) and since u0 = u(·; v0) we conclude that

uτ0(τ) = u0(τ + τ0) = TΓ,E
s (τ + τ0)v0 +

(
K mod

Γ,E D(u0,u0)
)

(τ + τ0)

= TΓ,E
s (τ)

∫ τ0

0

TΓ,E
s (τ0 − s)PΓ,E

s E−1
(
D(u0(s),u0(s))

)′
ds

+ TΓ,E
s (τ)TΓ,E

s (τ0)v0 +
(
K mod

Γ,E D(uτ0 ,uτ0)
)
(τ)

= TΓ,E
s (τ)v1 +

(
K mod

Γ,E D(uτ0 ,uτ0)
)
(τ) for any τ ≥ 0, (4.41)

where v1 = TΓ,E
s (τ0)v0 +

∫ τ0
0
TΓ,E

s (τ0 − s)PΓ,E
s E−1

(
D(u0(s),u0(s))

)′
ds. From

Lemma 4.4(ii) and (iii) we infer that v1 ∈ XΓ,E
s ∩ XΓ,E

1
2

. Moreover,

‖v1 − v0‖XΓ,E
1
2

≤ ‖TΓ,E
s (τ0)v0 − v0‖XΓ,E

1
2

+ c(Γ, E)
(∫ τ0

0

‖D(u0(s),u′0(s))‖2ds
) 1

2

≤ ‖TΓ,E
s (τ0)v0 − v0‖XΓ,E

1
2

+ c(Γ, E)‖u0‖H1

(∫ τ0

0

‖u′0(s)‖2ds
) 1

2

.

(4.42)

From Lemma 4.4(ii) and (iii) we infer that there exists τ1 > 0 such that v1 =
v1(τ0) ∈ Bs(0, ε1) for any τ0 ∈ [0, τ1]. Since equation u = ΨΓ,E(v1,u) has a unique
solution in Ωα(ε2) for any α ∈ [0, ν̃], from (4.41) we conclude that uτ0 = u(·; v1).
From Lemma 4.3(ii) it follows that

u0(τ0) = uτ0(0) = u(0; v1) = PΓ,E
s u(0; v1) + PΓ,E

u u(0; v1)

= v1 − PΓ,E
s E−1D(u(0; v1),u(0; v1)) + PΓ,E

u u(0; v1)

= v1 + J Γ,E
s (v1) ∈M Γ,E

s for any τ0 ∈ [0, τ1], (4.43)

proving the lemma.
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In the next lemma we prove that the nonlinear manifold M Γ,E
s is tangent to the

corresponding linear stable subspace XΓ,E
s .

Lemma 4.6. Assume Hypothesis (S). Then,
(
J Γ,E

s

)′
(0) = 0, i.e., M Γ,E

s is tangent

to XΓ,E
s .

Proof. First, we compute Σ′Γ,E(0), where ΣΓ,E is defined in Lemma 4.2(iii). Differ-

entiating with respect to v0 in the fixed point equation (4.2), we obtain that

Σ′Γ,E(v0) = ∂v0ΨΓ,E(v0,ΣΓ,E(v0)) + ∂uΨΓ,E(v0,ΣΓ,E(v0))Σ′Γ,E(v0) (4.44)

for any v0 ∈ Bs(0, ε1). Since equation u = ΨΓ,E(0,u) has a unique solution,
and 0 trivially satisfies the equation, we infer that ΣΓ,E(0) = 0. Moreover, since

ΨΓ,E(v0, 0) = TΓ,E
s (·)PΓ,E

s v0 for any v0 ∈ Bs(0, ε1) we have that(
∂v0

ΨΓ,E(0, 0)
)
v1 = TΓ,E

s (·)PΓ,E
s v1 for any v1 ∈ XΓ,E

s ∩ XΓ,E
1
2

.

From (4.12) we have that

‖ΨΓ,E(0,u)‖H1
α

= ‖K mod
Γ,E D(u,u)‖H1

α
≤ c(Γ, E)‖D(u,u)‖H1

α
≤ c(Γ, E)‖u‖2H1

α

(4.45)
for any u ∈ Ωα(ε2), which implies that ∂uΨΓ,E(0, 0) = 0. From (4.44) it follows

that
(
Σ′Γ,E(0)

)
v1 = TΓ,E

s (·)PΓ,E
s v1 for any v1 ∈ XΓ,E

s ∩ XΓ,E
1
2

. Since the linear

operator Tr0 : H1
α(R+,X)→ X defined by Tr0f = f(0) is bounded, we have that(

∂v0
u(0; 0)

)
v1 = Tr0Σ′Γ,E(0)v1 = PΓ,E

s v1 for any v1 ∈ XΓ,E
s ∩ XΓ,E

1
2

. (4.46)

