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Abstract

We construct center manifolds for a class of degenerate evolution equations including the steady Boltz-
mann equation and related kinetic models, establishing in the process existence and behavior of small-
amplitude kinetic shock and boundary layers. Notably, for Boltzmann’s equation, we show that elements of
the center manifold decay in velocity at near-Maxwellian rate, in accord with the formal Chapman—Enskog
picture of near-equilibrium flow as evolution along the manifold of Maxwellian states, or Grad moment
approximation via Hermite polynomials in velocity. Our analysis is from a classical dynamical systems
point of view, with a number of interesting modifications to accommodate ill-posedness of the underlying
evolution equation.
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1. Introduction

In this paper, we study existence and properties of near-equilibrium steady solutions, including
in particular small-amplitude shock and boundary layers, of kinetic-type relaxation systems

A%, + Au, = Q(u), (1.1)

on a general Hilbert space H, where A%, A are given (constant) bounded linear operator and Q
is a bounded bilinear map (cf. [23,26]). More generally, we study existence and approximation
of center manifolds for a class of degenerate evolution equations arising as steady equations

AU = Q(u) (1.2)

for (1.1), including in particular the steady Boltzmann equation and cousins along with approx-
imants such as BGK and discrete-velocity models [23,26]. Specifically, we are interested in the
case when the linear operator A is self-adjoint, bounded, and one-to-one, but not boundedly
invertible.

Following [23,26], we make the following assumptions on linear operator A and nonlinear-
ity Q.
Hypothesis (H1)

(i) The linear operator A is bounded, self-adjoint, and one-to-one on the Hilbert space H;
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(ii) There exists V a proper, closed subspace of H with dimV+ < oo and B: H x H — Vis a
bilinear, symmetric, continuous map such that Q (u) = B(u, u).

Hypothesis (H2) There exists an equilibrium u € ker Q satisfying

() Q'(1) is self-adjoint and ker Q' () = V+;
(ii) There exists 8 > 0 such that Q'(a)y < —é81y.

Example 1.1. Our main example is the steady Boltzmann equation

E1fe=0(f), xeR' geR’, (1.3)

where f = f(x, &) denotes density at spatial point x of particles with velocity &;

0(f) = / / (FEVFED — F(E)FE))C(RE — E£)dQUE,

R3 §2

is a collision operator, with &, € R, Q € $?, and &' =& + (Q - (6, — &))Q, &, =& — (2 (&« —
& ))Q; and C is a specified collision kernel; see, e.g., [4,7] for further details. In the hard sphere
case, C(R2,&) = |S2 - &|, this can be put in form (1.2) satisfying (H1)-(H2) by the coordinate
change

f—= @&V 0—E&"Y0, (&) =1+E2 (1.4)

with H the standard square-root Maxwellian-weighted L? space in variable & and A = & /(£)
[23]. Note that A has no kernel on H, but essential spectra §;/(£) — 0 as & — 0: an essential
singularity.

Our analysis continues a program begun in [26] to develop dynamical systems tools for de-
generate equations (1.2), suitable for the treatment of existence and stability of kinetic shock and
boundary layers in Boltzmann-type equations. Similarly as in [26], our basic strategy is, in the
perturbation equations of (1.2) about u, to isolate by direct computation a center subspace flow
w,. = Jwe + gc, and a hyperbolic (stable/unstable) subspace flow l“ou)f1 = Eowy + gn, coupled
by quadratic order nonlinearities g. and g. Here J is a finite-dimensional matrix in Jordan form,
and Iy, Ey are self-adjoint bounded operators, with E Ilegative definite and I'(y one-to-one but
not boundedly invertible (see (4.2) and derivation) on V a finite codimension subspace of H
introduced in Section 2, then construct the center manifold by a fixed-point iteration based on
inversion of the linear operators (3, — J) and (I'0d, — Ep) in a negatively exponentially weighted
space in x. ~

As noted in [26], a key point is that (Fgd, — Eo)~' is bounded in H'(R,V) but not in
Cp(R, V); hence, we are prevented from applying the usual sup-norm based arguments in the
evolutionary variable x [2,9,32,33]. Accordingly, we carry out our fixed-point iteration instead
in the Sobolev space H 1(IR, H), a modification that, as in [26], costs a surprising amount of
difficulty. Interestingly, the difficulties in the two (stable vs. center manifold) cases are essen-
tially complementary. In the stable manifold case [26], where the analysis is on R, the main
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difficulty was in handling traces at the boundary x = 0. In the center manifold case, where the
analysis is on the whole space R, the difficulty is rather with regularity, specifically H' analy-
sis in a negatively weighted space. In particular, we find it necessary to work in a mixed norm

L . . .
Il fl4 () = (||f||i2 + ||f’||i2 )2, with 8 > y, in order to obtain contraction of our fixed
2, z

point iteration. The introduction of these spaces, along with the associated contraction estimates,
we consider as one of the main technical novelties of this paper. The presence of an additional
weight, along with derivative terms, considerably complicates the usual argument for higher
regularity via a cascade of spaces with decreasing weights; see the treatment of smoothness of
substitution operators in Appendix A.

1.1. Formal Chapman—Enskog expansion

The Implicit Function Theorem yields the standard result of existence of an isolated finite-
dimensional manifold of equilibria through the base point u.

Lemma 1.2. Assume thatu € ker Q is an equilibrium satisfying Hypotheses (H1) and (H2). Then,
there exists local to W a unique C (in Fréchet sense) manifold of equilibria &, tangent at U to
V+, expressible in coordinates w :==u —u as a C* graph v, : V+ — V.

Denote by u = Py1u, v = Pyu, where Py. and Py are the orthogonal projections onto asso-

ciated to the decomposition H = Vi V. Denoting Ay = PVLAle_, A1z = Py1 Ay, we obtain
the standard fact that (1.2) admits a conservation law

(A11u+ Apv) =0. (1.5)
The formal, first-order Chapman—Enskog approximation of near-equilibrium behavior, based on

the assumption that deviations v — v, (u#) from equilibrium are small compared to variations in
u, and their derivatives are small compared to the derivative of u (see, e.g., [13]), is given by

(fx@)' =0, v=v.(u), where fi(u) = Anu+ Apv.), (CE1)
corresponding to the steady problem for the system of hyperbolic conservation laws [16,27]
hy(); 4+ fo(u)y =0,  where hy(u) := Pyr A% + PyA%v, (1), (1.6)
i.e., flow along equilibrium manifold & (parametrized by u) governed by
Jf«(u) = g = constant. (1.7)

The second-order Chapman—Enskog approximation, corresponding to /. (1), + fi (4)x = Dyliyy,
is

W' =D, (fulu) —q), where fi(u):= Ajju+ A1pvi(u) and Dy := —AnE~'AY,, (CEy)

with E := Q'(u)v denoting the restriction of Q’(u) to its range. See [13,23,24] for further de-
tails.
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A secondary goal of this paper is to relate the rigorous center-manifold flow of (1.2) to the
first- and second-order Chapman—Enskog systems (CE|) and (CE»). To this end, notice, first, that
the set & of equilibria of (1.2) is precisely the set of solutions of (CE;), which in turn is the set
of equilibria of (CE»). Thus, at the level of equilibria, all three models exactly correspond.

1.1.1. Case structure

Next, we distinguish the noncharacteristic case det f[(u) # 0 and characteristic case
det f(it) = 0, according as the characteristic velocities A i) €o( fi@)) of (1.6) are nonva-
nishing at # = Pyu or not. In the noncharacteristic case, the Inverse Function Theorem yields
that f, maps a neighborhood of u# one-to-one onto a neighborhood of g := f, (), hence each
fiber of (CE) is trivial, consisting of a single equilibrium. Likewise, comparing dimensions, it
is easily seen that the center manifold of (CE») at u is just the set of all equilibrium solutions,
consisting of constant states u(x) =0 [20].

The characteristic case is more interesting, admitting nontrivial dynamics. We distinguish two
important subcases, the simple, genuinely nonlinear and the linearly degenerate case [16,27],
again having to do with structure of the first-order system (1.6), both of which (and no others)
arise for Example 1.1. The simple, genuinely nonlinear case consists of the situation that f (i)
has a simple zero eigenvalue with associated unit eigenvector r, for which [27]

A:=F- f/(i)(F,T) £0. (GNL)

In this case, (CE|) corresponds to a fold bifurcation [5], with f, mapping a disk around u to a
topological half-disk, with covering number two. Moreover, points u1, up with the same image
q, corresponding to equilibria of (1.2) and (CE»), satisfy the Rankine-Hugoniot jump condition

fe(ur) = fu(uz), (RH)

corresponding to a discontinuous “Lax-type” standing-shock solution of (1.6), (CE;) [16,27].

Such a solution, having infinite derivative, does not satisfy in any obvious ways the assumptions

in deriving the formal approximation (CE;); however, a center-manifold analysis [20] shows

that the corresponding fiber (CE») of the associated second-order system contains a heteroclinic

connection joining these two equilibria, or viscous shock profile. See [20] for further discussion.
The linearly degenerate case consists of the opposite extreme, that, not only A =0, but

The solutions of (CE) consists, locally, of #§ or an m-parameter manifold A, (LDG)

where m = dimker f(it), given as the integral manifold of m characteristic eigenvectors
e;(u) with common eigenvalue A (1) = A(u) vanishing at u, and constant along A. Thus, the
(dimV+ + m)-dimensional center manifold of (CE») consists of the union of fibers (CE») either
composed entirely of equilibria or having none; it therefore admits no heteroclinic or homo-
clinic connections, nor even solutions approaching an equilibrium as x — +00 or x — —00.
For further discussion, see Section 5.

Example 1.3. For Example 1.1, the steady Boltzmann equation with hard sphere potential, & is
the set of Maxwellian distributions

M, (&) = p(dme/3) 2 E-vPEe/d ™ (1.8)
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indexed by u = (p,vT,e)T € R, where p represents density, v € R? velocity, and e internal
energy, and (CE») is the steady compressible Navier—Stokes (cNS) system with monatomic
equation of state, or hydrodynamic limit [10,18,23]. The corresponding first-order system (CE1),
the compressible Euler equation, possesses two simple genuinely nonlinear “acoustic” charac-
teristics A = v; — ¢, A5 = v1 + ¢, where ¢ > 0 is sound speed, and three linearly degenerate
“entropic/vorticity” characteristics A, = A3 = Aq = v1 [27].

1.2. Main results

Under assumptions (H1) and (H2), we find (see Lemma 2.10) that, under the linearized flow
of (1.2) about u, H decomposes into invariant subspaces H. & Hy & H,, where H is a finite-
dimensional center subspace of dimension dimV+ + dimker A;; and Hj and H, are (typically
infinite-dimensional) stable and unstable subspaces in the standard sense of (nondegenerate) dy-
namical systems. Our first main result asserts, likewise, existence of a center manifold in the
usual dynamical systems sense (cf. [2,9,32,33]).

Theorem 1.4. Assume that u € ker Q is an equilibrium satisfying (HI), (H2). Then, for any inte-
ger k > 2 there exists local to 0 a C* center manifold .#, (not necessary unique), tangent at u
to He, expressible in coordinates w:=u —u as a ck graph g :H. — Hs ® Hy, that is locally
invariant under the flow of equation (1.2), and contains all solutions that remain bounded and
sufficiently close to u in forward and backward time.

Once existence of a center manifold is established, one may obtain existence of small-
amplitude shock profiles by adapting the center manifold arguments of [20,21] in the finite-
dimensional case. Here, we give instead a particularly simple normal form argument under the
additional assumption of genuine nonlinearity (GNL), whereas the arguments of [20,21] were for
the general case. Similarly as in [20,21], the main idea is to use the fact that equilibria are pre-
dicted by the Rankine—Hugoniot shock conditions for (CE;) to deduce normal form information
from the structure of the first-order Chapman—Enskog approximation. Our second main result
relates behavior on the center manifold to that of (CEy).

Theorem 1.5. Assume that u € ker Q is an equilibrium satisfying (H1), (H2). In the nonchar-
acteristic case, the center manifolds of (1.2) at w and (CE) at u = Py.u consist entirely of
equilibria, with trivial (constant) flow. In the characteristic case (GNL), the center manifolds
of (1.2) and (CE») both consist of the union of one-dimensional fibers parametrized by q € R,
governed by approximate Burgers flows: specifically, setting uy :=Y-u, q1 :=%-q, ¢ = (q1,q),
and without loss of generality (see Section 4) taking ¢ = 0, the flow

wy=x""(—qi 4 Aui/2) + O(uil + |qilluil + g1 ), (1.9)
where x :==T' D,r >0, 1, Dy, q as in (GNL), (CE»). In particular, there exist local heteroclinic
(Lax shock) connections for g1 A > 0 between endstates uli ~ s/2q1/A\. In the characteristic

case (LDG), the center manifolds of (1.2) and (CE») consist of the union of m-dimensional’
fibers with approximate flow, taking again without loss of generality ¢ =0,

' Here m = dim f, (i1).
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Wl =—x"1q1 + O(qlur] + g1 %), (1.10)

ui,qr € R™, x € R™*™ either consisting entirely of equilibria, or entirely of solutions leaving
the vicinity of u (u) at both x — +00 and x — —o00; in particular, there are no local heteroclinic
(shock type) solutions, or (boundary layer type) solutions converging to equilibria as x — +00
or x — —o0.

Corollary 1.6. Assume that u € ker Q is an equilibrium satisfying (H1), (H2), in the charac-
teristic case (GNL), and let k be an integer > 2. Then, local to W, (i), each pair of points uy
corresponding to a standing Lax-type shock of (CE1) has a corresponding viscous shock solution
ucg of (CEy) and relaxation shock solution ugrgy = (ugper, vreL) of (1.2), satisfying for all
j<k-2:

|3){ (ureL —ucp)(x)| < Celt2e™?M,
}3}? (UREL - U*(”CE))(X)| < C8j+2e768\x|’ (L11)

j i+1 _—§
19{ (urEr —us)(x)| < CelTle 2y >0,

for some 6 >0, C > 0, where & := |uy — u_|, with also A(urgr,(x)) monotone in x, where A(u)
is the simple eigenvalue of f,(u) vanishing at u = u. Up to translation, these are the unique such
solutions.

Remark 1.7. We do not assume as in [23] the usual “genuine coupling” or Kawashima condition
that no eigenvector of A lie in the kernel of Q’ (), which would imply (see [31]) that (CE;) be
of Kawashima class [12]: in particular, that viscosity coefficient D, be nonnegative semidefinite.
What takes the place of this condition is the assumption that A has no kernel, which implies the
weakened Kawashima condition that no zero eigenvector of A lie in the kernel of Q’(w), which
is sufficient that » > 0 in Theorem 1.5. As follows from the center manifold analysis of [20], this
is enough for existence of small-amplitude shock profiles for (CE;), independent of the nature
of D,.

1.2.1. Boltzmann’s equation

Applying Theorems 1.4, 1.5 and Corollary 1.6 to Example 1.1, we immediately (i) obtain
existence of a center manifold, and (ii) recover and substantially sharpen the fundamental result
[3] of existence of small-amplitude Boltzmann shocks for a hard sphere (or Grad hard cutoff [3,
23]) collision potential, both with respect to the space H determined by the (slight strengthening
of the) classical square-root Maxwellian weighted norm || f||i := ||(~)1/2Mﬁ_1/2(')f(')||Lz 4,
8,23]. Adapting a bootstrap argument of [23], we obtain the following improvement. For any
1/2 <0 <1, denote by Y? the Hilbert space determined by norm

I £llve := 12 M7 () F Ol 2 (1.12)

Proposition 1.8. For the steady Boltzmann equation with hard sphere potential (Example 1.1),
forany 1/2 <o < 1 and integer k > 2, there exists in the vicinity of any Maxwellian equilibrium
= M; a CK(H,, Y?) center manifold .#. C Y° in the sense of Theorem 1.4, tangent at W to
H. C Y?, and expressible in coordinates w :=u—1u as a ck graph ¢ :H. — (H; ®Hy,) NY°.
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Proposition 1.8 implies that the center manifold, including any small-amplitude shock pro-
files, lies in the space Y of functions bounded in L*(R3, (&)!/ 2M1; 1/ 2(§)d.§) with a near-
Maxwellian weight. In particular, we obtain “sharp localization in velocity” of small-amplitude
Boltzmann shock profiles, recovering the strongest current existence result obtained in [23], plus
the additional information of monotonicity of A(#ggr (x)) along the profile not available by the
Sobolev-based fixed point iteration arguments of [3,23]. This description of velocity-localization
of the center manifold is sharp, as may be seen by the fact that the equilibrium manifold &, con-
tained in any center manifold, itself lies in this space and no stronger one, changes in energy e
effectively changing the power of the Gaussian distribution in the Maxwellian formula (1.8). It
validates in a strong sense the formal Chapman—Enskog picture of near-equilibrium behavior as
governed essentially by the flow along the equilibrium manifold &, and the Grad hierarchy of

moment-closure approximations [8] based on Hermite polynomials in velocity.
1.3. Discussion and open problems

Writing the key infinite-dimensional hyperbolic equation ['ow; — Eown = gn formally as
wy =Ty 'Eoqwn + Ly ! gn, we see that this is in general an ill-posed equation in both forward and
backward x, due to non-bounded invertibility of I'g, with the additional difficulty that the un-
bounded operator Iy !"also acts on the source term gn- In the latter sense, it is similar in flavor to
quasilinear PDE problems involving maximal regularity analysis. Center manifolds for ill-posed
evolutionary systems involving maximal regularity have been treated by Mielke in [22] and oth-
ers, see, e.g., [9,11] and references therein. The present, semilinar analysis, though different in
particulars, seems to belong to this general family of results.

To our knowledge, the results of this paper are the first on existence of center manifolds for
any system of form (1.2), (H1)-(H2) with A noninvertible, in particular for Boltzmann’s equa-
tion with hard sphere (or Grad hard cutoff [3,23]) potential. In the case of Boltzmann’s equation
(1.3), Liu and Yu [18] have investigated existence of center manifolds in a (weighted L*>(x, £))
Banach space setting, using rather different methods of time-regularization and detailed point-
wise bounds, pointing out that monotonicity of A (i) follows from center manifold reduction and
describing physical applications of center manifold theory to condensation and subsonic/super-
sonic transition in Milne’s problem. However, the linearized estimates on which they based their
argument for existence of center manifolds were incorrect; see [38] or [39, Lemma 3.2]. The
present paper repairs this gap by a different route, recovering the conclusions made in [18] via
center manifold techniques.

A larger goal, beyond existence and construction of invariant manifolds, is to develop dynam-
ical systems tools for systems (1.1) analogous to those developed for finite-dimensional viscous
shock and relaxation systems in [6,21,34-37,40,41], sufficient to treat 1- and multi-D stability by
the techniques of those papers. See in particular the discussion of [36, Remark 4.2.1(4), p. 55],
proposing a path toward stability of Boltzmann shock profiles, which reduces the problem to
description of the resolvent kernel in a small neighborhood of the origin.

Such methods would apply in principle also to large-amplitude shocks, provided profiles ex-
ist and are spectrally stable. The development of numerical and or analytical methods for the
treatment of existence and stability of large-amplitude kinetic shocks we regard as a further,
very interesting open problem. Indeed, the structure problem discussed by Truesdell, Ruggeri,
Boillat, and others, of existence and description of large-amplitude Boltzmann shocks, is one of
the fundamental open problems in the theory, and (because of more accurate fit to experiments
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than predictions of Navier—Stokes theory) an important motivation for their study; see, e.g., the
discussion of [1].

A glossary of notation: For p > 1, J C R and X a Banach space, L?(J, X) are the usual
Lebesgue spaces on J with values in X, associated with Lebesgue measure dx on J. Simi-
larly, L?(J,X; w(x)dx) are the weighted spaces with a weight w > 0. The respective spaces
of bounded continuous functions on J are denoted by Cy(J, X) and Cy(J, X; w(x)). H* (R, X),
s > 0, is the usual Sobolev space of X valued functions. The identity operator on a Banach
space X is denoted by Id (or by Idx if its dependence on X needs to be stressed). The set of
bounded linear operators from a Banach space X to itself is denoted by #(X). For an oper-
ator T on a Hilbert space we use T*, dom(T), ker T, imT, o(T), R, T) = (A — T)’] and
Ty to denote the adjoint, domain, kernel, range, spectrum, resolvent operator and the restriction
of T to a subspace Y of X. If B: J — ZA(X) then Mp denotes the operator of multiplication
by B(-) in L?(J,X) or Cy(J, X). The Fourier transform of a Borel measure p is defined by

(F ) (@) = Jpe 7 du(x).
2. Linearized equations

In this section we study the qualitative properties of the equation obtained by linearizing
equation (1.2) about the equilibrium u, and its perturbations by an inhomogeneous source term.
Throughout this section we assume Hypotheses (H1) and (H2). Our goal is to prove that the
linearized equation,

Au' = Q' (Wu 2.1)

exhibits an exponential trichotomy on H and to precisely describe the center, stable and unstable
subspaces associated to this equation. A major difficulty when treating the linearized equation
(2.1) is given by the fact that the linear operator A~' Q’(@) does not generate a Co-semigroup
on H. Therefore, it is not straightforward to prove the existence of solutions of Cauchy prob-
lems associated to (2.1) in forward time nor on backward time. Our first task is to show that
the linearization decouples, which is a key point of our analysis. Denoting £ = Q'(u)v, from
Hypothesis (H2) we infer following [23,26] that the bounded linear operators A and Q’(u) have
the decomposition

0 0

A:[A” Alz]:VL®V9VL€BV, Q/(ﬁ):[o E

Viev-oviev, (@2

Ay Ax ] 22)

where E is symmetric negative definite (hence invertible). Next, we denote by Py and Py.

the orthogonal projections onto V and V+, u = Pyiu and v = Pyu. From (2.2) we obtain that
equation (2.1) is equivalent to the system

Apu’ 4+ Ay’ =0,

{ Asqu’ + Apv = Ev. 23)

As noted in [23,26], with this form, A1; is exactly the Jacobian of the reduced “equilibrium”
equation (CE|) obtained by formal Chapman-Enskog expansion. We distinguish the nonchar-
acteristic case detA11 # 0 and the characteristic case det Aj; = 0 according as this reduced
hyperbolic system is noncharacteristic or not. We turn our attention to the perturbation of the
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system (2.3) obtained by adding a forcing term f in the second equation, modeling nonlinear
effects (recall that imQ =V, so that nonlinearities enter in the second equation only):

{A11M/+A12v/=0, 2.4)

Axju’ + Apv = Ev+ f.

We leave the function space of f unspecified for the moment; ultimately, it will be a negatively
weighted H'! space comprising functions growing at sufficiently slow exponential rate.

In this section we will show that system (2.4) is equivalent to a system of equations consisting
of three finite-dimensional equations that can be readily integrated and an infinite-dimensional
equation of the form ['gv’ = Egv + g, with Iy, Eg bounded linear operators on a finite codi-
mension subspace of V that can be treated using the frequency-domain reformulation used in
[14,15,26]. In the case when Aj; is invertible, one can solve for u’ in terms of v’ in the first
equation of (2.4) and then focus on the second equation. In the general case, when Ay is not
necessarily invertible, we first decompose V* as follows: since A and Py. are self-adjoint
operators on H and Aj; = Py1 Awi, we have that Aq; is self-adjoint on V+, which implies
that V- =ker A;; @ imA;;. We denote by Piera;; and Pima,, the orthogonal projectors onto
ker Aj; and imAj; associated to this decomposition. Next, we introduce the linear operators
A12 V — imAq; and 713 : V — ker Ay defined by A12 = leA11A12 and T12 = Pyera;; A12. In
the next lemma we summarize some of the elementary properties of A1, and T75.

Lemma 2.1. Assume Hypotheses (HI) and (H2). Then, the following assertions hold true.

(1) kerT 12 = {0}, imTy, = ker A1y, ker T1» # {0};
(ii) The linear operator A11 = (A11)(imA,, is self-adjoint and invertible on imAj;.

Proof. (i) Since A is a self-adjoint operator on H by Hypothesis (H1) from (2.2) we con-
clude that Ay = A12 Thus, one can readily check that T, 2 = (A* 1) 1ker A;; = (A21) ker Ay -
Let u € ker T}, € dom(T5) =ker Ay C VL. It follows that Ajju = Azju = 0, which implies
Au=A1u+ Aryju =0. From Hypothesis (H1) we obtain that u = 0, proving that ker T’ 12 ={0}.
Since imT7, is finite dimensional, we infer that it is a closed subspace of ker A1;. Hence,
im7Tj; = (ker T]*Z)J' = ker Aj. Next, we assume for a contradiction that ker 77, = {0}. Since
T, € B(V,ker A1), it follows that dimV < dimker A; < dim V4 < oo, which is a contradic-
tion. Assertion (ii) follows immediately since the linear operator A1; is self-adjoint on VX, 0O

To treat system (2.4) we first introduce the subspaces V| =imT}% and ¥V = ker T12. In what
follows Py, and Pg are the orthogonal projectors onto V; and v, respectively. Denoting by
U1 = Pera, U, U = Pima, 4, v1 = Py, v and ¥ = Py and applying the projectors Pier 4,, and
Pima,, , respectively, to the first equation of (2.4) we obtain that

Tiov) = T2V = Pyera, (Anu’ + Ajpv') =0
ANt 4 At = Pia,, (A’ + Appv’) =0. (2.5)

Moreover, since (A21)|kerA;; = Tl*2 and (A21)ima;; = Zikz we have that the second equation of
(2.4) is equivalent to
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Tju| + AL 4 Apv' = Ev + f. (2.6)

Since v € Vi =imT}, from (2.5) we conclude that v} € ker Typ NimTy = {0}, hence v} =0.

In addition, since the linear operator Ay is invertible on imA; by Lemma 2.1(ii), we infer that

W= —A“l—]lK 12V’ Summarizing, (2.5) is equivalent to

V=0, @=-AAnY. 2.7)

Next, we solve for #; in terms of v in (2.6). Multiplying this equation by Py,, from (2.7), we
obtain that

Tisu + Py, (A — Aj, A A1)V = Py, Ev+ Py, f (2.8)

From Lemma 2.1(i) we have that (TI*Z)_l is well-defined and bounded, linear operator from
Vi = imT1*2 to ker A11. Thus, we can solve in (2.8) for u as follows:

uy =T10 + Epv+ (T ' Py, f. (2.9)
Here the linear operators I'y : V — ker Aj; and E : H — ker A are defined by

Ty = (T7) NALA A1 — An) € B(V.ker A1),  Ei=(T}5) ' Py, E € B(H, ker Ayy).

(2.10)
Since v' =7’ by (2.7), multiplying equation (2.6) by Pg, we infer that
Pi(Ap — A5 A[' A1)V = PGETV + PyEv + Py f. (2.11)
From (2.7), (2.9) and (2.11) we conclude that the system (2.4) is equivalent to the system
uy =T o Er(vn +9) + (T35~ Py, f.
Tov' = Eov + PyEvi + Py f,
where the linear operators I'g, Ep : ¥V — V are defined by
o= Py(An — ApA[ A)g € V), Eo=PyEg e (). (2.13)

We note that the first three equation of (2.12) can easily be integrated. The fourth equation of
(2.12) is of the form

Tod = Eov + g, (2.14)

where g : R — V is a constant perturbation PgEvy + P f of the (bounded) projection of f
onto V.
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2.1. Inhomogeneous equations

To understand the solutions of the perturbed equation (2.14), it is crucial that we study the
properties of the linear operators I'g and Ej.

Lemma 2.2. Assume Hypotheses (HI) and (H2). Then, the linear operators Ty and Eq satisfy
the following conditions.

(i) Do is self-adjoint and one-to-one on §~7; -
(ii) The operator Ey is self-adjoint, negative definite and invertible with bounded inverse on V;
(iii) The operator 2wiwly — Ey is invertible on 'V for any w € R;
(iv) sup g 2rioTy — Eg) 7! < occ.

Proof. (i) Since the linear operator A is self-adjoint, from (2.2), we obtain that A», is self-adjoint
on V. In addition, since Pg is an orthogonal projector, and hence self-adjoint, from Lemma 2.1
and (2.13), we conclude that 'y is self-adjomt Let 7 € V = ker T2 such that v € ker " 0, that
is Py (Axn — A12A11 Alz)v = 0. Since v € ker T}, it follows that A,V = A12v + Tov = A12U
Let U= —A11 Alzv € imA ;. From the definition of A“ in Lemma 2.1(ii), we have that A7 =
Allu = — A2V = — A2V, which implies that

A+ Apv=0. (2.15)

Since (A21)}ima;, = Z’b we have that /TTZZ]_IIXHT)': —XTzﬁ = —Ayu. Since v € ker 'y, we
obtain that Py (A2 + A2 V) = 0. Hence, A2 i + A2V € Vi =imT}5, which implies that there
exists u1 € ker A1y such that Ay + A2 = T5u; = Azju;. Hence,

A (U —uy) + Apv=0. (2.16)

Since u; € ker A1 from (2.2), (2.15) and (2.16), we 1nfer that A(@ — uy + V) = 0. Since A is
one-to-one, # — u; € ker A1y @ imA;; = V- and ¥ e \% C V we conclude that v = 0, proving
that ker I'g = {0}.

Assertion (ii) follows from Hypothesis (H2) since E < —41y and the projection P is orthog-
onal, and hence, self-adjoint. Denoting by .2 : R — % (V) the operator-valued function defined
by % (w) = 2wiwly — Ey, from (i) and (ii) we obtain that Re.%)(w) = —E( for any w € R.
From (2.13) we have that

Re(%(w)T, ) = —(Eov, ) = —(ET, 7) > 8||9)|> for any weR, Ve V. 2.17)
From (2.17) we immediately conclude that
|-L(w)V] = 8||v]| forany weR, Ve V. (2.18)

From (2.18) we obtain that . (w) is one-to-one and its range is closed on V for any w € R. From
(2.17) one can readily check that ker Zy(w)* = {0} for any w € R, proving (iii). Assertion (iv)
follows from (2.18). 0O



6764 A. Pogan, K. Zumbrun / J. Differential Equations 264 (2018) 6752—6808

Lemma 2.2 shows that the pair of operators (I'g, Eg) satisfies Hypothesis(S) as stated in [26,
Section 3]. In the next lemma we summarize some of the important consequences from [26].

Lemma 2.3 ([26]). Assume Hypotheses (H1) and (H2). Then, the following assertions hold true.

(i) The linear operator Sry g, = I'y Eo dom(ST,), Eo) ={ve V: Egv € 1m1"0} BNV gen-
erates an exponentially stable bl -semigroup on V, that is, there exist Vs and Vu two
closed subspaces of V invariant under Sty g,, such that V= Vs ® Vu and (Sr,, Eo)IV
azd — (ST, EO)IVu generate exponentially stable, Cy-semigroups denoted {T (x)}x>0 and
{Tu(x)} x>0, having decay rate —v(I'g, Ep) < 0;

(ii) iR C p(Sry.,) and RQ2io, Sty £y) = 27w — Sty £,) "' = (L(@)) ' To for all w € R;

(iii) There exists ¢ > 0 such that |R(2riw, Sty gy)|l < #Iw\ forall w € R;
(iv) The Green function 9r, g, : R — B(V) defined by

_ TP ifx=0
gFQ,E()(X) = { —Tu(—x)Pu ifx <0’ (219)

decays exponentially at £00. Here ﬁ; Ju denote the projections onto Vg, associated to the di-
chotomy decomposition V=V @ V. Moreover,

TGy £, ()T = R(Q27i-, Sty g,)V for any T € V. (2.20)

Now we have all the ingredients needed to treat solutions of equation (2.14) for functions
g€ Lloc (R, V). Our approach is the following: we first take Fourier Transform in (2.14) and
then solve for .%7v using the results from Lgmma 2.2 and Lemma 2.3. Next, we introduce the
operator-valued function Rr, g, : R — #(V) defined by Rr, g,(w) = Qriwly — Eo)~'. We
recall the definition of mild solutions of (2.14).

Definition 2.4. We say that

(i) The function ¥ is a mild solution of (2.14) on [xg, x1]if ¥ € L%([x9, x1], W~7) satisfies

(FVxo.1) (@) = RQiw, Sty £,) (€72 0F (xg) — e 2% 5 (x1))

+ Rry, £y (@) (F 8| 1xg,x11) (@)

for almost all w € R;
(i1) The function v is a mild solution of (2.14) on R if it is a mild solution of (2.14) on [xg, x1]
for any xg, x; € R.

Next, we introduce the linear operator % : L*(R, V) — LX(R, V) by g = F ! MRr, &, Fg,
where M Rry.E, denotes the multiplication operator on L?(R, %7) by the operator valued function
Rr,,E,- From Lemma 2.2(iv) we have that sup,cp | Rry, £, (@)|| < 00, which proves that % is
well defined and bounded on L3(R, V) Since we need to solve equation (2.14) for functions
g:R— V that are perturbations by constants of functions from Lz(R, V), we need to study how
to extend the Fourier multiplier J#j to a bounded, linear operator on Lz_a (R,V) and Hla (R, V),
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where o € (0, v(I'g, Eg)) is a small exponential weight. To prove these results, we need the
following result on convolutions.

Lemma 2.5. Assume # : R — ;@(WN/) is a piecewise strongly continuous operator valued func-
tion such that | W (x)|| < ce "™l for all x € R. Then, for any a € (0, v) we have that W % g €
L*,(R,V) and

19 s gll2 <cligh2 forany feL? R,V). @21)

Proof. Let g € L2_a (R, V). Since # decays exponentially at 00 and « € (0, v) we have that

107 % g) ()2
) 2 v—a V4o 2
= ([ ligomay) = ([ e 5 e S g ay)
R R
, 2 ,
< /e_(”_“)‘x_)'l dy / e~ () lx—yl ||g(y)||2 dy = — / e~ (vta)lx—yl ||g(y)”2 dy
R R R
(2.22)
Taking Fourier Transform one can readily check that
_ _ 2(v+ @) oy 4o _ .
2al| wta)l| — 2e] _ (v+a)l| 2.23
¢ e v +a)?—4a2’ vta)?—4a2’ ’ (223)
which implies that
/e—2a|x\e—(v+a)|x—y| dx < ME_ZQW‘ forany yeR. (2.24)
T (wWH+3a)(v—a)
R
From (2.22) and (2.24) it follows that
2 - - -
[ o s peorar s = [ [ebetrongg)Payas
R R R
2 ~2alx| ,—(v+a)x—y| 2 40v+a) 2
= dx) dy< ——m——— .
U_a/(/e e IO dy < oot lgla,
R R
(2.25)

From (2.25) we conclude that # x g € LEQ(R, %7) and that (2.21) holds true, proving the
lemma. O
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Lemma 2.6. Assume Hypotheses (H1) and (H2). Then, for any o € (0, U(Fo, Eo)) the Fourier
multiplier 7 can be extended to a bounded, linear operator on L*. (R, V) and on H! o (R, V)

Proof. First, we introduce v : R — R the function defined by ¥ (x) = ¢!, where (x) =

a+ x2)2 One can readily check that ¥ € H 2(R). To prove that %) can be extended to a
bounded, linear operator on L (R V) it is enough to prove that || g || 2, = cligll 2, for any

geL’®RY).
Fix g € L*(R,V). From [26, Lemma 4.10] we have that ¥.%og = (Vg + V(G Ey *
g)) Clearly, Vg e L2(R, V) From Lemma 2.3(iv) and Lemma 2.5 we obtain that %li‘ E *8 €

L? o« (R, V) Since | (x)| < ce~®™! for any x € R, we conclude that 1’ (gl:k E *8) € L*(R, V)
and

108l 2 < clyHogla = cllAo(g + ¥ 7y g+ Nl < cllyg + V' () gy * )l
<clygla+ IV @, g+ Ol <cliglz, +clF, g *gll2, <cligly2 .
(2.26)
proving that the Fourier multiplier %y can be extended to a bounded, linear operator on
2 R,V).
Next we fix g € H! (R V)OLZ(R V) Using again Lemma 2.3(iv) and Lemma 2.5, we infer
that %li" E, *8 € L%, (R, V). Because [/ ()] + [ (x)| < ce” ™! for any x € R, it follows that

V(G g x9) €LPR,Y) and (G g, *8) € LPR.V). (2.27)

Since g € H! « R, V) from Lemma 2.5 we have that %li‘o E, ¥ 8 € Hy, ! (R, V) and ({411‘0 Ey ¥
g) = glfo,Eo xg €L? «(R, V) Thus, v/ (glfo,Eo xg') e Lz(R, V). From (2.27) we conclude that
W(%li‘oﬁEo *xg) € 1DC(R V) and

(W' (G gy %) =V (G 5y % 8) + V(G g, %) € LPR D). (2.28)

From Lemma 2.5, (2.27) and (2.28) we infer that ' (¥4, 1—0 Eo * g) € H'(R, §7) and

1 Gy 5y * Nl < V' @y gy % D+l (W@, gy % 2) 12
<Gy * 8ll2, + V" Gy gy @l + el @G g+ 8)l2
<clglyz, +el% g *gll2 +cl G gxg'l2
<clglyz, +elg'll2 =cligly . (2.29)

Since sup,,cgr | Rry, £y (@) || < 0o by Lemma 2. 2(1V) it follows that the Fourler multiplier Jif) can
be extended to a bounded, linear operator on H' (R, V) Since wg (%, Fo E ¥ g) € H'(R, V)

we obtain that .%o = Ho(Vg + V' (4, 5, * 8) € H' (R, V), and thus Hog € HL, (R, V).
Summarizing, from (2.29) we conclude that
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108l 1 < clly Hogll g = cllHo(g + ¥ 7y g, % &)l
<clvg+ ¥ (& gy * )l
<clYgl + 1 & g * Ol <cligly - (2.30)

From (2.30) it follows that the Fourier multiplier . can be extended to a bounded, linear oper-
ator on H! o« (R, V) proving the lemma. O

To simplify the notation, in the sequel we denote the extensions of 7 to L%a (R, @) and
Hla (R, V) by the same symbol. Moreover, from the definition of .5 one can readily check that

(Hog) = Hog' forany ge H' (R, V). (2.31)

Next, we will study the smoothness and uniqueness of solutions of (2.14) in the case when the
function g € Hla (R, V). To prove these results, we need the following lemma.

Lemma 2.7. Assume Hypotheses (H1) and (H2), ¥ € L*(R, V), W is an @-valuedﬁnite Borel
measure such that Fv = MRFO,EO Fu, and fr € CG°(R). Then,

YB(@) — Rry, 5, (@)T0d'D(@) = Rry £y (@) / e~y () du(x) forany weR. (2.32)

Proof. First, we note that the function Rr, g, satisfies the equation

Rry, o (@1) — Rry, By (02) = 2mi(w2 — w1) Rry, £y (@) T0Rry, £y (w2) forany wp, w2 €R.

(2.33)
The lemma follows from (2.33) by a long, but fairly simple computation. Indeed,
U() — Rry, £y (@)T0g V(@) = (F D) (@) — Rry. £, (@)To(¢ + ) ()
= / b (@ —0)D(0)d0 — Rry. gy (@)To / ¢ (» — 0)0(6)do
R

- / P (@ — 0)(6)d0 — Rry. gy (@)To / 27i(w — 0)P(w — 6)0(0)do

R

/ Plw— 9)(1V 27i(w — 0) Rr, EO(a))Fo)v(Q)dQ
R

o~

(@ = 0)(Rry.£(6) = 27i(0 = 0) R, (@) TR, £ (6) ) (6)d0

=

o~

= Rry, ) (@) / ¢ (@ — 0)[L(0)d0 = Rry, £, () ($ * ) (o)
R
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= Rry. £, (@) / e (x)dpu(x) (2.34)
R

for any w € R, proving the lemma. O
Lemma 2.8. Assume Hypotheses (HI) and (H2). Then, the following assertions hold true.

(i) Forany g € Hla (R, {/), JKog is a mild solution of (2.14) on [xg, x1] for any x¢, x1 € R;
(i) If g€ L2, (R, V) and v € L% (R, V) is a mild solution of equation (2.14) on R, then v =
H08-

Proof. First, we consider a sequence of smooth functions ¢, € Cgo (R) such that 0 < ¢, < 1,
¢n(x) =1 for any x € [—n,n], ¢, (x) = 0 whenever |x| > n + 1 and sup,, . [}, lcc < 00 for
any n > 1. One can readily check that ¢, — 1 and ¢, — 0 simple as n — co. Moreover, from
Lebesgue Dominated Convergence Theorem one can readily check that

. 2 layd 2 ~
¢, > 0inL~ (R, V)asn— ooforany g e L~ ,(R,V),
¢ng — gin LZ_Q(R, ivf) asn — ooforany g € LZ_Q(R, %’)
¢ng— gin H' (R, V) asn — oo forany g € H' (R, V). (2.35)

Proof of (i). Fix g € Hla(R,g). Since ¢, € Cg°(R) we have that ¢, ¢ € H'(R, V), and thus
T i= Ho(¢png) € H' (R, V) for any n > 1. From the definition of the Fourier multiplier .7, we
immediately obtain that

F (Lo, — ETy) () = Qrioly — Eo)T, () = pg(w) forany weR, (2.36)

which proves that [ov), = E%, + ¢, g for any n > 1. Since H'-solutions of (2.14) are also mild
solutions, we have that

((F00)xp.r11) (@) = RQrio, Sty ) (€77 0T, (x0) — e 15, (x1))

+ RFU,EO (w)(ﬁd)ng\[xo,xl])(w) (2.37)

for any w € R and n > 1. From (2.35) we have that ¢,g — g in Hla(R,@) as n — oo. From
Lemma 2.6 we conclude that v, = (¢, g) — #pg in Hla (R, V) as n — oo. It follows that
(En)llxo,xlj - ('-%/Og)llxo,xl] and (¢ng)|[xo,x1] — 8l[x0,x1] in Lz(Rv V) and 5n(x) — (%g)(x) for
any x € R, as n — o0. Passing to the limit in (2.37) we obtain that #yg is a mild solution of
(2.14) on [xg, x1] for any xg, x; € R, proving (i).

Proof of (ii). Assume g € Lz_a (R, V) and v € Lz_a (R, v) is a mild solution of (2.14). We define
the sequence of functions z, = ¢, U, n > 1. First, we note that z, = ¢, (Vx[—n—1,n+17) for any
n > 1. Since v is a mild solution of (2.14) we have that

(FVX=n—1,0411) (@) = (FV—n—1,14+1]) (@) = Rry £y (@) iy (@) forany weR,n>1,
(2.38)
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where u, : Bor(R) — ¥V is the Borel measure defined by

n () =Dirac_,,_1(2)Tgv(—n — 1) — Dirac,, 11 (2)Tov(n+1) + / g(x)dx. (2.39)
QN[—n—1,n+1]

From Lemma 2.7 it follows that

Zn(@) = Rry, £y (@)To(F (@), 0)[—n—1.n411)) (@) = Rro,Eo(w)/6_2’““’)“¢>n(x)dun(x)
R

= Rro. 5y (@) (2D, (=1 — DEGF(—n — 1) — e 27000, (0 4+ DT + 1))

+ Rry. £, (@) / e 2N Y (X) Xen—1.0+11(X) g (x)dx

= Rry. £, (@)Png(w) forany weR,n>1. (2.40)

Since ¢}, X[—n—1,n+1] = ¢, for any n > 1 from (2.20) and (2.40) we infer that

0 =%ro.50 * (,T) + Ho(png) forany n=1. (2.41)

Since ¥ € L% «(R, V) from Lemma 2.5 and (2.35) we infer that %ro Eo * (¢,0) — 0 and
Zn = ¢, — Vin L% «R, V) as n — 0o. Moreover, since g € L2 «(R, V) from Lemma 2.6 and
(2.35) we have that J#y(¢,,g) — #pg in L_a (R, V) as n — 0o. Passing to the limit in (2.41) we
conclude that v'= #jg, proving the lemma. 0O

To finish this section, we use Lemma 2.8 to prove an identity useful in the sequel. Let
1 be the function identically equal to one on the whole line. From (2.31) we have that
(,)if)(z]l)) %(zﬂ)’ =0, which proves that #3(z1) is a constant function for any z € V. Since
z1e H! «R, V) from Lemma 2.8(ii) we have that .#((z1) is the umque H! o solution of equa-
tion [yv" = Egv + z1. However, one can readily check that — —Ey z]l isa solut1on this equation,
which implies that

Ho(z1) = —Ey'z1 forany zeV. (2.42)
2.2. Linear flow in characteristic and noncharacteristic case

In this subsection we prove that equation (2.1) exhibits an exponential trichotomy on H with
finite dimensional center subspace. To prove this result, we solve the system (2.12) for the case
when f = 0. First, we look for the center subspace, the space of all vectors on H that can be
propagated in backward and forward time and whose associated solutions grow slower than any
exponential. To define the center subspace we introduce the space

Ve={v=(v1,0) e V:¥=—E; " PgEv;}. (2.43)
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Lemma 2.9. Assume Hypotheses (H1) and (H2). Then, for any wo = (u1 a0 v1 , 9T e H
V+ @ V. there exists a unique solution . of (2.1) on R such that u.(0) = wy, given by

we(x, wo) = ) +xE1(ly — Ey ' PgE)), 00, v), —Ej ' Py Ev))T € H
forany x€R. (2.44)

Proof. Fix wg= (ul, i v1 , 9T e V5L @ V. and assume that u = (u1, @, v1, )7 is a mild solu-
tion of (2.1) such that u(0) = wy € He. Since u(0) € H, we obtain that v(0) = —EO_IPg,Evl(O).
Using that equation (2.1) is equivalent to (2.12) with f =0, from the third equation we conclude
that vi(x) = v1(0) = v(l) for any x € R. Since any constant function belongs to Hla(R,V),

from Lemma 2.8 and (2.42) we infer that v = J#(PyEv(0)1) = —Eo_ng,Evl(O)]l =
—Ey ! PGE v]O]l eH! « R, V). Integrating in the first two equations of (2.12), we obtain that

up(x) =ud +xE1(Iy — Ey ' PyEW), (x)=u" forany xeR, (2.45)

which shows that u = uc(-, wg). On the other hand, one can readily check that u.(-, wp) is a
solution of (2.1) and u.(x, wg) € H, for any x € R, proving the lemma. O

We note that an alternative way of constructing the center subspace of equation (2.1) is the
following: first, we note that any vector from V4tisa stationary mode. Next, we show that
since E = Q'(uw)v is negative definite, we have generalized zero-modes of height one, but no
generalized zero-modes of height two. Moreover, all the remaining modes are hyperbolic.

Next, we prove that there exists a direct complement of H, not necessarily orthogonal, on
which equation (2.1) has an exponentlal dichotomy. To define the dichotomy decomposition, we
use that the operator Sy g, = I'y 'Ey generates a bi-semigroup on V and the decomposition
V= VS ® Vu from Lemma 2.3.

Lemma 2.10. Assume Hypotheses (HI) and (H2). Then, the following assertions hold true.
(i) Assume thatuw= (uy,u,v1,)" is a solution of (2.1) such that v{(0) = 0. Then,

) = (T + E1Ey 'To)¥, &' = —A['A¥, v =0, ¥ = Sty £, (2.46)

(i1) Equation (2.1) has an exponential dichotomy on R on a direct complement of H,, with
dichotomy subspaces given by

— ~ ~_ 17 o~ ~N\T ~ &
Hyo={ (01 + BBy ' To¥, = A7 2123,0,3) " : 7 e Vo (2.47)

(iii) The Hilbert space H decomposes as follows: H = H. @ Hg @ H,. Moreover, the trichotomy
projection onto Hy. parallel to Hy @ Hy is given for any w = (u1, 1, vi, )" € H by

Pou= <u1 — T\ + E\Ey 'To)@ + Ey ' PyEvy), i

~ 1 o~ T
+ A R+ By PyEv), v, By PyEur) (2.48)
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Proof. (i) Since (2.1) is equivalent to the system (2.12) with f = 0, from the third equation we
immediately conclude that v (x) = v1(0) =0 for any x € R. Plugging in v; = 0, from the fourth
equation we obtain that v’ = St g,v. Since V= E 'Ty?’ from the first equation we conclude
that u} =1V + E1v = (I'| + E} EO_IFO)'J/, proving (i). Assertion (ii) follows from (i) and the
fact that the linear operator Sr,, g, generates an exponentially stable bi-semigroup on v. Indeed,
from equation (2.46) and Lemma 2.3(i), one can readily check that solutions of (2.1) that decay
exponentially at oo are given by

~ N ~ o~ o~ _ ~ _NT
uyu(0) = (01 + E1Eg 'To) Ty (E00(0), =A 7 ATy (0300, 0, Tyu(070))

(2.49)
for any x € R4. Since V= %N/s @ \N/'u from (2.47) we obtain that
H, ® H, = { (01 + B/ By 'To), A7 £129,0,9) " : 7 T, (2.50)
From (2.43) and (2.50) we immediately conclude that H. N (H & H,) = {0}. Moreover,
(i, 01,0 = (uy, i, v, —Ey ' PgEv)T +(0,0,0, 7 + E; ' PyEvy)"
= (ul — (T + E\Ej'To)@ + Ey ' PyEvy), i
+ AT K@+ Ey PyEv), vy, —Ea]P@Em)T
+ (0 + BV EG ' To)@ + By PyEwy),
— A A@ + By PyEv), 0.5+ Eo_ng,Em)T, (2.51)

proving that H = H. & Hg & H,. The formula (2.48) follows shortly from (2.51), proving the
lemma. 0O

2.3. Solutions of the inhomogeneous equation

Having established the exponential trichotomy of the linear flow of equation (2.1), we
conclude this section by analyzing the solutions of equation (2.4) for general functions f €
L2_a (R, V). To prove such a result, we first recall the boundedness property of the Volterra oper-
ator on weighted spaces with negative weight. For the sake of completeness we give the details
below.

Lemma 2.11. The Volterra operator V : Lz_a(R, H) — Hla(R, H) defined by (Vg) =

X

/g(y)dy is bounded for any o > 0.
0

Proof. Fix g € L2 (R, H) and let 4 : R — H be defined by h(x) = e~**lg(x). One can readily
check that
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x
eV Q)x) = / eI h(y)dy = (¢4 % (r, ) (x)  forany x>0, (2.52)
0

e ifx>0

where ¢4 : R — R is defined by ¢4 (x) = { 0 . Similarly, we have that

ifx <0
0
(V) (x)=— / I n(y)dy = (p— * (xg_h))(x) forany x <0, (2.53)
X
0 ifx>0

where ¢_ : R — R is defined by ¢_(x) = { . Summarizing, from (2.52) and

(2.53) we obtain that

e’ ifx <0

e (P 9)(0) = xry () (04 % Ory 1)) () + xR (1) (9 * (xR_)(x) forany xeR.
(2.54)

Since |@+(x)] < e ! for any x e R and h € L2(R, H), we infer that ¢4 x fe L*(R, H) and
lp= * fll2 < 211 £1l2 for any f € L2(R, H). From (2.54) it follows that ¥ g € L2 (R, H) and

178172 = lxm, (04 * O, M)I3 + lxw_ (¢- * (r_h)II3
< I xr, 2113 + 1|| 3 = 1||h||2— 1|| 112 (2.55)
= (12 XR+ 2 a2 XR_ 2 — a2 2= ()(2 8 szot‘ .

Furthermore, we have that ¥'g € HILC(R, H) and (¥g) =g € L%a (R, H). From (2.55) we

conclude that ¥'g € H! ,(R,H) and [ ¢lly1 g < (1 +a H'2lgll2 g for any g €
L?,(R,H). O

Now we have all the ingredients needed to analyze the solutions of (2.4). We summarize our
results in the following lemma.

Lemma 2.12. Assume Hypotheses (H1) and (H2). Then, the following assertions hold true.
() If f e L2, (R, V) and u= (u1, 1, v1, V) € L2 (R, H) is a mild solution of (2.4), then
u(x) = Peu(0) + fe(x,v1(0)) + (VT3 f)(x) + Ta(Ho Py f)(x) forany xeR, (2.56)
where, the linear operators I'3, I'q : HL — H are defined by
D3 =(T7) "' Py, — E\Ey ' Py € B(HD),
Py = (P1+ BBy 'To = A7 A1 + Py ) Py € B, 2.57)

and the function f. :R x V| — H is defined by
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fee,v) =xE1(I — Ej ' PyE)vy. (2.58)

(ii) The function w=wq + fc(-, Py,wo) + VT3 f + T4 Ps f is a Hla -solution of (2.4) for
any f € Hla(R, V) and wo € H,.

Proof. Since (2.4) is equivalent to (2.12), we immediately conclude that v (x) = v{(0) for any

x € R, just like in the case of equation (2.1). Since any constant function belongs to H! « (R,
from the fourth equation of (2.12) and Lemma 2.8(ii) we obtain that

v = (PyEv1(0)1) + o Py f. (2.59)
Next, we integrate the second equation of (2.12) to find that
#(x) =i(0) + A A12(T(0) = B(x)) =W(O0) + A} A120(0) — A} A2 Ao (P Evi (V1) (x)
— A['An(AHPyf)(x) forany xeR (2.60)

Since v; = v1(0)1, combining the first and fourth equations we have that

uy =Ty + E1Ey 'To)d' + E1vi (01 + (T3 ™' Py, f — E1Eg ' Py(Evi(O)1+ f).  (2.61)
Integrating, from (2.61), we conclude that
up(x) =u1(0) — (U1 + E1 Ey 'To)T(0) + (U1 + E1Ey 'To).Ho(Py Evi (0)1)(x)
+xE(I — Ey ' PGE)v1(0) + (U1 + E1Ey 'To) (Ho Py f) (x)
+ “I/((Tl*z)_lPV] f—EE] P@f) (x) (2.62)

X
for any x € R. Here ¥ denotes the Volterra operator defined by (¥ g)(x) = f g(y)dy. From

0
(2.59), (2.60), (2.62) and (2.42) we conclude that

u(x) =u1(0) — (U1 + E1 E; ' To)T(0) + 7(0)
+ AT AB(0) + v1(0) + xE( (I — Ey ' PyE)vi(0)
— (11 + E1Eg'To = A7) Bio + Py E5 Py Evi (0)
+7((T ™ Py, f = EVEG Py f ) @)
+(Pi+ EvEy 'To = A7 Az + Py ) (6 Py ()
= Pu(0) + fo(x. v1(0) + (FT3£)(x) + T4 (Ao Py f)(x) forany xeR. (2.63)

Proof of (ii). Fix wg € H, and f € Hla(R, H). From Lemma 2.6 and Lemma 2.11 we have
that ¥ € B(L>,(R, V), H! ,(R,V)) and %) € B(H!,(R,V)), which implies that u = wq +
e, Pyywo) + VT3 f +Ta Py f € H! (R, H). Using the usual notation, we denote by u; =
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Pier AW, 1 = Pima, u, v = Py,u and V= Pgru. To prove assertion (ii) we will prove that u =
(u1, 7, v1,0)7T satisfies the system (2.12). From (2.57) we obtain that

Preran T3 = (T}5) ' Py, — E\Ey ' Py, Pima, T3 =0,

Py, T3=0, Pyl3=0, (2.64)
Piera, Ta=T1+ E1E; ' T, PimA]|F4=_IZ1_11212Px\7,
Py, T'4=0, Pyl'y=Pg. (2.65)

Next, we multiply u by the respective projections onto the orthogonal decomposition H =
ker A1 ®imA1; &V &V and use (2.58), (2.64) and (2.65) repeatedly. One can readily check
that vi = Py, wp, and thus v’1 = 0. From (2.43) we have that Pgwg = —Eal P E Py, wo. Hence,
from (2.42) we obtain that

V= —E; ' PgE Py, wol + Py Py f = Ho( P E Py, wol + Py f). (2.66)

Since v = Py,wo and PgE Py, wol + P f € Hla (R, @) from Lemma 2.8(i) we infer that
oV’ = Egv + P Eqv1 + P f . In addition, we have that

U= Pima, wol — Avl_]lglz%l)@f
= Pimaywol — A AR Ey ! PoE Py,wol — Aj A — Ey ' PE Py, wol + H#o Py f)

~

17 —1 —1
= Pimapwol — A AnE, PyEPy,wol — A A2

N

) (2.67)

which implies that i’ = —Zfll A1,>7. Finally, we have that

u1(x) = Prer o, wo + XE1(I — Eg' PGE) Py, wo + ((T{y) ™' Py, — E\Ej ' Pg) (¥ f)(x)
+ (N1 + E1Ey 'To) (A Py f) (x)
= Pieray wo +xE\(I — Ey ' PyE) Py, wo + ((T1y) ™' Py, — EVEy ' Py)(V f)(x)
+ Ty + E1Ey'To)3(x) + (T + E1Ey 'To) Eq ' PyE Py, wo (2.68)

for any x € R. Differentiating in (2.68) and since v = EO_IFO'J’ — EO_IP@f — EO_IPQ,Elvl it
follows that

) = E\(I — Ej' PyE) Py, wol + (T + EVEy 'To)V + (T7) ™' Py, — E\Ey ' Py) f
=107 + By (v + By 'Toi — Eq' PyEvi — By Py f ) + (T3 P f
=10 + E1(v1 + D) + (T}5) ' Py, f. (2.69)

proving the lemma. O
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3. Center manifold construction

In this section we construct a center manifold of solutions of equation (1.2) tangent to the
center subspace H at u expressible in coordinates w = u — u. Throughout this section we assume
Hypotheses (H1) and (H2). Making the change of variables w =u —u in (1.2) and since Q(u) =
B(u, u) is a bilinear map on H, we obtain the equation

AW =2BU, w) + Q(w). 3.1)

Denoting by u = Pyiw and v = Pyw, since E = Q/(ﬁ)w = 2B(-,w)jy we have that equation
(3.1) is equivalent to the system

Apu'+ Ay’ =0, (.2)
A21u’~|—A22v’=Ev+B(u+v,u+v). ’
Using Lemma 2.12(i), we immediately conclude that system (3.2) is equivalent to
w=Pw(0) + fe(, Py,w(0)) + 2 B(w, W), (3.3)

where f; is defined in (2.58) and % f = ¥'T'3 f + 4. %) Ps; f . From Lemma 2.6 and Lemma 2.11
we have that J#" is a bounded linear operator on L%a(R, H) and Hla(R, H) for any o €
(0, v(I'g, Eyp)), where —v(I'g, Eg) is the decay rate of the bi-semigroup generated by Sr, g, =
Ly 'Eo. To prove the existence of our center manifold we will prove that equation (3.3) has a
unique solution in Hla (R, H)) for any wg = P.w(0) € H small enough. Unlike the stable mani-
fold construction done in the earlier paper [26], we will carry this out on all of R.

We point out that B(w, w) might not belong to Hla (R, H) for all w e Hla (R, H). There-
fore, we cannot use the Contraction Mapping Theorem to prove existence and uniqueness of
solutions of (3.3) right away. To overcome this difficulty, we localize the problem by using the
truncation of the nonlinearity technique, which is used in a variety of situations such as the
construction of finite-dimensional center manifolds or the Hartman—Grobman Theorem. Unlike
the finite-dimensional case where the fixed point argument is done in the space of continuous
functions growing slower than e/l with the usual negatively weighted supremum norm, in our
case it would be ideal to work on H! o (R, H) with its usual norm. However, it is not clear if the
estimates needed to prove that the cutoff nonlinearity is a strict contraction are possible, since
some of the terms obtained by differentiating the cutoff nonlinearity are neither small nor in the
correct weighted space. Instead, we prove existence of solutions of equation (3.3) by using an
approximation argument, and then prove uniqueness by invoking the weak-star compactness of
unit balls in Hilbert spaces. This may be recognized as the standard variant of Picard iteration
used in quasilinear hyperbolic theory, e.g., a “bounded high norm/contractive low norm” version
of the Banach fixed-point theorem [19].

3.1. Existence of a center manifold of solutions

We note that equation (3.3) is equivalent to

w = Fc(-, Pow(0)) + # N(w), 34
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where the functions F; : R x H, — H and N : H — H are defined by

Fe(x, wo) = wo + fe(x, Pyywo), N(h)=B(h,h). (3.5)
Next, we introduce the truncated system which is better suited to apply a contraction mapping
like argument. Let p € CSO(R) be a smooth function such that p(s) =1 for any s € [—1, 1] and

p(s) =0 whenever |s| > 2. In this section we will prove existence and uniqueness properties of
solutions of equation

w=F.(-,wp) + 4:(w), for wyeH, >0 3.6)
where the function .#; : H1 (R — Lz_a (R, H) is defined by

Iwl*

%(w):%[p( . )B(w,w)]. 3.7)

We note that any solution w of (3.6), small enough, is a solution of (3.3). To check that we
can apply a contraction mapping-type argument on (3.6), we need to check the properties of the
function N, : H — H defined by

h 2
No(h) =,0(”8—l|>B(h, h). (3.8)

Remark 3.1. Since B is a bilinear map on H and p € C3°(R) we have that N, is of class C* on
H for any ¢ > 0. Moreover, one can readily check that

2 llhl? h|?
Nmg =20 (M), 1B -+ 20( V) B, ) (39)

for any &, g € H. Since p(s) = 0 whenever [s| > 2, from (3.9) it follows that there exists ¢ > 0
such that

IN.(h)|| <ce, |N/(h)|<c forany heH, e>0. (3.10)

A crucial role in our construction is played by the following mixed-norm function space: for
any 8 >y > 0 we define 2, g(H) = LZ_V(R, H) N Hlﬁ (R, H) endowed with the norm

2 2 172
1702, = (10, +15132 ) (3.11)
We note that this norm is equivalent to the (|| - ||i2 + - ”ill Y2 norm on Z, p(H), there-
2, -
fore it induces a Hilbert space structure on Z;, g(H). We note also the following L° Sobolev

embedding estimate.”

2 Though we shall not use it, this implies evidently the L? embedding fé"y’ﬁ(H) — L%V(H) forany v > (B +y)/2.
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Lemma 3.2. 2, g(H) — Lio(ﬂ+y)/2(H),' equivalently, for any x € R, f € Z, g(H),
e PN F I < ce” P £ (3.12)

Proof. Take without loss of generality x > 0, and e F f () in the Schwartz class on R . Then,

e P = / e FI dy

[e¢]

=28 / e FIPdy +2 / 2P (F (), f1())dy

X

o]

< ce 2BY)x / N £ ) IPdy

X

4By / @ IFODE I (Idy,

from which the result follows by Cauchy—Schwarz/Young’s inequality. O

In the next lemma we collect some estimates satisfied by the map .4; on Hla (R, H) and
%, p(H).

Lemma 3.3. Assume Hypotheses (HI1) and (H2) andlet0 <a <y < B < %v(yo, Ey). Then, the
following estimates hold true:

(i) Fe( wo) € H!,(R, H) and | F.(., wo)ll 1, = cllwoll for any wo € He;
(i) Ae(w) € Hia R, H) for any w € Hia (R, H)) and & > 0. Moreover,

I AeW) g1 < celWliy  forany weH.,R,H); (3.13)
(iii) A(w) € Z, g(M) for any w € 2, g(H) and & > 0. In addition,
AWz, < cellwllz,, forany we %, 5(HD; (3.14)

(iv) If 0 <2« < B — y, then for any § > 0 and any wi, ws € Hia(]R, H) C %, g(H) such that
lwq ”Hl <6 and ”W2”Hl < § we have that

AW — AWl 2, < (e +8)Iwi —Wall 2, . (3.15)

Proof. From (2.58) and (3.5) we have that F. is an affine function. Moreover, from (2.48) it
follows that the projection P, is bounded, which proves (i). Since B is a bilinear map on H, from
(3.8) we have that
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17112

INeIl < 1Bllp( =) I < @IIBIe)llh] forany b e H. (3.16)

Since the linear operator % can be extended to a bounded linear operator on L%x (R, H) for
% =,y by Lemma 2.6 and Lemma 2.11, from (3.16) we have that

||%(w)||L5%§ce||w||Lg% for any WGL%%(R,H), for x=a,y. (3.17)

Since N, is of class C> by Remark 3.1, we obtain that N; ow € H! (R, H) and (N; o w)/ =
(N} ow)w forany w € HILC(R, H). From (3.10) it follows that

[(Aew)' [ 2 = INEowW 2 < INZoWloolW 2 <cellWil2 . (3.18)

for any w Hl” (R, H) for » =, B. Using again Lemma 2.6 and Lemma 2.11, one can readily
check that the linear operator %" can be extended to a bounded linear operator on Hla (R, H)
and Z;, g(H). Assertions (ii) and (iii) follow shortly from (3.17) and (3.18).

To start the proof of (iv), we fix wi, w, € Hia(R, H), ||w ”Hla < § and ||W2||H1a < 4. Since

N, is of class C*° on H by Remark 3.1, from (3.10) it follows that there exists a constant ¢ > 0
independent of ¢ > 0 such that

INe(h1) = Ne(ho)|l < cellhy — ha|l and [N (h1) — N (h) || < cllh1 — ha|| for any Ay, hy € H,
(3.19)

which implies that
[Neowi — Neowa|l2 <cellwi —wal2 =cellwi —walz,. (3.20)
e e

Since 2a < B — y, from (3.12) and (3.19) we obtain that

|(Neowi = Neowa) |, <2UW ownW = WhIZ2 +21N, 0w = N owaws I},

/HZ
2
L
2.2 2 2 -2 2
< ellwi —wil, e [N N ) = NLwae)who 1P e
R
2.2 2 2 -2 2 2
=ew —wally,, ¢ [ 2w )~ walP wheo P e
R
2.2 2 2 —(B— 2 2
= w - waly, , + ([ O w00 ar) i - wally
R
2.2 2 2 -2 2 2
<ewi —wly  +e (fe w2 dx ) [wy = wall
R
2.2 2 2 2 2 2.2 2 2
<wi —waly |+ Wl Iwi—wly | <AE + 8w —wal .
(3.21)
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Since %" can be extended to a bounded linear operator on .2, g(H) and

sup 1N 1, .1y < O©
O<a<%v(Fo,E0)

assertion (iv) follows from (3.20) and (3.21), proving the lemma. O

Remark 3.4. We note that the corresponding H' 8 version of (3.15) does not hold. Indeed,

|(Neowi = Neown)'ll72 +20(N; oW (W) —Wo)l7z = 20(N] oW1 — Njow)Wallp
1
=2 / e 2B (( f N (w100 + (1= 5)Wa())ds ) (Wi () = wa(0) ) W5 0) | dx
R 0

with ||(N] o wi) (W) — w/z)llizﬂ <ce|wy — WZHHl,g shows that .4 is in general neither contrac-

tive in H! 8 (R, H) (since N/ is merely bounded, not small) nor even Lipschitz (since e 2PIxl can

compensate for growth of either ||wy(x) — wa(x) 1% or W5 (x) 12, but not both, in the integral on
the righthand side).

At this point we fix 0 < ¢ K %v(yo, Ep)andy < B < %v(yo, Ep) suchthat 0 <20 < 8 — y.
Next, we introduce the function .7 : H, x H! (R, H) — H' (R, H) defined by 7, (wo, W) =
F.(-, wo) + Az (w). We note that the function .7 is well-defined by Lemma 3.3(ii). We are now
ready to state our existence and uniqueness result.

Lemma 3.5. Assume Hypotheses (HI) and (H2). Then, there exists g9 > 0 such that for any

& > 0 small enough there exists €1 := €1(8) > 0 such that for any wg € EHC (0, 1) the equation
w = T, (wo, W) has a unique solution in Hla (R, H), denoted W(-, wy), satisfying the condition

w(, wO)”Hla(R,H) <48 forany woe EHC 0, &1). (3.22)
Proof. From Lemma 3.3(i) and (ii) have that
176 (wo, Wl 1 < cllFe(s wolll 1 + 1AWl 1 < cllwoll +cellwlly1 < cer+ced (3.23)
for any ¢ >0, § > 0, wo € EHC(O,El) and w € EHl (RH)(O,(S). Here the constant ¢ > 0O is
independent of o > 0. We choose gy > 0 and ¢ = ¢{(8) such that cgg < th and cg| < % From
(3.23) we obtain that

| oo (o, Wl 1 <6 forany wo € By, (0,e1), We By g (0.9). (3.24)

Moreover, from Lemma 3.3(iv) we have that
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| Teo(wo, W1) — Teo(wo, W2)ll 2, , = Aoy (W1) — Aey(W2)ll 2, , < (g0 + )W —wallz, ,

1 — _
< §||W1 —wallg,, forany woe€ By, (0,61), Wi, W2 € By g (0, 9)
(3.25)

and any § > 0 such that ¢§ < %. To prove the existence of solutions of equation w = .7, (wo, W)

in Hia (R, H) we fix § > 0 small enough and wq € EHC (0, £1(8)). Also, we introduce the se-
quence (Wy,),>1 defined recursively by the equation

Witl = Teo(wo, Wy), n>1, and W =0. (3.26)
Using induction, from (3.24) we obtain that

Sup [[Wpll g1 < 8. (3.27)

n>1
Moreover, from (3.25) it follows that
”Wn-i-l — Wy ”,of%ﬁ = ||<780(w07 Wy) — %o (wo, wn—l)”,@‘;ﬁ

1
< 5||wn — Wp_1 ||gé~z>y./S foranyn > 1. (3.28)

Using induction again, we conclude that ||[W,,+1 — Wy || %, = 27 |wa| P4 for any n > 1, which
implies that there exists W(-, wo) € Z,, g (H) such that

W, = W(,wo) in Z,gH) as n— oo. (3.29)

Since the closed ball of any Hilbert space is weakly compact, from (3.27) we infer that there
exists a subsequence (Wy, )k>1 that is weakly convergent to an element of B ;1 R.H) (0, 8). From

(3.29) it follows that W(-, wg) € B H (R.H) (0, 8), proving the existence and the estimate (3.22).
From (3.25) it follows that equation w = 7, (wo, w) cannot have more than one solution in
H! o« (R, H), proving the lemma. O

Lemma 3.6. Assume Hypotheses (HI) and (H2). Then,_there exists no > 0 such that W(-, wog) is
a solution of equation (3.1) on (—ng, no) for any wo € By, (0, £1(50)).

Proof. First, we recall the conditions satisfied by ¢g > 0 and &1 = £1(8) imposed in the proof of
Lemma 3.3(iii): cgg < %, ce1(8) < % and ¢§ < %. Moreover, we have that the constant ¢ > 0 can
be chosen big enough such that

IfI <ce®™ | fll  forany xeR, feH!, R H). (3.30)

Next, we choose §p > 0 such that c¢§y < %" From (3.22) and (3.30) we obtain that

[W(x, wo)| < %Oe“"" forany x e R, wo € By, (0, &1(80)). (3.31)
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It follows that there exists ng > 0 such that

[W(x, wo)ll <eo forany x € (—no,n0), wo € B, (0, £1(80))- (3.32)

From Lemma 3.5 and the definition of .4;, in (3.7) we have that
W, wo) = wo + fe(-, Py,wo) + ¥ T3f + Ty toPyf,  where f:= Ny oW(-, wp).  (3.33)

Since W(-, wg) € Hla (R, H), and hence f € Hla (R, H), from Lemma 2.12(ii) we infer that
W(-, wp) satisfies the equation

AW (x) = Q' (@w(x) +f(x) forany xeR. (3.34)

Sincg the cut-off function p is identically equal to one on [—1, 1], from (3.8) and (3.32) we have
that f(x) = B(W(x, wp), W(x, wp)) for any x € (—no, no)._From (3.34) we conclude that W(-, wop)
is a solution of equation (3.1) on (—no, no) for any wg € By, (0, £1(d0)), proving the lemma. O

We are now ready to introduce the center manifold defined by the trace at x = 0 of the fixed
point solution W(-, wo):

M ={W(0, wo) : wo € By, (0, £1(80))}- (3.35)
Lemma 3.7. Assume Hypotheses (HI) and (H2). Then, the following assertions hold true:

(i) Pew(0, wo) = wo for any wo € B, (0, £1(50));
(ii) 4. = Graph(_#;), where Z.: By_(0, £1(80)) — Hs ® Hy, is the function defined by

He(wo) = Iy — P)w(0, wo). (3.36)

Proof. (i) From (2.48) and (2.57) one can readily check that

P.I'3=T43, P.T4v=0foranyv e v, P.fe(x,v)) =xE (I — E()_ng,E)vl (3.37)

for any x € R, vy € V;. Multiplying by P in (3.33) and since (7 £)(0) =0 for any f €
L%a (R, H), we conclude that Pew(0, wo) = wo for any wy € By, (0, £1(8¢)). Assertion (ii) fol-
lows immediately from (i). O

Remark 3.8. Up to this point we could as well have used contraction of the fixed-point mapping
in Lz_a (R, H) and boundedness in H! o (R, H). This gives (by continuous dependence on param-
eters of contraction-mapping solutions) L2_a (R, H) Lipschitz continuity of W with respect to wy,
and boundedness in Hla (R, H), yielding Cg/ 2(R, H) Holder continuity of _# by the Sobolev
embedding || £(0) > SN2 If N2 - Contraction in %, g(H), based on Lemma 3.3(iv), is
used to obtain Lipschitz and ﬁiigher reg_;[illarity.
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3.2. C* smoothness of the center manifold

Our next task is to prove that the manifold . is smooth by showing that the function
S : By, (0, £1(80)) — EH{ .1 (0, 80) defined by X (h) =W(-, h) (3.38)

is of class C¥ in the Z,.p(H) topology, for some appropriate weights  and 8. To prove this
result, we first prove that the function 3¢ is of class C' and we find a formula for its first order
partial derivatives. Building on this result, we then prove higher order differentiability using the
smoothness properties of substitution operators studied in Appendix A.

Our argument follows that used in [32] ([34]) to establish smoothness of center-stable (center)
manifolds in the usual Cy, setting, using a general result on smooth dependence with respect
to parameters of a fixed point mapping y = T'(x, y) that is Fréchet differentiable in y from a
stronger to a weaker Banach space, with differential 7), extending to a bounded, contractive map
on the weaker space [32, Lemma 2.5, p. 53] ([34, Lemma 3,p. 132]). As the details are sufficiently
different in the present H' setting, particularly for higher regularity, we carry out the argument
here in full.

First, we note that the function X is Lipschitz in the Z,, g(IH)-norm.

Lemma 3.9. Assume Hypotheses (H1) and (H2). Then, the function X satisfies
IBe(h1) = Zcha)ll 2, , < clhi —hall  forany hi, ha € By, (0, £1(5)). (3.39)

Proof. Since X.(h) = Fc(-, h) + A5, (2c(h)) for any h € EHC (0, £1(8p)), from Lemma 3.3(iv)
we obtain that

[Zc(hy) = Ze(h)ll 2, 5 < I Fe( h1) — Fe( ho)ll 2, 4 + 146 (Be(h1)) — A (Be(hi)ll z, ,
=cllhr = hall +c(eo + 80) [ Xc (1) — Ec(h2)ll 2, 4 (3.40)

for any hy,hy € EHC(O,el(So)). Since cgy < }1 and cdg < %, (3.39) follows shortly from

(3.40). O

Lemma 3.10. Assume Hypotheses (H1) and (H2) andlet 0 <a <y < B < %l)()/o, Eo) be three
positive weights satisfying the condition 2a <  — y. Then, the function ¢ is of class C' in the
25,28 M) topology.

Proof. Since the function f; is a bilinear map from R x H to H], from (3.5) we infer that
the function h — F.(-, h) : He — Hla (R, H) is of class C*°. (3.41)

Since the cutoff function p is a function of class C*° with compact support and B is a bilinear

map on H, from (3.8) we have that the function N, is of class C* on H and supj, g ||N,3(({) ] <
oo for any j > 0. Since X~ € B(Z5,,25(H)) by Lemma 2.6, from Lemma A.1 it follows that the
function 4%, is of class C ! from %, p(H) to 25, 25(H). Moreover, the linear operator Jig:) f)

can be extended to a bounded linear operator on &, g(H) for any f € B H! (R.H) (0, 8p). Since
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Y.(h)=WwW(,h) € Hla(]R, H) and ”Zc(h)”Hl <dp forany h € EHIC (0, €1(8p)) by Lemma 3.5,
from (A.3) and (A.4) we have that

, 1
A2 (Bl 22, ) = 500’(2111% 1Nz (WD) + ﬁ(zuﬁ 1Nz, (1) < c(e0 +80) < 7 G42)
€ €

for any & € EHC (0, €1(80)). Doubling the weights y and B, we note that the linear operator
Jlg(’) (Xc(h)) can be extended to a bounded linear operator on 25, »4(H) and

1 —
A% (Be (M) | (25, 1)) < 5 forany i € By, (0, £1(30))- (3.43)

Claim 1. X, is differentiable in the By, (0, £1(80)) — 2%, 24 (H) topology and

BL(h) = (1 - %g(zc(h)))_lah Fe(-.h) forany he By, (0, ¢ (50)). (3.44)

First, we fix hg € §HC(O, €1(80)). Since 4z, is of class C! from Z, p(H) to 25, 25(H) by
Lemma A.1, we have that there exists %, : H, (R, H) — 2%, 25(H) such that

Koy (f) = 0in 25, 2p(H) as H' (R, H) > f — Sc(ho) in 2, 5 (H)
Neo (f) = Ny (Ze(ho)) +</1§(’)(Ec(ho))(f —Ze(ho) + I f — Zc(ho)ll 2, ,%eo (f)
(3.45)

for any f € Hia (R, H). Since X.(h) € Hla (R, H) is a solution of equation w = J, (k, w) for
any h € By, (0, £1(80)) we have that

Ze(h) = Ze(ho) = Fe(- h) + Ay (Ec(h)) — Fe(-, ho) — Az (Ec(ho))

= Fe(-, h) — Fe(-, ho) 4+ Ay (B (h0) (Be () — Zc(ho)) + | Zc(h) — Ze(ho)ll , ;Koo (Ec(h))
(3.46)

for any h € EHC (0, £1(80)). From (3.42) and (3.43) we infer that / — ,/%(EC (h)) is invertible

—1 _
on %, 24 (H) and (1 - thg(zc(h))) %, 5(H) = %, 4(H) for any h € By, (0, 1 (8)). From
(3.46) we obtain that

-1
Ee(h) = Zelho) = (1 = A (Ee(ho))  (Felo ) = Fel:, ho) )
-1

+ 15t = Seho)ll 2, (1 = A (Belho)) Beo(Seh))  (BAT)

for any & € EHC (0, £1(8p)). From Lemma 3.9, (3.42), (3.43) and (3.47) we obtain that
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Be(h) =Ze(ho) — (1 = A (Ze(ho)) 718hFc(" ho)(h — ho)
| ( )

Z2y.28

= | (1= A Eethon

Fe(eo 1) = FeCes o) = 3 FeCe, ho)(h = ho)|

—1
) Hg@(g@_ﬂ) ‘ Zyp

tmem —zem |, (1A eo)

(B (Zeh))|

%(%%2/3)‘
<2 Fey ) — Fole, ho) — O Fe ho)(h — o)l 2, , + 211k — holl | Beg (B () 25, »,

2.8 H Zay08

(3.48)

forany h € EHC (0, £1(80)). From (3.39) and (3.45) we infer that limp,_, p, | Zs, (2c(h)) ||g:2%2/8 =

0. From (3.41) and (3.48) we conclude that X is differentiable at h¢ in the EHC 0, £1(80)) —
%5, 2 (H) topology, proving Claim 1.

Claim 2. X, is continuous from B, (0, £1(80)) to B(He, 23y 2 (H)).
We fix again hg € EHC (0, £1(8p)). From (3.44) we have that

-1 -1
S = =0y = (1= A (Beth)) = (1= A (Selho)) ) 9nFet:, ho)
-1
(1= A (Ee)) (00 Felco ) = 04 Fe, o))
-1 , , -1
= (1= A (Ee)) (A (Eeth) = A (Seho)) ) (1 = Azf (Belho))) el ho)
-1
(1= A (Ee)) (00 Felcs ) = 04 Fe o)) (3.49)
forany & € EHC (0, £1(80)). From (3.42), (3.43) and (3.49) we obtain that

IS0 — Selho) | 2, 25, 0 < 2000 Feo 1) — 3 e, ho)l| (i1, 23, 29)

2 (A et — A (Dot ) (1= A Selho))) el o)

PBMc, %5y 28)
< 4”%)@@)) — A (Se(ho))

0 Fe(-. o)
33(%,5,,%%2,3)” WP pme, 2, p)
+ 2[00 Fe (- ) — 83 Fe (- ho)ll pa,. 23,55y forany € By, (0, £1(80)).- (3.50)

Since the function .4, is of class c! by Lemma A.1, from (3.39) it follows that

Jim A2 (Ze() = A (Ee o)) 0. (3:51)

B(Zy.8. 22y ,28) N

From (3.41), (3.50) and (3.51) we conclude that X, is continuous at /¢ in the FIHIC 0, £1(80)) —
B(He, 25,24 (H)) topology, proving Claim 2 and the lemma. O
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Next, we focus on proving the higher order smoothness of ¥ using (3.44) and Lemma A.2.
Since the function 7 — F.(-, h) : H. — Hla (R, H) is of class C* as pointed out in (3.41), we
need to study the smoothness properties of the operator valued function (I — ,/1@(’) o)7L

Lemma 3.11. Assume Hypotheses (HI) and (H2). Then, there exist y < E < %v(yo, Ey), such
that the function A, o X and the function

-1 _
h— (1 - ,/ng(xc(h))) B, (0, £1(80)) = B(Zsy 26 (), Z5 5(HD) are of class C".
(3.52)

Moreover, the following formula holds true:

o, (1 - ch(zc(h»)*l =(1- e/@g@c(h)))*lahm;(zcm))(l = «/Vg(’)(zc(h)))*l. (3.53)

Proof. Since Ny, is a function of class C* on H, we have that N;O H — Z(H) is of class
C*. Moreover, since the cutoff function p has compact support, from (3.8) we obtain that all the
derivatives of Ng, are bounded. Hence, the function N, satisfies the conditions of Lemma A.2
for p = 0. It follows that the function % : 25, 25 (H) — %(ffzy’zlg (H), Z,, 5, (H)) defined by

(P1()z)(x) = N[ (f(x)z(x) for f,z € 2, g(H), x €R (3.54)

is of class C!, where y; =48 + 2y and B; = 88. We note that 8| — y; > 28 — 2y > 2a.
Moreover, the weights «, 8 and y can be chosen small enough such that 81 < %V(Fo, Ep). Since
Jlg(’)(Ec(h)) = A W1 (Xc(h)) for any h € By, (0, £1(80)), # € B(Z,, 5, (H)) by Lemma 2.6
and Lemma 2.11, and X is of class C! by Lemma 3.10, we conclude that

N 0 T is of class C' from By, (0, £1(80)) to B(Zy.25 (M), 25, p, (H)). (3.55)

Since the function .4,/ o X is of class C! only in the weaker (25, 25(H), %, p, (H)) topol-

ogy, rather than the (%%2,3 (]HI)) topology, we cannot infer (3.52) immediately. To overcome
this issue, we use the fact that for any two bounded operators S;, j = 1,2, with ||S1|| < 1 and
IS2]] < 1 we have that

=S~ === =S)7'S1 = SHU = $»7". (3.56)
Moreover, we need to adjust the weights accordingly. Therefore, we introduce y; and B, j =
2,3, by the formula y; =28;_1 + yj—1 and B; =481, for j =2,3 and set yp := 2y and

Bo =28. We note that 3 — y3 > B2 — v» > B1 — ¥1 > B — ¥ > 2. The original weights o, 8
and y can be chosen small enough such that 83 < %U(Fo, Eyp).

Claim 1. The function

-1 _
h— (1= A Eeh)) B 0,1 (0) > B(Z,., (). 5,15, (D)
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is continuous for any j =0, 1, 2. Arguing similar to (3.42), we have that the constants &y > 0
and &g > 0 can be chosen small enough such that %6 (Z(h)) can be extended to a bounded linear
operator on £, g, (H) and

1 = .
II%Q(Zc(h))II%Q;j_ﬂj ) = 5 forany h € By, (0. £1(30)). j=0.1.2.3. (3.57)

From (3.56) one can readily check that

—1

(1= A @) = (1= A et
= (1= A @) (A Eelh)) = A Eetho))) (1 = A (Selhon) B58)

forany h € EHC (0, £1(80)). From (3.57) and (3.58) we obtain that

—1

I — A (Zc(h)) - — N (Be(ho))
I( )

<
ﬂ(gyjﬁj ‘gyj+1vﬁj+l)
< 4”/’ (Ze(h)) — A (Seho)) (3.59)
0t i ‘%(%j»ﬁjv‘@ﬂl/jﬂ,ﬁj“

for any h, hg € EHC (0, £1(8p)). Since the function Ji@é o X is of class C!, as shown above,
Claim 1 follows shortly from (3.59).

Claim 2. The function
-1 _
b= (1= A () B0, 160) > B(Zy,.5,ED, 25,5, (D)

has partial derivatives for any j = 0, 1. Moreover, (3.53) holds true. Fix j € {0, 1}. Let {e;}, be
a basis in H and s € R small enough. To prove Claim 2 we set h = ho + se¢ in (3.58) for s e R
small enough and pass to the limit as s — 0. Indeed, from (3.55) we obtain that
1
(A (Belho + se0)) = A7 (Ze(ho))
— Op, (,/1{9(/) 0 ¥¢)(ho)ass — 0in %(fyj,ﬁj (H), f}’j+lyﬂj+l (H)). (3.60)

Moreover, from Claim 1 we infer that

(1= A (Beho + sez))>_l

0

-1
= (1= A (Seho))  ass = 0in B( Ly, 100 D, 2y, (). (B61)

-1
In addition, from (3.57) it follows that (1 — Jig(’) (Ec(ho))) € B(Z,, p; (H)). Summarizing, it
is now clear that Claim 2 follows shortly from (3.60) and (3.61). To finish the proof of lemma, we

prove that the partial derivatives of (1 — JVS(/) o ¥¢)~! are continuous. We set 7 := 3 and E = .
Passing to the limit for # — hg in (3.53), the lemma follows from (3.55) and Claim 1. O
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Lemma 3.12. Assume Hypotheses (HI) and (H2). Then, for any integer k > 2 there exist y <
B < %v(yo, Ey) such that the function X is of class ck from By, (0, £1(80)) to Q%’E(H).

Proof. From Lemma 3.11, (3.41) and (3.44) we can immediately check that the function X is of
class C? from EHC (0, £1(80)) to ff% E(H) for some weights E > ¥ > 0, satisfying the conditions
¥y > a and E < %v(yo, Eo). Next, we assume that . is of class C/ from EHC 0, £1(80)) to
2”77’5(]}]1) for some j > 2 and some weights y < E < %v(yo, Eyp). To prove the lemma, we show

that from this assumption we can infer that the function X is of class C/*! for j <k — 1.
Since the function N, defined in (3.8) is of class C*° it follows that for any 2 <m < j the
function L,, : H" — % (H) defined by

(Lm(h1 ha, oo h))g = NI () (ha, .. b, 8) for g hy b, . by € H (3.62)

is of class C°°. Moreover, since the cutoff function p is of class C*° with compact support, we
have that supy, .y ||Ng(§)(h)|| < oo for any £ > 0, which implies there exists a positive integer p
and ¢y > 0 such that

ILO (hy, hay e k) | < cell(hyy b, oy o) | fOT any By, b, o by € HL £=1,2. (3.63)

From Lemma A.2 we obtain that there exist two weights 0 <y < B such that the function %, :
%y g(H™) — B(Z; 5(H), Z, 5(H)) defined by

(W (H)2) () = L (f (x))z(x), for f € Z5 5(H"), z € Z5 5(H), x €R, (3.64)

is of class C'. The original weights , 8 and y can be chosen small enough such that g <
%v(yo, Eg). We recall that %Q(Ec(h)) =W (Zc(h)) for any h € EHC (0, £1(80)), where #
is defined in (3.54). Therefore, the partial derivatives of .4;, o ¥ can be expressed in terms of
Wy, 2 <m < j and the partial derivatives of X. Since % € C%’(QP?’B(H)) by Lemma 2.6 and
Lemma 2.11, we infer that all partial derivatives of order less than j of the function JI/S:) o X
are of class C! from EHC (0, £1(80)) to @(gV,E(H)’ ff?,B(H)). Hence, the function Jgg I
is of class C/*! from EHC (0, 1(80)) to ,@(3‘}75(}1{), 3’,‘47’3(]1-]1)). By modifying the choice of
the original weights ¢, 8 and y once again, arguing similar to Lemma 3.11 and taking partial
derivative with respect to & € H in (3.53), we have that the weights 7 and B can be chosen such
that the function

h— (1 —%g(zc(h)))_l : Bz, (0, 1(50)) — B(Z5 5(H), 2, 5(H)) is of class C/*'. (3.65)

From (3.44) and (3.65) we conclude that X is of class C/*! from By, (0, £1(80)) to %, 5 (H).
The lemma follows by repeating the argument above a finite number of times. 0O

Using Lemma 3.12 we can finally conclude that the center manifold . is of class CX. Indeed,
since the linear operator Tracey : Q‘%E(H) — H defined by Tracep(f) = f(0) is bounded, from

(3.35) and (3.38) we conclude that ./ is of class ck.
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Remark 3.13. We note that the iteration used to prove higher order regularity of the center man-
ifold (Lemma 3.12) can be applied only finitely many times. The main reason is that at each step
of the iteration we need to readjust the original weights o, B and y such that 8 < v(I'g, Eo).
Since the weights increase by a factor of at least 2 every time we make the adjustment, after j
steps the new weights are bigger than ¢(2/), thus becoming greater than v(I'g, E) after finitely
many steps. It is for this reason that our argument yields C¥ regularity for arbitrary but fixed k
rather than C°.

3.3. Invariance of the center manifold

To finish the proof of Theorem 1.4 we need to prove that the center manifold . is invariant
under the flow of equation (3.1) and to prove that it is tangent to the center subspace H at the
equilibrium u.

Lemma 3.14. Assume Hypotheses (H1) and (H2). Then, the manifold . is invariant under the
flow of equation (3.1), in the sense that for each element of M there exists a solution of (3.1)
that stays in M. in finite time. Moreover, the manifold /. is tangent to the center subspace H
at u.

Proof. Fix y € .. Then, from (3.35) it follows that there exists wg € EHQ (0, £1(80)) such that
y = W(0, wp). From Lemma 3.6(ii) we know that W(-, wg) is a solution of (3.1) on (—ng, n9).
Therefore, to prove the lemma it is enough to prove that w(x, wg) € . for x in a neighborhood
of 0. Our strategy is to show that for any xo small enough there exists wo(xp) € EHC (0, £1(80))
such that W(- + xg, wo) = W(-, wo(xp)). First, we note that

(F Hog (- +x0)) (@) = (F (H08)(- +x0)) (©) = T 2miwly — E) '§(@)  (3.66)

forany w e R, g € S (R, \7), the Schwartz class of V-valued functions on R. It follows that
(H08)(- + x0) = Hog(- +x0) forany ge L2, (R, 7). (3.67)

Similarly, one can readily check that

(Y IC+x0) =V (f(+x0))+ (¥ f)(xo) forany feL?, (R H). (3.68)
Since X f =V T3 f + T4 Py f forany f e L%a (R, H) from (3.67) and (3.68) we obtain that
(K )+ x0)=H(f(-+x0) +T3(¥ f)(xo) forany feL?, (R H). (3.69)

Since W(-, wo) is the unique solution of equation w = 7, (wo, W), from (3.69) we have that

W(x + x0, wo) = Fe(x 4 x0, w) + (& Ny (W(-, wp))) (x + x0)
= Fe(x 4 x0, wo) + (S Ney(W(- + x0, w0))) (x) + T3(¥D)(x9)  (3.70)

- W 2
for any x € R, where f = p(%)B(W(-, wo), W(-, wo)). Since wg € He = V+ @ V. from
(2.43) we have that Pywo = —Eal P E Py, wo. From (2.58) we obtain that
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felx,wo) =xE1(I — Ey ' PyE) Py, wo = x E (Py, wo + Pgwo) = x Ey Pywy for any x € R.
(3.71)

Moreover, from (3.5) we have that

Fe(x + x0, wo) + T3(¥ D (x0) = wo + x0 E1 Pywo + [3(¥ ) (x0) + x E1 Pywo (3.72)

for any x € R. Since imE| C ker Ay, imI'3 Cker Aj; and ker A1) C VL C H,, we infer that

Wo(x0) 1= wo + X0 E1 Pywo + I3(¥ ) (x0) e He  and  Pyio(xo) = Pywy. (3.73)

From (3.71), (3.72) and (3.73) we conclude that

Fe(x + x0, wo) + T3(¥£) (x0) = Wo(x0) + x Ey Pyibo(xo) = Fe(x, Wo(x0)) (3.74)

for any x € R. From (3.70) and (3.74) we infer that W(- + xg, wg) is a solution of equation
w = T, (Wo(xp), W). Since limy, 0 Wo(xo) = wo € By, (0, £1(80)) it follows that there exists
vg > 0 such that wo(xo) € Bw, (0, £1(8p)) for any x¢ € (—vg, vg). From Lemma 3.5 we obtain
that

W(- + X0, wo) = W(-, Wo(xo)) for any xo € (—vo, vo), (3.75)

which implies that W(xg, wg) = W(0, Wo(xp)) € 4. for any x¢ € (—vp, vp), proving that the
center manifold ./ is locally invariant under the flow of equation (3.1).

To prove that the manifold ./ is tangent to the center subspace H, at u, it is enough to
show that _#/(0) = 0. By uniqueness of fixed point solutions, we immediately conclude that
w(-, 0) = 0. Moreover, since Néfo (0) = 0 and the function H > wo — fc(-, Py, wo) € Hia (R, H)
is linear, from (2.58) we infer that

(3weW(-, 0)) (wo) = wol + fe(-, Py, wo) (3.76)
for any wo € Hc. Since imE; € V4 and ¥V C 'V, it follows that

(8wOW(O, O))(u)o) =wo + fc(0, Py,wo) =wp forany wpeH,. 3.77)

From (3.37) and (3.77) we conclude that (/C’(O))(wo) = 0 for any wg € H, proving the
lemma. O

Proof of Theorem 1.4. Summarizing the results of this section, Theorem 1.4 follows shortly
from Lemma 3.7, Lemma 3.12, and Lemma 3.14. To finish the proof of the theorem we need
to show that the center manifold . contains the trace at 0 of any bounded, smooth solution
ug of equation (1.2) that stays sufficiently close to the equilibrium u. Indeed, in this case one
can readily check that wyp = ug — u is a bounded, smooth solution of equation (3.1) that is small
enough. It follows that Ny, (wo(x)) = B(Wo(x), wo(x)) for any x € R. From Lemma 2.12(i) we
obtain that wo = Pcwo(0) + fc(-, Py, wo(0)) + JZ Ng,(Wo), that is wy is a solution of equation
w = 7, (P-wo(0), w). From Lemma 3.5 we infer that wo = W(-, (P.w0(0)). Since P.wp(0) € H
is small enough, we conclude that wo(0) € .Z., proving the theorem. O
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4. Approximation of the center manifold

Similarly as in the usual (nonsingular A) case, the center manifold may be approximated to
arbitrary order by formal Taylor expansion.

4.1. Canonical form

By the invertible change of coordinates

uy — (Tt + EyEy 'To)
We = I?l(Ic}—EalP@E)vl . wh=0+E; PyEv, .1
i+ A A3+ Ey ' PyEvy)

w, and wy, parametrizing center and hyperbolic subspaces, we reduce (3.2) to canonical form:

wé = Jwe + g,
4.2
{Fow}’1=Eowh+gh’ 4.2)
0o I O
where /=| 0 0 0 | is a nilpotent block-Jordan form, r = dimker A, and
0 0 O
_ _ T T
gC:((ElEOIP@f—F(T]*Z) 1PV|f) 7050) s gh:P@f 4.3)

Here, we have used the fourth equation of (3.2) to express v = E;’ ! (Tt — PgEv) — