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ABSTRACT. We construct stable manifolds for a class of singular evolution
equations including the steady Boltzmann equation, establishing in the process
exponential decay of associated kinetic shock and boundary layers to their
limiting equilibrium states. Our analysis is from a classical dynamical systems
point of view, but with a number of interesting modifications to accomodate
ill-posedness with respect to the Cauchy problem of the underlying evolution
equation.

1. Introduction. In this paper we study decay rates at infinity of (possibly) large-
amplitude relaxation shocks
u(z,t) = u*(z —st), lim u(r) =u*, (1.1)

T—+o0

of kinetic-type relaxation systems
Apuy + Auy = Q(u), (1.2)

on a general Hilbert space H, where Ay, A are given (constant) bounded linear
operators and () is a bounded bilinear map. More generally, we study existence and
properties of stable/unstable manifolds for a class of singular evolution equations
arising through the study of such profiles.

Making the change of variables 7 = x — st we obtain that the profiles u* satisfy
the equation (A — sAp)u, = Q(u). By frame-indifference, we may without loss of
generality take s = 0, yielding

Au, = Q(u). (1.3)
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We are interested in the singular case, as arises for example for Boltzmann’s equa-
tion [5, 16, 17, 26], that the linear operator A is self-adjoint, one-to-one, but not
invertible.

This is a crucial point of the current paper, since in the case when the linear
operator A has a bounded inverse, one would reduce equation (1.3) to an evolution
equation with bounded linear part, that can be treated similarly as in the case of
nonlinear equations on finite dimensional spaces. The case at hand, when the linear
operator A does not have a bounded inverse, requires a different approach, since
(1.3) or its linearization along equilibria might not be well-posed; therefore it is
not clear if one can use the usual variation of constants formula to look for mild
solutions. Rather, we use the frequency domain reformulation of these equations
following the approach in [14] and [15].

Other cases of non-well-posed equations in the sense that they do not generate
an evolution family either in forward or backward time on the entire space, arise
in the study of modulated waves on cylindrical domains (see [29, 35, 36]), Morse
theory (see [1, 2, 33|, the theory of PDE Hamiltonian systems (see [34]), and the
theory of functional-differential equations of mixed type (see [18]). The particular
form (1.3), however, in which the singularity arises through the coefficient of the
T-derivative with other terms bounded, does not seem to have been treated before,
and does not appear to be amenable to the methods of these previous works; see
the discussion of Section 1.4.1. This is the class of singular evolution equation to
which we refer in the title of the paper.

The examples we are interested in arise in certain kinetic and discrete kinetic
relaxation approximation models, in particular, the Boltzman equation

ft+§1fz:Q(f)7 $€R1,£€R37 (14>

where f = f(t,x,&) denotes density at time ¢, spatial point = of particles with
velocity ¢ and @ is a bilinear collision operator (cf. [10]). After rescaling by
(&) := /14 |£]%, (1.4) can be put in form (1.2), with A is equal to the operator of
multiplication by the function & /(¢) and H an appropriate weighted L? space' in
the variable €. For details of this reduction, see [26]. In [24, 25, 26, 37], Métivier,
Texier and Zumbrun obtained existence results for a somewhat larger class of mod-
els of shocks with small amplitude € := ||u™ —u~ ||, in particular yielding exponential
decay rates as 7 = (z — st) — +oo; see also the earlier papers [5, 16] in the specific
case of Boltzmann’s equation. These results were obtained by fixed-point iteration
on the whole line, using in an essential way the small-amplitude assumption to con-
struct initial approximations based on a formal fluid-dynamical approximation by
Chapman-Enskog expansion.

Here, our interest is in treating large-amplitude profiles, without a priori informa-
tion on the shape of the profile, by dynamical systems techniques that would apply
also in the case of boundary layers, where the solution is not necessarily defined
on the whole line. Our larger goal is to develop dynamical systems tools analogous
to those of [9, 21, 22, 23, 38, 39, 40, 41, 44, 45], sufficient to treat 1- and multi-D
stability by the techniques of those papers. See in particular the discussion of [40,
Remark 4.2.1(4), p. 55], proposing a path toward stability of Boltzmann shock pro-
files. For this program, the proof of exponential decay rates and the establishment

I Namely, the standard choice weighted by the square root of the Maxwellian at u® (resp. u™)
as in [10, 26].
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of a stable manifold theorem are essential first steps. For a corresponding center
manifold theorem, see [32].

1.1. Assumptions. In [26, Section 4] it is shown that the Boltzman equation with
hard-sphere potential can be recast as an equation of form (1.2) where the linear op-
erator A and the nonlinearity @ satisfy the hypotheses (H1)-(H2) below. Following
[26], we assume these throughout.

Hypothesis (H1) The linear operator A is bounded and self-adjoint on the Hilbert
space H. There exists V a proper, closed subspace of H with dim V' < oo and
B :H xH — V is a bilinear, symmetric, continuous map such that Q(u) = B(u, u).

Hypothesis (H2) At u® (necessarily equilibria, Q(u*) = 0), linearized operators
Q' (u*) satisty (i) Q' (uT) is self-adjoint and ker Q" (u*) = V+, and (ii) There exists
d4+ > 0 such that Q'(ui)w < b4 1y.

We adjoin to (H1)-(H2) the following two hypotheses, also satisfied for Boltz-
mann’s equation.

Hypothesis (H3) The linear operator A is one-to-one.

Hypothesis (H4) The linear operator Py. Ay is invertible on the finite dimen-
sional space V1, where Py. denotes the operator of orthogonal projection onto
V.

Hypothesis (H3) for Boltzmann’s and related kinetic equations reflects the fact
that A is a multiplication operator on a weighted L? space, possessing only essential
and no point spectrum. Hypothesis (H4) amounts to the assumption that the associ-
ated finite-dimensional linearized equilibrium flow Py (Ag)y.hs + Pyt Ayihg, =0
of (1.2) about u* be noncharacteristic, where h := Py u. It is readily seen to be the
condition that the center subspace of the linearized flow of (1.3) about u* consist
entirely of the trivial, equilibrium subspace V+, which is the condition under which
we may expect exponential decay to equilibrium; see [17, 32] for further discussion.

1.2. Results. First, we show that linearized equation Au’ = Q'(u®)u is equivalent
to an equation of the form «' = Su, where S generates not a CY-semigroup, but
rather a bi-semigroup [3, 14].

Definition 1.1. The linear operator S is said to generate a bi-semigroup if it has
the decomposition S = Sy @ (—S2) on a direct sum decomposition of the entire
space H = H; & Ha, where S;, j = 1,2, generate C%-semigroups on Hj;, j = 1,2.
The bi-semigroup is called stable if the semigroups generated by S;, j = 1,2 are
stable on H;, 7 =1, 2.

We recall that the first order linear differential operator with constant coefficients
0, — S is invertible on function spaces such as L?(R,H) if and only if the equation
u' = Su has an exponential dichotomy on R. We note that for any ug € V* the
function u(7) = ug is a solution of equation Au’ = Q'(u*)u. Therefore, equation
Au' = @Q'(u)u does not have an exponential dichotomy on the entire space H;
instead it exhibits an exponential dichotomy on a direct complement of the finite
dimensional space V1. To prove this result, we reduce the equation by using the
decomposition

An A12] 1 1 it [0 0
A= VeV o Viey, _
{ Q=10 Q)

VeV = Vigv.
Ay Ap ] © ©
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Indeed, if u is a solution of equation Au’ = Q'(u*)u, then the pair (h,v) defined by
v = Pyu and h = Py. u, satisfies the system

(A22 — AglAl_llAlg)’Ul = Q;z(ui)v, h = 7A1_11A12’U.

We introduce the linear operators S} = (Aa2 — A21A1_11A12)*1 gg(ui). These
are densely defined, and indeed generate bi-semigroups. Our dichotomy results are
summarized in the following theorem.

Theorem 1.2. Assume Hypotheses (H1)-(Hj). Then,
(i) The bi-semigroup generated by S = (Agy — Aoy AT A1)~ Qho (u™) is expo-
nentially stable on V;
(ii) The linear space H can be decomposed into linear stable, center and unstable
subspaces, H = V- @ HS. © HY such that
(a) for any ug € V* the function u(t) = ug is a solution of equation Au' =
Q' (u)u;
(b) for any ug € HS. the solution of equation Au' = Q'(u®)u on Ry with
u(0) = ug decays exponentially at +o0o;
(c) for any ug € HY the solution of equation Au' = Q'(u®)u on R_ with
u(0) = ug decays exponentially at —oco.

From this point, we turn our attention towards our main goal, the existence of
stable/unstable manifolds of solutions of equation (1.3) near the equilibria u™ /u~,
respectively. The first step is to show that this equation can be reduced to an
equation of the form

I'd’ = Eu+ D(u,u), (1.5)
where D(-,-) is a bounded, bilinear map, T" is a one-to-one, self-adjoint, bounded
linear operator, F is a self-adjoint, bounded, negative definite and the linear oper-
ator I "1 E generates a stable bi-semigroup {TSF/’UE(T)}TZO on a Hilbert space X. To
construct the manifolds, we introduce a notion of mild solutions of equation (1.5)
on R using the results from Theorem 1.2. Next, we apply, formally, the Fourier
transform in (1.5) and then we solve for .Zu. In this way we obtain that mild
solutions of equation (1.5) on say R, satisfy equation

u(r) = TSF’E(T)U(O) + (:%/1“7ED(11,11))(T), > 0. (1.6)

Here Jfr g is the Fourier multiplier defined by the operator-valued function de-
fined by Rr g(w) = (2riwl’ — E)~!. The linear operator ¢ g is well-defined and
bounded on L?(R,X). To construct stable manifolds of evolution equations on
finite-dimensional spaces, one uses a fixed point argument to solve equation (1.6)
on the space Cy(R,X), of continuous functions decaying at +oo, or on L (R,X).
However, in our infinite-dimensional case such an argument does not seem to be
possible, since the Fourier multiplier %t g cannot be extended to a bounded linear
operator on L (R, X), see Example 3.4. Therefore, a crucial point of our construc-
tion is to find a proper subspace of L*°(R,X) that is invariant under J#r g. Since
the operator-valued function Rr g is bounded, one can readily check that H!(R,X)
is invariant under % . However, equation (1.6) is a functional equation on the
half-line, not the full line. Moreover, since not every trajectory of the operator val-
ued function Rr g belongs to L*(R,X), it turns out that the space H' (R, X) is not
invariant under #r g. To deal with this setback, we parameterize equation (1.6).
In Section 3 we find solutions u such that u(0) = vo — E~1D(u(0),u(0)) where
vy is a parameter in a dense subspace. Substituting in equation (1.6), we conclude
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that to construct our stable/unstable manifold it is enough to prove existence of
solutions of equation

u=T1;5() P Fvo + (A pD(wu) g, — I3 () P PET D(u(0), u(0), (1.7)

S

where PI'E denotes the projection onto the stable subspace X.# parallel to the
unstable subspace XL'£. An important step of our construction is to find an appro-
priate subspace of parameters v such that the trajectory TI#(-)PI'"Fvq belongs
to H'(R,,X). To achieve this goal, we use that the linear operators I' and E are
self-adjoint and bounded, hence the bi-semigroup generator I' "' E is similar to a
multiplication operator by a real valued function bounded from below on some L2

space. See Section 3 for the details of this construction.

Theorem 1.3. Assume Hypotheses (H1)-(H4). Then, for any integer r > 1 there
exists a C" local stable manifold ;" near u™ and a C” local unstable manifold
M mear u”, expressible in wF = u — uF as C" embeddings F and Z of

H ﬂdom(|/171Q’22(u+)|%) and H ﬂdom(M*lQ’ﬂ(u*)ﬁ) with norms

1l g (21 agy a3y = (121 + (1A Qo ()11 )

into H with the standard norm, that are locally invariant under the forward flow of
equation Au' = Q(u) and expressible as the union of orbits of all solutions w* €
H'(Ry,H) such that wt is sufficiently small in H'(Ry,H) norm. (Recall that
A=Ay — A21A1_11A12)-

Finally, we use this result to prove that H' shock or boundary layer profiles
decay exponentially.

Corollary 1. Assume Hypotheses (H1)-(Hj). Let u* € H*(R,H) be a solution of
equation Au, = Q(u), H'-convergent to u™ in the sense that u* —u* € H' (R, H),
and let —vy := —y(fl, Q’QQ(ui)) < 0 be the decay rate of the bi-semigroup generated
by the pair (A, Qbo(uF)). Then, there exist o € (0, min{vy,v_}) such that u*—u* €
HL(Ry,H). In particular, there exists a > 0 such that |[u*(7) — u*|| < c¢(a)e=I7!
for any T € Ry.

1.3. Applications to Boltzmann’s equation. As mentioned above, the assump-

tions (H1)-(H4) of Section 1.1 are abstracted from, and satisfied by, the steady
Boltzmann equation with hard sphere collision potential [26], after the change of co-

ordinates f — (€)'/2f, Q = ()7/2Q({&)7/2.), (€) == /1 +[€]%, with A equal to
the operator of multiplication by the function & /(£). The Hilbert space H is deter-
mined by the slight strengthening of the classical square-root Maxwellian weighted

norm || f|lg := ||<->1/2M7:+1/2(-)f(-)||L2 (used in the construction of the stable mani-
fold near w™), and || f||g := ||(-)1/2M;,1/2(-)f(-)||L2 (used in the construction of the
unstable manifold near u™) [6, 10, 26], where
M, (&) = plame/3) =32 60l ae/5 ™0
denotes the Maxwellian distribution indexed by the hydrodynamic moments,
u=(p,v7,e)T €R®

with p corresponding to density, v € R? velocity, and e internal energy. See [6, 10]
for further discussion, and [26] for a detailed treatment of the reduction to form
(1.2) considered here.
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Thus, Theorem 1.3 and Corollary 1 apply in particular to this fundamental case.
More generally, they apply to Boltzmann’s equation with any collision potential, or
“cross-section”, for which (H1)—(H4) are satisfied in the coordinates above, with the
crucial aspects being boundedness of the nonlinear collision operator as a bilinear
map and spectral gap of the linearized collision operator. This includes besides the
hard-sphere potential also the hard cutoff potentials of Grad [5, 26].

For the class of admissible cross-sections defined implicitly by (H1)-(H4), Corol-
lary 1 implies exponential decay of H 110 . Boltzmann shock or boundary layer profiles
of arbitrary amplitude, so long as such profiles (i) exist, (ii) are uniformly bounded,
and (iii) converge to their endstates in the weak sense that u* —u™ lies in H* (R4, H).
This fundamental property, a cornerstone of the dynamical systems approach to sta-
bility developed for viscous shock and relaxation waves, had previously been been
established for kinetic shocks only in the small-amplitude limit [16, 26].

However, we do not here establish existence of large-amplitude profiles; indeed,
the “structure problem,” as discussed by Truesdell, Ruggeri, Boillat, and others
[4], of existence and structure of large-amplitude Boltzmann shocks, is one of the
fundamental open problems in the theory.

1.4. Discussion and open problems. In our analysis, the Hilbert structure of H
and symmetry of A and Q'(u%) play an important role; see (H1)-(H2). This struc-
ture is implied, for example, by existence of a convex entropy for system (1.2) ([7]).
In the case of the Boltzmann equation, it is related to increase of thermodynamical
entropy and the Boltzmann H-Theorem; see [26, Notes on the proof of Proposition
3.5, point 2]. In the finite-dimensional setting, Hypotheses (H1) and (H2) reduce
essentially to the stability and Kawashima conditions of [8] (see (hl)-(h4) of the
reference).

Further insight may be gained using the invertible coordinate transformation
(—E)'/? and spectral decomposition of (—E)~/?T(=E)~/? to write the reduced
system T'u’ = Eu + D(u,u) of (1.5) formally as a family of scalar equations

(ax0r — 1)uy = Dy(u,u), (1.8)
indexed by A, where u, is the coordinate of u associated with spectrum ), real,
in the eigendecomposition of (—FE)~Y/2I'(-E)~1/2, with |[ul|2 = [ |us|>dus, where
dp(N) denotes the spectral measure associated with (—E)~'/2T(=E)~1/2 and a,
are bounded with an accumulation point at 0. In the first place, we see directly

that (I'd, — E) is boundedly invertible on L?*(R,X), with resolvent kernel given in
u), coordinates by the scalar resolvent kernel

R(7,0) = ay te=923" whenever (7 — 0)ay < 0, (1.9)

which is readily seen to be integrable with respect to T, hence bounded coordinate-
by-coordinate.

On the other hand, we see at the same time that the operator norm of the full
kernel R with respect to L?(u) is

-1
|R(T,0) || 2(uysr2(uy = sup  Jaytelm=Doa (1.10)
Oz)\(‘l'—g)<0

yielding the upper bound [|R(7,0)||12()—r2(n) S 1/|7 — 0] for all 7 # 6. When T
does not have a bounded inverse, i.e., there exists a sequence ay; — 0 such that
[ax; /2, 2ay;] has positive spectral measure we obtain also the lower bound

||R(T)0)HL2([_L)*>L2(,UI) Z 1/|7’ — 9| fort—0 = Qa — O7
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showing that || R(7,0)| 12 (u)—r2(u) is unbounded.

Likewise, a construction as in Example 3.4 shows, when I' does not have a
bounded inverse, that I'0; — E is not boundedly invertible on L (R, X), motivating
our choice of spaces H!'(R,X), H'(R,,X) in the analysis, rather than the usual
L (R, X). This implies, by contradiction, that the operator norm of the resolvent
kernel is not only unbounded but non-integrable (cf. [42]).

Using the finite-dimensional variation of constants formula scalar mode-by-scalar
mode, we may, further, express (1.8) as the fixed point equation

uy(r) = eo‘ngHSuA(O) +/ Hsagleo‘il(T’e)DA(u(G), u(#))do
0

+o00 .
- / Mya; e =9 D, (u(6), u(6)) do, (1.11)

where Iy and IIg denote projections onto the stable and unstable subspaces deter-
mined by sgnay. In (1.11) and (1.12) below we denote the spectral components of
s/ g by Ilg/yga for any g € L?(1), slightly abusing the notation. From (1.11) we
find after a brief calculation/integration by parts the derivative formula

u\ (1) = oz)fleo‘ilT (HsuA(O) + Dy (u(0), u(())))

+ / Msa; e =9 D) (u(6), u(9)) do
0
+oo 1
- / Myay e =9 D) (u(h),u(d)) dd, (1.12)

which shows that u € H'(R,, L?(p)) only if agleo‘ngHs (ur(0)+Dx(u(0),u(0))) €
L2(R,, L2(), or

I (u(0) + Da(u(0),u(0))) € dom((—E)~/20(~E)~/2)1/2.

This is quite different from the usual finite-dimensional ODE or dynamical systems
scenario, and explains why we need to take some care in setting up the H! (R, ,X)
contraction formulation. In particular, we find it necessary to parametrize not by
ITsu(0) as is customary in the finite-dimensional ODE case, but rather by IIgvg :=
ITs (ux(0) + Dx(u(0),u(0))) where u}(0) = a; 'vo.

1.4.1. Relation to previous work. The issue of noninvertibility of A for relaxation
systems (1.2) originating from kinetic models and approximations was pointed out
in [19, 20, 40]. This issue has been treated for finite-dimensional systems by Dressler
and Yong [8] using singular perturbation techniques; see also [11, 12, 28]. These
analyses concern the case that A has an eigenvalue at zero, and are of completely
different character from the analysis carried out here of the case that A has essen-
tial spectrum at zero, i.e., an essential singularity; they are thus complementary to
ours. In the present, semilinear setting, the case that A has a kernel is particularly
simple, giving a constraint restricting solutions (under suitable nondegeneracy con-
ditions) to a certain manifold, on which there holds a reduced relaxation system of
standard, nonsingular, type. For Boltzmann’s equation (1.4), Liu and Yu [17] have
investigated existence of invariant manifolds in a weighted L*°(z,£) Banach space
setting, using time-regularization and detailed pointwise bounds.

As noted earlier, the treatment of ill-posed equations u’ —Su = f, and derivation
of resolvent bounds via generalized exponential dichotomies, has been carried out
in a variety of contexts [1, 2, 29, 33, 34, 35, 36]. The essential difference here is that
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the corresponding resolvent equation T'u’ — Eu = f associated with (1.5) rewrites
formally in the more singular form

u-—-Su=TI"1f S=Tr"1E,

for which the singularity I'~! enters not only in the generator S but also in the
source. Thus, the solution operator is not the one (9, — S)~! deriving from (gen-
eralized) exponential dichotomies of the homogeneous flow, but the more singular
(P9, — E)~! of (1.6), or, formally, the unbounded multiple (9, — S)~!T'~1. This
explains the new features of unboundedness/nonintegrability of (the operator norm
of) the resolvent, alluded to below (1.10).

1.4.2. Open problems. Our H' analysis suggests a number of interesting open ques-
tions. The first regards smoothing properties of the profile problem. In the finite-
dimensional evolution setting, regularity of solutions is limited only by regularity
of coefficients; here, however, that is not true even at the linear level. Certainly,
for further (e.g., stability) analysis, we require profiles of at least regularity H®,
and likely higher. Our arguments can be modified to construct successively smaller
stable manifolds in H*(Ry,H), any s > 1, but for constructing profiles one would
like to intersect unstable/stable manifolds that are as large as possible, thus in the
weakest possible space. Hence, it is interesting to know, for H! profiles of (1.1)
defined on the whole line, as opposed to decaying solutions defined on a half line,
is further regularity enforced? For small-amplitude profiles, “Kawashima-type” en-
ergy estimates as in [25, 26] show that the answer is “yes.” A very interesting open
question is whether one can find similar energy estimates in the large-amplitude
case yielding a similar conclusion. For related analysis in the finite-dimensional
case, see [23].

A second question in somewhat opposite direction is “what is the minimal reg-
ularity needed to enforce exponential decay?” Specifically, we have shown that
solutions of (1.3) that are sufficiently small in H'(R,,H) must decay pointwise
at exponential rate; moreover, they lie on our constructed local H' stable man-
ifold. What about solutions that are merely small in L*°? A very interesting
observation due to Fedja Nazarov [27] based on the indefinite Lyapunov functional
relation (u, Au)’ = (u, Q' (u*)u) — o(||ul|%) yields the L2-exponential decay result
eP||lu(-)|| € L?(Ry4.) for some 8 > 0, hence (by interpolation) in any L?, 2 < p < co.
However, it is not clear what happens in the critical norm p = oo; it would be very
interesting to exhibit a counterexample or prove decay.

A glossary of notation. For p > 1, J C R and X a Banach space, LP(J,X) are
the usual X-valued Lebesgue spaces on J, associated with Lebesgue measure d7 on
J. Similarly, LP(J,X;w(7)d7) are the weighted spaces with a weight w > 0. The
respective spaces of bounded continuous functions on J are denoted by C,(J, X) and
Cyo(J,X;w(r)). H*(R,X), s > 0, is the usual Sobolev space of X valued functions.
In the sequel we also use the notation HS(R,X) = {f : e®l'lf € H*(R,X)}. The
identity operator on a Banach space X is denoted by I (or by Ix if its dependence on
X needs to be stressed). The set of bounded linear operators from a Banach space
X to itself is denoted by #(X). For an operator T on a Hilbert space we use T,
dom(T), ker T, imT', o(T), p(T), R(A\,T) = (A—T)~"! and T}y to denote the adjoint,
domain, kernel, range, spectrum, resolvent set, resolvent operator and the restriction
of T to a subspace Y of X. If B : J — #(X) then Mp denotes the operator of
multiplication by B(-) in LP(J,X) or Cy(J,X). If X; and Xy are two subspaces of
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X, then X; @ X5 denotes their direct (but not necessarily orthogonal) sum. The
Fourier transform of a Borel measure y is defined by (Fpu)(w) = [p e 2™ “dp(x).

2. Stable bi-semigroups and exponential dichotomies of the linearization.
In this section we study the properties of the linearization of equation (1.3) (with

s = 0) at the equilibria u®:

L% = A0, — Q' (u¥). (2.1)
We can view the differential expression .#* as a densely defined, closed operator on
L?(R,H) with domain dom(£*) = {u € L*(R,H) : Au' € L*(R,H))}. Throughout
this section we assume Hypotheses (H1)-(H4).
It is well-known, see e.g. [13, 14], that the invertibility of Z* on L?*(R,H) is
equivalent to the exponential dichotomy on H of equation

Au' = Q' (uF)u. (2.2)

Remark 1. Under assumptions (H1) and (H2), the linear operator £+ is not
invertible on L?(R,H). Indeed, one can readily check that the linear operator
£%* is invertible on L?(R,H) with bounded inverse if and only if the operator

of multiplication by the continuous, operator valued function .,?\i(w) = 2miwA —
Q'(u*) is invertible on L?(R,H) with bounded inverse. From the later we can infer
that Q' (u) is invertible on H, which contradicts Hypothesis (H2).

We note that for any ug € V*+ the constant function u(7) = ug is a solution
of equation (2.2). Hence, (2.2) cannot exhibit an exponential dichotomy on the
entire space H. In this section we prove that equations (2.2) exhibit an exponential
dichotomy on a direct complement of the finite dimensional space V+. Using the
decomposition

A A
A =
{Am Ago

0 0

. wl 1 -
].V eV —- V-aV, Q(U )— [0 lez(ui)

] ViRV — ViV

(2.3)
and denoting by v = Pyu and h = Py.u, one can readily check that equation (2.2)
is equivalent to the system

Aplh' + A" =0,
Ao W + Agav’ = Qb (u®)v.

We note that Hypothesis (H4) holds if and only if the linear operator A1; is invertible
on V1. Integrating the first equation, we obtain that solutions u = (h,v) of (2.4)
that decay to 0 at +o0, satisfy the conditions

h = 7A1_11A12’U,
Ath/ + AQQU/ = Q/QQ(’U,i)’U.

(2.4)

(2.5)

To prove that equation (2.2) has an exponential dichotomy on a complement of V+
it is enough to show that equation

(A2 — Az Apf Ara)v’ = Qi (u™)v (2.6)
is equivalent to an equation of the form v’ = Su, where the linear operator S
generates a stable bi-semigroup on V. We recall that a linear operator generates a
bi-semigroup on a Banach or Hilbert space X, if there exist two closed subspaces X,
J=1,2,of X, invariant under S, such that X = X;&X; and Sy, and —S|x, generate
C-semigroups on X, j = 1,2. We say that the bi-semigroup is exponentially stable
if the two semigroups are exponentially stable. In the following lemma we collect
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some of the properties of the operator valued coefficients of the reduced equation
(2.6).
Lemma 2.1. Assume Hypotheses (H1)-(H4). Then,

(i) The linear operator A= Aoy — A21A1_11A12 is self-adjoint and one-to-one;
(ii) The linear operator Qb (u™) is invertible with bounded inverse on V.

Proof. (i) Since the linear operator A is self-adjoint, from decomposition (2.3),
we obtain that A%, = Ay;, A}, = Agy and A%, = Api, which implies that A is
self-adjoint. To show that A is one-to-one, we consider v € ker A and denote by
h = *Al_llAlg’U € V1. Using again the decomposition (2.3), one can readily check
that A(h +v) = 0. From Hypothesis (H3) we infer that h = —v. Since v € V
and h € V1 we conclude that v = 0, proving (i). Since Qb,(u¥) is self-adjoint and

Qb (ut) < =1 Iy by Hypothesis (H2), assertion (ii) follows shortly. O
Next, we note that equation (2.6) is of the form:
I'u' = Fu, (2.7)

where the linear operators I" and FE satisfy the following Hypothesis (S) below. In
what follows we treat equation (2.7) which is more general than (2.6). In particular,
we will show our bi-semigroup result without assuming that the linear operator I is
obtained from the linear A satisfying Hypotheses (H1)—(H4) by the row-reduction
method. Our goal is to prove that equation (2.7) is equivalent to an equation of the
form w' = Sp gu, where the linear operator St g generates a exponentially stable
bi-semigroup.
Hypothesis (S) We assume that X is a Hilbert space and the bounded linear
operators I', E € B(X) satisfy the following conditions:

(i) T is self-adjoint and one-to-one;

(ii) The linear operator E is self-adjoint and E < —{Ix, for some § > 0.

Since the linear operators I' and E are bounded, one can readily check that the
linear operator

Srp=T"'E:dom(Srg) = {u€X: Fu€iml'} — X, (2.8)

is closed on X. In the next lemma we prove that Sr g is hyperbolic and the basic
estimates satisfied by the norm of the resolvent operators. To formulate the lemma,
we introduce the operator valued function 2t g : R — #(X) defined by 21 p(w) =
2miwl’ — F.
Lemma 2.2. Assume Hypothesis (S). Then,
(i) The linear operator £ g(w) = 2miwl — E is invertible on X for any w € R;
(ii) supycg | L, p(w) ™| < oo
(iii) iR C p(Sr.g) and R(27iw, St g) = (27iw — Spr p)~! = (.ZF)E(w))_lf for all
w e R;

(iv) There exists ¢ > 0 such that || R(27iw, Sr g)|| < for allw € R.

1+c|w\
Proof. To prove (i) and (ii), we note that since I and E are self-adjoint operators
we have that Re.Zt g(w) = —F for any w € R. We obtain that

Re( % g(w)x,x) = —(Ex,x) > §||x||* forany w€R,x€X, (2.9)
which implies that
|-Zr . e(w)x|| > 0||x|| forany weR,xeX. (2.10)
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It follows that %t g(w) is one-to-one and im %t g(w) is closed in X for any w € R.
Moreover, from (2.9) we infer that ker £t g(w)* = {0} for any w € R, proving (i).
Assertion (ii) is a consequence of (2.10).

Assertion (iii) follows from (i) and the definition of Sr g in (2.8). Indeed, since
['Sr pu = Eu for any u € dom(Sr ) one readily checks that (.i”p,E(w))_lF(Qﬂiw -
Sr.g)u = u for any u € dom(Sr g). Moreover, since the linear operators I' and
E are bounded, we have that E(27riwl’ — F)~! = 2miwl(27riwl — E)~! — I, which
implies that

E(ﬁr,E(w))‘lru = E(2miwl — E) " 'Tw = 27iwl’(27iwl — E) " 'Tu — Tu € imD
(2.11)
for any v € X. It follows that ($p7E(w))_lFu € dom(Sr ) and

SP,E(XF,E(w))_lfu = 27w (2miwl — E) ' Tu —u
for any u € X, proving (iii).

Proof of (iv). Using the same argument used to prove the resolvent equation, one
can show that

(2miw I — E) ™! — (2miwel — E) 7! = 27i(wg — wy) (27iw T — E) 71T (2miw, I — E) 1

(2.12)
for any wy,ws € R. Setting w1 = w, wy = 0 and multiplying the equation by F from
the right we obtain that

(27wl — E) " E 4 I = 2riw(27iwl — B)7'T' = 2riwR(27iw, Sr k) (2.13)
for any w € R. Assertion (iv) follows readily from (ii) and (2.13). O

Next, we prove that the linear operator St g generates a bi-semigroup by making
use of the structure of the linear operators I' and F, especially the fact that these
operators are self-adjoint.

Lemma 2.3. Assume Hypothesis (S). Then, the linear operator Sr g is similar to
an operator of multiplication by some real-valued, measurable function Hr g : A —
R, such that |Hr g| is bounded from below, on L*(A, ), where (A, i) is some mea-
sure space. Therefore, Sr g generates an exponentially stable bi-semigroup, having
the representation:

Xg’E = UE’EL2(A77/~L)1 XEE = UI:,1E'L2(A+7M)a (214)

7.0 (1) = Up p 1o, (1)Ur i x5 for any T >0. (2.15)
Here Up.p € B(X,L?(A, pn)) is invertible with bounded inverse, Ay = {\ € A :

+Hr g(\) > 0} and the C°-semigroups {fsl;hE(T)}TZO are defined by

(TE2 () F) () = e M F), 20, xe A, Fe LA, p);

(fur’E(T)f) (A =e THEN FON) >0, e Ay, fe LAy, p).  (2.16)

Proof. Since the linear operator E' is bounded, self-adjoint, invertible and negative-
definite, we have that E = (—E)% is a bounded, self-adjoint, invertible linear oper-
ator on X. One can readily check that

ESrpE~'=EI'EE~!' = —ET'E. (2.17)



12 ALIN POGAN AND KEVIN ZUMBRUN

Since the linear operator I and E are self-adjoint, we obtain that the linear operator
ESF’EE_1 is self-adjoint. It follows that the linear operator LN?SF’EE_1 is unitarily
equivalent to an operator of multiplication on some L? space. Therefore, there
exists a measure space (A, ut), a real-valued, measurable function Hr g : A — R and
a unitary, bounded, linear operator Vr g : X — L%(A, i) such that ESREE*I =
Vp_,;;MHF,EVF,E- It follows that

SF,E = UEIEMHF,EUI_"E’ where UF,E = VF,EE' S %(X7 LQ(A,M)). (2.18)

Since Vr g is a unitary operator and Eis invertible, we immediately infer that Ur g
is bounded with bounded inverse.

Next, we prove that the function |Hr g| is bounded from below. From (2.18) and
Lemma 2.2(iii) we conclude that

iR C p(Sr.) = p(Mp,. ) and  R(2miw, Sr.p) = Ur p R(2miw, My, ,)Ur &

(2.19)
for any w € R. From (2.19) and Lemma 2.2(iv) we obtain that

1 c

esssuUPycp o — Hrp O] = [[R(27iw, My, )| < T+ o] for all w e R,
(2.20)
which implies that there exists v = v(T', E)) > 0 such that
|Hr,g(A)| > v for pr almost all A € A. (2.21)

The representation (2.18) holds true when we modify the function Hr g on a set
of p-measure 0, therefore we can assume from now on that the inequality (2.21) is
true for any A € A.

From (2.18) we can immediately infer that Sp g generates a bi-semigroup. Defin-
ing Ay :={A € A:£Hp g(\) > 0}, from (2.21) we immediately conclude that

Ar={AeA:xHrg(N\)>v}, A=A UA_, A.NA_=0. (2.22)
It follows that L*(A,u) = L?*(Ay,p) @& L?*(A—,p). One can readily check that
My, s Hr g the operators of multiplication by the functions +xx_ Hr g generate

two CY-semigroups on L?(A4, i) given by (2.16). Here XA denotes the character-
istic function of the set Ay. Assertions (2.14) and (2.15) are direct consequence
of representation (2.18). Finally, from (2.16) and (2.21) we conclude that the C°

semigroups {fsl;’uE(T)}TZQ, and thus {TSF/’UE(T)}TEO, are exponentially stable. O

We note that the main idea used to obtain the representation (2.18) is based
on the unitary equivalence of self-adjoint operators to multiplication operators,
which is spectral in nature. Thus, it is natural to refer to functions in L2(A, p)
as spectral components of the generator Sr g. In the next lemma we give a spec-
tral representation of the operator valued function Rr g : R — Z(X) defined by
RRE(LU) = (271'in — E)_l.

Lemma 2.4. Assume Hypothesis (S). Then,
(i) The linear operators Ur g and E satisfy the identity

Ur,gE7'Up g = —Idrz2a ) (2.23)
(1) The operator-valued function Rr g has the following representation

Rr p(w) = E7'Sf g R(27iw, St ) = E‘lUﬁ’Eﬁp’E(w)(Uﬁ’E)_l (2.24)
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for any w € R, where RF,E ‘R — B(L2(A, ) is given by

(EF,E(w)f)(A) = Mf(x), weRNEA, feL*(Ap). (225

Proof. (i) Since the linear operator Vi i € Z(X, L*(A, i) is unitary, E2 = —F and
Ur g = Vr,gE one can readily check that
Ur.pE~'Uf g = Vo pEE (Ve pE)" = —(Ve g E")EVY g = Vo 5V
— —Tdp2(a - (2.26)
Proof of (ii). From Lemma 2.2(iii), the definition of the linear operator Sr g in
(2.8) and Hypothesis(S)(i)-(ii) we obtain that R(2miw, St ) = (2miw — St gt =
I'Rr g(w) for any w € R, which implies that
St p(2riw — Sf p) 7t = SF pTRr p(w) = ERp p(w) forany weR.  (2:27)
Moreover, from (2.18) we infer that
SF‘,E(27Tiw - SIT‘,E)i1 = UF,EMHF,E(27Tiw - MHP,E)il(UF,E)il
= Uf plir 5 (@) (UF 5) ™! (2.28)
for any w € R. Since F is invertible by Hypothesis (S) (ii), assertion (2.24) follows
from (2.26), (2.27) and (2.28). O

To conclude this section, we use Lemma 2.3 to prove Theorem 1.2. We recall the
definition of the linear operators

L = A Qhy(u®). (2.29)

Proof of Theorem 1.2. From Lemma 2.1 we have that the linear operators A =
Agy — Ag1 AT Arg and Qb (u™) satisfy Hypothesis (S). Assertion (i) follows directly
from Lemma 2.3. Since equation (2.2) is equivalent to the system (2.5), we infer that
assertion (ii) follows readily from (i). Moreover, if we denote the stable/unstable
spaces of equation (2.6) by Vi/u, then the stable/unstable subspaces of equation
(2.2) are given by the formula

HY" = {(h,v) e V* @V : h = —A;]' A1o0, v e VY"}. (2.30)
One can readily check that H = V+ @ HE @ HY, proving the theorem.

3. Solutions of general steady relaxation systems. In this section we analyze
the qualitative properties of solutions of the steady equation

Aur = Q(u) (3.1)

in H satisfying lim, 4. u(7) = u* and its linearization along u*. In particular,
we are interested in describing the smoothness properties of these solutions. Also,
it is interesting to consider all of these equations on R4, respectively. Making the
change of variable w* (1) = u(7) — u* in (3.1) we obtain the equations

AwE(r) = 2B(ut, wE (1)) + Q(w*(7)). (3.2)

Here, we recall that Q(u) = B(u,u) is bilinear, symmetric, continuous on H.
Moreover, since the range of the bilinear map B is contained in V, denoting by



14 ALIN POGAN AND KEVIN ZUMBRUN

h* = Pyow® and v* = Pyw*, we obtain that equation (3.2) is equivalent to the
system

{ Ay hE(T) + AppvE(r) =0,
A1 hE(7) + Ao (1) = Qo (uF)v™=(7) + Q(hE(7) + v*(7)).

Integrating the first equation and using that lim, 1., w®(7) = 0, we obtain that
solutions w* = (h* v*) of (3.3) satisfy the condition h* = —A ' Ajpv*. Plug-
ging in the second equation of (3.3) we obtain that to prove the existence of a
stable/unstable manifold around the equilibria ™ /u~, respectively, it is enough to
prove the existence of a stable/unstable manifold around equilibria Pyu™/Pyu~,
respectively, of equation

(A2 — Ag1 AT A)v7 (1) = Qo (™ )v™ (1) + Q(v™ (1) — A Ao ™ (7). (3.4)

We note that it is especially important to study the solutions of equations (3.3) and
(3.4) close to o0, therefore we focus our attention on their solutions on R, rather
than the entire line. To study these equations we use the properties of exponentially
stable bi-semigroups. We recall that if a linear operator S generates an exponentially
stable bi-semigroup, then the linear operator —S generates an exponentially stable
bi-semigroup as well. Making the change of variables 7 — —7 in (3.4), we obtain
an equation that can be handled in the same way as the original equation, as shown
in [14, Section 4]. Therefore, to understand the limiting properties of solutions of
equations (3.4) at +o0o, we need to understand the limiting properties of solutions
of equations of the form

I'u (1) = Eu(r) + D(u(r),u(r)), 7€R4. (3.5)

(3.3)

Here the pair of bounded linear operators (I', E) on a Hilbert space X satisfies
Hypothesis (S) and D : X x X — X is a bounded, bilinear map.

In what follows the stable/unstable subspaces of X invariant under I "'E are
denoted by Xsr/f and the exponentially stable bi-semigroup generated by Sr p =

I''E on X is denoted by {T",¥ ()} >0. Next, we introduce

s/u
v([, E) = essinfrea|Hr,g(N)]. (3.6)
From (2.15), (2.16) and (3.6) it follows that there exists ¢(T', E) > 0 such that
1720 (D] < e, B)e TP forany 7> 0. (3.7)

In addition, we denote by Psr/’f the projections onto Xg/f parallel to ng, associ-

ated to the decomposition X = XI'"#@XI-# (direct sum, not necessarily orthogonal).
From (2.12) and the definition of the function Rr g we have that

RI‘,E(wl) — RRE(L«)Q) = 27ri(w2 — wl)RF,E(wl)FRRE(wQ) for all wy,ws € R.

(3.8)
A first step towards understanding equation (3.5) is to study the perturbed equation
Tu, (1) = Eu(r)+ f(1), 1€Ry, (3.9)

for some function f € L{ (Ry,X) or f € L2 (R,,X). For a function g defined on

loc loc
a proper subset of R we keep the same notation g to denote its extension to R by 0.

Definition 3.1. We say that

(i) The function u : |19, 71] — X is a smooth solution of (3.9) on [ry,71] if u €
H'([10,71],X) satisfies (3.9);
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(ii) The function u : [19, 1] — X is a mild solution of (3.9) on [r, 7] if it is square
integrable on [79, 71] and satisfies

t(w) = R(2riw, SnE)(e*Q’TiM“u(Tg) — efQWinu(Tl)) + RRE(w)]ﬁO:] (w) (3.10)

for almost all w € R;
(iii) The function u : Ry — X is a mild solution of (3.9) on Ry if u is a mild
solution of (3.9) on [0, 7] for any 7, > 0.

Our definition of mild solutions follows [14, Section 2], where it is shown that
the frequency domain reformulation given in (3.10) is much easier to handle than
the classical approach where one defines the mild solution by simply integrating
equation (3.9). We note that by taking Fourier transform in (3.9) and integrating
by parts, it is easy to verify that smooth solutions of equation are also mild solutions.

Remark 2. Denoting by % g : R — #(X) the Green function defined by

THE(r)PlE ifr>0
Tr.p(7) = { ~T5E(—r)PLE ifr <0 (8:11)
we have that (i) there exists a constant ¢(T', E) such that |4 g(7)|| < ceVT-E)I7]
for any 7 € R, and (ii) F% g(-)x = R(2wi-, Sr, g)x for any x € X.

Next, we define the linear operator 41 g : L?(R,X) — L*(R,X) by J#r pf =
F Mg, , 7 f. Here we recall that Mp,. ., denotes the multiplication operator on
L?(R,X) by the operator valued function Rr g. From Lemma 2.2(ii) we have that
sup,cr || Rr,g(w)|| < oo, which proves that J#r g is well defined and bounded on
L?(R,X).

To prove our results we need to understand the properties of the Fourier multi-
plier defined by Jr g. Our first goal in this section is to show that the definition we
use for mild solutions of equation (3.9) can be seen as an extension of the classical
variation of constants formula. To prove such a result we need to understand some
of the smoothing properties of %t .

Lemma 3.2. Assume Hypothesis (S). Then, T'(Jr gf)(-) € Co(R,X) for any f €
I2(R,X).

Proof. Let f € L*(R,X) and g = ¢ gf. To prove the lemma we note that it is
enough to show that I'g € L*(R, X). Using the definition of %1 p we have that

Tg(w) = Tj(w) = T A 5 f(w) = TRy p(w)f(w) forall weR. (3.12)

From Lemma 2.2 and the definition of Sp g in (2.8) and its associated bi-semigroup,
we have that

* Tk . C
ITRr,p(w)[| = [[Br,e(w) T = [[Rr,g(—w)T'|| = [ R(=27iw, Sr.p)|| < Tl
(3.13)
for all w € R. From (3.12) and (3.13) we conclude that I'g € L!(R, X), proving the
lemma. O

Now, we are ready to prove that (3.10) is a generalization of the variation of
constants formula.
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Lemma 3.3. Assume Hypothesis (S) and let f € L*(Ry,X). Then, u: Ry — X
is a mild solution of (3.9) on Ry, square integrable on Ry and T'u € Cy(R4,X) if
and only if

u(r) = TF(r)PHFu(0) + (Sref)(T) foral T>0; (3.14)

Proof. First, we prove that any mild solution u of (3.9) on R which is square
integrable on R satisfies equation (3.14), provided I'u € Cp(R4, X). Since x[o,-,] —
X[0,00) Simple as 71 — oo, from the Lebesgue dominated Convergence theorem we
obtain that ux(o,,) = u and fxjo,-) = f in L*(Ry,X) — L*(R,X) as 71 — oo.
Since the linear operators .# and J#r g are continuous on L?(R,X) we conclude
that

F(ax(0,ry] — H0,6([X0,)) = F(u— S pf)in L*(R,X) as 7 — oo. (3.15)
Moreover, since u is a solution of (3.9) on [0, 7] for all 7 > 0 we have that

F (uxjo,r] — H#0.6(fX[0,]) (W) = Rr g(w) (Tu(0 — e ?MenTy(n)) (3.16)

for all w € R. Since T'u € Cy(R4, X) from (3.16

F (uxjo.n) — #0,6(fXxp0.) (@) = Rr p(w)lu

) it follows that

(0)as 7 — o0, forall weR.
(3.17)

From (3.15) and (3.17) we infer that

ﬂ(u - %,Ef)(w) = RF,E(M)FU(O) = R(Qﬂ'iw, SRE)U(O)

for almost all w € R. Taking inverse Fourier transform, from Remark 2(ii) we obtain
that

u(r) = THF(r)PHPu(0) + (A1 g f)(7)  for almost all 7 > 0. (3.18)

Next, we prove that equality (3.18) holds true for any 7 > 0. Indeed, multiplying the
equation by I' from the left, we obtain that I'u = I'TE () PL-Eu(0) + T(#r g f) ()
almost everywhere on R . Since I'u is continuous on R, {T1"F (1)}, is a strongly
continuous semigroup, and from Lemma 3.2 we have that I'(J¢r g)(+) is continuous,
we infer that the equality Tu = I'TYF(-) PL'Eu(0) + T' (1 £ f)(¢) holds everywhere
on R,. Since T" is one-to-one on X, by Hypothesis (S)(i), it follows that equation
(3.14) holds true.

To finish the proof of lemma, we prove that under the assumption that f €
L?(R,X), any function u : R, — X satisfying equation (3.14) is square integrable
on Ry, Tu € Cy(Ry,X) and is a mild solution of (3.9) on [0,7] for any 7 >
0. Indeed, since {T1"F(7)},>0 is an exponentially stable C%-semigroup on X and
1 g is well-defined and bounded on L?*(R,X), one can readily check that u is
square integrable on Ry. Moreover, from Lemma 3.2 and (3.14) we conclude that
T'u € Ch(Ry, X).

Let ¢ € C§°(R) be a smooth, scalar function with compact support. Using the
elementary properties of the Fourier transform and convolution, from (3.8) and
(3.14) we obtain that

Fu(w) — Rr.p(w)@Tu(w) = (§*1)(w) — Rrp(w)(@ * Tu)w)

= / P(w — 0)1(0)do — Rr p(w) / 27i(w — 0)P(w — O)TU(H)dO
R

R



STABLE MANIFOLDS FOR A CLASS OF SINGULAR EVOLUTION EQUATIONS 17
= / B(w—0) (I — 27i(w — a)Rp,E(w)F)ﬁ(o)de
R
- / Slw—6) (I — 9rmi(w — G)RF,E(w)F) Rr,5(9) (Fu(()) + f(a))de
R

= [ 8= 0)(Rr.5(6) ~ 27i(w = )R @R £(6)) (o) + F(6)) a0

~

= Rr.p(@)( [ @~ 0)d0)Tu(0) + Brp(w) [ 3= 0)F0)00

= ©(0)Rr. p(w)Tu(0) + Rr p(w)of(w) for any w € R. (3.19)

Fix 71 > 0 and let {¢, }n>1 be a sequence of functions in C§°(R) with the following
properties: 0 < ¢, < 1, [|¢]|lec < cn, @n(7) = 1 for any 7 € [0,71 — 1/n] and
on(r) = 0 for any 7 ¢ (—=1/n, 7). Since the function u is defined on Ry and is
extended to R by 0, we conclude that

np/’nﬁl(w) + e MneTy(r) = /R e_Z”iTwwil(T)Fu(T)dT + e 2MneTy()
+

T1 . .
= / o (7) (6727”'”‘Tu(7') — efQT”TWI‘u(TlDdT

171/77,
(3.20)
for any n > 1 and w € R. Hence, the following estimate holds
—_— . Tl . .
lf Tu(w) + 6727”71“Tu(71)|| < nc/ ||e*27””’l“u(7) — e*Q”IleFu(ﬁ)HdT
T1—1/n
(3.21)

for any n > 1 and w € R. Since I'u is continuous on Ry, from (3.21) we infer
that @/ Tu(w) — —e~2MM%Tu(r;) as n — oo for any w € R. Since ¢, — X[0,m1)
pointwise as n — oo and 0 < ¢, < 1, for any n > 1, from the Lebesgue Domi-
nated Convergence Theorem we obtain that v,u — x[o,-,ju and ¢, f — X[o,-,1f in
L?(R.,X) — L*(R,X) as n — oo. Passing to the limit in (3.19) with ¢ = ¢,, we
infer that

Xmu(w) + e‘ZﬂileRnE(w)Fu(ﬁ) = Rr g(w)l'u(0) + RF,E(w)me(w) (3.22)

for any w € R, which implies that (3.9) holds, proving the lemma. O

To better understand the solutions of equation (3.5) we need to further study
the Fourier multiplier 1 g: in particular we are interested in finding suitable
subspaces of L*(R,X) that are invariant under %1 p. We note that the operator-
valued function Rr g is differentiable, and from Lemma 2.2(ii) we have that

sup || Br,p(w)|| < oo, sup |w|[|Rp g(w)]| < oo. (3.23)
weR weR

From the Mikhlin-Hormander multiplier theorem we conclude that the Fourier mul-
tiplier 1 g is well-defined and bounded on LP(R,X) for any p € (1,00). In the
case of first-order differential equations on finite dimensional spaces one proves the
existence of the stable manifold by using a fixed point argument on L (R, X) or
Co(R4,X). In the example below, we prove that the Fourier multiplier %t g is not
a bounded, linear operator on L™ (R, X). Therefore, to prove the existence result
of a stable manifold of solutions of equation (3.1), we need to find a proper subspace
of L>°(R4,X) invariant under Jr g.
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Example 3.4. Let X = (%, T : (* — (? defined by I'x = (—-%x;,),>1 for any
X = (Xp)n>1 € 2, E = —Ids>. Then, one can readily check that the pair (', E)
satisfies Hypothesis (S). Moreover, the Fourier multiplier Hrp = F Mg, ,.F
does not map L*(R4, %) N L>®(Ry, %) into L™= (R, £?).

Indeed, we have that

en

RRE(W)X = ( Xn)nZl = (ﬁn(w)xn)n21 (324)

e — 2miw
for any w € R and x = (x,,),>1 € £2. Here, the sequence of functions F, : R — R
is defined by

0 if7>0
e’ T if <0

Fatr) = {

It follows that the following representation holds true:

(S5 )(0) = ((Fax fu)(1) _ for any £ = (fu)uz1 € L*(Ra €2) N L(Ry., £2)
- (3.26)
and 7 € R. Let g : Ry — ¢2 be defined by g(7) = (gn(7))n>1, where g, =
Xje—(n+1),e-n), 1 > 1. Here we recall that x; denotes the characteristic function of
the set J C R. We compute

(3.25)

HM8

lg(r M—Zx[e eom(7) = D Xjtosb () = X0 () (320

for any 7 > 0. We conclude that g € LQ(R+,€2) N L>®(Ry,¢?). Moreover, from
(3.25), we obtain that

Fo (7 — s)gn(s)ds = / eme? T3 ds = e (el — 7€)
(n+1)

(3.28)
for any 7 € [0,e= D) and n > 1. Therefore, for any m € N and any 7 €
[0, e~ (m+1D] we have that

(Favg)0) = [

R

(A, 9) (717 = Z| Fp o« gn)( Z —e ) >met —e )2

(3.29)
Assume for a contradiction that #r pg € L°(R4,¢?). From (3.29) we infer that
|1 £gllco > /m(e™t —e™¢) for any m € N, which is a contradiction.

Next, we study if the Sobolev space H'(R4,X) is invariant under ¢ . First,
we note that g € HY(R,,X) if and only if g € L?(R4,X) and the function w —
2miwg(w) — g(0) belongs to L*(R,X). Here, we recall that if a function g is defined
on a proper subset of R, we use the same notation to denote its extension by 0 to the
whole line. Using Lemma 2.2(ii) we can show that the space H!(R,X) is invariant
under 1 g. However, by using the same argument, we can check that H'(R,, X) is
not invariant under 4t g since Ry g(-)x ¢ L?(R,X) for any x € X\ dom(|Sr x|'/?).
Our goal is to prove the existence of an H' stable manifold by using a fixed point
argument on equation (3.14) for f = D(u,u). Since H'(R,,X) is not invariant
under Jr g, we need to rearrange the equation first by adding a correction term to
4 i. We parameterize equation (3.14) as follows: we look for solutions u satisfying
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u(0) = vo — E71f(0) for some v to be chosen later. Therefore, equation (3.14) is
equivalent to

u="T,"( )P v+ (S e e, — T2 P()POFET £(0). (3.30)
For any f € H'(R,,X) we define the function
AR = (A pf)r, — TOF()PIEET(0).

Clearly, "5 is a linear operator from H* (R, X) to L?(Ry, X). In what follows we
prove that Jifr‘f‘]gdf € HY(Ry,X) for any f € H'(R,,X) and compute its derivative.

Lemma 3.5. Assume Hypothesis (S). Then, %‘f‘ﬁdf € HY(Ry,X) for any f €
HY(Ry,X) and (A7) = (0,6 ), - Moreover, there exists ¢(T', E) > 0 such
that

||<75/rr,n§df||H1(R+,x) <@, E)| fll sy x)- (3.31)
Proof. To prove our general result, we prove it for functions in a dense subset of
H'(R,,X). We introduce the subspace 4 = {f : Ry — X : there exists g €
H'(R,4,X) such that f(r) = Tg(r) for any 7 > 0}. Since I' € #(X) is one-to-one
and self-adjoint, one can readily check that 4! is a dense subspace of H!(R,X).

-

To prove the lemma we need to compute %r?gd .
Let g € HY(R,,X) and f = I'g. From the definition of the Fourier multiplier
0 g, from Remark 2(ii) we obtain that

0 ef(w) = Rr p(w)'g(w) = 27wl — E)7'Tg(w) = R(27iw, Sr.e)g(w)
=% g *g(w), (3.32)
for any w € R, which implies that 1 g f = % g * g. It follows that

(S f)(7) = / TEE(r — 5) PP Eg(s)ds — / TEE (s — 1) PEEg(5)ds

— 00 T

T

= —TE’E(—T)/ TVE(s)PHhEg(s)ds  for any T < 0. (3.33)
0

We infer that xr, (A1, ef) = H#r g f+ Fi, where F} : R — X is the function defined
by Fi(r) = 0for 7 > 0 and Fy(7) = TLF(—7) [ TEF(s)PEg(s)ds for 7 < 0. We
recall that the generator of the CY-semigroup {72 #(7)},>¢ is SL-F = —(SF’E)‘XE,E.

Therefore, we obtain that

0
Fi(w) = / e 2T T E L)k, dr = — (27w + STF) T x, = —R(2miw, Sr g)xy,

— 00

= —RFVE(w)qu (334)

for any w € R, where x, = [ Tp ¥ (s)PI"¥g(s)ds. Next, we define the function

u
Fy : R — X by Fy(1) = THE(1)x4 for 7 > 0 and Fy(7) = 0 for 7 < 0, where x, =
PUEE=L£(0). Similarly, since the generator of the C9-semigroup {T1"#(7)},>¢ is
SIWE — (St,B) g2, we have that

o0
Fy(w) = / e TP (F)x dr = (2miw — STF) T PDEETf(0)
0

= Rr p(w)T PP S5 59(0) = Rr p(w)LSE 5 PHPg(0)
= Rr g(w)TE~'T P ¢(0) (3.35)
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for any w € R. From (3.33), (3.34) and (3.35) we conclude that

AR (w) = X, (Hpf) (@) — Folw) = o pf (@) + Fi(w) — Fa(w)

~

= Rr g(w)f(w) — Rp g(w)’ /000 TVE(s)PEEg(s)ds
— Rr g(w)TET'T P Fg(0) (3.36)

for any w € R. In addition, from (3.33) we have that

(ATRU)(0) = —xu — POPSE pg(0) = —/ T3 (s)Py P g(s)ds — Sp p PP g(0).

0
(3.37)
Since g € H'(R4,X) we have that 27riwg(w) = ¢(0) + ¢/(w) for any w € R. From
(3.36) and (3.37) it follows that

2rrico (A f) (w) — (2 £)(0)

o~

= 2miwRr g(w) f(w) — 27rinp7E(w)F/ TVE(s)PlEg(s)ds
0
(o)
- 27TiWR1“,E(UJ)FE_IFPSF’EQ(O) + / TEE(s)PHEg(s)ds + SE}EPSF’Eg(O)
0

= Rp p(w)T (2miwg(w)) + (IX - 2mRF,E(w)F) ( /O T ITE () PR g (5)ds

+ ET'TPg(0))
= 2oty (@17 (@) + B @Tl0) ~ @B ( [ TEEE R Fg5)as
+ BRI Eg(0))
— B () ) + Rirp(@) (TR 50) — B [ TEP0PPE9(e)ds) (339

for any w € R. Since g € H'(R4,X) we obtain that [~ T F(s)PlFg(s)ds €
dom(SL#) C dom(Sr ) and

SE’E/O TE’E(S)Pf’EQ(S)dS = 7P$’Eg((]) — /O TE’E(S)PE’EQ/(S)dS. (3.39)

Since SIF = —(8r,p)xr.2, from (3.39) we obtain that

E/ TVE(s)PHEg(s)ds = TPYFg(0) +r/ TVE(s)PhE g (s)ds.  (3.40)
0 0
Using Remark 2(ii), (3.38) and (3.40) we infer that

2miw (R f) (w) — (5 F)(0)

o~

= Rr g(w)f'(w) — Rr,g(w)T /ODO TVE(s)PEE g (s5)ds

- y(zfm =% p() / T () pr ’Eg’(s)ds> (3.41)

0
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for any w € R. Arguing similarly as in (3.32), we have that %t gf = % g * ¢,
which implies that

()0 = |

— 00

T

THE(r — s)PIE g (5)ds — / TVE(s — 1)PEE G (s5)ds
=10 [ TPy (s)ds
0
=% g(T) / TE’E(S)PE’EQI(S)dS (3.42)
0

for any 7 < 0. Since % g(7)x = 0 for any 7 > 0 and any x € X,'Z, from (3.41)
and (3.42) we conclude that

2w (G (@) — (L)) = F(xw, Mo f)w) for any w e R, (3.43)

Since f’ € L?*(Ry,X) — L*(R,X) and 41 g is bounded on L?(R,X) from (3.43) we

infer that #7784 f € H'(Ry,X) and ("5 f) = (.5 )r, for any f e 4
Next, we fix f € H'(Ry,X) and let {f,}n>1 be a sequence of functions in 7

such that f, — f as n — oo in H'(R,,X). From Remark 2(i) we obtain that

ITE O PSEET f(0) = T2 ()PEEET F(0) |2 < e f2(0) = FO)I] < el fu —(f||H1)

3.44
for any n > 1. Since the Fourier multiplier 4t g is bounded on L?(R,X), from
(3.44) we conclude that

(Hrpfo)ir, — T COPCPET 0(0) = (S e, — TP ()PP ETF(0)
as n — oo in L*(Ry,X). Hence J"g4f, — M4 f as n — oo in L*(Ry,X).
Moreover, ("84 fn) = (o pfh)r, = (H0pf )R, as n — oo in L*(Ry, X). Tt
follows that #7"g? f € H*(Ry,X) and (™5 f) = (.6 f )R, -

To finish the proof of lemma, we need to prove (3.31). Indeed, since g is
bounded on L?(R,X) we have that

A fllin = 1A e fr, — TSP OPEPET O + 1,2 )iz, |13
< A r p I3+ AT OPSEET )5 + el 113
< cllf13 + el f13 + el FO)F < ell £l - (3.45)

for any f € H*(R4,X), proving the lemma. O

Remark 3. Assume # : R — Z(X) is a piecewise strongly continuous operator
valued function such that ||#/(7)| < ce™"I"l for all 7 € R. Then, for any a € [0,v)
we have that # x f € L2 (R, X) and

[# % fllzz <ellfllrz forany fe LL(R,X). (3.46)
Proof. Fix a € [0,v). Since # decays exponentially, one can readily check that
v—a v+a 2
07 6 NP < ([ e T rslem 5l 1(s) )

R
1

< —(v+a)|T—s| 2d 3.47

<o e 17(s) P (3.47)
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for any 7 € R. Since [ e~ ("FTollr=slg2alrlqr < _L_e2alsl for any s € R, from (3.47)
we obtain that
1 —(v+a)|T—s| 2alT
/eQO‘IT‘”(W*f)(T)HQdTS /(/e (v+a)|T—s| ;24 |d7)||f(S)H2ds
R V—a Jr \JR
1 1
< 2als| 2d _ 2 4
< o LI = =1 (349

proving the remark. O

Next, we analyze the invariance properties of weighted spaces under %‘?ﬁd.
In particular, we are interested in checking whether the weighted Sobolev space
H}(R,,X) is invariant under %‘j}‘jd. To prove this result we need the following
lemma:

Lemma 3.6. Assume Hypothesis (S) and let 1p € H*(R) be a smooth scalar func-
tion. Then,

Hos(Vf +0 G g+ ) = bHemf foramy feI*RX).  (3.49)

Proof. To start the proof of lemma, we first justify that the left hand side of equation
(3.49) is well defined. Indeed, since v € H?(R) we have that ,v’ € L*°(R).
Moreover, from Remark 2(i) it follows that ¢ g and thus 4% ; are exponentially
decaying, operator valued functions, which implies that 4" p x f € L?(R,X) for any
f € L*(R,X). We conclude that Y+ (G p*f) € L?(R,X) for any f € L*(R,X).
From Remark 2(ii) we have that % g(-)x = R(2ni-, St g)x for any x € X.
From Lemma 2.2 we obtain that
ﬁgﬁE()X = (ﬁgnE(—))*X = R(—Qﬂ'i', SF,E)*X = (RRE(—)F)*X = FR[‘,E(~)X
(3.50)
for any x € L?(R,X). Since ¢ € H?(R) we have that 121\, 12’ € L*(R). Taking Fourier
transform, from (3.8) and (3.50) we obtain that

VA nf (@) = (8 * Hopf)(w) = / Dw — 0) 7 f (6)d0

_ / D(w — 0) Re,(6) F(6)d0

o~

= /}R Blw = 0) (Rr.p(w) + 2mi(w — 0)Rr p(@)T Rr,x(0) ) f(8)a0

o~ ~

= RRE(w) /R 27ri(w - G)w(w - Q)FRRE(@)‘]“(G)dQ

~

+ Rep(w) / O(w — 0)F(6)d6

~

— R p(@)(@ * @) + Rr.p(w) / J'(w — 0T Ry p(0)F(9)d0
— Rrp(@)DF(@) + Rr.s(w) / Dw— 0 (0)F(6)d0
= Rr p(w)f(w) + Rr.p(w) /R D'(w— )G * f(6)dd

= Rr.p(w) (W(w) + (G # f)(w)) forany weR.  (3.51)
Assertion (3.49) follows readily from the definition of 1 g. O
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Lemma 3.7. Assume Hypothesis (S). Then, %’f}gdf € HL(R4,X) for any f €
HL(R,X) and a € (0,v(T, E)), where v(T', E) is defined in (3.6). Moreover, there
exists ¢(I', E, ) > 0 such that

A5 Fll by ) < (T B )| £l ey ) (3.52)

Proof. Let {¢n}n>1 be a sequence of scalar functions in C*°(R) such that 0 <
dn < 1, ¢p(7) = 1 whenever |7| < n, ¢,(7) = 0 whenever |7| > n + 1 and
sup,,>1 [|#7, [l < co. We define the sequence of scalar functions {1, } by the formula

V(1) = e ¢, (), where (1) = /1 + |7]2. Since a > 0 one can readily check that
¥, € H2(R) for any n > 1. Moreover, there exists a constant ¢y > 0, independent
of I', E and « such that

[ (1) < e, | (T)] < coe®”, forany T €R. (3.53)
Let f € HY(R,,X) — HY(R,,X). First, we prove that %‘f}gdf € L2 (R4, X). We
note that (¢n)jx, A8 f = (bnHr e f)R, — (Wn)r, T3 " ()PHFET!£(0) for any
n > 1. Using Lemma 3.6, Remark 3 and (3.53) we estimate

[Wn e Bk, 2 < [Vndr e fll2 = [0, 5(Wnf + U0 (G 6 * )2

< cllpnf + 90 (G g+ 2
< (T E)fllzz + e B9 g+ fllez

for any n > 1. Moreover, since « € (0, (T, E)) one can readily check that
1), T E O PSPET F ()2 < T, B, Q)| fO)]] < (T B, )| fllay (3.55)

for any n > 1. From (3.54) and (3.55) we conclude that (¢ )r, "5 f € L?(R4,X)
and ||(wn)‘R+%If‘E°df||2 < ¢(l',E,a)||fllg: for any n > 1. Passing to the limit as
n — oo we conclude that |29 f|l L2 < (T, E, )| fllm: -
From Lemma 3.5 we have that
AR f € HY Ry, X) and  (APRS) = (Ao f ), -
Using again Lemma 3.6, Remark 3 and (3.53) we have that

1(bn e £ f) iy ll2 < 0B fll2 = 20,6 (nf" + 0 (@0 5 x )2
< cllpnf" + (G g+ )2
< T E)f Nz + @ EN%r g+ fllez
<cE,a)lf g < (T, E,a)||flluz (3.56)

for any n > 1. It follows that [(¢n)r, ("5 f) 2 < (T, E, )| flla: for any

n > 1. Passing to the limit as n — oo we infer that (Jffrmgd ) € L2(R4,X) and
(A )|

r2 < c(l', E, a)|f] a1, proving the lemma. O

4. Stable manifolds of general steady relaxation systems. In this section
we prove the existence of a local stable manifold of equation (3.1), by reducing the
equation to (3.4), as explained in Section 3. To prove this result, we prove it for
the general case of equation (3.5). First, we recall that from Lemma 3.3 we have
that mild solutions of equation (3.5) on Ry satisfy the equation

u(r) = I, (1) PP u(0) + (A s D(a(-), u())) (1), 7> 0. (4.1)
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Using the parametrization u(0) = vo — E~1D(u(0),u(0)), as in equation (3.30), to
prove our result it is enough to prove the existence of a stable manifold of equation

u=T0F ()P Fvg + 7R D(u(-), ul-)). (4.2)

In this section we prove that for v in a certain subspace of X, with ||vg| small
enough there exists a unique solution of equation of (4.2), in the space H} (R, X),
with « € [0,v(T, E)). Throughout this section we assume Hypothesis (S). Next,
we study the trajectories of the semigroup {77 ¥ (7)},>0 that belong to the space
H}(R,,X). First, we introduce the subspace

X7 = {xex: / [Hr, ()] [(Ur,5x) (V) Pdr() < oo}, (4.3)
A
The space x4 1 ‘£ is a Banach space when endowed with the norm
Il = 10200 52 (44
2

where Ur g is defined in (2.18) and Mpy,. , is the operator of multiplication by
the function Hr g introduced in Lemma 2.3. From (2.18) it follows that XE’E =
2
dom(|Sr g|?) and that the norm || - llyr.z is equivalent to the graph norm on
1
2

dom(|Sr z|?).

Lemma 4.1. Assume Hypothesis (S). Then T E()vg € HL(R4,X) for any a €
[0,v(T, E)). Moreover, there exists ¢ = ¢(I', E) > 0 such that

ITF C)vollay ry x) < e(T, B, a)|[vollyr.s (4.5)
2
for any vo € X5 E N XEE
2

Proof. Fix vo € XDEAXDF o € [0,0(1, E)) and let go = Ur pvo € L2(A, p).
2
From (2.14) we have that go € L*(A_, u1), that is go(\) = 0 for any A € Ay. Since
rE __ -
vo € X7 we infer that
2

/A | Hr 5 (W[50 2de() = [[[Mur o[G0 |32 4y = IVolhe < o0 (4.6)

From (2.15) it follows that T (7)vq = Uy, LTIE(r)gy for any 7 > 0. We intro-
duce the function ho : Ry — L2(A, y1) defined by (ho( ) A) = e (TF E(1)g0) (N).
From (2.16) we have that ( ( ))(A) = eT@HHr ey (N)go(A) for any 7 > 0

and A € A. Since Hr g(A\) < —v for any A € A_, from (4.6) we obtain that
ho € H* (R4, L%(A, p)) and
Polly < [ N E ol 07
[l HepO))er e e 805 )P dr
0 _

< / 2@ dr 5o 2aa

[t HesOPGP( [ e dr)auy)
A 0
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1

2(v — )
1

2(v — )

1 1

We conclude that T1F(-)vo € H} (R, X) and (4.5) holds true, proving the lemma.
O

IN

1 _
1Te e 1% Ivoll* + 5 /A o+ Hr 2 (A\)||go(A)*du(X)

IN

1, 1 -
1Te 517 [Ivoll* + SlellgollZza,m + 5 /A [ Hr, 2 (M)]1go(V)[*dp(N)

1
Tl Ivol? + 5 vol2r. < (T, B, ) [volZee. (A7)
2 2

We introduce the function Up g : XOFNXDF x HL(R,, X) — HL (R, ,X) defined
by ’

Ur p(vo, f) = T3P ()P Fvo + TRID(f(), () (4.8)

To prove that equation (4.1) has a unique solution on H}(R,,X), we show that

the function Ur g satisfies the conditions of the Contraction Mapping Theorem.

In what follows we will use the following notation to denote the closed balls of
HY(R,,X) and XI'Z 0 XUF centered at the origin
2

Qale) = {f € Ha(R+,X) : || fllmae, %) < €
By(0,6) = {vo e XDE nxP Ivollyr.e < e} (4.9)
2 1
2

Lemma 4.2. Assume Hypothesis (S). If v € (0,v(T', E)), where v(I', E) is defined
n (3.6), then

(i) There exist €1 = e1(T, E,V) > 0 and e3 = (T, E,v) > 0 such that Up g
maps Bg(0,e1) X Qu(e2) to Qo (e2) and

1
1¥r.5(vo, ) = ¥r.p(vVo, 9)llus e, x) < I = gllmae, x) (4.10)

for any vo € Bs(0,¢1), f,9 € Qa(e2) and o € [0,7];

(ii) For any vo € Bs(0,¢1) equation u = Vr g(vo,u) has a unique, local solution
denoted U(-;vo) € Qu(e2) C HY (R4, X) for any o € [0,7];

(iii) The function Xr g : Bs(0,61) — Qqa(e2) defined by Sr p(xo) = U(-, vo) is of
class C" for any a € [0, 7].

Proof. (i) First, we introduce the function
Do Hé(R_i_,X) X Hé(R-HX) - Hé(R-HX) defined by @a(.f)g) = D(f()ag())

Since D(+, ) is a bounded bilinear map on X, we infer that for any f,g € H.(R,,X)

we have that Za(f,9) € H(Ry,X) and (Za(f,9))" = D(f(-),9'()+D(g (), ['(-));
proving that &, is well-defined. Also, one can readily check that 2, is a bilinear
map. Moreover, since H} (R, ,X) — L%®(R,X) we have that

T FMI < Nl e x) < Nz, x) for any 7 > 0. (4.11)

Using again that D(-,-) is a bounded bilinear map on X, from (4.11) it follows that

1209l = [ = e2om D (r), g(r) 2
+f " 27 D(f(r). (7)) + Dia(r), /(7)) |Pdlr
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oo
S/ DI IO g(r)|*dr
0

! 2/000 DI (LI g/ (DI + 9@l 1)) dr

< IDIPIF13 Nl + 20D 1 (1713 113 + M3 157125 )
< 51DIPI1 1% gl (4.12)

which proves that the bilinear map %, is bounded on H}(R,X). From Lemma 3.7,
Lemma 4.1 and (4.12) we infer that Ur g(vo, f) € HL(R4,X) and

19r.£ (o, Al < INTFC)vollay + AR D, £l
< clvollgre + el Za(f; Pllay
2

< c|vollyre + 2| DIl [fllF < c(e1 +€3), (4.13)
2

for any vo € Bs(0,e1) and f € Q,(c2). Here the constant ¢ = ¢(T', E, o) depends
on the constants from (3.52) and (4.5), therefore it can be it chosen such that
)

sup ¢(I',E,a) < oo for any v € (0,v([, E)). (4.14)
a€l0,7]

It follows that for any ¥ € (0,v(T, E)) there exist ¢; = (I, E,7) > 0 and €3 =
eo(T', E,v) > 0 such that

52(F7Ea ;)

5 (4.15)

- 1 -
(T E,a)es(T, E, D) < T: and ¢(T, E,a) e, (T, E, D) <
for any « € [0,7]. From (4.13) and (4.15) we conclude that
U g maps Bs(0,61(T, B, 7)) x Qu(e2(T, E,7)) to Qu(e2(T, E, 7)) (4.16)

for any o € [0,7] and ¥ € (0,v(T, E)). To finish the proof of (i) we prove (4.10).
We note that

|50, 1) = Urp(vo,9)| | = | A5 (Zal s, £) = Zala9)|
<L E,a)[|[Za(f, f) = Dalg:9my- (417)
To estimate the H!-norm of the right hand side of (4.17), we use that Z,(,")
is bilinear and bounded on H}(Ry,X), which implies that Z,(f, f) — Za(9,9) =
Do(f — 9, f —9) +2%u(g9,f — g). Since Z,(-,-) is a bounded bilinear map on
Hli(R‘i’?X)? we have that Qa(gvf_g) € Holc(RJraX) and (@a(gvf_g))l = @a(g/a f_
9) + Zalg, f' —¢') for any f,g € HL(Ry,X). It follows that
1Zalg. f = 9 :/0 e**T||D(g(r), f(1) — g(r))||*dr
= [0, 1 ~ o) () Par
< HD||2/0 e Tlg(M21f(1) — g(r)||*dr

+2|D|? /Ooo g (NI (r) = g(r)*dr
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+2||D||2/0 e Tg(r)IIPI1f'(r) = g (7)) lPdr
< 2| DIPllglZe If — glifay +2DIPIS — gl llg'lls
< 2| DIPllgllr, I1F = gl - (4.18)
From (4.12) and (4.18) we obtain that

1Za(f, 1) = D9, D 1y, <N Za(f =9, f = Dz +201Dalg; f = 9)|l a2
< 2| DI = gllzy + 21 Dllgllzzz I.f = gllzzz
< 4IDN(Iflezx + Ngllzz) IS = gl (4.19)
Therefore, from (4.15), (4.17) and (4.19) have that

1Vr,e(vo, f) = Yr,(vo, 9)llmy < 8c¢(', B, a)ex (I, E,v) || f — gl < %Ilf —9gllmy

(4.20)
for any vo € Bs(0,e1(T', E, 7)), f,9 € Qule2(T, E, 7)), a € [0,7], 7 € (0,v(T, E)),
proving (i).

Assertion (ii) follows shortly from (i) by applying the Contraction Mapping The-
orem. By smooth dependence on parameters of solutions of fixed point mappings
(see, e.g., Lemma A.1), to prove (iii) it is enough to show that ¥p g is of class C”
on XL-F N XEE x HL(Ry,X). We note that

\IIF,E(v07 f) = TSFYE(')PSF’EVO + <%/1"I,HEOd-@Oz(f7 f) for any f € Holc (Ra X) (421)

Since Wr p is affine in vo, "5 € B(H, (R, X)) by Lemma 3.7 and the bilinear

map %, is bounded on H}(R,X) by (4.12), from (4.21) we infer that ¥r g is of

class C" on XDE 0 XTF » HL(R,,X), proving the lemma. O
2

Lemma 4.3. Assume Hypothesis (S). Then,
(i) (HERf)(0) + PHEETVf(0) € XUF for any f € H' (R4, X);
(i1) u(-;vo) is a mild solution of equation (3.5) on Ry satisfying the condition
PIETG(0;vo) = vo — PRPETID(@(0; vo), W(0; vo)) (4.22)
for any vo € By(0,e1(T, E,7)).

Proof. (i) First, we recall the definition of the subspace 4 = {f : Ry — X :
there exists g € H'(Ry,X) such that f(r) = Ig(r) for any 7 > 0}, which is dense
in H'(R;,X). Let g € H(R4,X) and f =T'g. From (3.37) we obtain that

(A5 f)(0) + PO ETL(0) = —/0 T3P (s)Py Pg(s)ds — Sp pPs P g(0)

+ PEETg(0)

= —/ TEE(s)PhEg(s)ds € XD P, (4.23)
0

From Lemma 3.5 we infer that the operator f — ("2 f)(0) + PP E~1f(0) :

H'(R4,X) — X is linear and bounded. Since 7 is dense in H'(R4,X), from

(4.23) we conclude that ("R f)(0)+ PP E-1f(0) € XF for any f € H' (R4, X).
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Proof of (ii) Fix vo € Bs(0,e1(T, E,7)). Since u(+;vp) is a solution of equation
(4.2), from (i) we obtain that
PEEw(0; vo) = PIE (vo + (258 D(T( vo), 1(v0)) (0) )
= vo — PP ET1D(W(0; vo), u(0; vo)),

proving (4.22). Moreover,

u(r; vo) — Ty P (1) Py Fa(0; vo)

=T (1) P, B (vo — 1(0; vo)) + (S47R D(E(5 vo), W(5v0)) ()

=T, P(r)PCP B~ D(E(0: vo), u(0; vo)) + (A D(U(; vo), W(5 v0))) (7)

= (A, eD(+;vo),u(+;vo)))(r) forany 7> 0.

From Lemma 3.3 we conclude that T(+;vp) is a mild solution of equation (3.5) on
R, proving the lemma. O

Next, we define #I"F : B4(0,21) — X by

S vo) = PIFa(0vo) = PUFETID((0; vo), W05 v0)) (424
and introduce the manifold
MEF = {vo+ 5P (vo) i vo € By(0,21)}. (4.25)

Next, we are going to show that the manifold .Z!+¥ is invariant under the forward
flow of equation (3.5). To prove this result we need to study the time translations
of solutions U(-; vg) of equation (4.2). To achieve this goal we need the results of
the next lemma.

Lemma 4.4. Assume Hypothesis (S). Then,
(i) The modified Fourier multiplier Jifm"d satisfies the translation formula

() r4m0) = (7)) )+ TEE() [T E =) PP B (5)ds

0
(4.26)
for any f € HY (R, X), 7,79 > 0;
(ii) TEE(r)vo € XDENXTF for any 7> 0 and vo € XDE N XT0F. Moreover,
2 2

1T (r)vollgrs < e 7| |vo|gr s, Jim [ Z5F(T)vo = vollygre =05 (4.27)
2 2 2
(iii) [3° TS E(mo—s)PFEET f(s)ds € XUF for any f € L2([0,70), X) and
2
To 1
| [ 18 - 9 sl < e ) ([ olRas)” azs)
1 0

for any f € L*(]0, 7o, X).

Proof. (i) Let ¢ € H'(R;,X) and f = I'g. From (3.32) we have that 1 pf =
Grrpxgand 0 gf(-+70) =% g *g(-+ 7). It follows that

T+70
(Ao ef)(T+7)= / TSF’E(T—&—TO — S)PSF’EQ(S)dS
0

o0
— / Tf’E(s . — TO)PII;’Eg(s)ds
T+7o0
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T
T.E I.E
:/ T, (r—0)P; = g(0 + 710)d0
o

— / TEE (O — 7)PEEg(0 + 79)do
0
= (% e*g(-+7))(1)+ / TVE (- — 9)PHEg(0 + 7)do

—70

= (r.ef(-+7))(r) + /OTO TEE(r + 79 — 5)PHFg(s)ds (4.29)

for any 7 > 0. Since SI'F = (SF’E)IXT“,E is the generator of the CP°-semigroup
TIE (1)} >0, we infer that the function 7 — TP (7)(STF)~1x : R — X is of
s P s s =+
class C! for any x € X. Integrating by parts we obtain that

To
/ TSF’E(T + 70 — s)PSF’EEflf’(s)ds
0
To
= / TVE(r 410 — S)PSF’ESEEg’(s)ds
0

To
= /0 TVE(r + 10 — 5) PN Fg(s)ds + TE’E(T)PE’ESEEg(TO)
= T3P (7 + ) PP Sg g (0)

= /OTO TP (r 470 — s)P P g(s)ds + TP (1) PLPE™ (7o)

— TEE(r + 70) PR P ETL£(0). (4.30)
From (4.29) and (4.30) we conclude that

() (T + 7o)

= (A0 f)(7 +70) = TP (7 + 70) P FET£(0)

= (S pf(-+70))(r) + /OTU TS F(r 4+ 10 — s)P P g(s)ds

—T5F(r+m0) PP ETF(0)

— (S 4 70)) () / TEE (7 4 1 — 5)PIEg(s)ds

— T, (r +70) PP ET(0) + TP (r) PP ET f(1o)
()

= (Tt 7)) () + TRE(r )/O TV (r— s)PPPE f(s)ds (431)

for any 7 > 0, f € . Since 4! is dense in H'(R,X), for any f € H'(R,X)
there exists {f,}n>1 a sequence of functions in 4! such that f, — f asn — oo in
HY(R,,X). It follows that f,(- + 70) — f(- +70) as n — oo in H}(R;,X). Since
Y mod is a bounded linear operator on H'(R,,X) by Lemma 3.5, we infer that

(4 mOdfn) — (AR f) and Jifm‘)dfn(~ +79) = J}ff‘md (-4 70) (4.32)

asn — oo in H' (R, X). Moreover, one can readily check that

H/ TUE () — s)PLEE1f! (s )ds—/ TTE (7 — §)PLEE=1 /(s dsH

0
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7o 1/2
<o E)( [ e B 0as) g e < o0 B - fln (439
0

for any n > 1. Assertion (i) follows from (4.31), (4.32) and (4.33).

Proof of (ii). Let vo € XIF XU, We recall that from (2.14) we obtain that
2

go =Ur gvo € L2(A, ) and go(A) = 0 for any A € A;. From (2.15) we infer that

/A|HF,E()\)|\(UF,ETSF’E(T)VO)(A)|2du(/\)Z/A|HF,E( )T (7)Go) (V) du(N)
= /_ 2T Hr 2N | Hy ()] [Go(V)[2du(N) < 6_2"THVO||§E,E for any 7 > 0. (4.34)

From (4.34) we conclude that TFZ(7)vy € XIE N XD and ||T5r’E(T)Vo||XF1’E <
2 1
2

e V)T ||vg||4r.& for any T > 0. Moreover, using (2.15) again we obtain that
1

2

755 w0 = vollzge = [ Vo0 |(U 2 (T (v = v0)) 0] )

= [ ) [P (439

Passing to the limit as 7 — 0 in (4.35), from Lebesgue Dominated Convergence
Theorem, it follows that lim, o [|T1F(7)vo — v0||Xr1,E = 0, proving (ii).
2

Proof of (iii). First, we introduce the function f : R, — L2(A,p) by f(r) =
Ur,pPPPEf(r) and let ho = Up g ( []° TP (10 — s) PP PE~1 f(s)ds). To sim-
plify the notation, in what follows we denote by f(7,\) = (f(r))(/\) Since [ €
L2([0, 70],X) we infer that f € L2([0, o], L%(A, 1)), thus

/0 i /A P Ve = [ F120m) 20y < (T E) / 1£(s)[2ds  (4.36)

0
From (2.15) one can readily check that

EO()\) = /OTO (TSF,E(TO — s)f(s))()\)ds = /TO e(Tofs)HF,E(/\)}'V(S’ A)ds (4.37)

0
for any A € A. From (4.37) we obtain that

E R 2 To 2( \En E(/\)d /T(J f( )\)‘Qd 1— eQToHI‘,E(A) /7'0 |J?( )\)|2d
To—s s s, S=——F/r e S §
RV < [ | A0 Jy

ds for any X € A. 4.38
2\HFE ) / Y (4.38)

From (4.36) and (4.38) it follows that

/|HFE N [ho(A)[2dpu(N) // (7, \)[Pdrdu(N)
< c(I‘,E)/O 1£(s)]|?ds < oo. (4.39)

We conclude that ho € dom(|Mp,. ,|*/?) and

1hollaom (s, 112) < (T BN fll£2((0,70] %)
r.E
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proving the lemma. O

Lemma 4.5. Assume Hypothesis (S). Then, the manifold .#1-F is locally invariant
under the forward flow of equation (3.5).

Proof. Let v € (0,v(T, E)), a € [0,7] and assume ug is a H} solution of equation
(3.5) such that ug(0) € .#FF. Then, there exists vo € B(0,¢;) such that uy(0) =
vo + Z1E(vg). From (4.22) and (4.24) we obtain that ug(0) = w(0;vo). Since
ug is a H} solution of equation (3.5), we have that ug satisfies equation (4.1). It
follows that

110(7') = TSF,E(T)PE L ( ) (’%/F ED anuo )(T)

= TP (1) (PHPuag(0) + PP E~'D(up(0), u0(0))) + + (4 2D (ug, uo)) (1)

=T B () (PLPa(0; vo) + PP E~'D((0; vo), w(0; vo)))

( OdD 1107UO))( )

=T E(r )PF Evo + (%mOdD(uo, wg))(r) forany 7>0. (4.40)
From Lemma 4.2 we infer that equation u = Up g(vp,u) has a unique solution,
which implies that ug = u(; vp). Fix 70 > 0 and let u,, : Ry — X be the function
defined by u,, (1) = uo(7 + 70) = (T + 70; Vo). Since u(+;vo) € HL(Ry,X) for any
a € [0,7], it follows that u,, € H}(R,,X) for any a € [0,7]. From Lemma 4.4(i),
(4.22), (4.40) and since ug = Uu(+; vg) we conclude that

U, (1) =ug(r+79) = TSF’E(T + To)vo + (%{{‘EdD(uo, uo)) (T +70)

= TSF’E(T) /OTO TSF’E(TO - s)PSF’EE*1 (D(uo(s), uo(s)))/ds

+ TP ()T P (ro)vo + (A8 D (ury, ur, ) ) (7)
=TEE(r)vy + (f%/m‘)dD(uT07 u,))(r) forany 7>0, (4.41)

where vi = THE(ro)vo + [ THE (0 — s)PE’EE_l(D(uQ(S),uo(s)))/ds. From

S
Lemma 4.4(ii) and (iii) we infer that v; € XI'® 0 X5#. Moreover,
2

) 1
i = ollre < IT5E(r)vo = vollre + T E) ([ 1D(u(s), wis))[Pds)
2 2 0
T0 1
< TP B (m)vo — Vol + o0 B)wolln ([ [u(o)ls)
2 0
’ (4.42)

From Lemma 4.4(ii) and (iii) we infer that there exists 7 > 0 such that vq =
v1(10) € Bs(0,e1) for any 7y € [0,71]. Since equation u = ¥ g(v1,u) has a unique
solution in Q4 (e2) for any o € [0,7], from (4.41) we conclude that u,, = a(-;vy).
From Lemma 4.3(ii) it follows that

uy(79) = u,, (0) =1(0;v1) = PHFa(0; vy) + PHFa(0;vy)
=v; — PPPETID(W(0;v1),6(0; v1)) + PUEw(0; vy)
=vi+ Z5F(vy) e #PF forany 1 € (0,71, (4.43)

proving the lemma. O
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In the next lemma we prove that the nonlinear manifold .# ¥ is tangent to the
corresponding linear stable subspace XI'%.

Lemma 4.6. Assume Hypothesis (S). Then, (jSP’E)/(O) =0, i.e., #LF is tangent
to XIWE.

Proof. First, we compute X1, 5(0), where ¥ g is defined in Lemma 4.2(iii). Differ-
entiating with respect to v in the fixed point equation (4.2), we obtain that

Z%’E(V()) = avO\I/F’E(V(), EF’E(V())) + 8u\IIF,E(v0, ZF’E(V()))E%’E(V()) (444)

for any vo € Bg(0,1). Since equation u = Ur g(0,u) has a unique solution,
and 0 trivially satisfies the equation, we infer that ¥ g(0) = 0. Moreover, since
U 5(vo,0) = THF()PLEvq for any vo € Bs(0,21) we have that

(GVO\I’F,E(Oa 0)>V1 = TSRE(')PSREVI for any vi € XS,E n XF!E
2
From (4.12) we have that
19r,£(0,0)llmy = A5 D(w,u)l|gy < o, B)||D(w,u)||gy < T, E)llulF,
(4.45)
for any u € Qq(e2), which implies that 0, ¥ £(0,0) = 0. From (4.44) it follows
that (X} 5(0))vy = THF()PFEvy for any vi € XIFP N X", Since the linear
’ 2
operator Trg : H} (R, ,X) — X defined by Trof = f(0) is bounded, we have that
(ﬁvOﬁ(O;O))Vl = Trto)E(O)Vl = PEy, forany vy e XDVE HXE’E. (4.46)
2

Since the D(-,-) is a bounded, bilinear map on X, from (4.24) and (4.46) we obtain
that

((AEY(0))vi = PEF (04, 0(0;0)) vy — 2P FE-1D((03.0), (94, (05 0)) v1 )

= pPHEpPLEy, —2PREETID(0, P Evy) =0 (4.47)
for any v; € XIF 0 XUF. From (4.25) it follows immediately that the manifold
ML F is tangent to Xg% N XEE at vo = 0. O

Theorem 4.7. Assume Hypothesis (S). Then, for any integer r > 1 there exists a
local C" stable manifold .#L-F tangent to XI-F N XEE at the origin, expressible as
2

C" embeddings LT of XDF N XLP with norm || - [|yr.e into X with the standard
2 1

2
norm, locally invariant under the forward flow of equation T’ = Eu+ D(u,u) and
expressible as the union of orbits of all mild solutions u € H'(R,,X) such that u
is sufficiently small in H' (R, ,X) norm.

Proof. The theorem follows from Lemma 4.3(ii), Lemma 4.5 and the fact that equa-
tion u = Wr g(vo,u) has a unique solution on H}(R,X) for any vo € Bs(0,e1),
a€[0,7] and v € (0,v(T, E)). O

When proving results on existence of nonlinear stable/unstable manifolds in the
case of first-order differential equations on finite dimensional spaces, the manifolds
can be expressed as graphs of C" functions from Hy,, to H, s & He, where H,
H, and H are the linear stable, unstable and center subspaces of the linearization
along the equilibria at 400. In our case we can prove a similar result by combining
the definitions of the function #1¥ in (4.24) and of the manifold . ¥ in (4.25).
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Corollary 2. Assume Hypothesis (S). Then,

///EE = {vo — PSF’EE_lD(ﬁ(O;VQ),ﬁ(O;vo)) + P};’Eﬁ(O;vo) 1V € BS(O,El)}.
(4.48)

Proof. To prove the corollary, we use the Inverse Function Theorem to solve for
vo in the XI'# component of elements of the manifold. Since the D(-,-) is a
bounded, bilinear map on X, from (4.46) we obtain that the Fréchet derivative
of the function Z5F : {vg € XI'F : ||vg|| < &1} — XUF defined by #F(vo) =
vo — PLPE-1D(1(0;vo), w(0; vp)) is (@SF’E)I(O) = Iyr.s. It follows that &1 can
be chosen small enough such that the function Z1°¥ is invertible on {vo € XI'¥ :
[Ilvoll < e1}. From (4.48) we obtain that

MEE = v+ PUEa(0; (7)) (v) e XDP o XD vy € 90F(By(0,61)) .
(4.49)
Thus, #F = Image(_#F), where the function #-# : 1 (B,(0,e1)) — XLF
is defined by _#"F(v1) = PDFa(0; (25 F) =1 (v1)). O

Using Theorem 4.7 we can now prove the main result of this paper, the existence
of stable and unstable manifolds of equation Au, = Q(u) near the equilibria u®
at +oo. We recall that the linear operator S} = (Azz — A21A;11A12>_1Q122(ui)
generates an exponentially stable bi-semigroup on V (Theorem 1.2(i)) and that
equation Au’ = Q' (u*)u has an exponential trichotomy on H, with stable/unstable
subspaces denoted Hi/u and center subspace V1 (Theorem 1.2(ii)). Moreover, we
recall that the pair (I', E) = (Ags — Ao Al Ao, Qb (u™)) satisfies Hypothesis (S)
by Lemma 2.1. In this case we have that XE’E = dom(|Sp g|?) = dom(|(Ag —

Agi AT A1) 1 Qo (u)|2). Finally, we introduce
—V4 = 71/(1422 — A21A1_11A12, Q/QQ(Ui)) <0

the decay rate of the exponentially stable bi-semigroup generated by the pair (Agg —
Ag A Arg, Qo (u)).

Proof of Theorem 1.3. Making the change of variables w* = u — u* in equation

Au, = Q(u) and denoting by h* = Pyrw®* and v = Pyw*, we obtain the system
AvE = Qhy(ut)vt + D(vE vF), bt = —A['Ajov*, as shown in Section 3. Here
A= AQQ—A21A1_11A12 and the bilinear map D : VxV — V is defined by D(vy,v3) =
B(vy — Al_llAlgvl, Vg — Al_llAlg’UQ), is bilinear and bounded on V. Since the linear
operator S% generates an exponentially stable bi-semigroup on V, the theorem
follows from Theorem 1.2, Theorem 4.7 and Corollary 2.

Next, we show how we can use Theorem 4.7 to prove that any solution u* of
equation Au, = Q(u) satisfying the condition u* — u* € H'(R,,X) converges
exponentially to the equilibria u® at 4-o0.

Proof of Corollary 1.4. First, we note that since u* is a solution of equation Au, =
Q(u), we have that A(v* —v%)" = Qb (u®) (v* —vF) 4+ D(v* —v*, v* —v¥) and h* =
— A7 Ajv*. Using the uniqueness property of solutions along the manifold M j/[u
given by Theorem 4.7, we conclude that v* — v* € HL(R4,V) for any a € [0,7],
for some 7 € (0, min{vy,v_}). Since h* = —A7}' Ajov* we obtain that u* — u® =
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(v* —v*r) — A Ao (v — vF), which implies that u* — u* € HL(Ry,H), proving
the corollary.

Appendix A. Smooth dependence on parameters of fixed point solutions.
We include for completeness the following standard result, together with its proof,
of smooth dependence on parameters of solutions of fixed point mappings.

Lemma A.1 (Lemma 2.4, [43]). Assume Y and Z are two Banach spaces, and
U:Y XZ — Z is a continuous function such that U(y,-) is (locally) contractive for
any y € Y, defining a fized point map z : Y — Z. If ¥ is C" (Fréchet sense) on
Y x Z, 7> 1, then z is C* from Y to Z.
Proof of Lemma A.1. (following [43]) Expanding, we have
12(y2) — z(y1)llz = ¥ (y2, 2(y2)) — ¥(y1, 2(v1)) 1z

< 1 (y2, 2(y2)) — W(y2, 2(y1)llz + 10 (Y2, 2(y1)) — ¥ (1, 2(v1)) |z

< 0llz(y2) — z(y1)llz + Llly2 — i lly,

(A1)

where 0 < # < 1 and 0 < L are contraction and Lipschitz coefficients, yielding after

rearrangement [z (yz) — z(y1)||z < t25ly2 — v1llv. Applying Taylor’s Theorem, we
thus have

z(y2) — 2(y1) = Yy(y2 — y1) + V. (2(y2) — 2z(y1)) + o(lly2 — y1lly
+ [lz(z2) — z(y1)l2) (A.2)
=W, (y2 —y1) + ¥y (z(y2) — z(y1)) + o(lly2 — w1lly),

where all derivatives are evaluated at (z1,z(z1)). Noting that the operator norm
€] is bounded by the contraction coefficient 0 < 6 < 1, we have by Neumann
series expansion that (Id — ¥,) is invertible with uniformly bounded inverse and
|(Id — ¥,)~Y| < (1 —6)~L. Thus, rearranging, we have

2(y2) —2(y1) = (Id — 0.) "Wy (yo — y1) + ([ly2 — w1 llv),
yielding the result for » = 1 by definition of (Frechet) derivative, with

zy = (Id — 0.) 7', (y, 2(y)). (A.3)
The results for 7 > 1 then follow by induction upon differentiation of (A.3). O
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