Since the D(·, ·) is a bounded, bilinear map on X, from (4.24) and (4.46) we obtain
that((

J Γ,E
s

)′
(0)
)
v1 = PΓ,E

u

(
∂v0

u(0; 0)
)
v1 − 2PΓ,E

s E−1D
(
u(0; 0),

(
∂v0

u(0; 0)
)
v1

)
= PΓ,E

u PΓ,E
s v1 − 2PΓ,E

s E−1D(0, PΓ,E
s v1) = 0 (4.47)

for any v1 ∈ XΓ,E
s ∩ XΓ,E

1
2

. From (4.25) it follows immediately that the manifold

M Γ,E
s is tangent to XΓ,E

s ∩ XΓ,E
1
2

at v0 = 0.

Theorem 4.7. Assume Hypothesis (S). Then, for any integer r ≥ 1 there exists a

local Cr stable manifold M Γ,E
s tangent to XΓ,E

s ∩XΓ,E
1
2

at the origin, expressible as

Cr embeddings J Γ,E
s of XΓ,E

s ∩ XΓ,E
1
2

with norm ‖ · ‖XΓ,E
1
2

into X with the standard

norm, locally invariant under the forward flow of equation Γu′ = Eu+D(u,u) and
expressible as the union of orbits of all mild solutions u ∈ H1(R+,X) such that u
is sufficiently small in H1(R+,X) norm.

Proof. The theorem follows from Lemma 4.3(ii), Lemma 4.5 and the fact that equa-
tion u = ΨΓ,E(v0,u) has a unique solution on H1

α(R+,X) for any v0 ∈ Bs(0, ε1),
α ∈ [0, ν̃] and ν̃ ∈ (0, ν(Γ, E)).

When proving results on existence of nonlinear stable/unstable manifolds in the
case of first-order differential equations on finite dimensional spaces, the manifolds
can be expressed as graphs of Cr functions from Hs/u to Hu/s ⊕ Hc, where Hs,
Hu and Hc are the linear stable, unstable and center subspaces of the linearization
along the equilibria at +∞. In our case we can prove a similar result by combining
the definitions of the function J Γ,E

s in (4.24) and of the manifold M Γ,E
s in (4.25).
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Corollary 2. Assume Hypothesis (S). Then,

M Γ,E
s =

{
v0 − PΓ,E

s E−1D(u(0; v0),u(0; v0)) + PΓ,E
u u(0; v0) : v0 ∈ Bs(0, ε1)

}
.

(4.48)

Proof. To prove the corollary, we use the Inverse Function Theorem to solve for
v0 in the XΓ,E

s component of elements of the manifold. Since the D(·, ·) is a
bounded, bilinear map on X, from (4.46) we obtain that the Fréchet derivative
of the function Y Γ,E

s : {v0 ∈ XΓ,E
s : ‖v0‖ ≤ ε1} → XΓ,E

s defined by Y Γ,E
s (v0) =

v0 − PΓ,E
s E−1D(u(0; v0),u(0; v0)) is

(
Y Γ,E

s

)′
(0) = IXΓ,E

s
. It follows that ε1 can

be chosen small enough such that the function Y Γ,E
s is invertible on {v0 ∈ XΓ,E

s :
‖v0‖ ≤ ε1}. From (4.48) we obtain that

M Γ,E
s =

{
v1 + PΓ,E

u u
(
0; (Y Γ,E

s )−1(v1)
)
∈ XΓ,E

s ⊕ XΓ,E
u : v1 ∈ Y Γ,E

s

(
Bs(0, ε1)

)}
.

(4.49)

Thus, M Γ,E
s = Image(J̃ Γ,E

s ), where the function J̃ Γ,E
s : Y Γ,E

s

(
Bs(0, ε1)

)
→ XΓ,E

u

is defined by J̃ Γ,E
s (v1) = PΓ,E

u u
(
0; (Y Γ,E

s )−1(v1)
)
.

Using Theorem 4.7 we can now prove the main result of this paper, the existence
of stable and unstable manifolds of equation Auτ = Q(u) near the equilibria u±

at ±∞. We recall that the linear operator Sr
± =

(
A22 − A21A

−1
11 A12

)−1
Q′22(u±)

generates an exponentially stable bi-semigroup on V (Theorem 1.2(i)) and that
equation Au′ = Q′(u±)u has an exponential trichotomy on H, with stable/unstable

subspaces denoted Hs/u
± and center subspace V⊥ (Theorem 1.2(ii)). Moreover, we

recall that the pair (Γ, E) = (A22 − A21A
−1
11 A12, Q

′
22(u±)) satisfies Hypothesis (S)

by Lemma 2.1. In this case we have that XΓ,E
1
2

= dom(|SΓ,E |
1
2 ) = dom

(
|(A22 −

A21A
−1
11 A12)−1Q′22(u±)| 12

)
. Finally, we introduce

−ν± := −ν
(
A22 −A21A

−1
11 A12, Q

′
22(u±)

)
< 0

the decay rate of the exponentially stable bi-semigroup generated by the pair
(
A22−

A21A
−1
11 A12, Q

′
22(u±)

)
.

Proof of Theorem 1.3. Making the change of variables w± = u − u± in equation
Auτ = Q(u) and denoting by h± = PV⊥w

± and v = PVw
±, we obtain the system

Ãv±τ = Q′22(u±)v± + D(v±, v±), h± = −A−1
11 A12v

±, as shown in Section 3. Here

Ã = A22−A21A
−1
11 A12 and the bilinear map D : V×V→ V is defined by D(v1, v2) =

B(v1 − A−1
11 A12v1, v2 − A−1

11 A12v2), is bilinear and bounded on V. Since the linear
operator Sr

± generates an exponentially stable bi-semigroup on V, the theorem
follows from Theorem 1.2, Theorem 4.7 and Corollary 2.

Next, we show how we can use Theorem 4.7 to prove that any solution u∗ of
equation Auτ = Q(u) satisfying the condition u∗ − u± ∈ H1(R+,X) converges
exponentially to the equilibria u± at ±∞.

Proof of Corollary 1.4. First, we note that since u∗ is a solution of equation Auτ =
Q(u), we have that Ã(v∗−v±)′ = Q′22(u±)(v∗−v±)+D(v∗−v±, v∗−v±) and h∗ =
−A−1

11 A12v
∗. Using the uniqueness property of solutions along the manifold M±

s/u

given by Theorem 4.7, we conclude that v∗ − v± ∈ H1
α(R±,V) for any α ∈ [0, ν̃],

for some ν̃ ∈ (0,min{ν+, ν−}). Since h∗ = −A−1
11 A12v

∗ we obtain that u∗ − u± =
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(v∗ − v±) − A−1
11 A12(v∗ − v±), which implies that u∗ − u± ∈ H1

α(R±,H), proving
the corollary.

Appendix A. Smooth dependence on parameters of fixed point solutions.
We include for completeness the following standard result, together with its proof,
of smooth dependence on parameters of solutions of fixed point mappings.

Lemma A.1 (Lemma 2.4, [43]). Assume Y and Z are two Banach spaces, and
Ψ : Y×Z→ Z is a continuous function such that Ψ(y, ·) is (locally) contractive for
any y ∈ Y, defining a fixed point map z : Y → Z. If Ψ is Cr (Fréchet sense) on
Y× Z, r ≥ 1, then z is Ck from Y to Z.

Proof of Lemma A.1. (following [43]) Expanding, we have

‖z(y2)− z(y1)‖Z = ‖Ψ(y2, z(y2))−Ψ(y1, z(y1))‖Z
≤ ‖Ψ(y2, z(y2))−Ψ(y2, z(y1))‖Z + ‖Ψ(y2, z(y1))−Ψ(y1, z(y1))‖Z
≤ θ‖z(y2)− z(y1)‖Z + L‖y2 − y1‖Y,

(A.1)
where 0 < θ < 1 and 0 < L are contraction and Lipschitz coefficients, yielding after
rearrangement ‖z(y2)− z(y1)‖Z ≤ L

1−θ‖y2 − y1‖Y. Applying Taylor’s Theorem, we
thus have

z(y2)− z(y1) = Ψy(y2 − y1) + Ψz(z(y2)− z(y1)) + o(‖y2 − y1‖Y
+ ‖z(x2)− z(y1)‖Z)

= Ψy(y2 − y1) + Ψy(z(y2)− z(y1)) + o(‖y2 − y1‖Y),

(A.2)

where all derivatives are evaluated at (x1, z(x1)). Noting that the operator norm
‖Ψz‖ is bounded by the contraction coefficient 0 < θ < 1, we have by Neumann
series expansion that (Id − Ψz) is invertible with uniformly bounded inverse and
‖(Id−Ψz)

−1‖ ≤ (1− θ)−1. Thus, rearranging, we have

z(y2)− z(y1) = (Id−Ψz)
−1Ψy(y2 − y1) + (‖y2 − y1‖Y),

yielding the result for r = 1 by definition of (Frechet) derivative, with

zy = (Id−Ψz)
−1Ψy(y, z(y)). (A.3)

The results for r ≥ 1 then follow by induction upon differentiation of (A.3).
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