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Abstract

We construct center manifolds for a class of degenerate evolution equations including the steady Boltz-
mann equation and related kinetic models, establishing in the process existence and behavior of small-
amplitude kinetic shock and boundary layers. Notably, for Boltzmann’s equation, we show that elements of 
the center manifold decay in velocity at near-Maxwellian rate, in accord with the formal Chapman–Enskog 
picture of near-equilibrium flow as evolution along the manifold of Maxwellian states, or Grad moment 
approximation via Hermite polynomials in velocity. Our analysis is from a classical dynamical systems 
point of view, with a number of interesting modifications to accommodate ill-posedness of the underlying 
evolution equation.
© 2018 Elsevier Inc. All rights reserved.

Keywords: Degenerate evolution equation; Center manifold; Steady Boltzmann equation; Boltzmann shock profile; 
Boltzmann boundary layer

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6753

✩ Research of A.P. was partially supported under the Summer Research Grant program, Miami University. Research of 
K.Z. was partially supported under NSF grant no. DMS-0300487.

* Corresponding author.
E-mail addresses: pogana @miamioh .edu (A. Pogan), kzumbrun @indiana .edu (K. Zumbrun).
https://doi.org/10.1016/j.jde.2018.01.049
0022-0396/© 2018 Elsevier Inc. All rights reserved.

http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2018.01.049
http://www.elsevier.com/locate/jde
mailto:pogana@miamioh.edu
mailto:kzumbrun@indiana.edu
https://doi.org/10.1016/j.jde.2018.01.049
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2018.01.049&domain=pdf


A. Pogan, K. Zumbrun / J. Differential Equations 264 (2018) 6752–6808 6753
1.1. Formal Chapman–Enskog expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6755
1.2. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6757
1.3. Discussion and open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6759

2. Linearized equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6760
2.1. Inhomogeneous equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6763
2.2. Linear flow in characteristic and noncharacteristic case . . . . . . . . . . . . . . . . . . . . . 6769
2.3. Solutions of the inhomogeneous equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6771

3. Center manifold construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6775
3.1. Existence of a center manifold of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6775
3.2. Ck smoothness of the center manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6782
3.3. Invariance of the center manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6788

4. Approximation of the center manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6790
4.1. Canonical form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6790
4.2. Taylor expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6791
4.3. Center flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6791
4.4. Relaxation structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6791

5. Bifurcation and existence of small-amplitude shock profiles . . . . . . . . . . . . . . . . . . . . . . . 6792
5.1. Bifurcation from a simple, genuinely nonlinear characteristic . . . . . . . . . . . . . . . . . 6792
5.2. Bifurcation from a linearly degenerate characteristic . . . . . . . . . . . . . . . . . . . . . . . 6794

6. Application to Boltzmann’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6794
6.1. Existence and sharp localization in velocity of center manifolds . . . . . . . . . . . . . . . 6795
6.2. Physical behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6796

Appendix A. Smoothness of substitution operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6797
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6806

1. Introduction

In this paper, we study existence and properties of near-equilibrium steady solutions, including 
in particular small-amplitude shock and boundary layers, of kinetic-type relaxation systems

A0ut +Aux =Q(u), (1.1)

on a general Hilbert space H, where A0, A are given (constant) bounded linear operator and Q
is a bounded bilinear map (cf. [23,26]). More generally, we study existence and approximation 
of center manifolds for a class of degenerate evolution equations arising as steady equations

Au′ =Q(u) (1.2)

for (1.1), including in particular the steady Boltzmann equation and cousins along with approx-
imants such as BGK and discrete-velocity models [23,26]. Specifically, we are interested in the 
case when the linear operator A is self-adjoint, bounded, and one-to-one, but not boundedly 
invertible.

Following [23,26], we make the following assumptions on linear operator A and nonlinear-
ity Q.

Hypothesis (H1)

(i) The linear operator A is bounded, self-adjoint, and one-to-one on the Hilbert space H;
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(ii) There exists V a proper, closed subspace of H with dimV
⊥ <∞ and B : H × H → V is a 

bilinear, symmetric, continuous map such that Q(u) =B(u, u).

Hypothesis (H2) There exists an equilibrium u ∈ kerQ satisfying

(i) Q′(u) is self-adjoint and kerQ′(u) = V
⊥;

(ii) There exists δ > 0 such that Q′(u)|V ≤ −δIV.

Example 1.1. Our main example is the steady Boltzmann equation

ξ1fx =Q(f ), x ∈R
1, ξ ∈R

3, (1.3)

where f = f (x, ξ) denotes density at spatial point x of particles with velocity ξ ;

Q(f ) :=
∫
R3

∫
S2

(
f (ξ ′)f (ξ ′∗)− f (ξ)f (ξ∗)

)
C(�, ξ − ξ∗)d�dξ∗

is a collision operator, with ξ∗ ∈ R
3, � ∈ S2, and ξ ′ = ξ + (� · (ξ∗ − ξ))�, ξ ′∗ = ξ∗ − (� · (ξ∗ −

ξ)
)
�; and C is a specified collision kernel; see, e.g., [4,7] for further details. In the hard sphere 

case, C(�, ξ) = ∣∣� · ξ ∣∣, this can be put in form (1.2) satisfying (H1)–(H2) by the coordinate 
change

f → 〈ξ 〉1/2f, Q→ 〈ξ 〉1/2Q, 〈ξ〉 :=
√

1 + |ξ |2, (1.4)

with H the standard square-root Maxwellian-weighted L2 space in variable ξ and A = ξ1/〈ξ〉
[23]. Note that A has no kernel on H, but essential spectra ξ1/〈ξ〉 → 0 as ξ1 → 0: an essential 
singularity.

Our analysis continues a program begun in [26] to develop dynamical systems tools for de-
generate equations (1.2), suitable for the treatment of existence and stability of kinetic shock and 
boundary layers in Boltzmann-type equations. Similarly as in [26], our basic strategy is, in the 
perturbation equations of (1.2) about u, to isolate by direct computation a center subspace flow 
w′

c = Jwc + gc, and a hyperbolic (stable/unstable) subspace flow �0w
′
h = E0wh + gh, coupled 

by quadratic order nonlinearities gc and gh. Here J is a finite-dimensional matrix in Jordan form, 
and �0, E0 are self-adjoint bounded operators, with E0 negative definite and �0 one-to-one but 
not boundedly invertible (see (4.2) and derivation) on Ṽ a finite codimension subspace of H
introduced in Section 2, then construct the center manifold by a fixed-point iteration based on 
inversion of the linear operators (∂x−J ) and (�0∂x−E0) in a negatively exponentially weighted 
space in x.

As noted in [26], a key point is that (�0∂x − E0)
−1 is bounded in H 1(R, ̃V) but not in 

Cb(R, ̃V); hence, we are prevented from applying the usual sup-norm based arguments in the 
evolutionary variable x [2,9,32,33]. Accordingly, we carry out our fixed-point iteration instead 
in the Sobolev space H 1(R, H), a modification that, as in [26], costs a surprising amount of 
difficulty. Interestingly, the difficulties in the two (stable vs. center manifold) cases are essen-
tially complementary. In the stable manifold case [26], where the analysis is on R+, the main 
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difficulty was in handling traces at the boundary x = 0. In the center manifold case, where the 
analysis is on the whole space R, the difficulty is rather with regularity, specifically H 1 analy-
sis in a negatively weighted space. In particular, we find it necessary to work in a mixed norm 
‖f ‖Zγ,β (H) := (‖f ‖2

L2−γ
+ ‖f ′‖2

L2−β
)

1
2 , with β ≥ γ , in order to obtain contraction of our fixed 

point iteration. The introduction of these spaces, along with the associated contraction estimates, 
we consider as one of the main technical novelties of this paper. The presence of an additional 
weight, along with derivative terms, considerably complicates the usual argument for higher 
regularity via a cascade of spaces with decreasing weights; see the treatment of smoothness of 
substitution operators in Appendix A.

1.1. Formal Chapman–Enskog expansion

The Implicit Function Theorem yields the standard result of existence of an isolated finite-
dimensional manifold of equilibria through the base point u.

Lemma 1.2. Assume that u ∈ kerQ is an equilibrium satisfying Hypotheses (H1) and (H2). Then, 
there exists local to u a unique C∞ (in Fréchet sense) manifold of equilibria E , tangent at u to 
V

⊥, expressible in coordinates w := u − u as a C∞ graph v∗ :V⊥ → V.

Denote by u = PV⊥u, v = PVu, where PV⊥ and PV are the orthogonal projections onto asso-
ciated to the decomposition H =V

⊥ ⊕V. Denoting A11 = PV⊥A|V⊥ , A12 = PV⊥A|V, we obtain 
the standard fact that (1.2) admits a conservation law

(A11u+A12v)
′ = 0. (1.5)

The formal, first-order Chapman–Enskog approximation of near-equilibrium behavior, based on 
the assumption that deviations v − v∗(u) from equilibrium are small compared to variations in 
u, and their derivatives are small compared to the derivative of u (see, e.g., [13]), is given by

(f∗(u))′ = 0, v ≡ v∗(u), where f∗(u) :=A11u+A12v∗(u), (CE1)

corresponding to the steady problem for the system of hyperbolic conservation laws [16,27]

h∗(u)t + f∗(u)x = 0, where h∗(u) := PV⊥A0u+ PVA0v∗(u), (1.6)

i.e., flow along equilibrium manifold E (parametrized by u) governed by

f∗(u)≡ q = constant . (1.7)

The second-order Chapman–Enskog approximation, corresponding to h∗(u)t+f∗(u)x =D∗uxx , 
is

u′ =D−1∗ (f∗(u)− q), where f∗(u) :=A11u+A12v∗(u) and D∗ := −A12E
−1A∗

12, (CE2)

with E :=Q′(u)|V denoting the restriction of Q′(u) to its range. See [13,23,24] for further de-
tails.
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A secondary goal of this paper is to relate the rigorous center-manifold flow of (1.2) to the 
first- and second-order Chapman–Enskog systems (CE1) and (CE2). To this end, notice, first, that 
the set E of equilibria of (1.2) is precisely the set of solutions of (CE1), which in turn is the set 
of equilibria of (CE2). Thus, at the level of equilibria, all three models exactly correspond.

1.1.1. Case structure
Next, we distinguish the noncharacteristic case detf ′∗(ū) �= 0 and characteristic case

detf ′∗(ū) = 0, according as the characteristic velocities λj (u) ∈ σ(f ′∗(u)) of (1.6) are nonva-
nishing at ū = PVu or not. In the noncharacteristic case, the Inverse Function Theorem yields 
that f∗ maps a neighborhood of ū one-to-one onto a neighborhood of q̄ := f∗(ū), hence each 
fiber of (CE1) is trivial, consisting of a single equilibrium. Likewise, comparing dimensions, it 
is easily seen that the center manifold of (CE2) at ū is just the set of all equilibrium solutions, 
consisting of constant states u(x) ≡ 0 [20].

The characteristic case is more interesting, admitting nontrivial dynamics. We distinguish two 
important subcases, the simple, genuinely nonlinear and the linearly degenerate case [16,27], 
again having to do with structure of the first-order system (1.6), both of which (and no others) 
arise for Example 1.1. The simple, genuinely nonlinear case consists of the situation that f ′∗(ū)
has a simple zero eigenvalue with associated unit eigenvector r, for which [27]

� := r · f ′′∗ (ū)(r, r) �= 0. (GNL)

In this case, (CE1) corresponds to a fold bifurcation [5], with f∗ mapping a disk around ū to a 
topological half-disk, with covering number two. Moreover, points u1, u2 with the same image 
q , corresponding to equilibria of (1.2) and (CE2), satisfy the Rankine-Hugoniot jump condition

f∗(u1)= f∗(u2), (RH)

corresponding to a discontinuous “Lax-type” standing-shock solution of (1.6), (CE1) [16,27]. 
Such a solution, having infinite derivative, does not satisfy in any obvious ways the assumptions 
in deriving the formal approximation (CE1); however, a center-manifold analysis [20] shows 
that the corresponding fiber (CE2) of the associated second-order system contains a heteroclinic 
connection joining these two equilibria, or viscous shock profile. See [20] for further discussion.

The linearly degenerate case consists of the opposite extreme, that, not only � = 0, but

The solutions of (CE1) consists, locally, of ∅ or an m-parameter manifold �, (LDG)

where m = dim kerf ′∗(ū), given as the integral manifold of m characteristic eigenvectors 
ej (u) with common eigenvalue λj (u) = λ(u) vanishing at ū, and constant along �. Thus, the 
(dimV

⊥ +m)-dimensional center manifold of (CE2) consists of the union of fibers (CE2) either 
composed entirely of equilibria or having none; it therefore admits no heteroclinic or homo-
clinic connections, nor even solutions approaching an equilibrium as x → +∞ or x → −∞.
For further discussion, see Section 5.

Example 1.3. For Example 1.1, the steady Boltzmann equation with hard sphere potential, E is 
the set of Maxwellian distributions

Mu(ξ)= ρ(4πe/3)−3/2e−|ξ−v|2(4e/3)−1
, (1.8)



A. Pogan, K. Zumbrun / J. Differential Equations 264 (2018) 6752–6808 6757
indexed by u = (ρ, vT , e)T ∈ R
5, where ρ represents density, v ∈ R

3 velocity, and e internal 
energy, and (CE2) is the steady compressible Navier–Stokes (cNS) system with monatomic 
equation of state, or hydrodynamic limit [10,18,23]. The corresponding first-order system (CE1), 
the compressible Euler equation, possesses two simple genuinely nonlinear “acoustic” charac-
teristics λ1 = v1 − c, λ5 = v1 + c, where c > 0 is sound speed, and three linearly degenerate 
“entropic/vorticity” characteristics λ2 = λ3 = λ4 = v1 [27].

1.2. Main results

Under assumptions (H1) and (H2), we find (see Lemma 2.10) that, under the linearized flow 
of (1.2) about u, H decomposes into invariant subspaces Hc ⊕ Hs ⊕ Hu, where Hc is a finite-
dimensional center subspace of dimension dimV

⊥ + dim kerA11 and Hs and Hu are (typically 
infinite-dimensional) stable and unstable subspaces in the standard sense of (nondegenerate) dy-
namical systems. Our first main result asserts, likewise, existence of a center manifold in the 
usual dynamical systems sense (cf. [2,9,32,33]).

Theorem 1.4. Assume that u ∈ kerQ is an equilibrium satisfying (H1), (H2). Then, for any inte-
ger k ≥ 2 there exists local to u a Ck center manifold Mc (not necessary unique), tangent at u
to Hc, expressible in coordinates w := u − u as a Ck graph Jc : Hc →Hs ⊕Hu, that is locally 
invariant under the flow of equation (1.2), and contains all solutions that remain bounded and 
sufficiently close to u in forward and backward time.

Once existence of a center manifold is established, one may obtain existence of small-
amplitude shock profiles by adapting the center manifold arguments of [20,21] in the finite-
dimensional case. Here, we give instead a particularly simple normal form argument under the 
additional assumption of genuine nonlinearity (GNL), whereas the arguments of [20,21] were for 
the general case. Similarly as in [20,21], the main idea is to use the fact that equilibria are pre-
dicted by the Rankine–Hugoniot shock conditions for (CE1) to deduce normal form information 
from the structure of the first-order Chapman–Enskog approximation. Our second main result 
relates behavior on the center manifold to that of (CE2).

Theorem 1.5. Assume that u ∈ kerQ is an equilibrium satisfying (H1), (H2). In the nonchar-
acteristic case, the center manifolds of (1.2) at u and (CE2) at ū = PV⊥u consist entirely of 
equilibria, with trivial (constant) flow. In the characteristic case (GNL), the center manifolds 
of (1.2) and (CE2) both consist of the union of one-dimensional fibers parametrized by q ∈ R

r , 
governed by approximate Burgers flows: specifically, setting u1 := r · u, q1 := r · q , q = (q1, q̃), 
and without loss of generality (see Section 4) taking q̃ = 0, the flow

u′
1 = �−1(− q1 +�u2

1/2
)+ O(|u1|3 + |q1||u1| + |q1|2), (1.9)

where � := rT D∗r> 0, r, D∗, q as in (GNL), (CE2). In particular, there exist local heteroclinic 
(Lax shock) connections for q1� > 0 between endstates u±

1 ≈ √
2q1/�. In the characteristic 

case (LDG), the center manifolds of (1.2) and (CE2) consist of the union of m-dimensional1

fibers with approximate flow, taking again without loss of generality q̃ = 0,

1 Here m = dimf ′∗(ū).
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u′
1 = −�−1q1 + O(|q1||u1| + |q1|2), (1.10)

u1, q1 ∈ R
m, � ∈ R

m×m, either consisting entirely of equilibria, or entirely of solutions leaving 
the vicinity of u (ū) at both x→ +∞ and x→ −∞; in particular, there are no local heteroclinic 
(shock type) solutions, or (boundary layer type) solutions converging to equilibria as x→ +∞
or x→ −∞.

Corollary 1.6. Assume that u ∈ kerQ is an equilibrium satisfying (H1), (H2), in the charac-
teristic case (GNL), and let k be an integer ≥ 2. Then, local to u, (ū), each pair of points u±
corresponding to a standing Lax-type shock of (CE1) has a corresponding viscous shock solution 
uCE of (CE2) and relaxation shock solution uREL = (uREL, vREL) of (1.2), satisfying for all 
j ≤ k − 2:

∣∣∂jx (uREL − uCE)(x)
∣∣≤ Cεj+2e−δε|x|,∣∣∂jx (vREL − v∗(uCE)

)
(x)
∣∣≤ Cεj+2e−δε|x|,

|∂jx (uREL − u±)(x)| ≤ Cεj+1e−δε|x|, x ≷ 0,

(1.11)

for some δ > 0, C > 0, where ε := |u+ − u−|, with also λ(uREL(x)) monotone in x, where λ(u)
is the simple eigenvalue of f ′∗(u) vanishing at u = ū. Up to translation, these are the unique such 
solutions.

Remark 1.7. We do not assume as in [23] the usual “genuine coupling” or Kawashima condition 
that no eigenvector of A lie in the kernel of Q′(u), which would imply (see [31]) that (CE2) be 
of Kawashima class [12]: in particular, that viscosity coefficient D∗ be nonnegative semidefinite. 
What takes the place of this condition is the assumption that A has no kernel, which implies the 
weakened Kawashima condition that no zero eigenvector of A lie in the kernel of Q′(u), which 
is sufficient that � > 0 in Theorem 1.5. As follows from the center manifold analysis of [20], this 
is enough for existence of small-amplitude shock profiles for (CE2), independent of the nature 
of D∗.

1.2.1. Boltzmann’s equation
Applying Theorems 1.4, 1.5 and Corollary 1.6 to Example 1.1, we immediately (i) obtain 

existence of a center manifold, and (ii) recover and substantially sharpen the fundamental result 
[3] of existence of small-amplitude Boltzmann shocks for a hard sphere (or Grad hard cutoff [3,
23]) collision potential, both with respect to the space H determined by the (slight strengthening 
of the) classical square-root Maxwellian weighted norm ‖f ‖H := ‖〈·〉1/2M

−1/2
ū (·)f (·)‖L2 [4,

8,23]. Adapting a bootstrap argument of [23], we obtain the following improvement. For any 
1/2 ≤ σ < 1, denote by Yσ the Hilbert space determined by norm

‖f ‖Yσ := ‖〈·〉1/2M−σ
ū (·)f (·)‖L2 . (1.12)

Proposition 1.8. For the steady Boltzmann equation with hard sphere potential (Example 1.1), 
for any 1/2 ≤ σ < 1 and integer k ≥ 2, there exists in the vicinity of any Maxwellian equilibrium 
u =Mū a Ck(Hc, Yσ ) center manifold Mc ⊂ Y

σ in the sense of Theorem 1.4, tangent at u to 
Hc ⊂Y

σ , and expressible in coordinates w := u −u as a Ck graph Jc :Hc → (Hs ⊕Hu) ∩Y
σ .
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Proposition 1.8 implies that the center manifold, including any small-amplitude shock pro-
files, lies in the space Yσ of functions bounded in L2(R3, 〈ξ〉1/2M

−1/2
ū (ξ )dξ) with a near-

Maxwellian weight. In particular, we obtain “sharp localization in velocity” of small-amplitude 
Boltzmann shock profiles, recovering the strongest current existence result obtained in [23], plus 
the additional information of monotonicity of λ(uREL(x)) along the profile not available by the 
Sobolev-based fixed point iteration arguments of [3,23]. This description of velocity-localization 
of the center manifold is sharp, as may be seen by the fact that the equilibrium manifold E , con-
tained in any center manifold, itself lies in this space and no stronger one, changes in energy e
effectively changing the power of the Gaussian distribution in the Maxwellian formula (1.8). It 
validates in a strong sense the formal Chapman–Enskog picture of near-equilibrium behavior as 
governed essentially by the flow along the equilibrium manifold E , and the Grad hierarchy of 
moment-closure approximations [8] based on Hermite polynomials in velocity.

1.3. Discussion and open problems

Writing the key infinite-dimensional hyperbolic equation �0w
′
h − E0wh = gh formally as 

w′
h = �−1

0 E0wh +�−1
0 gh, we see that this is in general an ill-posed equation in both forward and 

backward x, due to non-bounded invertibility of �0, with the additional difficulty that the un-
bounded operator �−1

0 also acts on the source term gh. In the latter sense, it is similar in flavor to 
quasilinear PDE problems involving maximal regularity analysis. Center manifolds for ill-posed 
evolutionary systems involving maximal regularity have been treated by Mielke in [22] and oth-
ers, see, e.g., [9,11] and references therein. The present, semilinar analysis, though different in 
particulars, seems to belong to this general family of results.

To our knowledge, the results of this paper are the first on existence of center manifolds for 
any system of form (1.2), (H1)–(H2) with A noninvertible, in particular for Boltzmann’s equa-
tion with hard sphere (or Grad hard cutoff [3,23]) potential. In the case of Boltzmann’s equation 
(1.3), Liu and Yu [18] have investigated existence of center manifolds in a (weighted L∞(x, ξ)) 
Banach space setting, using rather different methods of time-regularization and detailed point-
wise bounds, pointing out that monotonicity of λ(ū) follows from center manifold reduction and 
describing physical applications of center manifold theory to condensation and subsonic/super-
sonic transition in Milne’s problem. However, the linearized estimates on which they based their 
argument for existence of center manifolds were incorrect; see [38] or [39, Lemma 3.2]. The 
present paper repairs this gap by a different route, recovering the conclusions made in [18] via 
center manifold techniques.

A larger goal, beyond existence and construction of invariant manifolds, is to develop dynam-
ical systems tools for systems (1.1) analogous to those developed for finite-dimensional viscous 
shock and relaxation systems in [6,21,34–37,40,41], sufficient to treat 1- and multi-D stability by 
the techniques of those papers. See in particular the discussion of [36, Remark 4.2.1(4), p. 55], 
proposing a path toward stability of Boltzmann shock profiles, which reduces the problem to 
description of the resolvent kernel in a small neighborhood of the origin.

Such methods would apply in principle also to large-amplitude shocks, provided profiles ex-
ist and are spectrally stable. The development of numerical and or analytical methods for the 
treatment of existence and stability of large-amplitude kinetic shocks we regard as a further, 
very interesting open problem. Indeed, the structure problem discussed by Truesdell, Ruggeri, 
Boillat, and others, of existence and description of large-amplitude Boltzmann shocks, is one of 
the fundamental open problems in the theory, and (because of more accurate fit to experiments 
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than predictions of Navier–Stokes theory) an important motivation for their study; see, e.g., the 
discussion of [1].

A glossary of notation: For p ≥ 1, J ⊆ R and X a Banach space, Lp(J, X) are the usual 
Lebesgue spaces on J with values in X, associated with Lebesgue measure dx on J . Simi-
larly, Lp(J, X; w(x)dx) are the weighted spaces with a weight w ≥ 0. The respective spaces 
of bounded continuous functions on J are denoted by Cb(J, X) and Cb(J, X; w(x)). Hs(R, X), 
s > 0, is the usual Sobolev space of X valued functions. The identity operator on a Banach 
space X is denoted by Id (or by IdX if its dependence on X needs to be stressed). The set of 
bounded linear operators from a Banach space X to itself is denoted by B(X). For an oper-
ator T on a Hilbert space we use T ∗, dom(T ), kerT , imT , σ(T ), R(λ, T ) = (λ − T )−1 and 
T|Y to denote the adjoint, domain, kernel, range, spectrum, resolvent operator and the restriction 
of T to a subspace Y of X. If B : J → B(X) then MB denotes the operator of multiplication 
by B(·) in Lp(J, X) or Cb(J, X). The Fourier transform of a Borel measure μ is defined by 
(Fμ)(ω) = ∫

R
e−2πixωdμ(x).

2. Linearized equations

In this section we study the qualitative properties of the equation obtained by linearizing 
equation (1.2) about the equilibrium u, and its perturbations by an inhomogeneous source term. 
Throughout this section we assume Hypotheses (H1) and (H2). Our goal is to prove that the 
linearized equation,

Au′ =Q′(u)u (2.1)

exhibits an exponential trichotomy on H and to precisely describe the center, stable and unstable 
subspaces associated to this equation. A major difficulty when treating the linearized equation 
(2.1) is given by the fact that the linear operator A−1Q′(u) does not generate a C0-semigroup 
on H. Therefore, it is not straightforward to prove the existence of solutions of Cauchy prob-
lems associated to (2.1) in forward time nor on backward time. Our first task is to show that 
the linearization decouples, which is a key point of our analysis. Denoting E =Q′(u)|V, from 
Hypothesis (H2) we infer following [23,26] that the bounded linear operators A and Q′(u) have 
the decomposition

A=
[
A11 A12
A21 A22

]
:V⊥ ⊕V→ V

⊥ ⊕V, Q′(u)=
[

0 0
0 E

]
:V⊥ ⊕V→V

⊥ ⊕V, (2.2)

where E is symmetric negative definite (hence invertible). Next, we denote by PV and PV⊥
the orthogonal projections onto V and V⊥, u = PV⊥u and v = PVu. From (2.2) we obtain that 
equation (2.1) is equivalent to the system{

A11u
′ +A12v

′ = 0,
A21u

′ +A22v
′ =Ev. (2.3)

As noted in [23,26], with this form, A11 is exactly the Jacobian of the reduced “equilibrium” 
equation (CE1) obtained by formal Chapman–Enskog expansion. We distinguish the nonchar-
acteristic case detA11 �= 0 and the characteristic case detA11 = 0 according as this reduced 
hyperbolic system is noncharacteristic or not. We turn our attention to the perturbation of the 
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system (2.3) obtained by adding a forcing term f in the second equation, modeling nonlinear 
effects (recall that imQ = V, so that nonlinearities enter in the second equation only):

{
A11u

′ +A12v
′ = 0,

A21u
′ +A22v

′ =Ev+ f. (2.4)

We leave the function space of f unspecified for the moment; ultimately, it will be a negatively 
weighted H 1 space comprising functions growing at sufficiently slow exponential rate.

In this section we will show that system (2.4) is equivalent to a system of equations consisting 
of three finite-dimensional equations that can be readily integrated and an infinite-dimensional 
equation of the form �0ṽ

′ = E0ṽ + g, with �0, E0 bounded linear operators on a finite codi-
mension subspace of V that can be treated using the frequency-domain reformulation used in 
[14,15,26]. In the case when A11 is invertible, one can solve for u′ in terms of v′ in the first 
equation of (2.4) and then focus on the second equation. In the general case, when A11 is not 
necessarily invertible, we first decompose V⊥ as follows: since A and PV⊥ are self-adjoint 
operators on H and A11 = PV⊥A|V⊥ , we have that A11 is self-adjoint on V⊥, which implies 
that V⊥ = kerA11 ⊕ imA11. We denote by PkerA11 and PimA11 the orthogonal projectors onto 
kerA11 and imA11 associated to this decomposition. Next, we introduce the linear operators 
Ã12 : V → imA11 and T12 : V → kerA11 defined by Ã12 = PimA11A12 and T12 = PkerA11A12. In 
the next lemma we summarize some of the elementary properties of Ã12 and T12.

Lemma 2.1. Assume Hypotheses (H1) and (H2). Then, the following assertions hold true.

(i) kerT ∗
12 = {0}, imT12 = kerA11, kerT12 �= {0};

(ii) The linear operator Ã11 = (A11)|imA11 is self-adjoint and invertible on imA11.

Proof. (i) Since A is a self-adjoint operator on H by Hypothesis (H1) from (2.2) we con-
clude that A21 = A∗

12. Thus, one can readily check that T ∗
12 = (A∗

12)| kerA11 = (A21)| kerA11 . 
Let u ∈ kerT ∗

12 ⊆ dom(T ∗
12) = kerA11 ⊆ V

⊥. It follows that A11u = A21u = 0, which implies 
Au =A11u +A21u = 0. From Hypothesis (H1) we obtain that u = 0, proving that kerT ∗

12 = {0}. 
Since imT12 is finite dimensional, we infer that it is a closed subspace of kerA11. Hence, 
imT12 = (

kerT ∗
12

)⊥ = kerA11. Next, we assume for a contradiction that kerT12 = {0}. Since 
T12 ∈ B(V, kerA11), it follows that dimV ≤ dim kerA11 ≤ dimV

⊥ <∞, which is a contradic-
tion. Assertion (ii) follows immediately since the linear operator A11 is self-adjoint on V⊥. �

To treat system (2.4) we first introduce the subspaces V1 = imT ∗
12 and Ṽ = kerT12. In what 

follows PV1 and P
Ṽ

are the orthogonal projectors onto V1 and Ṽ, respectively. Denoting by 
u1 = PkerA11u, ũ = PimA11u, v1 = PV1v and ṽ = P

Ṽ
v and applying the projectors PkerA11 and 

PimA11 , respectively, to the first equation of (2.4) we obtain that

T12v
′
1 = T12v

′ = PkerA11(A11u
′ +A12v

′)= 0,

Ã11ũ
′ + Ã12ṽ

′ = PimA11(A11u
′ +A12v

′)= 0. (2.5)

Moreover, since (A21)| kerA11 = T ∗
12 and (A21)|imA11 = Ã∗

12 we have that the second equation of 
(2.4) is equivalent to
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T ∗
12u

′
1 + Ã∗

12ũ
′ +A22v

′ =Ev+ f. (2.6)

Since v1 ∈ V1 = imT ∗
12, from (2.5) we conclude that v′

1 ∈ kerT12 ∩ imT ∗
12 = {0}, hence v′

1 = 0. 
In addition, since the linear operator Ã11 is invertible on imA11 by Lemma 2.1(ii), we infer that 
ũ′ = −Ã−1

11 Ã12ṽ
′. Summarizing, (2.5) is equivalent to

v′
1 = 0, ũ′ = −Ã−1

11 Ã12ṽ
′. (2.7)

Next, we solve for u1 in terms of v in (2.6). Multiplying this equation by PV1 , from (2.7), we 
obtain that

T ∗
12u

′
1 + PV1(A22 − Ã∗

12Ã
−1
11 Ã12)̃v

′ = PV1Ev+ PV1f (2.8)

From Lemma 2.1(i) we have that (T ∗
12)

−1 is well-defined and bounded, linear operator from 
V1 = imT ∗

12 to kerA11. Thus, we can solve in (2.8) for u1 as follows:

u′
1 = �1ṽ

′ +E1v+ (T ∗
12)

−1PV1f. (2.9)

Here the linear operators �1 :V → kerA11 and E1 :H → kerA11 are defined by

�1 = (T ∗
12)

−1(Ã∗
12Ã

−1
11 Ã12 −A22) ∈ B(V,kerA11), E1 = (T ∗

12)
−1PV1E ∈ B(H,kerA11).

(2.10)

Since v′ = ṽ′ by (2.7), multiplying equation (2.6) by P
Ṽ

, we infer that

P
Ṽ
(A22 − Ã∗

12Ã
−1
11 Ã12)̃v

′ = P
Ṽ
Eṽ+ P

Ṽ
Ev1 + P

Ṽ
f. (2.11)

From (2.7), (2.9) and (2.11) we conclude that the system (2.4) is equivalent to the system

⎧⎪⎪⎨
⎪⎪⎩
u′

1 = �1ṽ
′ +E1(v1 + ṽ)+ (T ∗

12)
−1PV1f,

ũ′ = −Ã−1
11 Ã12ṽ

′,
v′

1 = 0
�0ṽ

′ =E0ṽ + P
Ṽ
Ev1 + P

Ṽ
f,

(2.12)

where the linear operators �0, E0 : Ṽ→ Ṽ are defined by

�0 = P
Ṽ
(A22 − Ã∗

12Ã
−1
11 Ã12)|Ṽ ∈ B(Ṽ), E0 = P

Ṽ
E|Ṽ ∈ B(Ṽ). (2.13)

We note that the first three equation of (2.12) can easily be integrated. The fourth equation of 
(2.12) is of the form

�0ṽ
′ =E0ṽ+ g, (2.14)

where g : R → Ṽ is a constant perturbation P
Ṽ
Ev1 + P

Ṽ
f of the (bounded) projection of f

onto Ṽ.
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2.1. Inhomogeneous equations

To understand the solutions of the perturbed equation (2.14), it is crucial that we study the 
properties of the linear operators �0 and E0.

Lemma 2.2. Assume Hypotheses (H1) and (H2). Then, the linear operators �0 and E0 satisfy 
the following conditions.

(i) �0 is self-adjoint and one-to-one on Ṽ;
(ii) The operator E0 is self-adjoint, negative definite and invertible with bounded inverse on Ṽ;

(iii) The operator 2π iω�0 −E0 is invertible on Ṽ for any ω ∈ R;
(iv) supω∈R ‖(2π iω�0 −E0)

−1‖ <∞.

Proof. (i) Since the linear operator A is self-adjoint, from (2.2), we obtain that A22 is self-adjoint 
on V. In addition, since P

Ṽ
is an orthogonal projector, and hence self-adjoint, from Lemma 2.1

and (2.13), we conclude that �0 is self-adjoint. Let ṽ ∈ Ṽ = kerT12 such that ṽ ∈ ker�0, that 
is P

Ṽ
(A22 − Ã∗

12Ã
−1
11 Ã12)̃v = 0. Since ̃v ∈ kerT12 it follows that A12ṽ = Ã12ṽ + T12ṽ = Ã12ṽ. 

Let ̃u= −Ã−1
11 Ã12ṽ ∈ imA11. From the definition of Ã11 in Lemma 2.1(ii), we have that A11ũ=

Ã11ũ= −Ã12ṽ = −A12ṽ, which implies that

A11ũ+A12ṽ = 0. (2.15)

Since (A21)|imA11 = Ã∗
12, we have that Ã∗

12Ã
−1
11 Ã12ṽ = −Ã∗

12ũ = −A21ũ. Since ̃v ∈ ker�0, we 
obtain that P

Ṽ
(A21ũ+A22ṽ) = 0. Hence, A21ũ+A22ṽ ∈ V1 = imT ∗

12, which implies that there 
exists u1 ∈ kerA11 such that A21ũ+A22ṽ = T ∗

12u1 =A21u1. Hence,

A21(̃u− u1)+A22ṽ = 0. (2.16)

Since u1 ∈ kerA11 from (2.2), (2.15) and (2.16), we infer that A(̃u− u1 + ṽ) = 0. Since A is 
one-to-one, ũ − u1 ∈ kerA11 ⊕ imA11 = V

⊥ and ṽ ∈ Ṽ ⊂ V we conclude that ṽ = 0, proving 
that ker�0 = {0}.

Assertion (ii) follows from Hypothesis (H2) since E ≤ −δIV and the projection P
Ṽ

is orthog-
onal, and hence, self-adjoint. Denoting by L0 : R → B(Ṽ) the operator-valued function defined 
by L0(ω) = 2π iω�0 − E0, from (i) and (ii) we obtain that ReL0(ω) = −E0 for any ω ∈ R. 
From (2.13) we have that

Re〈L0(ω)̃v, ṽ〉 = −〈E0ṽ, ṽ〉 = −〈Eṽ, ṽ〉 ≥ δ‖̃v‖2 for any ω ∈R, ṽ ∈ Ṽ. (2.17)

From (2.17) we immediately conclude that

‖L0(ω)̃v‖ ≥ δ‖̃v‖ for any ω ∈ R, ṽ ∈ Ṽ. (2.18)

From (2.18) we obtain that L0(ω) is one-to-one and its range is closed on ̃V for any ω ∈R. From 
(2.17) one can readily check that kerL0(ω)

∗ = {0} for any ω ∈ R, proving (iii). Assertion (iv) 
follows from (2.18). �
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, 
Lemma 2.2 shows that the pair of operators (�0, E0) satisfies Hypothesis(S) as stated in [26, 
Section 3]. In the next lemma we summarize some of the important consequences from [26].

Lemma 2.3 ([26]). Assume Hypotheses (H1) and (H2). Then, the following assertions hold true.

(i) The linear operator S�0,E0 = �−1
0 E0 : dom(S�0,E0) = {̃v ∈ Ṽ : E0ṽ ∈ im�0} → Ṽ gen-

erates an exponentially stable bi-semigroup on Ṽ, that is, there exist Ṽs and Ṽu two 
closed subspaces of Ṽ, invariant under S�0,E0 , such that Ṽ = Ṽs ⊕ Ṽu and (S�0,E0)|Ṽs

and −(S�0,E0)|Ṽu
generate exponentially stable, C0-semigroups denoted {T̃s(x)}x≥0 and 

{T̃u(x)}x≥0, having decay rate −ν(�0, E0) < 0;

(ii) iR ⊆ ρ(S�0,E0) and R(2π iω, S�0,E0) = (2π iω− S�0,E0)
−1 = (L0(ω)

)−1
�0 for all ω ∈ R;

(iii) There exists c > 0 such that ‖R(2π iω, S�0,E0)‖ ≤ c
1+|ω| for all ω ∈R;

(iv) The Green function G�0,E0 : R → B(Ṽ) defined by

G�0,E0(x)=
{
T̃s(x)P̃s if x ≥ 0
−T̃u(−x)P̃u if x < 0

, (2.19)

decays exponentially at ±∞. Here P̃s/u denote the projections onto Ṽs/u associated to the di-
chotomy decomposition Ṽ= Ṽs ⊕ Ṽu. Moreover,

FG�0,E0(·)̃v =R(2π i·, S�0,E0 )̃v for any ṽ ∈ Ṽ. (2.20)

Now we have all the ingredients needed to treat solutions of equation (2.14) for functions 
g ∈ L2

loc(R, ̃V). Our approach is the following: we first take Fourier Transform in (2.14) and 
then solve for F ṽ using the results from Lemma 2.2 and Lemma 2.3. Next, we introduce the 
operator-valued function R�0,E0 : R → B(Ṽ) defined by R�0,E0(ω) = (2π iω�0 − E0)

−1. We 
recall the definition of mild solutions of (2.14).

Definition 2.4. We say that

(i) The function ̃v is a mild solution of (2.14) on [x0, x1] if ̃v ∈ L2([x0, x1], ̃V) satisfies

(F ṽ|[x0,x1])(ω)=R(2π iω,S�0,E0)
(
e−2π iωx0 ṽ(x0)− e−2π iωx1 ṽ(x1)

)
+R�0,E0(ω)(Fg|[x0,x1])(ω)

for almost all ω ∈R;
(ii) The function ̃v is a mild solution of (2.14) on R if it is a mild solution of (2.14) on [x0, x1]

for any x0, x1 ∈R.

Next, we introduce the linear operator K0 :L2(R, ̃V) → L2(R, ̃V) by K0g = F−1MR�0,E0
Fg

where MR�0,E0
denotes the multiplication operator on L2(R, ̃V) by the operator valued function 

R�0,E0 . From Lemma 2.2(iv) we have that supω∈R ‖R�0,E0(ω)‖ <∞, which proves that K0 is 
well defined and bounded on L2(R, ̃V). Since we need to solve equation (2.14) for functions 
g :R → Ṽ that are perturbations by constants of functions from L2(R, ̃V), we need to study how 
to extend the Fourier multiplier K0 to a bounded, linear operator on L2−α(R, ̃V) and H 1−α(R, ̃V), 
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where α ∈ (0, ν(�0, E0)) is a small exponential weight. To prove these results, we need the 
following result on convolutions.

Lemma 2.5. Assume W : R → B(Ṽ) is a piecewise strongly continuous operator valued func-
tion such that ‖W (x)‖ ≤ ce−ν|x| for all x ∈ R. Then, for any α ∈ (0, ν) we have that W ∗ g ∈
L2−α(R, ̃V) and

‖W ∗ g‖L2−α ≤ c‖g‖L2−α for any f ∈L2−α(R, Ṽ). (2.21)

Proof. Let g ∈ L2−α(R, ̃V). Since W decays exponentially at ±∞ and α ∈ (0, ν) we have that

‖(W ∗ g)(x)‖2

≤
(∫
R

e−ν|x−y|‖g(y)‖dy
)2 =

(∫
R

e−
ν−α

2 |x−y|e−
ν+α

2 |x−y|‖g(y)‖dy
)2

≤
∫
R

e−(ν−α)|x−y| dy
∫
R

e−(ν+α)|x−y|‖g(y)‖2 dy = 2

ν − α
∫
R

e−(ν+α)|x−y|‖g(y)‖2 dy

(2.22)

Taking Fourier Transform one can readily check that

e−2α|·| ∗ e−(ν+α)|·| = 2(ν + α)
(ν + α)2 − 4α2 e

−2α|·| − 4α

(ν + α)2 − 4α2 e
−(ν+α)|·|, (2.23)

which implies that

∫
R

e−2α|x|e−(ν+α)|x−y| dx ≤ 2(ν + α)
(ν + 3α)(ν − α)e

−2α|y| for any y ∈R. (2.24)

From (2.22) and (2.24) it follows that

∫
R

e−2α|x|‖(W ∗ g)(x)‖2 dx ≤ 2

ν − α
∫
R

∫
R

e−2α|x|e−(ν+α)|x−y|‖g(y)‖2 dy dx

= 2

ν − α
∫
R

(∫
R

e−2α|x|e−(ν+α)|x−y| dx
)
‖g(y)‖2 dy ≤ 4(ν + α)

(ν + 3α)(ν − α)2 ‖g‖2
L2−α
.

(2.25)

From (2.25) we conclude that W ∗ g ∈ L2−α(R, ̃V) and that (2.21) holds true, proving the 
lemma. �
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Lemma 2.6. Assume Hypotheses (H1) and (H2). Then, for any α ∈ (0, ν(�0, E0)) the Fourier 
multiplier K0 can be extended to a bounded, linear operator on L2−α(R, ̃V) and on H 1−α(R, ̃V).

Proof. First, we introduce ψ : R → R the function defined by ψ(x) = e−α〈x〉, where 〈x〉 =
(1 + x2)

1
2 . One can readily check that ψ ∈ H 2(R). To prove that K0 can be extended to a 

bounded, linear operator on L2−α(R, ̃V), it is enough to prove that ‖K0g‖L2−α ≤ c‖g‖L2−α for any 

g ∈ L2(R, ̃V).
Fix g ∈ L2(R, ̃V). From [26, Lemma 4.10] we have that ψK0g = K0

(
ψg + ψ ′(G ∗

�0,E0
∗

g)
)
. Clearly, ψg ∈ L2(R, ̃V). From Lemma 2.3(iv) and Lemma 2.5 we obtain that G ∗

�0,E0
∗ g ∈

L2−α(R, ̃V). Since |ψ ′(x)| ≤ ce−α|x| for any x ∈R, we conclude that ψ ′(G ∗
�0,E0

∗ g) ∈ L2(R, ̃V)
and

‖K0g‖L2−α ≤ c‖ψK0g‖2 = c‖K0(ψg +ψ ′(G ∗
�0,E0

∗ g))‖2 ≤ c‖ψg+ψ ′(G ∗
�0,E0

∗ g)‖2

≤ c‖ψg‖2 + ‖ψ ′(G ∗
�0,E0

∗ g)‖2 ≤ c‖g‖L2−α + c‖G ∗
�0,E0

∗ g‖L2−α ≤ c‖g‖L2−α ,

(2.26)

proving that the Fourier multiplier K0 can be extended to a bounded, linear operator on 
L2−α(R, ̃V).

Next, we fix g ∈H 1−α(R, ̃V) ∩L2(R, ̃V). Using again Lemma 2.3(iv) and Lemma 2.5, we infer 
that G ∗

�0,E0
∗ g ∈ L2−α(R, ̃V). Because |ψ ′(x)| + |ψ ′′(x)| ≤ ce−α|x| for any x ∈ R, it follows that

ψ ′(G ∗
�0,E0

∗ g) ∈ L2(R, Ṽ) and ψ ′′(G ∗
�0,E0

∗ g) ∈ L2(R, Ṽ). (2.27)

Since g ∈ H 1−α(R, ̃V), from Lemma 2.5 we have that G ∗
�0,E0

∗ g ∈ H 1
loc(R, ̃V) and (G ∗

�0,E0
∗

g)′ = G ∗
�0,E0

∗ g′ ∈ L2−α(R, ̃V). Thus, ψ ′(G ∗
�0,E0

∗ g′) ∈ L2(R, ̃V). From (2.27) we conclude that 
ψ ′(G ∗

�0,E0
∗ g) ∈H 1

loc(R, ̃V) and

(
ψ ′(G ∗

�0,E0
∗ g))′ =ψ ′′(G ∗

�0,E0
∗ g)+ψ ′(G ∗

�0,E0
∗ g′) ∈ L2(R, Ṽ). (2.28)

From Lemma 2.5, (2.27) and (2.28) we infer that ψ ′(G ∗
�0,E0

∗ g) ∈H 1(R, ̃V) and

‖ψ ′(G ∗
�0,E0

∗ g)‖H 1 ≤ c‖ψ ′(G ∗
�0,E0

∗ g)‖2 + c‖(ψ ′(G ∗
�0,E0

∗ g))′‖2

≤ c‖G ∗
�0,E0

∗ g‖L2−α + c‖ψ ′′(G ∗
�0,E0

∗ g)‖2 + c‖ψ ′(G ∗
�0,E0

∗ g′)‖2

≤ c‖g‖L2−α + c‖G ∗
�0,E0

∗ g‖L2−α + c‖G ∗
�0,E0

∗ g′‖L2−α
≤ c‖g‖L2−α + c‖g′‖L2−α = c‖g‖H 1−α . (2.29)

Since supω∈R ‖R�0,E0(ω)‖ <∞ by Lemma 2.2(iv), it follows that the Fourier multiplier K0 can 
be extended to a bounded, linear operator on H 1(R, ̃V). Since ψg, ψ ′(G ∗

�0,E0
∗ g) ∈ H 1(R, ̃V)

we obtain that ψK0g = K0(ψg + ψ ′(G ∗
�0,E0

∗ g)) ∈ H 1(R, ̃V), and thus K0g ∈ H 1−α(R, ̃V). 
Summarizing, from (2.29) we conclude that
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‖K0g‖H 1−α ≤ c‖ψK0g‖H 1 = c‖K0(ψg +ψ ′(G ∗
�0,E0

∗ g))‖H 1

≤ c‖ψg+ψ ′(G ∗
�0,E0

∗ g)‖H 1

≤ c‖ψg‖H 1 + ‖ψ ′(G ∗
�0,E0

∗ g)‖H 1 ≤ c‖g‖H 1−α . (2.30)

From (2.30) it follows that the Fourier multiplier K0 can be extended to a bounded, linear oper-
ator on H 1−α(R, ̃V), proving the lemma. �

To simplify the notation, in the sequel we denote the extensions of K0 to L2−α(R, ̃V) and 
H 1−α(R, ̃V) by the same symbol. Moreover, from the definition of K0 one can readily check that

(K0g)
′ = K0g

′ for any g ∈H 1−α(R, Ṽ). (2.31)

Next, we will study the smoothness and uniqueness of solutions of (2.14) in the case when the 
function g ∈H 1−α(R, ̃V). To prove these results, we need the following lemma.

Lemma 2.7. Assume Hypotheses (H1) and (H2), ṽ ∈ L2(R, ̃V), μ is an Ṽ-valued finite Borel 
measure such that F ṽ =MR�0,E0

Fμ, and ψ ∈C∞
0 (R). Then,

ψ̂ ṽ(ω)−R�0,E0(ω)�0φ̂′ṽ(ω)=R�0,E0(ω)

∫
R

e−2π iωxφ(x)dμ(x) for any ω ∈ R. (2.32)

Proof. First, we note that the function R�0,E0 satisfies the equation

R�0,E0(ω1)−R�0,E0(ω2)= 2π i(ω2 −ω1)R�0,E0(ω1)�0R�0,E0(ω2) for any ω1,ω2 ∈ R.

(2.33)

The lemma follows from (2.33) by a long, but fairly simple computation. Indeed,

ψ̂ ṽ(ω)−R�0,E0(ω)�0φ̂′ṽ(ω)= (ψ̂ ∗ ̂̃v)(ω)−R�0,E0(ω)�0(φ̂′ ∗ ̂̃v)(ω)
=
∫
R

φ̂(ω− θ )̂̃v(θ)dθ −R�0,E0(ω)�0

∫
R

φ̂′(ω− θ )̂̃v(θ)dθ

=
∫
R

φ̂(ω− θ )̂̃v(θ)dθ −R�0,E0(ω)�0

∫
R

2π i(ω− θ)φ̂(ω− θ )̂̃v(θ)dθ

=
∫
R

φ̂(ω− θ)
(
I
Ṽ

− 2π i(ω− θ)R�0,E0(ω)�0

)̂̃v(θ)dθ
=
∫
R

φ̂(ω− θ)
(
R�0,E0(θ)− 2π i(ω− θ)R�0,E0(ω)�0R�0,E0(θ)

)
μ̂(θ)dθ

=R�0,E0(ω)

∫
φ̂(ω− θ)μ̂(θ)dθ =R�0,E0(ω)(φ̂ ∗ μ̂)(ω)
R
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=R�0,E0(ω)

∫
R

e−2π iωxφ(x)dμ(x) (2.34)

for any ω ∈R, proving the lemma. �
Lemma 2.8. Assume Hypotheses (H1) and (H2). Then, the following assertions hold true.

(i) For any g ∈H 1−α(R, ̃V), K0g is a mild solution of (2.14) on [x0, x1] for any x0, x1 ∈R;
(ii) If g ∈ L2−α(R, ̃V) and ̃v ∈ L2−α(R, ̃V) is a mild solution of equation (2.14) on R, then ̃v =

K0g.

Proof. First, we consider a sequence of smooth functions φn ∈ C∞
0 (R) such that 0 ≤ φn ≤ 1, 

φn(x) = 1 for any x ∈ [−n, n], φn(x) = 0 whenever |x| ≥ n + 1 and supn∈N ‖φ′
n‖∞ <∞ for 

any n ≥ 1. One can readily check that φn → 1 and φ′
n → 0 simple as n → ∞. Moreover, from 

Lebesgue Dominated Convergence Theorem one can readily check that

φ′
ng→ 0 in L2−α(R, Ṽ) as n→ ∞ for any g ∈L2−α(R, Ṽ),

φng→ g in L2−α(R, Ṽ) as n→ ∞ for any g ∈L2−α(R, Ṽ)

φng→ g inH 1−α(R, Ṽ) as n→ ∞ for any g ∈H 1−α(R, Ṽ). (2.35)

Proof of (i). Fix g ∈ H 1−α(R, ̃V). Since φn ∈ C∞
0 (R) we have that φng ∈ H 1(R, ̃V), and thus 

ṽn := K0(φng) ∈H 1(R, ̃V) for any n ≥ 1. From the definition of the Fourier multiplier K0, we 
immediately obtain that

F (�0ṽ
′
n −Eṽn)(ω)= (2π iω�0 −E0) ̂̃vn(ω)= φ̂ng(ω) for any ω ∈ R, (2.36)

which proves that �0ṽ
′
n = Eṽn + φng for any n ≥ 1. Since H 1-solutions of (2.14) are also mild 

solutions, we have that

(
(F ṽn)|[x0,x1]

)
(ω)=R(2π iω,S�0,E0)

(
e−2π iωx0 ṽn(x0)− e−2π iωx1 ṽn(x1)

)
+R�0,E0(ω)(Fφng|[x0,x1])(ω) (2.37)

for any ω ∈ R and n ≥ 1. From (2.35) we have that φng → g in H 1−α(R, ̃V) as n → ∞. From 
Lemma 2.6 we conclude that ṽn = K0(φng) → K0g in H 1−α(R, ̃V) as n → ∞. It follows that 
(̃vn)|[x0,x1] → (K0g)|[x0,x1] and (φng)|[x0,x1] → g|[x0,x1] in L2(R, ̃V) and ̃vn(x) → (K0g)(x) for 
any x ∈ R, as n → ∞. Passing to the limit in (2.37) we obtain that K0g is a mild solution of 
(2.14) on [x0, x1] for any x0, x1 ∈R, proving (i).

Proof of (ii). Assume g ∈ L2−α(R, ̃V) and ̃v ∈ L2−α(R, ̃V) is a mild solution of (2.14). We define 
the sequence of functions zn = φnṽ, n ≥ 1. First, we note that zn = φn(̃vχ[−n−1,n+1]) for any 
n ≥ 1. Since ̃v is a mild solution of (2.14) we have that

(
F ṽχ[−n−1,n+1]

)
(ω)= (F ṽ|[−n−1,n+1]

)
(ω)=R�0,E0(ω)μ̂n(ω) for any ω ∈R, n≥ 1,

(2.38)
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where μn : Bor(R) → Ṽ is the Borel measure defined by

μn(�)= Dirac−n−1(�)�0ṽ(−n−1)−Diracn+1(�)�0ṽ(n+1)+
∫

�∩[−n−1,n+1]
g(x)dx. (2.39)

From Lemma 2.7 it follows that

ẑn(ω)−R�0,E0(ω)�0
(
F (φ′

nṽ|[−n−1,n+1])
)
(ω)=R�0,E0(ω)

∫
R

e−2π iωxφn(x)dμn(x)

=R�0,E0(ω)
(
e2π iω(n+1)φn(−n− 1)�0ṽ(−n− 1)− e−2π iω(n+1)φn(n+ 1)�0ṽ(n+ 1)

)
+R�0,E0(ω)

∫
R

e−2π iωxφn(x)χ[−n−1,n+1](x)g(x)dx

=R�0,E0(ω)φ̂ng(ω) for any ω ∈R, n≥ 1. (2.40)

Since φ′
nχ[−n−1,n+1] = φ′

n for any n ≥ 1 from (2.20) and (2.40) we infer that

zn = G�0,E0 ∗ (φ′
nṽ)+ K0(φng) for any n≥ 1. (2.41)

Since ṽ ∈ L2−α(R, ̃V) from Lemma 2.5 and (2.35) we infer that G�0,E0 ∗ (φ′
nṽ) → 0 and 

zn = φnṽ→ ṽ in L2−α(R, ̃V) as n → ∞. Moreover, since g ∈ L2−α(R, ̃V) from Lemma 2.6 and 
(2.35) we have that K0(φng) → K0g in L2−α(R, ̃V) as n → ∞. Passing to the limit in (2.41) we 
conclude that ̃v = K0g, proving the lemma. �

To finish this section, we use Lemma 2.8 to prove an identity useful in the sequel. Let 
1 be the function identically equal to one on the whole line. From (2.31) we have that (
K0(z1)

)′ = K0(z1)′ = 0, which proves that K0(z1) is a constant function for any z ∈ Ṽ. Since 
z1 ∈H 1−α(R, ̃V), from Lemma 2.8(ii) we have that K0(z1) is the unique H 1−α solution of equa-
tion �0ṽ

′ =E0ṽ + z1. However, one can readily check that −E−1
0 z1 is a solution this equation, 

which implies that

K0(z1)= −E−1
0 z1 for any z ∈ Ṽ. (2.42)

2.2. Linear flow in characteristic and noncharacteristic case

In this subsection we prove that equation (2.1) exhibits an exponential trichotomy on H with 
finite dimensional center subspace. To prove this result, we solve the system (2.12) for the case 
when f ≡ 0. First, we look for the center subspace, the space of all vectors on H that can be 
propagated in backward and forward time and whose associated solutions grow slower than any 
exponential. To define the center subspace we introduce the space

Vc = {v = (v1, ṽ) ∈V : ṽ = −E−1
0 P

Ṽ
Ev1}. (2.43)
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Lemma 2.9. Assume Hypotheses (H1) and (H2). Then, for any w0 = (u0
1, ̃u

0, v0
1, ̃v

0)T ∈ Hc :=
V

⊥ ⊕Vc there exists a unique solution uc of (2.1) on R such that uc(0) =w0, given by

uc(x,w0)= (u0
1 + xE1(IH −E−1

0 P
Ṽ
E)v0

1, ũ
0, v0

1,−E−1
0 P

Ṽ
Ev0

1)
T ∈Hc

for any x ∈ R. (2.44)

Proof. Fix w0 = (u0
1, ̃u

0, v0
1, ̃v

0)T ∈V
⊥ ⊕Vc and assume that u = (u1, ̃u, v1, ̃v)T is a mild solu-

tion of (2.1) such that u(0) =w0 ∈ Hc. Since u(0) ∈Hs, we obtain that ̃v(0) = −E−1
0 P

Ṽ
Ev1(0). 

Using that equation (2.1) is equivalent to (2.12) with f ≡ 0, from the third equation we conclude 
that v1(x) = v1(0) = v0

1 for any x ∈ R. Since any constant function belongs to H 1−α(R, ̃V), 
from Lemma 2.8 and (2.42) we infer that ṽ = K0(PṼEv1(0)1) = −E−1

0 P
Ṽ
Ev1(0)1 =

−E−1
0 P

Ṽ
Ev0

11 ∈H 1−α(R, ̃V). Integrating in the first two equations of (2.12), we obtain that

u1(x)= u0
1 + xE1(IH −E−1

0 P
Ṽ
E)v0

1, ũ(x)= ũ0 for any x ∈R, (2.45)

which shows that u = uc(·, w0). On the other hand, one can readily check that uc(·, w0) is a 
solution of (2.1) and uc(x, w0) ∈ Hc for any x ∈ R, proving the lemma. �

We note that an alternative way of constructing the center subspace of equation (2.1) is the 
following: first, we note that any vector from V⊥ is a stationary mode. Next, we show that 
since E =Q′(u)|V is negative definite, we have generalized zero-modes of height one, but no 
generalized zero-modes of height two. Moreover, all the remaining modes are hyperbolic.

Next, we prove that there exists a direct complement of Hc, not necessarily orthogonal, on 
which equation (2.1) has an exponential dichotomy. To define the dichotomy decomposition, we 
use that the operator S�0,E0 = �−1

0 E0 generates a bi-semigroup on Ṽ and the decomposition 
Ṽ= Ṽs ⊕ Ṽu from Lemma 2.3.

Lemma 2.10. Assume Hypotheses (H1) and (H2). Then, the following assertions hold true.

(i) Assume that u = (u1, ̃u, v1, ̃v)T is a solution of (2.1) such that v1(0) = 0. Then,

u′
1 = (�1 +E1E

−1
0 �0)̃v

′, ũ′ = −Ã−1
11 Ã12ṽ

′, v1 ≡ 0, ṽ′ = S�0,E0 ṽ; (2.46)

(ii) Equation (2.1) has an exponential dichotomy on R on a direct complement of Hc, with 
dichotomy subspaces given by

Hs/u =
{(
(�1 +E1E

−1
0 �0)̃v,−Ã−1

11 Ã12ṽ,0, ṽ
)T : ṽ ∈ Ṽs/u

}
; (2.47)

(iii) The Hilbert space H decomposes as follows: H =Hc ⊕Hs ⊕Hu. Moreover, the trichotomy 
projection onto Hc parallel to Hs ⊕Hu is given for any u = (u1, ̃u, v1, ̃v)T ∈ H by

Pcu=
(
u1 − (�1 +E1E

−1
0 �0)(̃v +E−1

0 P
Ṽ
Ev1), ũ

+ Ã−1
11 Ã12(̃v +E−1

0 P
Ṽ
Ev1), v1,−E−1

0 P
Ṽ
Ev1

)T
. (2.48)
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Proof. (i) Since (2.1) is equivalent to the system (2.12) with f ≡ 0, from the third equation we 
immediately conclude that v1(x) = v1(0) = 0 for any x ∈ R. Plugging in v1 ≡ 0, from the fourth 
equation we obtain that ṽ′ = S�0,E0 ṽ. Since ṽ = E−1

0 �0ṽ
′ from the first equation we conclude 

that u′
1 = �1ṽ

′ +E1ṽ = (�1 +E1E
−1
0 �0)̃v

′, proving (i). Assertion (ii) follows from (i) and the 
fact that the linear operator S�0,E0 generates an exponentially stable bi-semigroup on Ṽ. Indeed, 
from equation (2.46) and Lemma 2.3(i), one can readily check that solutions of (2.1) that decay 
exponentially at ±∞ are given by

us/u(x)=
(
(�1 +E1E

−1
0 �0)T̃s/u(±x)̃v(0),−Ã−1

11 Ã12T̃s/u(±x)̃v(0),0, T̃s/u(±x)̃v(0)
)T

(2.49)

for any x ∈R±. Since Ṽ= Ṽs ⊕ Ṽu from (2.47) we obtain that

Hs ⊕Hu =
{(
(�1 +E1E

−1
0 �0)̃v,−Ã−1

11 Ã12ṽ,0, ṽ
)T : ṽ ∈ Ṽ

}
. (2.50)

From (2.43) and (2.50) we immediately conclude that Hc ∩ (Hs ⊕Hu) = {0}. Moreover,

(u1, ũ, v1, ṽ)
T = (u1, ũ, v1,−E−1

0 P
Ṽ
Ev1)

T + (0,0,0, ṽ +E−1
0 P

Ṽ
Ev1)

T

=
(
u1 − (�1 +E1E

−1
0 �0)(̃v +E−1

0 P
Ṽ
Ev1), ũ

+ Ã−1
11 Ã12(̃v +E−1

0 P
Ṽ
Ev1), v1,−E−1

0 P
Ṽ
Ev1

)T

+
(
(�1 +E1E

−1
0 �0)(̃v +E−1

0 P
Ṽ
Ev1),

− Ã−1
11 Ã12(̃v +E−1

0 P
Ṽ
Ev1),0, ṽ +E−1

0 P
Ṽ
Ev1

)T
, (2.51)

proving that H = Hc ⊕ Hs ⊕ Hu. The formula (2.48) follows shortly from (2.51), proving the 
lemma. �
2.3. Solutions of the inhomogeneous equation

Having established the exponential trichotomy of the linear flow of equation (2.1), we 
conclude this section by analyzing the solutions of equation (2.4) for general functions f ∈
L2−α(R, V). To prove such a result, we first recall the boundedness property of the Volterra oper-
ator on weighted spaces with negative weight. For the sake of completeness we give the details 
below.

Lemma 2.11. The Volterra operator V : L2−α(R, H) → H 1−α(R, H) defined by (V g) =
x∫

0

g(y)dy is bounded for any α > 0.

Proof. Fix g ∈ L2−α(R, H) and let h :R → H be defined by h(x) = e−α|x|g(x). One can readily 
check that
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e−αx(V g)(x)=
x∫

0

e−α(x−y)h(y)dy = (ϕ+ ∗ (χR+h)
)
(x) for any x ≥ 0, (2.52)

where ϕ+ :R → R is defined by ϕ+(x) =
{
e−αx if x ≥ 0
0 if x < 0

. Similarly, we have that

eαx(V g)(x)= −
0∫
x

eα(x−y)h(y)dy = (ϕ− ∗ (χR−h)
)
(x) for any x ≤ 0, (2.53)

where ϕ− : R → R is defined by ϕ−(x) =
{

0 if x ≥ 0
eαx if x < 0

. Summarizing, from (2.52) and 

(2.53) we obtain that

e−α|x|(V g)(x)= χR+(x)
(
ϕ+ ∗ (χR+h)

)
(x)+ χR−(x)

(
ϕ− ∗ (χR−h)

)
(x) for any x ∈R.

(2.54)

Since |ϕ±(x)| ≤ e−α|x| for any x ∈ R and h ∈ L2(R, H), we infer that ϕ± ∗ f ∈ L2(R, H) and 
‖ϕ± ∗ f ‖2 ≤ 1

α
‖f ‖2 for any f ∈ L2(R, H). From (2.54) it follows that V g ∈ L2−α(R, H) and

‖V g‖2
L2−α

= ‖χR+
(
ϕ+ ∗ (χR+h)

)‖2
2 + ‖χR−

(
ϕ− ∗ (χR−h)

)‖2
2

≤ 1

α2 ‖χR+h‖2
2 + 1

α2 ‖χR−h‖2
2 = 1

α2 ‖h‖2
2 = 1

α2 ‖g‖2
L2−α
. (2.55)

Furthermore, we have that V g ∈ H 1
loc(R, H) and (V g)′ = g ∈ L2−α(R, H). From (2.55) we 

conclude that V g ∈ H 1−α(R, H) and ‖V g‖H 1−α(R,H) ≤ (1 + α−2)1/2‖g‖L2−α(R,H) for any g ∈
L2−α(R, H). �

Now we have all the ingredients needed to analyze the solutions of (2.4). We summarize our 
results in the following lemma.

Lemma 2.12. Assume Hypotheses (H1) and (H2). Then, the following assertions hold true.

(i) If f ∈ L2−α(R, V) and u = (u1, ̃u, v1, ̃v) ∈ L2−α(R, H) is a mild solution of (2.4), then

u(x)= Pcu(0)+ fc(x, v1(0))+ (V �3f )(x)+ �4(K0PṼf )(x) for any x ∈ R, (2.56)

where, the linear operators �3, �4 :H → H are defined by

�3 = (T ∗
12)

−1PV1 −E1E
−1
0 P

Ṽ
∈ B(H),

�4 =
(
�1 +E1E

−1
0 �0 − Ã−1

11 Ã12 + P
Ṽ

)
P
Ṽ

∈ B(H), (2.57)

and the function fc : R ×V1 →H is defined by
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fc(x, v1)= xE1(I −E−1
0 P

Ṽ
E)v1. (2.58)

(ii) The function u = w0 + fc(·, PV1w0) + V �3f + �4K0PṼf is a H 1−α-solution of (2.4) for 
any f ∈H 1−α(R, V) and w0 ∈ Hc.

Proof. Since (2.4) is equivalent to (2.12), we immediately conclude that v1(x) = v1(0) for any 
x ∈ R, just like in the case of equation (2.1). Since any constant function belongs to H 1−α(R), 
from the fourth equation of (2.12) and Lemma 2.8(ii) we obtain that

ṽ = K0(PṼEv1(0)1)+ K0PṼf. (2.59)

Next, we integrate the second equation of (2.12) to find that

ũ(x)= ũ(0)+ Ã−1
11 Ã12

(̃
v(0)− ṽ(x))= ũ(0)+ Ã−1

11 Ã12ṽ(0)− Ã−1
11 Ã12K0(PṼEv1(0)1)(x)

− Ã−1
11 Ã12(K0PṼf )(x) for any x ∈R (2.60)

Since v1 ≡ v1(0)1, combining the first and fourth equations we have that

u′
1 = (�1 +E1E

−1
0 �0)̃v

′ +E1v1(0)1 + (T ∗
12)

−1PV1f −E1E
−1
0 P

Ṽ
(Ev1(0)1 + f ). (2.61)

Integrating, from (2.61), we conclude that

u1(x)= u1(0)− (�1 +E1E
−1
0 �0)̃v(0)+ (�1 +E1E

−1
0 �0)K0(PṼEv1(0)1)(x)

+ xE1(I −E−1
0 P

Ṽ
E)v1(0)+ (�1 +E1E

−1
0 �0)(K0PṼf )(x)

+ V
(
(T ∗

12)
−1PV1f −E1E

−1
0 P

Ṽ
f
)
(x) (2.62)

for any x ∈ R. Here V denotes the Volterra operator defined by (V g)(x) =
x∫

0

g(y)dy. From 

(2.59), (2.60), (2.62) and (2.42) we conclude that

u(x)= u1(0)− (�1 +E1E
−1
0 �0)̃v(0)+ ũ(0)

+ Ã−1
11 Ã12ṽ(0)+ v1(0)+ xE1(I −E−1

0 P
Ṽ
E)v1(0)

−
(
�1 +E1E

−1
0 �0 − Ã−1

11 Ã12 + P
Ṽ

)
E−1

0 P
Ṽ
Ev1(0)

+ V
(
(T ∗

12)
−1PV1f −E1E

−1
0 P

Ṽ
f
)
(x)

+
(
�1 +E1E

−1
0 �0 − Ã−1

11 Ã12 + P
Ṽ

)
(K0PṼf )(x)

= Pcu(0)+ fc(x, v1(0))+ (V �3f )(x)+ �4(K0PṼf )(x) for any x ∈ R. (2.63)

Proof of (ii). Fix w0 ∈ Hc and f ∈ H 1−α(R, H). From Lemma 2.6 and Lemma 2.11 we have 
that V ∈ B(L2−α(R, V), H 1−α(R, V)) and K0 ∈ B(H 1−α(R, ̃V)), which implies that u = w0 +
fc(·, PV w0) + V �3f +�4K0P˜f ∈H 1−α(R, H). Using the usual notation, we denote by u1 =
1 V
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PkerA11u, ̃u= PimA11u, v1 = PV1u and ̃v = P
Ṽ
u. To prove assertion (ii) we will prove that u =

(u1, ̃u, v1, ̃v)T satisfies the system (2.12). From (2.57) we obtain that

PkerA11�3 = (T ∗
12)

−1PV1 −E1E
−1
0 P

Ṽ
, PimA11�3 = 0,

PV1�3 = 0, P
Ṽ
�3 = 0, (2.64)

PkerA11�4 = �1 +E1E
−1
0 �0, PimA11�4 = −Ã−1

11 Ã12PṼ,

PV1�4 = 0, P
Ṽ
�4 = P

Ṽ
. (2.65)

Next, we multiply u by the respective projections onto the orthogonal decomposition H =
kerA11 ⊕ imA11 ⊕ V1 ⊕ Ṽ and use (2.58), (2.64) and (2.65) repeatedly. One can readily check 
that v1 ≡ PV1w0, and thus v′

1 = 0. From (2.43) we have that P
Ṽ
w0 = −E−1

0 P
Ṽ
EPV1w0. Hence, 

from (2.42) we obtain that

ṽ = −E−1
0 P

Ṽ
EPV1w01 + P

Ṽ
K0PṼf = K0

(
P
Ṽ
EPV1w01 + P

Ṽ
f
)
. (2.66)

Since v1 ≡ PV1w0 and P
Ṽ
EPV1w01 + P

Ṽ
f ∈ H 1−α(R, ̃V) from Lemma 2.8(i) we infer that 

�0ṽ
′ =E0ṽ + P

Ṽ
E1v1 + P

Ṽ
f . In addition, we have that

ũ= PimA11w01 − Ã−1
11 Ã12K0PṼf

= PimA11w01 − Ã−1
11 Ã12E

−1
0 P

Ṽ
EPV1w01 − Ã−1

11 Ã12
(−E−1

0 P
Ṽ
EPV1w01 + K0PṼf

)
= PimA11w01 − Ã−1

11 Ã12E
−1
0 P

Ṽ
EPV1w01 − Ã−1

11 Ã12ṽ, (2.67)

which implies that ̃u′ = −Ã−1
11 Ã12ṽ

′. Finally, we have that

u1(x)= PkerA11w0 + xE1(I −E−1
0 P

Ṽ
E)PV1w0 + ((T ∗

12)
−1PV1 −E1E

−1
0 P

Ṽ

)
(V f )(x)

+ (�1 +E1E
−1
0 �0)(K0PṼf )(x)

= PkerA11w0 + xE1(I −E−1
0 P

Ṽ
E)PV1w0 + ((T ∗

12)
−1PV1 −E1E

−1
0 P

Ṽ

)
(V f )(x)

+ (�1 +E1E
−1
0 �0)̃v(x)+ (�1 +E1E

−1
0 �0)E

−1
0 P

Ṽ
EPV1w0 (2.68)

for any x ∈ R. Differentiating in (2.68) and since ṽ = E−1
0 �0ṽ

′ − E−1
0 P

Ṽ
f − E−1

0 P
Ṽ
E1v1 it 

follows that

u′
1 =E1(I −E−1

0 P
Ṽ
E)PV1w01 + (�1 +E1E

−1
0 �0)̃v

′ + ((T ∗
12)

−1PV1 −E1E
−1
0 P

Ṽ

)
f

= �1ṽ
′ +E1

(
v1 +E−1

0 �0ṽ
′ −E−1

0 P
Ṽ
Ev1 −E−1

0 P
Ṽ
f
)

+ (T ∗
12)

−1PV1f

= �1ṽ
′ +E1(v1 + ṽ)+ (T ∗

12)
−1PV1f, (2.69)

proving the lemma. �
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3. Center manifold construction

In this section we construct a center manifold of solutions of equation (1.2) tangent to the 
center subspace Hc at u expressible in coordinates w = u −u. Throughout this section we assume 
Hypotheses (H1) and (H2). Making the change of variables w = u −u in (1.2) and since Q(u) =
B(u, u) is a bilinear map on H, we obtain the equation

Aw′ = 2B(u,w)+Q(w). (3.1)

Denoting by u = PV⊥w and v = PVw, since E =Q′(u)|V = 2B(·, u)|V we have that equation 
(3.1) is equivalent to the system

{
A11u

′ +A12v
′ = 0,

A21u
′ +A22v

′ =Ev+B(u+ v,u+ v). (3.2)

Using Lemma 2.12(i), we immediately conclude that system (3.2) is equivalent to

w= Pcw(0)+ fc(·,PV1w(0))+ K B(w,w), (3.3)

where fc is defined in (2.58) and K f = V �3f +�4K0PṼf . From Lemma 2.6 and Lemma 2.11
we have that K is a bounded linear operator on L2−α(R, H) and H 1−α(R, H) for any α ∈
(0, ν(�0, E0)), where −ν(�0, E0) is the decay rate of the bi-semigroup generated by S�0,E0 =
�−1

0 E0. To prove the existence of our center manifold we will prove that equation (3.3) has a 
unique solution in H 1−α(R, H) for any w0 = Pcw(0) ∈ Hc small enough. Unlike the stable mani-
fold construction done in the earlier paper [26], we will carry this out on all of R.

We point out that B(w, w) might not belong to H 1−α(R, H) for all w ∈ H 1−α(R, H). There-
fore, we cannot use the Contraction Mapping Theorem to prove existence and uniqueness of 
solutions of (3.3) right away. To overcome this difficulty, we localize the problem by using the 
truncation of the nonlinearity technique, which is used in a variety of situations such as the 
construction of finite-dimensional center manifolds or the Hartman–Grobman Theorem. Unlike 
the finite-dimensional case where the fixed point argument is done in the space of continuous 
functions growing slower than eα|·| with the usual negatively weighted supremum norm, in our 
case it would be ideal to work on H 1−α(R, H) with its usual norm. However, it is not clear if the 
estimates needed to prove that the cutoff nonlinearity is a strict contraction are possible, since 
some of the terms obtained by differentiating the cutoff nonlinearity are neither small nor in the 
correct weighted space. Instead, we prove existence of solutions of equation (3.3) by using an 
approximation argument, and then prove uniqueness by invoking the weak-star compactness of 
unit balls in Hilbert spaces. This may be recognized as the standard variant of Picard iteration 
used in quasilinear hyperbolic theory, e.g., a “bounded high norm/contractive low norm” version 
of the Banach fixed-point theorem [19].

3.1. Existence of a center manifold of solutions

We note that equation (3.3) is equivalent to

w= Fc(·,Pcw(0))+ K N(w), (3.4)
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where the functions Fc : R ×Hc →H and N : H → H are defined by

Fc(x,w0)=w0 + fc(x,PV1w0), N(h)= B(h,h). (3.5)

Next, we introduce the truncated system which is better suited to apply a contraction mapping 
like argument. Let ρ ∈ C∞

0 (R) be a smooth function such that ρ(s) = 1 for any s ∈ [−1, 1] and 
ρ(s) = 0 whenever |s| ≥ 2. In this section we will prove existence and uniqueness properties of 
solutions of equation

w= Fc(·,w0)+ Nε(w), for w0 ∈Hc, ε > 0 (3.6)

where the function Nε :H 1−α(R) → L2−α(R, H) is defined by

Nε(w)= K
[
ρ
(‖w‖2

ε2

)
B(w,w)

]
. (3.7)

We note that any solution w of (3.6), small enough, is a solution of (3.3). To check that we 
can apply a contraction mapping-type argument on (3.6), we need to check the properties of the 
function Nε : H → H defined by

Nε(h)= ρ
(‖h‖2

ε2

)
B(h,h). (3.8)

Remark 3.1. Since B is a bilinear map on H and ρ ∈ C∞
0 (R) we have that Nε is of class C∞ on 

H for any ε > 0. Moreover, one can readily check that

N ′
ε(h)g = 2

ε2 ρ
′(‖h‖2

ε2

)
〈h,g〉B(h,h)+ 2ρ

(‖h‖2

ε2

)
B(h,g) (3.9)

for any h, g ∈ H. Since ρ(s) = 0 whenever |s| ≥ 2, from (3.9) it follows that there exists c > 0
such that

‖N ′
ε(h)‖ ≤ cε, ‖N ′′

ε (h)‖ ≤ c for any h ∈H, ε > 0. (3.10)

A crucial role in our construction is played by the following mixed-norm function space: for 
any β > γ > 0 we define Zγ,β(H) = L2−γ (R, H) ∩H 1−β(R, H) endowed with the norm

‖f ‖Zγ,β
=
(
‖f ‖2

L2−γ
+ ‖f ′‖2

L2−β

)1/2
. (3.11)

We note that this norm is equivalent to the (‖ · ‖2
L2−γ

+ ‖ · ‖2
H 1−β

)1/2 norm on Zγ,β(H), there-

fore it induces a Hilbert space structure on Zγ,β(H). We note also the following L∞ Sobolev 
embedding estimate.2

2 Though we shall not use it, this implies evidently the L2 embedding Zγ,β (H) ↪→ L2−ν(H) for any ν > (β + γ )/2.
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Lemma 3.2. Zγ,β(H) ↪→ L∞
−(β+γ )/2(H); equivalently, for any x ∈ R, f ∈ Zγ,β(H),

e−2β|x|‖f (x)‖2 ≤ ce−(β−γ )|x|‖f ‖2
Zγ,β

. (3.12)

Proof. Take without loss of generality x ≥ 0, and e−β·f (·) in the Schwartz class on R+. Then,

e−2βx‖f (x)‖2 =
∞∫
x

(e−2βy‖f (y)‖2)′dy

= −2β

∞∫
x

e−2βy‖f (y)‖2dy + 2

∞∫
x

e−2βy〈f (y), f ′(y)〉dy

≤ ce−2(β−γ )x
∞∫
x

e−2γy‖f (y)‖2dy

+ e−(β−γ )x
∞∫
x

(e−γy‖f (y)‖)(e−βy‖f ′(y)‖)dy,

from which the result follows by Cauchy–Schwarz/Young’s inequality. �
In the next lemma we collect some estimates satisfied by the map Nε on H 1−α(R, H) and 

Zγ,β(H).

Lemma 3.3. Assume Hypotheses (H1) and (H2) and let 0 < α < γ < β < 1
2ν(γ0, E0). Then, the 

following estimates hold true:

(i) Fc(·, w0) ∈H 1−α(R, H) and ‖Fc(·, w0)‖H 1−α ≤ c‖w0‖ for any w0 ∈Hc;

(ii) Nε(w) ∈H 1−α(R, H) for any w ∈H 1−α(R, H) and ε > 0. Moreover,

‖Nε(w)‖H 1−α ≤ cε‖w‖H 1−α for any w ∈H 1−α(R,H); (3.13)

(iii) Nε(w) ∈ Zγ,β(H) for any w ∈ Zγ,β(H) and ε > 0. In addition,

‖Nε(w)‖Zγ,β
≤ cε‖w‖Zγ,β

for any w ∈ Zγ,β(H); (3.14)

(iv) If 0 < 2α < β − γ , then for any δ > 0 and any w1, w2 ∈H 1−α(R, H) ⊂ Zγ,β(H) such that 
‖w1‖H 1−α ≤ δ and ‖w2‖H 1−α ≤ δ we have that

‖Nε(w1)− Nε(w2)‖Zγ,β
≤ c(ε+ δ)‖w1 −w2‖Zγ,β

. (3.15)

Proof. From (2.58) and (3.5) we have that Fc is an affine function. Moreover, from (2.48) it 
follows that the projection Pc is bounded, which proves (i). Since B is a bilinear map on H, from 
(3.8) we have that
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‖Nε(h)‖ ≤ ‖B‖ρ
(‖h‖2

ε2

)
‖h‖2 ≤ (2‖B‖ε)‖h‖ for any h ∈ H. (3.16)

Since the linear operator K can be extended to a bounded linear operator on L2−�(R, H) for 
� = α, γ by Lemma 2.6 and Lemma 2.11, from (3.16) we have that

‖Nε(w)‖L2−� ≤ cε‖w‖L2−� for any w ∈ L2−�(R,H), for � = α,γ. (3.17)

Since Nε is of class C∞ by Remark 3.1, we obtain that Nε ◦ w ∈ H 1
loc(R, H) and 

(
Nε ◦ w

)′ =
(N ′
ε ◦w)w′ for any w ∈H 1

loc(R, H). From (3.10) it follows that

∥∥(Nε(w)
)′∥∥

L2−�
= ‖(N ′

ε ◦w)w′‖L2−� ≤ ‖N ′
ε ◦w‖∞‖w′‖L2−� ≤ cε‖w′‖L2−� , (3.18)

for any w ∈H 1−�(R, H) for � = α, β . Using again Lemma 2.6 and Lemma 2.11, one can readily 
check that the linear operator K can be extended to a bounded linear operator on H 1−α(R, H)
and Zγ,β(H). Assertions (ii) and (iii) follow shortly from (3.17) and (3.18).

To start the proof of (iv), we fix w1, w2 ∈H 1−α(R, H), ‖w1‖H 1−α ≤ δ and ‖w2‖H 1−α ≤ δ. Since 
Nε is of class C∞ on H by Remark 3.1, from (3.10) it follows that there exists a constant c > 0
independent of ε > 0 such that

‖Nε(h1)−Nε(h2)‖ ≤ cε‖h1 − h2‖ and ‖N ′
ε(h1)−N ′

ε(h2)‖ ≤ c‖h1 − h2‖ for any h1, h2 ∈ H,

(3.19)

which implies that

‖Nε ◦w1 −Nε ◦w2‖L2−γ ≤ cε‖w1 −w2‖L2−γ ≤ cε‖w1 −w2‖Zγ,β
. (3.20)

Since 2α < β − γ , from (3.12) and (3.19) we obtain that

∥∥∥(Nε ◦w1 −Nε ◦w2

)′∥∥∥2

L2−β
≤ 2‖(N ′

ε ◦w1)(w′
1 −w′

2)‖2
L2−β

+ 2‖(N ′
ε ◦w1 −N ′

ε ◦w2)w′
2‖2
L2−β

≤ c2ε2‖w′
1 −w′

2‖2
L2−β

+ c2
∫
R

e−2β|x|‖(N ′
ε(w1(x))−N ′

ε(w2(x))
)
w′

2(x)‖2 dx

≤ c2ε2‖w1 −w2‖2
Zγ,β

+ c2
∫
R

e−2β|x|‖w1(x)−w2(x)‖2‖w′
2(x)‖2 dx

≤ c2ε2‖w1 −w2‖2
Zγ,β

+ c2
(∫
R

e−(β−γ )|x|‖w′
2(x)‖2 dx

)
‖w1 −w2‖2

Zγ,β

≤ c2ε2‖w1 −w2‖2
Zγ,β

+ c2
(∫
R

e−2α|x|‖w′
2(x)‖2 dx

)
‖w1 −w2‖2

Zγ,β

≤ c2ε2‖w1 −w2‖2
Zγ,β

+ c2‖w2‖2
H 1−α

‖w1 −w2‖2
Zγ,β

≤ c2(ε2 + δ2)‖w1 −w2‖2
Zγ,β

.

(3.21)
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Since K can be extended to a bounded linear operator on Zγ,β(H) and

sup
0<α< 1

2 ν(�0,E0)

‖K ‖B(H 1−α(R,H)) <∞,

assertion (iv) follows from (3.20) and (3.21), proving the lemma. �
Remark 3.4. We note that the corresponding H 1−β version of (3.15) does not hold. Indeed,

‖(Nε ◦w1 −Nε ◦w2)
′‖2
L2−β

+ 2‖(N ′
ε ◦w1)(w′

1 −w′
2)‖2

L2−β
≥ 2‖(N ′

ε ◦w1 −N ′
ε ◦w2)w′

2‖2
L2−β

= 2
∫
R

e−2β|x|‖
(( 1∫

0

N ′′
ε (sw1(x)+ (1 − s)w2(x))ds

)
(w1(x)−w2(x))

)
w′

2(x)‖2 dx

with ‖(N ′
ε ◦w1)(w′

1 −w′
2)‖2

L2−β
≤ cε‖w1 −w2‖H 1−β

shows that Nε is in general neither contrac-

tive in H 1−β(R, H) (since N ′′
ε is merely bounded, not small) nor even Lipschitz (since e−2β|x| can 

compensate for growth of either ‖w1(x) −w2(x)‖2 or ‖w′
2(x)‖2, but not both, in the integral on 

the righthand side).

At this point we fix 0 < α� 1
2ν(γ0, E0) and γ < β < 1

2ν(γ0, E0) such that 0 < 2α < β − γ . 
Next, we introduce the function Tε : Hc ×H 1−α(R, H) → H 1−α(R, H) defined by Tε(w0, w) =
Fc(·, w0) + Nε(w). We note that the function Tε is well-defined by Lemma 3.3(ii). We are now 
ready to state our existence and uniqueness result.

Lemma 3.5. Assume Hypotheses (H1) and (H2). Then, there exists ε0 > 0 such that for any 
δ > 0 small enough there exists ε1 := ε1(δ) > 0 such that for any w0 ∈ BHc(0, ε1) the equation 
w = Tε0(w0, w) has a unique solution in H 1−α(R, H), denoted w(·, w0), satisfying the condition

‖w(·,w0)‖H 1−α(R,H) ≤ δ for any w0 ∈ BHc(0, ε1). (3.22)

Proof. From Lemma 3.3(i) and (ii) have that

‖Tε(w0,w)‖H 1−α ≤ c‖Fc(·,w0)‖H 1−α +‖Nε(w)‖H 1−α ≤ c‖w0‖+ cε‖w‖H 1−α ≤ cε1 + cεδ (3.23)

for any ε > 0, δ > 0, w0 ∈ BHc(0, ε1) and w ∈ BH 1−α(R,H)(0, δ). Here the constant c > 0 is 

independent of α > 0. We choose ε0 > 0 and ε1 = ε1(δ) such that cε0 <
1
4 and cε1 <

δ
2 . From 

(3.23) we obtain that

‖Tε0(w0,w)‖H 1−α ≤ δ for any w0 ∈ BHc(0, ε1), w ∈ BH 1−α(R,H)(0, δ). (3.24)

Moreover, from Lemma 3.3(iv) we have that
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‖Tε0(w0,w1)− Tε0(w0,w2)‖Zγ,β
= ‖Nε0(w1)− Nε0(w2)‖Zγ,β

≤ c(ε0 + δ)‖w1 −w2‖Zγ,β

≤ 1

2
‖w1 −w2‖Zγ,β

for any w0 ∈ BHc(0, ε1), w1,w2 ∈ BH 1−α(R,H)(0, δ)

(3.25)

and any δ > 0 such that cδ < 1
4 . To prove the existence of solutions of equation w = Tε0(w0, w)

in H 1−α(R, H) we fix δ > 0 small enough and w0 ∈ BHc(0, ε1(δ)). Also, we introduce the se-
quence (wn)n≥1 defined recursively by the equation

wn+1 = Tε0(w0,wn), n≥ 1, and w1 = 0. (3.26)

Using induction, from (3.24) we obtain that

sup
n≥1

‖wn‖H 1−α ≤ δ. (3.27)

Moreover, from (3.25) it follows that

‖wn+1 −wn‖Zγ,β
= ‖Tε0(w0,wn)− Tε0(w0,wn−1)‖Zγ,β

≤ 1

2
‖wn −wn−1‖Zγ,β

for any n≥ 1. (3.28)

Using induction again, we conclude that ‖wn+1 −wn‖Zγ,β
≤ 2−n‖w2‖Zγ,β

for any n ≥ 1, which 
implies that there exists w(·, w0) ∈ Zγ,β(H) such that

wn →w(·,w0) in Zγ,β(H) as n→ ∞. (3.29)

Since the closed ball of any Hilbert space is weakly compact, from (3.27) we infer that there 
exists a subsequence (wnk )k≥1 that is weakly convergent to an element of BH 1−α(R,H)(0, δ). From 

(3.29) it follows that w(·, w0) ∈ BH 1−α(R,H)(0, δ), proving the existence and the estimate (3.22). 
From (3.25) it follows that equation w = Tε0(w0, w) cannot have more than one solution in 
H 1−α(R, H), proving the lemma. �
Lemma 3.6. Assume Hypotheses (H1) and (H2). Then, there exists η0 > 0 such that w(·, w0) is 
a solution of equation (3.1) on (−η0, η0) for any w0 ∈ BHc(0, ε1(δ0)).

Proof. First, we recall the conditions satisfied by ε0 > 0 and ε1 = ε1(δ) imposed in the proof of 
Lemma 3.3(iii): cε0 <

1
4 , cε1(δ) < δ

2 and cδ < 1
4 . Moreover, we have that the constant c > 0 can 

be chosen big enough such that

‖f (x)‖ ≤ ceα|x|‖f ‖H 1−α for any x ∈ R, f ∈H 1−α(R,H). (3.30)

Next, we choose δ0 > 0 such that cδ0 <
ε0
2 . From (3.22) and (3.30) we obtain that

‖w(x,w0)‖ ≤ ε0
eα|x| for any x ∈R,w0 ∈ BHc(0, ε1(δ0)). (3.31)
2
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It follows that there exists η0 > 0 such that

‖w(x,w0)‖ ≤ ε0 for any x ∈ (−η0, η0),w0 ∈ BHc(0, ε1(δ0)). (3.32)

From Lemma 3.5 and the definition of Nε0 in (3.7) we have that

w(·,w0)=w0 + fc(·,PV1w0)+ V �3f+ �4K0PṼf, where f :=Nε0 ◦w(·,w0). (3.33)

Since w(·, w0) ∈ H 1−α(R, H), and hence f ∈ H 1−α(R, H), from Lemma 2.12(ii) we infer that 
w(·, w0) satisfies the equation

Aw′(x)=Q′(u)w(x)+ f(x) for any x ∈R. (3.34)

Since the cut-off function ρ is identically equal to one on [−1, 1], from (3.8) and (3.32) we have 
that f(x) = B(w(x, w0), w(x, w0)) for any x ∈ (−η0, η0). From (3.34) we conclude that w(·, w0)

is a solution of equation (3.1) on (−η0, η0) for any w0 ∈ BHc(0, ε1(δ0)), proving the lemma. �
We are now ready to introduce the center manifold defined by the trace at x = 0 of the fixed 

point solution w(·, w0):

Mc = {w(0,w0) :w0 ∈ BHc(0, ε1(δ0))}. (3.35)

Lemma 3.7. Assume Hypotheses (H1) and (H2). Then, the following assertions hold true:

(i) Pcw(0, w0) =w0 for any w0 ∈ BHc(0, ε1(δ0));
(ii) Mc = Graph(Jc), where Jc : BHc(0, ε1(δ0)) → Hs ⊕Hu is the function defined by

Jc(w0)= (IH − Pc)w(0,w0). (3.36)

Proof. (i) From (2.48) and (2.57) one can readily check that

Pc�3 = �3, Pc�4ṽ = 0 for any ṽ ∈ Ṽ, Pcfc(x, v1)= xE1(I −E−1
0 P

Ṽ
E)v1 (3.37)

for any x ∈ R, v1 ∈ V1. Multiplying by Pc in (3.33) and since (V f )(0) = 0 for any f ∈
L2−α(R, H), we conclude that Pcw(0, w0) = w0 for any w0 ∈ BHc(0, ε1(δ0)). Assertion (ii) fol-
lows immediately from (i). �
Remark 3.8. Up to this point we could as well have used contraction of the fixed-point mapping 
in L2−α(R, H) and boundedness in H 1−α(R, H). This gives (by continuous dependence on param-
eters of contraction-mapping solutions) L2−α(R, H) Lipschitz continuity of w with respect to w0, 

and boundedness in H 1−α(R, H), yielding C1/2
b (R, H) Hölder continuity of Jc by the Sobolev 

embedding ‖f (0)‖2 � ‖f ‖L2−α‖f ′‖L2−α . Contraction in Zγ,β(H), based on Lemma 3.3(iv), is 
used to obtain Lipschitz and higher regularity.



6782 A. Pogan, K. Zumbrun / J. Differential Equations 264 (2018) 6752–6808
3.2. Ck smoothness of the center manifold

Our next task is to prove that the manifold Mc is smooth by showing that the function

�c : BHc(0, ε1(δ0))→ BH 1−α(R,H)(0, δ0) defined by�c(h)= w(·, h) (3.38)

is of class Ck in the Zγ,β(H) topology, for some appropriate weights γ and β . To prove this 
result, we first prove that the function �c is of class C1 and we find a formula for its first order 
partial derivatives. Building on this result, we then prove higher order differentiability using the 
smoothness properties of substitution operators studied in Appendix A.

Our argument follows that used in [32] ([34]) to establish smoothness of center-stable (center) 
manifolds in the usual Cb setting, using a general result on smooth dependence with respect 
to parameters of a fixed point mapping y = T (x, y) that is Fréchet differentiable in y from a 
stronger to a weaker Banach space, with differential Ty extending to a bounded, contractive map 
on the weaker space [32, Lemma 2.5, p. 53] ([34, Lemma 3,p. 132]). As the details are sufficiently 
different in the present H 1 setting, particularly for higher regularity, we carry out the argument 
here in full.

First, we note that the function �c is Lipschitz in the Zγ,β(H)-norm.

Lemma 3.9. Assume Hypotheses (H1) and (H2). Then, the function �c satisfies

‖�c(h1)−�c(h2)‖Zγ,β
≤ c‖h1 − h2‖ for any h1, h2 ∈ BHc(0, ε1(δ0)). (3.39)

Proof. Since �c(h) = Fc(·, h) + Nε0(�c(h)) for any h ∈ BHc(0, ε1(δ0)), from Lemma 3.3(iv) 
we obtain that

‖�c(h1)−�c(h2)‖Zγ,β
≤ ‖Fc(·, h1)− Fc(·, h2)‖Zγ,β

+ ‖Nε(�c(h1))− Nε(�c(h1))‖Zγ,β

≤ c‖h1 − h2‖ + c(ε0 + δ0)‖�c(h1)−�c(h2)‖Zγ,β
(3.40)

for any h1, h2 ∈ BHc(0, ε1(δ0)). Since cε0 <
1
4 and cδ0 ≤ 1

4 , (3.39) follows shortly from 
(3.40). �
Lemma 3.10. Assume Hypotheses (H1) and (H2) and let 0 < α < γ < β < 1

2ν(γ0, E0) be three 
positive weights satisfying the condition 2α < β − γ . Then, the function �c is of class C1 in the 
Z2γ,2β(H) topology.

Proof. Since the function fc is a bilinear map from R ×H to H, from (3.5) we infer that

the function h→ Fc(·, h) :Hc →H 1−α(R,H) is of class C∞. (3.41)

Since the cutoff function ρ is a function of class C∞ with compact support and B is a bilinear 
map on H, from (3.8) we have that the function Nε0 is of class C∞ on H and suph∈H ‖N(j)ε0 (h)‖ <
∞ for any j ≥ 0. Since K ∈ B(Z2γ,2β(H)) by Lemma 2.6, from Lemma A.1 it follows that the 
function Nε0 is of class C1 from Zγ,β(H) to Z2γ,2β(H). Moreover, the linear operator N ′

ε0
(f )

can be extended to a bounded linear operator on Zγ,β(H) for any f ∈ B 1 (0, δ0). Since 
H−α(R,H)
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�c(h) = w(·, h) ∈H 1−α(R, H) and ‖�c(h)‖H 1−α ≤ δ0 for any h ∈ BHc(0, ε1(δ0)) by Lemma 3.5, 
from (A.3) and (A.4) we have that

‖N ′
ε0
(�c(h))‖B(Zγ,β (H)) = δ0O(sup

h∈H
‖N ′′

ε0
(h)‖)+ O(sup

h∈H
‖N ′

ε0
(h)‖)≤ c(ε0 + δ0)≤ 1

2
(3.42)

for any h ∈ BHc(0, ε1(δ0)). Doubling the weights γ and β , we note that the linear operator 
N ′
ε0
(�c(h)) can be extended to a bounded linear operator on Z2γ,2β(H) and

‖N ′
ε0
(�c(h))‖B(Z2γ,2β(H)) ≤

1

2
for any h ∈ BHc(0, ε1(δ0)). (3.43)

Claim 1. �c is differentiable in the BHc(0, ε1(δ0)) → Z2γ,2β(H) topology and

�′
c(h)=

(
I − N ′

ε0
(�c(h))

)−1
∂hFc(·, h) for any h ∈ BHc(0, ε1(δ0)). (3.44)

First, we fix h0 ∈ BHc(0, ε1(δ0)). Since Nε0 is of class C1 from Zγ,β(H) to Z2γ,2β(H) by 
Lemma A.1, we have that there exists Rε0 :H 1−α(R, H) → Z2γ,2β(H) such that

Rε0(f )→ 0 in Z2γ,2β(H) asH 1−α(R,H) � f →�c(h0) in Zγ,β(H)

Nε0(f )= Nε0(�c(h0))+ N ′
ε0
(�c(h0))

(
f −�c(h0)

)+ ‖f −�c(h0)‖Zγ,β
Rε0(f )

(3.45)

for any f ∈H 1−α(R, H). Since �c(h) ∈H 1−α(R, H) is a solution of equation w = Tε0(h, w) for 
any h ∈ BHc(0, ε1(δ0)) we have that

�c(h)−�c(h0)= Fc(·, h)+ Nε0(�c(h))− Fc(·, h0)− Nε0(�c(h0))

= Fc(·, h)− Fc(·, h0)+ Nε0(�c(h0))
(
�c(h)−�c(h0)

)+ ‖�c(h)−�c(h0)‖Zγ,β
Rε0(�c(h))

(3.46)

for any h ∈ BHc(0, ε1(δ0)). From (3.42) and (3.43) we infer that I − N ′
ε0
(�c(h)) is invertible 

on Z2γ,2β(H) and 
(
I − N ′

ε0
(�c(h))

)−1
Zγ,β(H) = Zγ,β(H) for any h ∈ BHc(0, ε1(δ0)). From 

(3.46) we obtain that

�c(h)−�c(h0)=
(
I − N ′

ε0
(�c(h0))

)−1(
Fc(·, h)− Fc(·, h0)

)
+ ‖�c(h)−�c(h0)‖Zγ,β

(
I − N ′

ε0
(�c(h0))

)−1
Rε0(�c(h)) (3.47)

for any h ∈ BHc(0, ε1(δ0)). From Lemma 3.9, (3.42), (3.43) and (3.47) we obtain that
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∥∥∥�c(h)−�c(h0)−
(
I − N ′

ε0
(�c(h0))

)−1
∂hFc(·, h0)(h− h0)

∥∥∥
Z2γ,2β

≤
∥∥∥(I − N ′

ε0
(�c(h0))

)−1∥∥∥
B(Zγ,β )

∥∥∥Fc(·, h)− Fc(·, h0)− ∂hFc(·, h0)(h− h0)

∥∥∥
Zγ,β

+
∥∥∥�c(h)−�c(h0)

∥∥∥
Zγ,β

∥∥∥(I − N ′
ε0
(�c(h0))

)−1∥∥∥
B(Z2γ,2β)

∥∥∥Rε0(�c(h))

∥∥∥
Z2γ,2β

≤ 2‖Fc(·, h)− Fc(·, h0)− ∂hFc(·, h0)(h− h0)‖Zγ,β
+ 2‖h− h0‖‖Rε0(�c(h))‖Z2γ,2β

(3.48)

for any h ∈ BHc(0, ε1(δ0)). From (3.39) and (3.45) we infer that limh→h0 ‖Rε0(�c(h))‖Z2γ,2β =
0. From (3.41) and (3.48) we conclude that �c is differentiable at h0 in the BHc(0, ε1(δ0)) →
Z2γ,2β(H) topology, proving Claim 1.

Claim 2. �′
c is continuous from BHc(0, ε1(δ0)) to B

(
Hc, Z2γ,2β(H)

)
.

We fix again h0 ∈ BHc(0, ε1(δ0)). From (3.44) we have that

�′
c(h)−�′

c(h0)=
((
I − N ′

ε0
(�c(h))

)−1 −
(
I − N ′

ε0
(�c(h0))

)−1)
∂hFc(·, h0)

+
(
I − N ′

ε0
(�c(h))

)−1(
∂hFc(·, h)− ∂hFc(·, h0)

)
=
(
I − N ′

ε0
(�c(h))

)−1(
N ′
ε0
(�c(h))− N ′

ε0
(�c(h0))

)(
I − N ′

ε0
(�c(h0))

)−1
∂hFc(·, h0)

+
(
I − N ′

ε0
(�c(h))

)−1(
∂hFc(·, h)− ∂hFc(·, h0)

)
(3.49)

for any h ∈ BHc(0, ε1(δ0)). From (3.42), (3.43) and (3.49) we obtain that

‖�′
c(h)−�′

c(h0)‖B(Hc,Z2γ,2β) ≤ 2‖∂hFc(·, h)− ∂hFc(·, h0)‖B(Hc,Z2γ,2β)

+ 2
∥∥∥(N ′

ε0
(�c(h))− N ′

ε0
(�c(h0))

)(
I − N ′

ε0
(�c(h0))

)−1
∂hFc(·, h0)

∥∥∥
B(Hc,Z2γ,2β)

≤ 4
∥∥∥N ′

ε0
(�c(h))− N ′

ε0
(�c(h0))

∥∥∥
B(Zγ,β ,Z2γ,2β)

∥∥∥∂hFc(·, h0)

∥∥∥
B(Hc,Zγ,β )

+ 2‖∂hFc(·, h)− ∂hFc(·, h0)‖B(Hc,Z2γ,2β) for any h ∈ BHc(0, ε1(δ0)). (3.50)

Since the function Nε0 is of class C1 by Lemma A.1, from (3.39) it follows that

lim
h→h0

∥∥∥N ′
ε0
(�c(h))− N ′

ε0
(�c(h0))

∥∥∥
B(Zγ,β ,Z2γ,2β)

= 0. (3.51)

From (3.41), (3.50) and (3.51) we conclude that �′
c is continuous at h0 in the BHc(0, ε1(δ0)) →

B
(
Hc, Z2γ,2β(H)

)
topology, proving Claim 2 and the lemma. �
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Next, we focus on proving the higher order smoothness of �c using (3.44) and Lemma A.2. 
Since the function h → Fc(·, h) : Hc →H 1−α(R, H) is of class C∞ as pointed out in (3.41), we 
need to study the smoothness properties of the operator valued function (I − N ′

ε0
◦�c)

−1.

Lemma 3.11. Assume Hypotheses (H1) and (H2). Then, there exist γ̃ < β̃ < 1
2ν(γ0, E0), such 

that the function N ′
ε0

◦�c and the function

h→
(
I − N ′

ε0
(�c(h))

)−1 : BHc(0, ε1(δ0))→ B
(
Z2γ,2β(H),Zγ̃ ,β̃ (H)

)
are of class C1.

(3.52)

Moreover, the following formula holds true:

∂h�

(
I − N ′

ε0
(�c(h))

)−1 =
(
I − N ′

ε0
(�c(h))

)−1
∂h�N

′
ε0
(�c(h))

(
I − N ′

ε0
(�c(h))

)−1
. (3.53)

Proof. Since Nε0 is a function of class C∞ on H, we have that N ′
ε0

: H → B(H) is of class 
C∞. Moreover, since the cutoff function ρ has compact support, from (3.8) we obtain that all the 
derivatives of Nε0 are bounded. Hence, the function Nε0 satisfies the conditions of Lemma A.2
for p = 0. It follows that the function W1 : Z2γ,2β(H) → B

(
Z2γ,2β(H), Zγ1,β1(H)

)
defined by

(W1(f )z
)
(x)=N ′

ε0
(f (x))z(x) for f, z ∈ Zγ,β(H), x ∈ R (3.54)

is of class C1, where γ1 = 4β + 2γ and β1 = 8β . We note that β1 − γ1 > 2β − 2γ > 2α. 
Moreover, the weights α, β and γ can be chosen small enough such that β1 <

1
2ν(�0, E0). Since 

N ′
ε0
(�c(h)) = K W1(�c(h)) for any h ∈ BHc(0, ε1(δ0)), K ∈ B(Zγ1,β1(H)) by Lemma 2.6

and Lemma 2.11, and �c is of class C1 by Lemma 3.10, we conclude that

N ′
ε0

◦�c is of class C1 from BHc(0, ε1(δ0)) to B
(
Z2γ,2β(H),Zγ1,β1(H)

)
. (3.55)

Since the function N ′
ε0

◦�c is of class C1 only in the weaker B
(
Z2γ,2β(H), Zγ1,β1(H)

)
topol-

ogy, rather than the B
(
Z2γ,2β(H)

)
topology, we cannot infer (3.52) immediately. To overcome 

this issue, we use the fact that for any two bounded operators Sj , j = 1, 2, with ‖S1‖ < 1 and 
‖S2‖ < 1 we have that

(I − S1)
−1 − (I − S2)

−1 = (I − S1)
−1(S1 − S2)(I − S2)

−1. (3.56)

Moreover, we need to adjust the weights accordingly. Therefore, we introduce γj and βj , j =
2, 3, by the formula γj = 2βj−1 + γj−1 and βj = 4βj−1, for j = 2, 3 and set γ0 := 2γ and 
β0 = 2β . We note that β3 − γ3 > β2 − γ2 > β1 − γ1 > β − γ > 2α. The original weights α, β
and γ can be chosen small enough such that β3 <

1
2ν(�0, E0).

Claim 1. The function

h→
(
I − N ′

ε (�c(h))
)−1 : BHc(0, ε1(δ0))→ B

(
Zγj ,βj (H),Zγj+1,βj+1(H)

)

0
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is continuous for any j = 0, 1, 2. Arguing similar to (3.42), we have that the constants ε0 > 0
and δ0 > 0 can be chosen small enough such that N ′

ε0
(�(h)) can be extended to a bounded linear 

operator on Zγj ,βj (H) and

‖N ′
ε0
(�c(h))‖B(Zγj ,βj

(H)) ≤ 1

2
for any h ∈ BHc(0, ε1(δ0)), j = 0,1,2,3. (3.57)

From (3.56) one can readily check that

(
I − N ′

ε0
(�c(h))

)−1 −
(
I − N ′

ε0
(�c(h0))

)−1

=
(
I − N ′

ε0
(�c(h))

)−1(
N ′
ε0
(�c(h))− N ′

ε0
(�c(h0))

)(
I − N ′

ε0
(�c(h0))

)−1
(3.58)

for any h ∈ BHc(0, ε1(δ0)). From (3.57) and (3.58) we obtain that

∥∥∥(I − N ′
ε0
(�c(h))

)−1 −
(
I − N ′

ε0
(�c(h0))

)−1∥∥∥
B
(
Zγj ,βj

,Zγj+1,βj+1

) ≤

≤ 4
∥∥∥N ′

ε0
(�c(h))− N ′

ε0
(�c(h0))

∥∥∥
B
(
Zγj ,βj

,Zγj+1,βj+1

) (3.59)

for any h, h0 ∈ BHc(0, ε1(δ0)). Since the function N ′
ε0

◦ �c is of class C1, as shown above, 
Claim 1 follows shortly from (3.59).

Claim 2. The function

h→
(
I − N ′

ε0
(�c(h))

)−1 : BHc(0, ε1(δ0))→ B
(
Zγj ,βj (H),Zγj+2,βj+2(H)

)
has partial derivatives for any j = 0, 1. Moreover, (3.53) holds true. Fix j ∈ {0, 1}. Let {e�}� be 
a basis in Hc and s ∈ R small enough. To prove Claim 2 we set h = h0 + se� in (3.58) for s ∈ R

small enough and pass to the limit as s→ 0. Indeed, from (3.55) we obtain that

1

s

(
N ′
ε0
(�c(h0 + se�))− N ′

ε0
(�c(h0))

)
→ ∂h�(N

′
ε0

◦�c)(h0) as s→ 0 in B(Zγj ,βj (H),Zγj+1,βj+1(H)). (3.60)

Moreover, from Claim 1 we infer that

(
I − N ′

ε0
(�c(h0 + se�))

)−1

→
(
I − N ′

ε0
(�c(h0))

)−1
as s→ 0 in B(Zγj+1,βj+1(H),Zγj+2,βj+2(H)). (3.61)

In addition, from (3.57) it follows that 
(
I − N ′

ε0
(�c(h0))

)−1 ∈ B(Zγj ,βj (H)). Summarizing, it 
is now clear that Claim 2 follows shortly from (3.60) and (3.61). To finish the proof of lemma, we 
prove that the partial derivatives of (I−N ′

ε0
◦�c)

−1 are continuous. We set ̃γ := γ3 and β̃ := β3. 
Passing to the limit for h → h0 in (3.53), the lemma follows from (3.55) and Claim 1. �
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Lemma 3.12. Assume Hypotheses (H1) and (H2). Then, for any integer k ≥ 2 there exist γ <
β < 1

2ν(γ0, E0) such that the function �c is of class Ck from BHc(0, ε1(δ0)) to Zγ ,β(H).

Proof. From Lemma 3.11, (3.41) and (3.44) we can immediately check that the function �c is of 
class C2 from BHc(0, ε1(δ0)) to Zγ̃ ,β̃ (H) for some weights β̃ > γ̃ > 0, satisfying the conditions 

γ̃ > α and β̃ < 1
2ν(γ0, E0). Next, we assume that �c is of class Cj from BHc(0, ε1(δ0)) to 

Zγ̃ ,β̃ (H) for some j ≥ 2 and some weights γ̃ < β̃ < 1
2ν(γ0, E0). To prove the lemma, we show 

that from this assumption we can infer that the function �c is of class Cj+1 for j ≤ k − 1.
Since the function Nε0 defined in (3.8) is of class C∞ it follows that for any 2 ≤m ≤ j the 

function Lm : Hm → B(H) defined by

(
Lm(h1, h2, . . . , hm)

)
g =N(m)ε0

(h1)
(
h2, . . . , hm,g) for g,h1, h2, . . . , hm ∈ H (3.62)

is of class C∞. Moreover, since the cutoff function ρ is of class C∞ with compact support, we 
have that suph∈H ‖N(�)ε0 (h)‖ <∞ for any � ≥ 0, which implies there exists a positive integer p
and c� > 0 such that

‖L(�)m (h1, h2, . . . , hm)‖ ≤ c�‖(h1, h2, . . . , hm)‖pHm for any h1, h2, . . . , hm ∈H, �= 1,2. (3.63)

From Lemma A.2 we obtain that there exist two weights 0 < γ < β such that the function Wm :
Zγ̃ ,β̃ (H

m) → B
(
Zγ̃ ,β̃ (H), Zγ ,β(H)

)
defined by

(
Wm(f )z

)
(x)= Lm(f (x))z(x), for f ∈ Zγ̃ ,β̃ (H

m), z ∈ Zγ̃ ,β̃ (H), x ∈R, (3.64)

is of class C1. The original weights α, β and γ can be chosen small enough such that β <
1
2ν(γ0, E0). We recall that N ′

ε0
(�c(h)) = K W1(�c(h)) for any h ∈ BHc(0, ε1(δ0)), where W1

is defined in (3.54). Therefore, the partial derivatives of Nε0 ◦�c can be expressed in terms of 
Wm, 2 ≤ m ≤ j and the partial derivatives of �c. Since K ∈ B(Zγ ,β(H)) by Lemma 2.6 and 
Lemma 2.11, we infer that all partial derivatives of order less than j of the function N ′

ε0
◦ �c

are of class C1 from BHc(0, ε1(δ0)) to B
(
Zγ̃ ,β̃ (H), Zγ ,β(H)

)
. Hence, the function N ′

ε0
◦ �c

is of class Cj+1 from BHc(0, ε1(δ0)) to B
(
Zγ̃ ,β̃ (H), Zγ ,β(H)

)
. By modifying the choice of 

the original weights α, β and γ once again, arguing similar to Lemma 3.11 and taking partial 
derivative with respect to h ∈Hc in (3.53), we have that the weights γ and β can be chosen such 
that the function

h→
(
I−N ′

ε0
(�c(h))

)−1 : BHc(0, ε1(δ0))→ B
(
Zγ̃ ,β̃ (H),Zγ ,β(H)

)
is of class Cj+1. (3.65)

From (3.44) and (3.65) we conclude that �c is of class Cj+1 from BHc(0, ε1(δ0)) to Zγ ,β(H). 
The lemma follows by repeating the argument above a finite number of times. �

Using Lemma 3.12 we can finally conclude that the center manifold Mc is of class Ck . Indeed, 
since the linear operator Trace0 : Zγ ,β(H) → H defined by Trace0(f ) = f (0) is bounded, from 
(3.35) and (3.38) we conclude that Mc is of class Ck .
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Remark 3.13. We note that the iteration used to prove higher order regularity of the center man-
ifold (Lemma 3.12) can be applied only finitely many times. The main reason is that at each step 
of the iteration we need to readjust the original weights α, β and γ such that β < ν(�0, E0). 
Since the weights increase by a factor of at least 2 every time we make the adjustment, after j
steps the new weights are bigger than O(2j ), thus becoming greater than ν(�0, E0) after finitely 
many steps. It is for this reason that our argument yields Ck regularity for arbitrary but fixed k
rather than C∞.

3.3. Invariance of the center manifold

To finish the proof of Theorem 1.4 we need to prove that the center manifold Mc is invariant 
under the flow of equation (3.1) and to prove that it is tangent to the center subspace Hc at the 
equilibrium u.

Lemma 3.14. Assume Hypotheses (H1) and (H2). Then, the manifold Mc is invariant under the 
flow of equation (3.1), in the sense that for each element of Mc there exists a solution of (3.1)
that stays in Mc in finite time. Moreover, the manifold Mc is tangent to the center subspace Hc
at u.

Proof. Fix y ∈ Mc. Then, from (3.35) it follows that there exists w0 ∈ BHc(0, ε1(δ0)) such that 
y = w(0, w0). From Lemma 3.6(ii) we know that w(·, w0) is a solution of (3.1) on (−η0, η0). 
Therefore, to prove the lemma it is enough to prove that w(x, w0) ∈ Mc for x in a neighborhood 
of 0. Our strategy is to show that for any x0 small enough there exists w̃0(x0) ∈ BHc(0, ε1(δ0))

such that w(· + x0, w0) = w(·, ̃w0(x0)). First, we note that

(
FK0g(· + x0)

)
(ω)= (F (K0g)(· + x0)

)
(ω)= e2π iωx0(2π iω�0 −E0)

−1ĝ(ω) (3.66)

for any ω ∈R, g ∈ S (R, ̃V), the Schwartz class of Ṽ-valued functions on R. It follows that

(K0g)(· + x0)= K0g(· + x0) for any g ∈L2−α(R, Ṽ). (3.67)

Similarly, one can readily check that

(V f )(· + x0)= V (f (· + x0))+ (V f )(x0) for any f ∈L2−α(R,H). (3.68)

Since K f = V �3f +�4K0PṼf for any f ∈L2−α(R, H) from (3.67) and (3.68) we obtain that

(K f )(· + x0)= K (f (· + x0))+ �3(V f )(x0) for any f ∈L2−α(R,H). (3.69)

Since w(·, w0) is the unique solution of equation w = Tε0(w0, w), from (3.69) we have that

w(x + x0,w0)= Fc(x + x0,w0)+
(
K Nε0(w(·,w0))

)
(x + x0)

= Fc(x + x0,w0)+
(
K Nε0(w(· + x0,w0))

)
(x)+ �3(V f)(x0) (3.70)

for any x ∈ R, where f = ρ
( ‖w(·,w0)‖2

ε2
0

)
B(w(·, w0), w(·, w0)). Since w0 ∈ Hc = V

⊥ ⊕ Vc from 

(2.43) we have that P˜w0 = −E−1P˜EPV w0. From (2.58) we obtain that

V 0 V 1
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fc(x,w0)= xE1(I −E−1
0 P

Ṽ
E)PV1w0 = xE1(PV1w0 + P

Ṽ
w0)= xE1PVw0 for any x ∈R.

(3.71)

Moreover, from (3.5) we have that

Fc(x + x0,w0)+ �3(V f)(x0)=w0 + x0E1PVw0 + �3(V f)(x0)+ xE1PVw0 (3.72)

for any x ∈R. Since imE1 ⊆ kerA11, im�3 ⊆ kerA11 and kerA11 ⊆V
⊥ ⊆Hc, we infer that

w̃0(x0) :=w0 + x0E1PVw0 + �3(V f)(x0) ∈Hc and PVw̃0(x0)= PVw0. (3.73)

From (3.71), (3.72) and (3.73) we conclude that

Fc(x + x0,w0)+ �3(V f)(x0)= w̃0(x0)+ xE1PVw̃0(x0)= Fc(x, w̃0(x0)) (3.74)

for any x ∈ R. From (3.70) and (3.74) we infer that w(· + x0, w0) is a solution of equation 
w = Tε0(w̃0(x0), w). Since limx0→0 w̃0(x0) = w0 ∈ BHc(0, ε1(δ0)) it follows that there exists 
ν0 > 0 such that w̃0(x0) ∈ BHc(0, ε1(δ0)) for any x0 ∈ (−ν0, ν0). From Lemma 3.5 we obtain 
that

w(· + x0,w0)=w(·, w̃0(x0)) for any x0 ∈ (−ν0, ν0), (3.75)

which implies that w(x0, w0) = w(0, ̃w0(x0)) ∈ Mc for any x0 ∈ (−ν0, ν0), proving that the 
center manifold Mc is locally invariant under the flow of equation (3.1).

To prove that the manifold Mc is tangent to the center subspace Hc at u, it is enough to 
show that J ′

c(0) = 0. By uniqueness of fixed point solutions, we immediately conclude that 
w(·, 0) = 0. Moreover, since N ′

ε0
(0) = 0 and the function Hc �w0 → fc(·, PV1w0) ∈H 1−α(R, H)

is linear, from (2.58) we infer that

(
∂w0w(·,0)

)
(w0)=w01 + fc(·,PV1w0) (3.76)

for any w0 ∈Hc. Since imE1 ⊆V
⊥ and Ṽ⊂V, it follows that

(
∂w0w(0,0)

)
(w0)=w0 + fc(0,PV1w0)=w0 for any w0 ∈ Hc. (3.77)

From (3.37) and (3.77) we conclude that 
(
J ′

c(0)
)
(w0) = 0 for any w0 ∈ Hc, proving the 

lemma. �
Proof of Theorem 1.4. Summarizing the results of this section, Theorem 1.4 follows shortly 
from Lemma 3.7, Lemma 3.12, and Lemma 3.14. To finish the proof of the theorem we need 
to show that the center manifold Mc contains the trace at 0 of any bounded, smooth solution 
u0 of equation (1.2) that stays sufficiently close to the equilibrium u. Indeed, in this case one 
can readily check that w0 = u0 − u is a bounded, smooth solution of equation (3.1) that is small 
enough. It follows that Nε0(w0(x)) = B(w0(x), w0(x)) for any x ∈ R. From Lemma 2.12(i) we 
obtain that w0 = Pcw0(0) + fc(·, PV1w0(0)) + K Nε0(w0), that is w0 is a solution of equation 
w = Tε0(Pcw0(0), w). From Lemma 3.5 we infer that w0 = w(·, (Pcw0(0)). Since Pcw0(0) ∈ Hc
is small enough, we conclude that w0(0) ∈ Mc, proving the theorem. �
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4. Approximation of the center manifold

Similarly as in the usual (nonsingular A) case, the center manifold may be approximated to 
arbitrary order by formal Taylor expansion.

4.1. Canonical form

By the invertible change of coordinates

wc =
⎛
⎝ u1 − (�1 +E1E

−1
0 �0)ṽ

E1(Id −E−1
0 P

Ṽ
E)v1

ũ+ Ã−1
11 Ã12(ṽ +E−1

0 P
Ṽ
Ev1)

⎞
⎠ , wh = ṽ +E−1

0 P
Ṽ
Ev1, (4.1)

wc and wh parametrizing center and hyperbolic subspaces, we reduce (3.2) to canonical form:

{
w′

c = Jwc + gc,

�0w
′
h =E0wh + gh

, (4.2)

where J =
⎡
⎣0 Ir 0

0 0 0
0 0 0

⎤
⎦ is a nilpotent block-Jordan form, r = dim kerA11, and

gc =
((
E1E

−1
0 P

Ṽ
f + (T ∗

12)
−1PV1f

)T
,0,0

)T
, gh = P

Ṽ
f. (4.3)

Here, we have used the fourth equation of (3.2) to express ṽ =E−1
0 (�0ṽ

′ −P
Ṽ
Ev1 −P

Ṽ
f ), then 

substituted into the first equation to obtain

(
u1 − (�1 +E1E

−1
0 �0)ṽ

)′ =E1(Id −E−1
0 P

Ṽ
E)v1 + (E1E

−1
0 P

Ṽ
f + (T ∗

12)
−1PV1f

)
.

The key point in showing bounded invertibility is to observe that the coefficient E1(Id −
E−1

0 P
Ṽ
E) of v1 in the second component of wc may be expressed as a bounded, boundedly 

invertible operator (T ∗
12)

−1 applied to

(
PV1E|V1 − PV1E|ṼE

−1
0 P

Ṽ
E|V1

)
,

which, writing E =
[
E11 E12
E∗

12 E22

]
: V⊥ ⊕ V → V

⊥ ⊕ V in block form, may be recognized as 

E11 − E12E
−1
22 E

∗
12, which is symmetric negative definite as a minor of the symmetric negative 

definite operator

[
E11 −E12E

−1
22 E

∗
12 0

0 E22

]
=
[

Id −E12E
−1
22

0 Id

][
E11 E12
E∗

12 E22

][
Id 0

−E−1
22 E

∗
12 Id

]
. (4.4)
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Remark 4.1. We record for later use that the tangent subspace at (u, v) = (ζ, 0) to the equilib-
rium manifold E = {(u, v) ∈ V

⊥ ⊕V :Q(u, v) = 0} is given in the new coordinates by

wc = (ζ1,0, ζ̃ ), wh = 0, (4.5)

as can also be seen directly by computing the subspace of equilibria of (4.2) with g =
(gc, gh) = 0.

4.2. Taylor expansion

From the canonical form (4.2), the computation of the formal Taylor expansion for the center 
manifold goes exactly as in the usual (nonsingular A) case. Taking f = B(u − u, u −u) in (4.2), 
we recover the original nonlinear system (1.1), with g comprising quadratic and higher order 
terms in (wc, wh). Expressing wh =�(wc), substituting into (4.2)(ii), and applying (4.2)(i), we 
obtain the defining relation

�0�
′(wc)(Jwc + g̃c)=E0�(wc)+ g̃h. (4.6)

Here g̃c and g̃h are obtained by solving for u = (u1, ̃u, v1, ̃v) in terms of (wc, wh) in 
(4.1) and plugging in f = B(u − u, u − u) in (4.3). Inverting E0 we obtain that �(wc) =
E−1

0

(
�0�

′(wc)(Jwc + gc) − gh
)
. This gives �(wc) − E−1

0 �0�
′(wc)Jwc = E−1

0 gc((wc, 0))
modulo higher order terms in wc, from which me may successively solve for the coeffi-
cients of the Taylor series of �. For example, in the simplest case J = 0, this becomes just 
�(wc) =E−1

0 gc((wc, 0)) plus higher order terms. We omit the (standard; see, e.g. [9]) details.

4.3. Center flow

The center flow, given by the reduced equation

w′
c = Jwc + gc(wc,�(wc)), (4.7)

may be approximated to any desired order k in powers of ‖wc‖ by Taylor expansion of � to order 
k − 1. In practice (as will be the case here), it is often sufficient to approximate the flow only to 
order k = 2 in order to perform a normal-form analysis well-describing the flow, in which case it 
is not necessary to compute � at all, being that the k = 1 order approximation of � is just 0.

4.4. Relaxation structure

The discussion of approximation (and indeed all of our analysis) up to now has been com-
pletely general, applying equally to any system of form (4.2), not necessarily originating from a 
system of form (1.1). We now make two substantial simplifications based on the special structure 
of (1.1). The first is to note that, encoding the conservative structure of the system, coordinates 
wc,2 and wc,3 are constants of the flow, hence may be considered as parameters. This reduces the 
center flow to an equation on an r-dimensional fiber indexed by wc,1, r = dim kerA11, a consid-
erable simplification. For related observations, see the treatment of existence of small amplitude 
viscous and relaxation shock profiles in [20,21].



6792 A. Pogan, K. Zumbrun / J. Differential Equations 264 (2018) 6752–6808
The second, using (4.5), Remark 4.1, is that by shifting the base state of our expansion along 
the equilibrium manifold, we are able to arrange without loss of generality wc,3 ≡ 0, so that we 
obtain, ultimately, a family of r-dimensional fibers

w′
c,1 = ζ + φ(wc,1, ζ ),

φ(wc,1, ζ ) := g̃c,1
(
(wc,1, ζ,0),�(wc,1, ζ,0)

)= O(‖wc,1‖2,‖ζ‖2) (4.8)

indexed by the r-dimensional parameter ζ :=wc,2. In the simplest nontrivial case r = 1 (treated 
in Section 5.1), this amounts to a one-parameter family of scalar equations. Taylor expanding 
(4.8), we have that g̃c,1

(
wc,1, 0, 0), 0

)=wTc,1χwc,1 +O(‖wc,1‖3), for some χ ∈R, which shows 
that the normal form (in all cases) is given by

w′
c,1 = ζ +wTc,1χwc,1 + O(‖wc,1‖3 + ‖wc,1‖‖ζ‖ + ‖ζ‖2). (4.9)

5. Bifurcation and existence of small-amplitude shock profiles

Using the framework of Section 4, it is straightforward to describe bifurcation from equilib-
rium, or near-equilibrium steady flow, in the cases (GNL) and (LDG) discussed in the intro-
duction: in particular, existence of small-amplitude standing kinetic shock and boundary layer 
solutions.

5.1. Bifurcation from a simple, genuinely nonlinear characteristic

We first treat the case (GNL), starting with normal form (4.9), by relating the constants ζ
and χ to quantities occurring in the equilibrium problem (CE1), using the principle that, since 
equilibria of (1.2), (CE2), and (CE1) all agree, the normal forms for their respective equilibrium 
problems must agree (up to constant multiple) as well. More elaborate versions of this argument 
may be found, e.g., in [20,21].

Proof of Theorem 1.5, case (GNL). First, note that T12v1 in the original coordinates of (2.12)
is exactly the first component q1 of q in (CE1), or v1 = T −1

12 q1. Substituting this into the second 
component of (4.1), we find after a brief calculation that ζ =wc,2 = −�−1q1, where

�−1 = (T ∗
12)

−1(PV1E(Id − (E|Ṽ)
−1P

Ṽ
E))(T12)

−1, (5.1)

or, in the notation of (4.4), � = −T12(E11 −E12E
−1
22 E21)

−1T ∗
12 > 0, where E =

[
E11 E12
E21 E22

]
:

V
⊥ ⊕V → V

⊥ ⊕V. Using the block-matrix inversion formula

[
E11 E12
E21 E22

]−1

=
[

(E11 −E12E
−1
22 E21)

−1 −(E11 −E12E
−1
22 E21)

−1E12E
−1
22

−(E22 −E21E
−1
11 E12)

−1E21E
−1
11 (E22 −E21E

−1
11 E12)

−1

]
(5.2)

(verifiable by multiplication against E, or inversion of relation (4.4)), we find alternatively that
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� = −eT1 A12E
−1A∗

12e1,

e1 the first Euclidean basis element, or, using r= e1, � = rT D∗r, with D∗ as in (CE2).
Using the first component of (4.1) to trade wc,1 for u1 by an invertible coordinate change 

preserving the order of error terms, we may thus rewrite (4.9) as

u′
1 = �−1(−q1 + �χu2

1)+O(|u1|3 + |u1||q1| + |q1|2), (5.3)

where �χ is yet to be determined. On the other hand, performing Lyapunov–Schmidt reduction 
for the equilibrium problem (CE1), we obtain the normal form 0 = (−q1 + 1

2�u
2
1) +O(|u1|3 +

|u1||q1| + |q1|2). Using the fact that equilibria for (1.2) and (CE1) agree, we find that �χ must 
be equal to 1

2�, yielding a final normal form consisting of the approximate Burgers flow (1.9). A 
similar computation yields the same normal form for fibers of the center manifold of the formal 
viscous problem (CE2); see also the more detailed computations of [20] yielding the same result.

For q1� > 0, the scalar equation (1.9) evidently possesses equilibria ∼ ∓√
2q1/�, connected 

(since the equation is scalar) by a heteroclinic profile. Observing that sgnu′
1 = − sgn� for u1

between the equilibria, so that 
(
λ(u)

)′ ∼ �u′
1 has sign of −�2 < 0, we see further that the 

connection is in the direction of decreasing characteristic λ(u), hence a Lax-type connection for 
(CE1); for further discussion, see [20,21]. �
5.1.1. Comparison to Chapman–Enskog profiles

We perform the comparison of profiles of (1.2) and (CE2) in three steps, comparing their 
primary, u1, coordinates to a Burgers shock, then to each other, and finally comparing remaining 
coordinates slaved to the fiber (1.9).

Lemma 5.1 ([17,25]). Let η ∈ R
1 be a heteroclinic connection of an approximate Burgers equa-

tion

�η′ = 1

2
�(−ε2 + η2)+ S(ε, η), S =O(|η|3 + |ε|3) ∈Ck+1(R2), k ≥ 0, (5.4)

and η̄ := −ε tanh(�εx/2�) a connection of the exact Burgers equation �η̄′ = 1
2�(−ε2 + η̄2). 

Then,

|η± − η̄±| ≤Cε2,

|∂kx
(
η̄− η̄±)(x)| ∼ εk+1e−δε|x|, x ≷ 0, δ > 0,∣∣∂kx ((η− η±)− (η̄− η̄±)

)
(x)
∣∣≤ Cεk+2e−δε|x|, x ≷ 0,

(5.5)

uniformly in ε > 0, where η± := η(±∞), η̄± := η̄(±∞) = ∓ε denote endstates of the connec-
tions.

Proof. (Following [17]) Rescaling η→ η/ε, x→�εx̃/β , we obtain the “blown-up” equations

η′ = 1

2
(η2 − 1)+ εS̃(η, ε) S̃ ∈Ck+1(R2)

and η̄′ = 1 (η̄2 − 1), for which estimates (5.4) translate to
2
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|η± − η̄±| ≤ Cε,
|∂kx (η̄− η̄±)(x)| ∼ Cεke−θ |x|, x ≷ 0, θ > 0,

|∂kx
(
(η− η±)− (η̄− η̄±)

)
(x)| ≤ Cεk+1e−θ |x|, x ≷ 0.

(5.6)

The estimates (5.6) follow readily from the implicit function theorem and stable manifold theo-
rems together with smooth dependence on parameters of solutions of ODE, giving the result. �

Setting q1 = �ε2/2, and either η = uREL,1 or η = uCE,1, we obtain approximate Burg-
ers equation (5.4), and thereby estimates (5.5) relating η = uREL,1, uCE,1 to an exact Burgers 
shock η̄.

Corollary 5.2. Let u ∈ kerQ be an equilibrium satisfying (H1)–(H2), in the noncharacteristic 
case (GNL), and k and integer ≥ 2. Then, local to u (ū), each pair of points u± corresponding 
to a standing Lax-type shock of (CE1) has a corresponding viscous shock solution uCE of (CE2)
and relaxation shock solution uREL = (uREL, vREL) of (1.2), satisfying for all j ≤ k− 2:

|∂jx (uREL,1 − u±
REL,1)(x)| ∼ Cεje−θ |x|, x ≷ 0, θ > 0,

|∂jx (uREL,1 − uCE,1)(x)| ≤ Cεj+1e−θ |x|, x ≷ 0.
(5.7)

Proof. Immediate, by (5.6), Lemma 5.1 and the triangle inequality, together with the observa-
tion that, since equilibria of (CE1), (CE2), and (1.2) agree exactly, endstates u±

REL,1 = u±
CE,1

agree. �
Proof of Corollary 1.6. Noting that the imA11 and the V components of uREL are the C1 func-
tions  (uREL,1), !(uREL,1) of uREL,1 along the fiber (1.9), we obtain (1.11)(iii) immediately 
from (5.7)(i). Denote by  CE the map describing the dependence of imA11 component of uCE
on uCE,1 on the corresponding fiber of (CE2). Noting that   − CE and ! − v∗ both vanish at 
the endstates u±

REL,1, we have by smoothness of  ,  CE , !, v∗ that

| − CE |, | − v∗| = O(|uREL,1 − u+
REL,1|, |uREL,1 − u−

REL,1|),
giving (1.11)(i)–(ii) by (5.7)(i)–(ii). �
5.2. Bifurcation from a linearly degenerate characteristic

Proof of Theorem 1.5, case (LDG). In the case (LDG), by an entirely similar argument, com-
paring to the normal form for the equilibrium problem (CE1), yields normal form (1.10). Here, 
the main point is to observe that, in the normal form for (CE1), all terms, including higher-order 
error terms, include a factor q1, since in the fiber q1 = 0 all points are equilibria. Evidently, each 
q1-fiber is either composed entirely of equilibria, or contains no equilibria, hence there exist no 
nontrivial profiles connecting to equilibria either in forward or backward x. �
6. Application to Boltzmann’s equation

We now specialize to the case Example 1.1 of Boltzmann’s equation with hard sphere collision 
kernel.
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6.1. Existence and sharp localization in velocity of center manifolds

Let A, Q be as defined in Example 1.1 and Yσ as defined in (1.12), with Aij , �0 as in the rest 
of the paper. We have the following result of [23].

Lemma 6.1 ([23]). Assume Hypotheses (H1) and (H2). For Boltzmann’s equation with hard 
sphere kernel and any 1/2 ≤ σ < 1, the linear operator E = Q′(Mū)|V, where Mū is the 
Maxwellian defined in (1.8), and its inverse can be extended to bounded linear operators on 
Y
σ ∩V.

Lemma 6.2. Assume Hypotheses (H1) and (H2). For Boltzmann’s equation with hard sphere 
kernel and 1/2 ≤ σ < 1, Hc ⊂Y

σ .

Proof. The subspace Hc is the direct sum of the subspace of equilibria V⊥, equal to the tan-
gent space to the manifold E of Maxwellians, and the space Vc defined in (2.43). The tangent 
subspace to E at u is given by polynomial multiples of Mū, hence V⊥ evidently lies in Yσ . 
Recalling that A is a bounded multiplication operator in ξ , we have that A can be extended to 
a bounded linear operator on Yσ . It follows that Yσ is invariant under the orthogonal projectors 
associated to the orthogonal decomposition H = kerA11 ⊕ imA11 ⊕V1 ⊕ Ṽ. Moreover, we have 
that V1 = imT ∗

12 = im(A21)| kerA11 ⊂ Y
σ . Fix v = (v1, ̃v) ∈ Vc. Since Yσ is invariant under P

Ṽ
, 

from (2.43) and Lemma 6.1 we infer that ̃v = −E−1
0 P

Ṽ
Ev1 ∈Y

σ , proving the lemma. �
Lemma 6.3. Assume Hypotheses (H1) and (H2). The Fourier multiplier K0 = F−1MR�0,E0

F , 

associated to the operator-valued function R�0,E0 : R → B(Ṽ) defined by R�0,E0(ω) =
(2π iω�0 −E0)

−1, is bounded on H 1−α(R, Yσ ∩ Ṽ) for any 1/2 ≤ σ < 1 and α ∈ (0, ν(�0, E0)).

Proof. Fix α ∈ (0, ν(�0, E0)). The result for σ = 1/2 has already been established, giving

‖K0g‖H 1−α(R,Ṽ) ≤ c‖g‖H 1−α(R,Ṽ) for any g ∈H 1−α(R, Ṽ). (6.1)

We use a bootstrap argument like that of [23, p. 677, Proposition 3.1] to extend to 1/2 < σ < 1. 
Namely, we use the fact, observed in [23, Section 2], that Q′(u) =M∗ + K , where M∗ is the 
operator of multiplication by a real valued function bounded above and below and

‖〈·〉1/2Ky‖Yσ ≤ c‖〈·〉−1/2y‖Yσ for any y ∈ 〈·〉1/2
Y
σ . (6.2)

From Lemma 2.8(i) we have that K0g is the unique mild solution of equation (2.14) for any g ∈
H 1−α(R, ̃V). It follows that u = (�1K0g+E1V K0g, −Ã−1

11 Ã12K0g, 0, K0g
)T ∈H 1−α(R, H) is 

a solution of the system (2.12), which is equivalent to the system (2.4) for f = g. We infer that

Au′ =Q′(u)u+ g. (6.3)

Recall that A is the multiplication operator by the real valued function a : R3 → R defined by 
a(ξ) = ξ1/〈ξ〉. Observing that the diagonal operator (Ma∂x−M∗)−1 is bounded on H 1−α(R, Yσ ), 
and since Q′(u) =M∗ +K , from (6.3) we obtain that
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u= (Ma∂x −M∗)−1(g +Ku). (6.4)

From (6.2) and (6.4) we obtain that

‖u‖H 1−α(R,Yσ ) ≤ c‖g‖H 1−α(R,Yσ∩Ṽ) + c‖Ku‖H 1−α(R,Yσ )

≤ c‖g‖H 1−α(R,Yσ∩Ṽ) + c‖〈·〉−1/2u‖H 1−α(R,Yσ ). (6.5)

Noting that 〈ξ〉−1/2M−σ
ū (ξ) < 1

2M
−σ
ū (ξ) for |ξ | ≥ C and some C � 1, and M−σ

ū (ξ) �
M

−1/2
ū (ξ ) for |ξ | ≤ C, we may rearrange (6.5) to conclude that

‖u‖H 1−α(R,Yσ ) ≤ c‖g‖H 1−α(R,Yσ∩Ṽ) + c‖u‖H 1−α(R,Y1/2) ≤ c‖g‖H 1−α(R,Yσ∩Ṽ) + c‖u‖H 1−α(R,Y1/2)

≤ c‖g‖H 1−α(R,Yσ∩Ṽ) + c‖K0g‖H 1−α(R,Ṽ) + c‖V K0g‖H 1−α(R,Ṽ)

≤ c‖g‖H 1−α(R,Yσ∩Ṽ) + c‖g‖H 1−α(R,Ṽ). (6.6)

Since P
Ṽ
u = K0g, from (6.6) it follows that

‖K0g‖H 1−α(R,Yσ∩Ṽ) ≤ c‖g‖H 1−α(R,Yσ∩Ṽ) + c‖g‖H 1−α(R,Ṽ) (6.7)

Define now Y σ ∼ Y
σ to be the space determined by mixed norm ‖y‖Y σ := ‖y‖Yσ +

n‖y‖Y1/2 , where n >> 1. Summing n times (6.1) and (6.7), we obtain ‖K0g‖H 1−α(R,Y σ∩Ṽ) ≤
c‖g‖H 1−α(R,Y σ∩Ṽ) for n sufficiently large, yielding the result, finally, by equivalence of Yσ and 
Y σ . �
Proof of Proposition 1.8. Similarly as in the standard case H = Y

1/2, the Volterra integral de-
termining the part of our fixed-point mapping is readily seen to be bounded on H 1−α(R, Yσ ), 
whence we may repeat our previous argument in its entirety to obtain existence of a center man-
ifold valued in Yσ , as claimed. �
Remark 6.4. It is easily seen that the result Mc ⊂ Y

σ , 1/2 ≤ σ < 1 is sharp, even in the non-
characteristic case. For, consider the difference v(ξ) = e−θ |ξ |2 − e−|ξ |2 , 0 < θ < 1, between a 
base point Maxwellian e−|ξ |2 and a nearby equilibrium consisting of a different Maxwellian 
e−θ |ξ |2 with slightly slower decay in |ξ |. Evidently, v(ξ) ∼ e−θ |ξ |2 for large ξ , whence v ∈ Y

θ

but v /∈Y
1.

6.2. Physical behavior

Specialized to Boltzmann’s equation, the observations on center manifold structure in Theo-
rem 1.5 have a number of interesting physical applications, for example to Milne’s problem and 
condensation/evaporation phenomena [28–30]. See [18] for further discussion.3

3 Our analysis shows that assumption f even in ξ2, ξ3 of [18], restricting dim kerA11 = 1 in case (LDG), may be 
dropped.
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Appendix A. Smoothness of substitution operators

In this section we study the smoothness properties in the mixed-norm spaces Zγ,β(H) topol-
ogy of substitution operators N : BH 1−α(R,H)(0, δ) →H 1−α(R, H) defined by

(
N (f )

)
(x)=N(f (x)), x ∈ R, f ∈H 1−α(R,H). (A.1)

Here N : H → H is a bounded, nonlinear C∞ function on H, whose derivatives are bounded. 
Moreover, the weights α > 0, β > 0 and γ > 0 satisfy the conditions of Lemma 3.3, namely 
0 < α < γ < β and 0 < 2α < β − γ .

Lemma A.1. Assume N : H → H is a C∞ function on H such that suph∈H ‖N(j)(h)‖ <∞ for 
any j ≥ 0. Then, the substitution operator N defined in (A.1) is a C1 function from Zγ,β(H)

to Z2γ,2β(H). Moreover, N ′(f ) can be extended to a bounded linear operator on Zγ,β(H) for 
any f ∈ BH 1−α(R,H)(0, δ).

Proof. We fix f0 ∈ BH 1−α(R,H)(0, δ) and we define T0 : Zγ,β(H) → Zγ,β(H) by

(T0z)(x)=N ′(f0(x))z(x), x ∈ R, z ∈ Zγ,β(H). (A.2)

Claim 1. T0 is well-defined and bounded on Zγ,β(H). Since N ′ is a bounded function on H
one can readily check that ‖(T0z)(x)‖ ≤ ‖N ′(f0(x))‖ ‖z(x)‖ ≤ suph∈H ‖N ′(h)‖ ‖z(x)‖ for any 
x ∈ R and z ∈ Zγ,β(H), which implies that

T0z ∈ L2−γ (R,H) and ‖T0z‖L2−γ ≤ sup
h∈H

‖N ′(h)‖‖z‖L2−γ for any z ∈ Zγ,β(H). (A.3)

Next, we note that T0z ∈H 1
loc(R, H) and (T0z)

′(x) =N ′′(f0(x))
(
f ′

0(x), z(x)
)

+N ′(f0(x))z
′(x)

for any x ∈R and z ∈ Zγ,β(H). Since the functions N ′ and N ′′ are bounded functions on H and 
2α < β − γ from (3.12) we obtain that∫

R

e−2β|x|‖(T0z)
′(x)‖2dx

≤ 2 sup
h∈H

‖N ′′(h)‖2
∫
R

e−2β|x|‖f ′
0(x)‖2‖z(x)‖2dx + 2 sup

h∈H
‖N ′(h)‖2‖z′‖2

L2−β

≤
(

2 sup
h∈H

‖N ′′(h)‖2
∫
R

e−(β−γ )|x|‖f ′
0(x)‖2dx + 2 sup

h∈H
‖N ′(h)‖2

)
‖z‖2

Zγ,β

≤
(

2 sup
h∈H

‖N ′′(h)‖2‖f0‖2
H 1−α

+ 2 sup
h∈H

‖N ′(h)‖2
)
‖z‖2

Zγ,β

≤
(

2δ2 sup
h∈H

‖N ′′(h)‖2 + 2 sup
h∈H

‖N ′(h)‖2
)
‖z‖2

Zγ,β
<∞ (A.4)

for any z ∈ Zγ,β(H), proving Claim 1.
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Claim 2.N is Frechet differentiable at f0 in the 
(
Zγ,β(H), Z2γ,2β(H)

)
topology and N ′(f0) =

T0. Since N is a C∞ function on H we have that

N(h1)−N(h2)−N ′(h2)(h1 − h2)=
( 1∫

0

sN ′′(sh1 + (1 − s)h2
)
ds
)
(h1 − h2, h1 − h2) (A.5)

for any h1, h2 ∈H. Since N ′′ is a bounded function on H from (A.5) we conclude that

‖N(h1)−N(h2)−N ′(h2)(h1 − h2)‖ ≤ sup
h∈H

‖N ′′(h)‖‖h1 − h2‖2 for any h1, h2 ∈ H. (A.6)

Using Sobolev’s inequality, from (A.6) we obtain that

‖N (f )− N (f0)− T0(f − f0)‖2
L2−2γ

≤ sup
h∈H

‖N ′′(h)‖2
∫
R

e−4γ |x|‖f (x)− f0(x)‖4dx

≤ sup
h∈H

‖N ′′(h)‖2‖f − f0‖2
L2−γ

‖f − f0‖2
L∞−γ ≤ sup

h∈H
‖N ′′(h)‖2‖f − f0‖3

L2−γ
‖f ′ − f ′

0‖L2−γ

≤ sup
h∈H

‖N ′′(h)‖2‖f − f0‖3
L2−γ

‖f − f0‖H 1−α ≤ 2δ sup
h∈H

‖N ′′(h)‖2‖f − f0‖3
Zγ,β

(A.7)

for any f ∈ BH 1−α(R,H)(0, δ). Since N is a C∞ function on H and T0 ∈ B(Zγ,β(H)) we infer 

that N (f ) − N (f0) − T0(f − f0) ∈H 1
loc(R, H) and

(
N (f )− N (f0)− T0(f − f0)

)′
(x)

=N ′(f (x))f ′(x)−N ′(f0(x))f
′
0(x)−N ′(f0(x))

(
f ′(x)− f ′

0(x)
)

−N ′′(f0(x))
(
f ′

0(x), f (x)− f0(x)
)

= (N ′(f (x))−N ′(f0(x))
)
f ′(x)−N ′′(f0(x))

(
f ′(x), f (x)− f0(x)

)
+N ′′(f0(x))

(
f ′(x)− f ′

0(x), f (x)− f0(x)
)

(A.8)

for any x ∈ R and f ∈ BH 1−α(R,H)(0, δ). Using again that N is a C∞ function on H we have that

N ′(h1)h3 −N ′(h2)h3 −N ′′(h2)(h3, h1 − h2)

=
( 1∫

0

sN ′′′(sh1 + (1 − s)h2
)
ds
)
(h3, h1 − h2, h1 − h2) (A.9)

Since N ′′′ is a bounded function on H from (A.9) it follows that

‖N ′(h1)h3 −N ′(h2)h3 −N ′′(h2)(h3, h1 − h2)‖
≤ sup ‖N ′′′(h)‖‖h3‖‖h1 − h2‖2 for any h1, h2, h3 ∈ H. (A.10)

h∈H
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Since 2α < β − γ from (3.12), (A.8) and (A.10) we obtain that

∥∥(N (f )− N (f0)− T0(f − f0)
)′∥∥2

L2−2β

≤ 2 sup
h∈H

‖N ′′′(h)‖2
∫
R

e−4β|x|‖f ′(x)‖2‖f (x)− f0(x)‖4dx

+ 2 sup
h∈H

‖N ′′(h)‖2
∫
R

e−4β|x|‖f ′(x)− f ′
0(x)‖2‖f (x)− f0(x)‖2dx

≤ 2 sup
h∈H

‖N ′′′(h)‖2
(∫
R

e−4α|x|‖f ′(x)‖2dx
)
‖f − f0‖4

Zγ,β

+ 2 sup
h∈H

‖N ′′(h)‖2‖f ′ − f ′
0‖2
L2−β

‖f − f0‖2
L∞−β

≤ 2 sup
h∈H

‖N ′′′(h)‖2‖f ‖H 1−α‖f − f0‖4
Zγ,β

+ 2 sup
h∈H

‖N ′′(h)‖2‖f − f0‖2
Zγ,β

‖f − f0‖L2−β
‖f ′ − f ′

0‖L2−β

≤
(

2δ sup
h∈H

‖N ′′′(h)‖2 + 2 sup
h∈H

‖N ′′(h)‖2
)
‖f − f0‖4

Zγ,β
(A.11)

for any f ∈ BH 1−α(R,H)(0, δ). From (A.7) and (A.11) we conclude that there exists c > 0 such 
that

‖N (f )− N (f0)− T0(f − f0)‖Z2γ,2β ≤ c‖f − f0‖3/2
Zγ,β

+ c‖f − f0‖2
Zγ,β

(A.12)

for any f ∈ BH 1−α(R,H)(0, δ), proving Claim 2.

Claim 3. N ′ is continuous in the 
(
Zγ,β(H), B

(
Zγ,β(H), Z2γ,2β(H)

))
topology. First, we fix 

f0 ∈ BH 1−α(R,H)(0, δ). Since N is a C∞ function on H and its derivatives are bounded on H we 
have that

‖N(j (h1)−N(j)(h2)‖ ≤ sup
h∈H

‖N(k+1)(h)‖‖h1 − h2‖ for any h1, h2 ∈H, j ≥ 1, (A.13)

which implies that

‖N ′(f )z− N ′(f0)z‖2
L2−2γ

=
∫
R

e−4γ |x|‖N ′(f (x))z(x)−N ′(f0(x))z(x)‖2dx

≤ sup
h∈H

‖N ′′(h)‖2
∫
R

e−4γ |x|‖f (x)− f0(x)‖2‖z(x)‖2dx

≤ sup ‖N ′′(h)‖2‖z‖2
L2−γ

‖f − f0‖2
L∞−γ
h∈H



6800 A. Pogan, K. Zumbrun / J. Differential Equations 264 (2018) 6752–6808
≤ sup
h∈H

‖N ′′(h)‖2‖z‖2
Zγ,β

‖f − f0‖L2−γ ‖f − f0‖H 1−α

≤ 2δ sup
h∈H

‖N ′′(h)‖2‖z‖2
Zγ,β

‖f − f0‖Zγ,β
(A.14)

for any f ∈ BH 1−α(R,H)(0, δ) and z ∈ Zγ,β(H). Moreover, for any f ∈ BH 1−α(R,H)(0, δ) and z ∈
Zγ,β(H) one can readily check that N ′(f )z− N ′(f0)z ∈H 1

loc(R, H) and

(
N ′(f )z− N ′(f0)z

)′
(x)=N ′′(f (x))

(
f ′(x), z(x)

)−N ′′(f0(x))
(
f ′

0(x), z(x)
)

+ (N ′(f (x)−N ′(f0(x)
)
z′(x)= F1(x)+ F2(x)+ F3(x)

(A.15)

for any x ∈ R, where the functions Fj :R → H, j = 1, 2, 3, are defined by

F1(x)=
(
N ′′(f (x))−N ′′(f0(x))

)(
f ′(x), z(x)

)
,

F2(x)=N ′′(f0(x))
(
f ′(x)− f ′

0(x), z(x)
)
,

F3(x)=
(
N ′(f (x)−N ′(f0(x)

)
z′(x). (A.16)

Next, we estimate the L2−2γ (R, H)-norm of Fj , j = 1, 2, 3, using (3.12) and (A.13).

‖F1‖2
L2−2β

≤ sup
h∈H

‖N ′′′(h)‖2
∫
R

e−4β|x|‖f (x)− f0(x)‖2‖f ′(x)‖2‖z(x)‖2dx

≤ sup
h∈H

‖N ′′′(h)‖2
(∫
R

e−2(β−γ )|x|‖f ′(x)‖2dx
)
‖f − f0‖2

Zγ,β
‖z‖2

Zγ,β

≤ sup
h∈H

‖N ′′′(h)‖2
(∫
R

e−4α|x|‖f ′(x)‖2dx
)
‖f − f0‖2

Zγ,β
‖z‖2

Zγ,β

≤ δ2 sup
h∈H

‖N ′′′(h)‖2‖f − f0‖2
Zγ,β

‖z‖2
Zγ,β

; (A.17)

‖F2‖2
L2−2β

≤ sup
h∈H

‖N ′′(h)‖2
∫
R

e−4β|x|‖f ′(x)− f ′
0(x)‖2‖z(x)‖2dx

≤ sup
h∈H

‖N ′′(h)‖2
(∫
R

e−2(α+β)|x|‖f ′(x)− f ′
0(x)‖2dx

)
‖z‖2

Zγ,β

≤ sup
h∈H

‖N ′′(h)‖2‖f ′ − f ′
0‖2
L2−β

‖z‖2
Zγ,β

≤ sup
h∈H

‖N ′′(h)‖2‖f − f0‖2
Zγ,β

‖z‖2
Zγ,β

;
(A.18)

‖F3‖2
L2−2β

≤ sup
h∈H

‖N ′′(h)‖2
∫
R

e−4β|x|‖f (x)− f0(x)‖2‖z′(x)‖2dx

≤ sup ‖N ′′(h)‖2‖f − f0‖2
L∞−β

‖z′‖2
L2−β
h∈H
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≤ sup
h∈H

‖N ′′(h)‖2‖f − f0‖L2−β
‖f − f0‖H 1−β

‖z‖2
Zγ,β

≤ 2δ sup
h∈H

‖N ′′(h)‖2‖f − f0‖Zγ,β
‖z‖2

Zγ,β
. (A.19)

Summarizing the estimates (A.17)–(A.19), from (A.15) we conclude that there exists c > 0 such 
that

∥∥(N ′(f )z− N ′(f0)z
)′∥∥

L2−2β
≤ c(‖f − f0‖1/2

Zγ,β
+ ‖f − f0‖Zγ,β

)‖z‖Zγ,β
(A.20)

for any f ∈ BH 1−α(R,H)(0, δ) and z ∈ Zγ,β(H). From (A.14) and (A.20) we obtain that

‖N ′(f )− N ′(f0)‖B
(
Zγ,β (H),Z2γ,2β(H)

) ≤ c(‖f − f0‖1/2
Zγ,β

+ ‖f − f0‖Zγ,β

)
(A.21)

for any f ∈ BH 1−α(R,H)(0, δ), proving Claim 3 and the lemma. �
To prove higher order differentiability of the nonlinear map N defined in (A.1), we need to 

study the smoothness properties of operator-valued substitution operators. We recall that for any 
three Hilbert space X, Y and Z we can identify the set B

(
X, B(Y, Z)

)
with the set of bilinear 

maps from X ×Y to Z, denoted by B2(X ×Y, Z).

Lemma A.2. Let H and H̃ be two Hilbert spaces, L : H̃ → B(H) a C∞, p ≥ 0 such that

‖L′(̃h)‖ ≤ c‖h̃‖p and ‖L′′(̃h)‖ ≤ c‖h̃‖p for any h̃ ∈ H̃ (A.22)

and 0 < γ < β . Denoting by γ̃ = (p + 2)β + γ and β̃ = (p + 4)β , the nonlinear map W :
Zγ,β(H̃) → B

(
Zγ,β(H), Zγ̃ ,β̃ (H)

)
defined by

(
W (f )z

)
(x)= L(f (x))z(x), for f ∈ Zγ,β(H̃), z ∈ Zγ,β(H), x ∈ R, (A.23)

is of class C1 and

(
W ′(f )(z1, z2)

)
(x)= L′(f (x))

(
z1(x), z2(x)

)
, for f, z1 ∈ Zγ,β(H̃), z2 ∈ Zγ,β(H), x ∈R.

(A.24)

Proof. We fix f0 ∈ Zγ,β(H̃) and define D0 : Zγ,β(H̃) × Zγ,β(H) → Zγ̃ ,β̃ (H) by

(
D0(z1, z2)

)
(x)= L′(f0(x))

(
z1(x), z2(x)

)
, for z1 ∈ Zγ,β(H̃), z2 ∈ Zγ,β(H), x ∈R. (A.25)

Claim 1. The bilinear map D0 is well-defined and bounded. Indeed, from (A.22) it follows that

∥∥(D0(z1, z2)
)
(x)
∥∥≤ c‖f0(x)‖p‖z1(x)‖‖z2(x)‖ for any z1 ∈ Zγ,β(H̃), z2 ∈ Zγ,β(H), x ∈ R,

(A.26)

which implies that
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‖D0(z1, z2)‖L2−γ̃
≤ c‖f0‖pL∞−β

‖z1‖L∞−β‖z2‖L2−γ ≤ c‖f0‖p
H 1−β

‖z1‖H 1−β
‖z2‖Zγ,β

≤ c‖f0‖pZγ,β
‖z1‖Zγ,β

‖z2‖Zγ,β
for any z1 ∈ Zγ,β(H̃), z2 ∈ Zγ,β(H).

(A.27)

Since L is a C∞ function from H̃ to B(H), we have that D0(z1, z2) ∈H 1
loc(R, H) and

(
D0(z1, z2)

)′
(x)= L′(f0(x))

(
z′1(x), z2(x)

)+L′(f0(x))
(
z1(x), z

′
2(x)

)
+L′′(f0(x))

(
f ′

0(x), z1(x), z2(x)
)

for any z1 ∈ Zγ,β(H̃), z2 ∈ Zγ,β(H) and x ∈R, which implies that

∥∥(D0(z1, z2)
)′
(x)
∥∥

≤ c‖f0(x)‖p
[
‖f ′

0(x)‖‖z1(x)‖‖z2(x)‖ + ‖z′1(x)‖‖z2(x)‖ + ‖z1(x)‖‖z′2(x)‖
]

(A.28)

for any z1 ∈ Zγ,β(H̃), z2 ∈ Zγ,β(H) and x ∈R. From (A.22) and (A.28) we obtain that

‖(D0(z1, z2))
′‖L2

−β̃

≤ c‖f0‖pL∞−β

[
‖f ′

0‖L2−β
‖z1‖L∞−β‖z2‖L∞−β + ‖z′1‖L2−β

‖z2‖L∞−β + ‖z1‖L∞−β‖z′2‖L2−β

]
≤ c‖f0‖p

H 1−β

(‖f0‖Zγ,β
+ 1)‖z1‖H 1−β

‖z2‖H 1−β
≤ c‖f0‖pZγ,β

(‖f0‖Zγ,β
+ 1

)‖z1‖Zγ,β
‖z2‖Zγ,β

(A.29)

for any z1 ∈ Zγ,β(H̃), z2 ∈ Zγ,β(H). From (A.27) and (A.29) we conclude that D0(z1, z2) ∈
Zγ̃ ,β̃ (H) and

‖D0(z1, z2)‖Zγ̃ ,β̃
≤ c‖f0‖pZγ,β

(‖f0‖2
Zγ,β

+ 1
)1/2‖z1‖Zγ,β

‖z2‖Zγ,β
(A.30)

for any z1 ∈ Zγ,β(H̃), z2 ∈ Zγ,β(H), proving Claim 1.

Claim 2. W is Frechet differentiable at f0 and W ′(f0) = D0. Since L is C∞ function from H̃ to 
B(H) we have that

L(̃h1)g −L(̃h2)g −L′(̃h2)(̃h1 − h̃2, g)=
( 1∫

0

sL′′(sh̃1 + (1 − s)̃h2
)
ds
)
(̃h1 − h̃2, h̃1 − h̃2, g)

(A.31)

for any ̃h1, ̃h2 ∈ H̃ and g ∈ H. From (A.22) we infer that



A. Pogan, K. Zumbrun / J. Differential Equations 264 (2018) 6752–6808 6803
‖L(̃h1)g −L(̃h2)g −L′(̃h2)(̃h1 − h̃2, g)‖ ≤ c
( 1∫

0

s‖sh̃1 + (1 − s)̃h2‖pds
)
‖h̃1 − h̃2‖2‖g‖

≤ c(‖h̃1‖p + ‖h̃2‖p
)‖h̃1 − h̃2‖2‖g‖ (A.32)

for any ̃h1, ̃h2 ∈ H̃ and g ∈H. From (A.23), (A.25) and (A.32) it follows that

∥∥(W (f )z− W (f0)z− D0(f − f0, z)
)
(x)
∥∥≤ c(‖f (x)‖p + ‖f0(x)‖p

)‖f (x)− f0(x)‖2‖z(x)‖
(A.33)

for any f ∈ Zγ,β(H̃), z ∈ Zγ,β(H) and x ∈R, which implies that

‖W (f )z− W (f0)z− D0(f − f0, z)‖L2−γ̃

≤ c(‖f ‖p
L∞−β

+ ‖f0‖pL∞−β
)‖f − f0‖2

L∞−β
‖z‖L2−γ

≤ c(‖f ‖p
H 1−β

+ ‖f0‖p
H 1−β

)‖f − f0‖2
H 1−β

‖z‖L2−γ

≤ c(‖f ‖pZγ,β
+ ‖f0‖pZγ,β

)‖f − f0‖2
Zγ,β

‖z‖Zγ,β
(A.34)

for any f ∈ Zγ,β(H̃), z ∈ Zγ,β(H). Next, we need to establish a couple of estimates satisfied by 
the function L and its derivatives that are needed in the sequel. We note that

(
L′(̃h1)−L′(̃h2)

)
(̃h3, g)−L′′(̃h2)(̃h3, h̃1 − h̃2, g)

=
( 1∫

0

sL′′′(sh̃1 + (1 − s)̃h2
)
ds
)
(̃h3, h̃1 − h̃2, h̃1 − h̃2, g)

(
L′(̃h1)−L′(̃h2)

)
(̃h3, g)=

( 1∫
0

L′′(sh̃1 + (1 − s)̃h2
)
ds
)
(̃h3, h̃1 − h̃2, g) (A.35)

for any ̃h1, ̃h2, ̃h3 ∈ H̃ and g ∈ H, which implies that

∥∥(L′(̃h1)−L′(̃h2)
)
(̃h3, g)−L′′(̃h2)(̃h3, h̃1 − h̃2, g)

∥∥
≤ c(‖h̃1‖p + ‖h̃2‖p

)‖h̃1 − h̃2‖2‖h̃3‖‖g‖∥∥(L′(̃h1)−L′(̃h2)
)
(̃h3, g)

∥∥
≤ c(‖h̃1‖p + ‖h̃2‖p

)‖h̃1 − h̃2‖‖h̃3‖‖g‖
(A.36)

for any ̃h1, ̃h2, ̃h3 ∈ H̃ and g ∈ H.
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Since L is C∞ function from H̃ to B(H) and D0 ∈ B2(Zγ,β(H̃) ×Zγ,β(H), Zγ̃ ,β̃ (H)) from 
(A.23), (A.25) we infer that for any f ∈ Zγ,β(H̃), z ∈ Zγ,β(H) the function W (f )z−W (f0)z−
D0(f − f0, z) ∈H 1

loc(R, H) and

(
W (f )z− W (f0)z− D0(f − f0, z)

)′
(x)

= L′(f (x))
(
f ′(x), z(x)

)+L(f (x))z′(x)
−L′(f0(x))

(
f ′

0(x), z(x)
)−L(f0(x))z

′(x)−L′′(f0(x))
(
f ′

0(x), f (x)− f0(x), z(x)
)

−L′(f0(x))
(
f ′(x)− f ′

0(x), z(x)
)−L′(f0(x))

(
f (x)− f0(x), z

′(x)
)

= (L′(f (x))−L′(f0(x))
)(
f ′(x), z(x)

)−L′′(f0(x))
(
f ′

0(x), f (x)− f0(x), z(x)
)

+ (L(f (x))−L(f0(x))
)
z′(x)−L′(f0(x))

(
f (x)− f0(x), z

′(x)
)

=G1(x)+G2(x)+G3(x) (A.37)

for any x ∈ R, where the functions Fj :R → H, j = 1, 2, 3, are defined by

G1(x)=
(
L′(f (x))−L′(f0(x))

)(
f ′(x)− f ′

0(x), z(x)
)
,

G2(x)=
(
L′(f (x))−L′(f0(x))

)(
f ′

0(x), z(x)
)−L′′(f0(x))

(
f ′

0(x), f (x)− f0(x), z(x)
)
,

G3(x)=
(
L(f (x))−L(f0(x))

)
z′(x)−L′(f0(x))

(
f (x)− f0(x), z

′(x)
)
. (A.38)

We use (A.32) and (A.36) to estimate the L2
−β̃ (R, H) of the functions Gj , j = 1, 2, 3, defined in 

(A.38). Indeed, we have that

‖G1‖L2
−β̃

≤ c(‖f ‖p
L∞−β

+ ‖f0‖pL∞−β
)‖f − f0‖L∞−β‖f ′ − f ′

0‖L2−β
‖z‖L∞−β

≤ c(‖f ‖p
H 1−β

+ ‖f0‖p
H 1−β

)‖f − f0‖H 1−β
‖f − f0‖Zγ,β

‖z‖H 1−β

≤ c(‖f ‖pZγ,β
+ ‖f0‖pZγ,β

)‖f − f0‖2
Zγ,β

‖z‖Zγ,β
; (A.39)

‖G2‖L2
−β̃

≤ c(‖f ‖p
L∞−β

+ ‖f0‖pL∞−β
)‖f ′

0‖L2−β
‖f − f0‖2

L∞−β
‖z‖L∞−β

≤ c(‖f ‖p
H 1−β

+ ‖f0‖p
H 1−β

)‖f0‖Zγ,β
‖f − f0‖2

H 1−β
‖z‖H 1−β

≤ c(‖f ‖pZγ,β
+ ‖f0‖pZγ,β

)‖f0‖Zγ,β
‖f − f0‖2

Zγ,β
‖z‖Zγ,β

; (A.40)

‖G3‖L2
−β̃

≤ c(‖f ‖p
L∞−β

+ ‖f0‖pL∞−β
)‖f − f0‖2

L∞−β
‖z′‖L2−β

≤ c(‖f ‖p
H 1−β

+ ‖f0‖p
H 1−β

)‖f − f0‖2
H 1−β

‖z‖Zγ,β

≤ c(‖f ‖pZγ,β
+ ‖f0‖pZγ,β

)‖f − f0‖2
Zγ,β

‖z‖Zγ,β
. (A.41)

From (A.34), (A.37), (A.39), (A.40) and (A.41) we infer that
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∥∥W (f )z− W (f0)z− D0(f − f0, z)
∥∥

Zγ̃ ,β̃

≤ c(‖f ‖pZγ,β
+ ‖f0‖pZγ,β

)
(‖f0‖Zγ,β

+ 1
)‖f − f0‖2

Zγ,β
‖z‖Zγ,β

(A.42)

for any f ∈ Zγ,β(H̃), z ∈ Zγ,β(H), proving Claim 2.

Claim 3. W ′ is continuous from Zγ,β(H̃) to B2
(
Zγ,β(H̃) × Zγ,β(H), Zγ̃ ,β̃ (H)

)
. Indeed, from 

(A.25) and (A.36) we infer that

∥∥(W ′(f )− W ′(f0)
)(
z1, z2)

∥∥
L2−γ̃

≤ c(‖f ‖p
L∞−β

+ ‖f0‖pL∞−β
)‖f − f0‖L∞−β‖z1‖L∞−β‖z2‖L2−γ

≤ c(‖f ‖p
H 1−β

+ ‖f0‖p
H 1−β

)‖f − f0‖H 1−β
‖z1‖H 1−β

‖z2‖Zγ,β

≤ c(‖f ‖pZγ,β
+ ‖f0‖pZγ,β

)‖f − f0‖Zγ,β
‖z1‖Zγ,β

‖z2‖Zγ,β

(A.43)

for any f, z1 ∈ Zγ,β(H̃) and z2 ∈ Zγ,β(H). Using again that L is a C∞ function from H̃
to B(H) we obtain that for any f, z1 ∈ Zγ,β(H̃) and z2 ∈ Zγ,β(H) the function 

(
W ′(f ) −

W ′(f0)
)(
z1, z2) ∈H 1

loc(R, H) and

((
W ′(f )− W ′(f0)

)(
z1, z2)

)′
(x)

= L′′(f (x))
(
f ′(x), z1(x), z2(x)

)−L′′(f0(x))
(
f ′

0(x), z1(x), z2(x)
)

+ (L′(f (x))−L′(f0(x))
)(
z′1(x), z2(x)

)+ (L′(f (x))−L′(f0(x))
)(
z1(x), z

′
2(x)

)
=H1(x)+H2(x)+H3(x)+H4(x) (A.44)

for any x ∈R, where the functions Hj :R → H, j = 1, 2, 3, 4, are defined by

H1(x)=
(
L′′(f (x))−L′′(f0(x))

)(
f ′(x), z1(x), z2(x)

)
,

H2(x)= L′′(f0(x))
(
f ′(x)− f ′

0(x), z1(x), z2(x)
)
,

H3(x)=
(
L′(f (x))−L′(f0(x))

)(
z′1(x), z2(x)

)
,

H4(x)=
(
L′(f (x))−L′(f0(x))

)(
z1(x), z

′
2(x)

)
. (A.45)

Since L is a C∞ function from H̃ to B(H) we have that

(
L′′(̃h1)−L′′(̃h2)

)
(̃h3, h̃4, g)=

( 1∫
0

L′′′(sh̃1 + (1 − s)̃h2
)
ds
)
(̃h3, h̃4, h̃1 − h̃2, g) (A.46)

for any ̃h1, ̃h2, ̃h3, ̃h4 ∈ H̃ and g ∈H. From (A.22) it follows that

∥∥(L′′(̃h1)−L′′(̃h2)
)
(̃h3, h̃4, g)

∥∥≤ c(‖h̃1‖p + ‖h̃2‖p
)‖h̃1 − h̃2‖‖h̃3‖‖h̃4‖‖g‖ (A.47)
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for any ̃h1, ̃h2, ̃h3, ̃h4 ∈ H̃ and g ∈ H. Below we estimate the L2
−β̃ (R, H)-norm of the functions 

Hj , j = 1, 2, 3, 4, using the estimates (A.36) and (A.47).

‖H1‖L2
−β̃

≤ c(‖f ‖p
L∞−β

+ ‖f0‖pL∞−β
)‖f − f0‖L∞−β‖f ′‖L2−β

‖z1‖L∞−β‖z2‖L∞−β

≤ c(‖f ‖p
H 1−β

+ ‖f0‖p
H 1−β

)‖f − f0‖H 1−β
‖f ‖Zγ,β

‖z1‖H 1−β
‖z2‖H 1−β

≤ c(‖f ‖pZγ,β
+ ‖f0‖pZγ,β

)‖f ‖Zγ,β
‖f − f0‖Zγ,β

‖z1‖Zγ,β
‖z2‖Zγ,β

; (A.48)

‖H2‖L2
−β̃

≤ c‖f0‖pL∞−β
‖f ′ − f ′

0‖L2−β
‖z1‖L∞−β‖z2‖L∞−β

≤ c‖f0‖p
H 1−β

‖f − f0‖Zγ,β
‖z1‖H 1−β

‖z2‖H 1−β

≤ c‖f0‖pZγ,β
‖f − f0‖Zγ,β

‖z1‖Zγ,β
‖z2‖Zγ,β

; (A.49)

‖H3‖L2
−β̃

≤ c(‖f ‖p
L∞−β

+ ‖f0‖pL∞−β
)‖f − f0‖L∞−β‖z′1‖L2−β

‖z2‖L∞−β

≤ c(‖f ‖p
H 1−β

+ ‖f0‖p
H 1−β

)‖f − f0‖H 1−β
‖z1‖Zγ,β

‖z2‖H 1−β

≤ c(‖f ‖pZγ,β
+ ‖f0‖pZγ,β

)‖f − f0‖Zγ,β
‖z1‖Zγ,β

‖z2‖Zγ,β
; (A.50)

‖H4‖L2
−β̃

≤ c(‖f ‖p
L∞−β

+ ‖f0‖pL∞−β
)‖f − f0‖L∞−β‖z1‖L∞−β‖z′2‖L1−β

≤ c(‖f ‖p
H 1−β

+ ‖f0‖p
H 1−β

)‖f − f0‖H 1−β
‖z1‖H 1−β

‖z2‖Zγ,β

≤ c(‖f ‖pZγ,β
+ ‖f0‖pZγ,β

)‖f − f0‖Zγ,β
‖z1‖Zγ,β

‖z2‖Zγ,β
. (A.51)

From (A.43), (A.44), (A.48), (A.49), (A.50) and (A.51) we conclude that

∥∥(W ′(f )− W ′(f0)
)(
z1, z2)

∥∥
Zγ̃ ,β̃

≤ c(‖f ‖pZγ,β
+ ‖f0‖pZγ,β

)(1 + ‖f ‖Zγ,β
)‖f − f0‖Zγ,β

‖z1‖Zγ,β
‖z2‖Zγ,β

(A.52)

for any f, z1 ∈ Zγ,β(H̃) and z2 ∈ Zγ,β(H), proving Claim 3 and the lemma. �
References

[1] G. Boillat, T. Ruggeri, On the shock structure problem for hyperbolic system of balance laws and convex entropy, 
Contin. Mech. Thermodyn. 10 (5) (1998) 285–292.

[2] A. Bressan, A Tutorial on the Center Manifold Theorem, in: Appendix A, Hyperbolic Systems of Balance Laws, in: 
Lecture Notes in Math., vol. 1911, Springer-Verlag, 2007.

[3] R. Caflisch, B. Nicolaenko, Shock profile solutions of the Boltzmann equation, Comm. Math. Phys. 86 (2) (1982) 
161–194.

[4] C. Cercignani, The Boltzmann Equation and Its Applications, Appl. Math. Sci., vol. 67, Springer-Verlag, New York, 
ISBN 0-387-96637-4, 1988, xii+455 pp.

[5] H. Freistühler, C. Fries, C. Rohde, Existence, bifurcation, and stability of profiles for classical and non-classical 
shock waves, in: Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, vol. 814, Springer, 
Berlin, 2001, pp. 287–309.

[6] R.A. Gardner, K. Zumbrun, The gap lemma and geometric criteria for instability of viscous shock profiles, Comm. 
Pure Appl. Math. 51 (7) (1998) 797–855.

http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4252s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4252s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib42s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib42s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib434Es1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib434Es1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4365s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4365s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib467265s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib467265s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib467265s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib475As1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib475As1


A. Pogan, K. Zumbrun / J. Differential Equations 264 (2018) 6752–6808 6807
[7] R. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), 
Philadelphia, PA, ISBN 0-89871-367-6, 1996, xii+241 pp.

[8] H. Grad, Asymptotic theory of the Boltzmann equation. II, in: Rarefied Gas Dynamics, vol. I, Proc. 3rd Internat. 
Sympos., Palais de l’UNESCO, Paris, 1962, Academic Press, New York, 1963, pp. 26–59.

[9] M. Haragus, G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical 
Systems, Universitext, Springer-Verlag London, Ltd./E.D.P. Sciences, London/Les Ulis, ISBN 978-0-85729-111-0, 
2011, 978-2-7598-0009-4, xii+329 pp.

[10] J. Humpherys, G. Lyng, K. Zumbrun, Multidimensional stability of large-amplitude Navier–Stokes shocks, preprint, 
arXiv :1603 .03955.

[11] G. Iooss, P. Kirrmann, Capillary gravity waves on the free surface of an inviscid fluid of infinite depth. Existence of 
solitary waves, Arch. Ration. Mech. Anal. 136 (1) (1996) 1–19.

[12] S. Kawashima, Systems of a Hyperbolic–Parabolic Composite Type, with Applications to the Equations of Magne-
tohydrodynamics, thesis, Kyoto University, 1983.

[13] T.-P. Liu, Hyperbolic conservation laws with relaxation, Comm. Math. Phys. 108 (1) (1987) 153–175.
[14] Y. Latushkin, A. Pogan, The dichotomy theorem for evolution bi-families, J. Differential Equations 245 (8) (2008) 

2267–2306.
[15] Y. Latushkin, A. Pogan, The infinite dimensional Evans function, J. Funct. Anal. 268 (6) (2015) 1509–1586.
[16] P.D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, in: Conference 

Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 11, Society for 
Industrial and Applied Mathematics, Philadelphia, Pa, 1973, v+48 pp.

[17] Y. Li, Scalar Green function bounds for instantaneous shock location and one-dimensional stability of viscous shock 
waves, Quart. Appl. Math. 74 (3) (2016) 499–538.

[18] T.P. Liu, S.H. Yu, Invariant manifolds for steady Boltzmann flows and applications, Arch. Ration. Mech. Anal. 209 
(2013) 869–997.

[19] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, 
New York, 1984, viii+159 pp.

[20] A. Majda, R. Pego, Stable viscosity matrices for systems of conservation laws, J. Differential Equations 56 (1985) 
229–262.

[21] C. Mascia, K. Zumbrun, Pointwise Green’s function bounds and stability of relaxation shocks, Indiana Univ. Math. J. 
51 (4) (2002) 773–904.

[22] A. Mielke, Reduction of quasilinear elliptic equations in cylindrical domains with applications, Math. Methods 
Appl. Sci. 10 (1988) 51–66.

[23] G. Métivier, K. Zumbrun, Existence of semilinear relaxation shocks, J. Math. Pures Appl. (9) 92 (3) (2009) 209–231.
[24] G. Métivier, K. Zumbrun, Existence and sharp localization in velocity of small-amplitude Boltzmann shocks, Kinet. 

Relat. Models 2 (4) (2009) 667–705.
[25] R. Plaza, K. Zumbrun, Evans function approach to spectral stability of small-amplitude shock profiles, Discrete 

Contin. Dyn. Syst. 10 (2004) 885–924.
[26] A. Pogan, K. Zumbrun, Stable manifolds for a class of degenerate evolution equations and exponential decay of 

kinetic shocks, Kinet. Relat. Models (2018), in press.
[27] J. Smoller, Shock Waves and Reaction–Diffusion Equations, second edition, Grundlehren Math. Wiss. (Funda-

mental Principles of Mathematical Sciences), vol. 258, Springer-Verlag, New York, ISBN 0-387-94259-9, 1994, 
xxiv+632 pp.

[28] Y. Sone, F. Golse, T. Ohwada, T. Doi, Analytical study of transonic flows of a gas condensing onto its plane con-
densed phase on the basis of kinetic theory, Eur. J. Mech. B Fluids 17 (1998) 277–306.

[29] Y. Sone, Kinetic Theory and Fluid Dynamics, Birkhäuser, Boston, 2002.
[30] Y. Sone, Kinetic theoretical studies of the half-space problem of evaporation and condensation, Transport Theory 

Statist. Phys. 29 (2000) 227–260.
[31] W.-A. Yong, Basic structures of hyperbolic relaxation systems, Proc. Roy. Soc. Edinburgh Sect. A 132 (5) (2002) 

1259–1274.
[32] K. Zumbrun, Conditional stability of unstable viscous shocks, J. Differential Equations 247 (2) (2009) 648–671.
[33] K. Zumbrun, Ordinary Differential Equations, Lect. Notes Grad. ODE, Indiana University, 2009.
[34] K. Zumbrun, Multidimensional stability of planar viscous shock waves, in: Advances in the Theory of Shock Waves, 

in: Progr. Nonlinear Differential Equations Appl., vol. 47, Birkhäuser Boston, Boston, MA, 2001, pp. 307–516.
[35] K. Zumbrun, Stability of large-amplitude shock waves of compressible Navier–Stokes equations, with an appendix 

by Helge Kristian Jenssen and Gregory Lyng, in: Handbook of Mathematical Fluid Dynamics, vol. III, North-
Holland, Amsterdam, 2004, pp. 311–533.

http://refhub.elsevier.com/S0022-0396(18)30073-1/bib476Cs1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib476Cs1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib47s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib47s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4849s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4849s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4849s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib484C795As1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib484C795As1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib494Bs1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib494Bs1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4Bs1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4Bs1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4Cs1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4C5032s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4C5032s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4C5033s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4C61s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4C61s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4C61s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4C69s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4C69s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4C69755975s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4C69755975s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4D61s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4D61s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4D6150s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4D6150s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4D61735A32s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4D61735A32s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4D69s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4D69s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4D5As1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4D5A32s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib4D5A32s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib506C5As1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib506C5As1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib505A31s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib505A31s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib536Ds1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib536Ds1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib536Ds1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib536F31s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib536F31s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib536F32s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib536F33s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib536F33s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib59s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib59s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib5A31s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib5A6F6465s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib5A32s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib5A32s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib5A33s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib5A33s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib5A33s1


6808 A. Pogan, K. Zumbrun / J. Differential Equations 264 (2018) 6752–6808
[36] K. Zumbrun, Planar stability criteria for viscous shock waves of systems with real viscosity, in: Hyperbolic Systems 
of Balance Laws, in: Lecture Notes in Math., vol. 1911, Springer, Berlin, 2007, pp. 229–326.

[37] K. Zumbrun, Stability and dynamics of viscous shock waves, in: Nonlinear Conservation Laws and Applications, 
in: IMA Vol. Math. Appl., vol. 153, Springer, New York, 2011, pp. 123–167.

[38] K. Zumbrun, L∞ resolvent estimates for steady Boltzmann’s equation, Kinet. Relat. Models 10 (4) (2017) 
1255–1257.

[39] K. Zumbrun, Invariant manifolds for a class of degenerate evolution equations and structure of kinetic shock layers, 
in: Proceedings: XVI International Conference on Hyperbolic Problems Theory, Numerics, Applications, Aachen, 
submitted.

[40] K. Zumbrun, P. Howard, Pointwise semigroup methods and stability of viscous shock waves, Indiana Univ. Math. 
J. 47 (1998) 741–871;
K. Zumbrun, P. Howard, Pointwise semigroup methods and stability of viscous shock waves, Indiana Univ. Math. 
J. 51 (4) (2002) 1017–1021, Erratum.

[41] K. Zumbrun, D. Serre, Viscous and inviscid stability of multidimensional planar shock fronts, Indiana Univ. Math. 
J. 48 (1999) 937–992.

http://refhub.elsevier.com/S0022-0396(18)30073-1/bib5A34s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib5A34s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib5A35s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib5A35s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib5A36s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib5A36s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib5A48s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib5A48s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib5A48s2
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib5A48s2
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib5A53s1
http://refhub.elsevier.com/S0022-0396(18)30073-1/bib5A53s1

	Center manifolds for a class of degenerate evolution equations and existence of small-amplitude kinetic shocks
	1 Introduction
	1.1 Formal Chapman-Enskog expansion
	1.1.1 Case structure

	1.2 Main results
	1.2.1 Boltzmann's equation

	1.3 Discussion and open problems

	2 Linearized equations
	2.1 Inhomogeneous equations
	2.2 Linear ﬂow in characteristic and noncharacteristic case
	2.3 Solutions of the inhomogeneous equation

	3 Center manifold construction
	3.1 Existence of a center manifold of solutions
	3.2 Ck smoothness of the center manifold
	3.3 Invariance of the center manifold

	4 Approximation of the center manifold
	4.1 Canonical form
	4.2 Taylor expansion
	4.3 Center ﬂow
	4.4 Relaxation structure

	5 Bifurcation and existence of small-amplitude shock proﬁles
	5.1 Bifurcation from a simple, genuinely nonlinear characteristic
	5.1.1 Comparison to Chapman-Enskog proﬁles

	5.2 Bifurcation from a linearly degenerate characteristic

	6 Application to Boltzmann's equation
	6.1 Existence and sharp localization in velocity of center manifolds
	6.2 Physical behavior

	Appendix A Smoothness of substitution operators
	References


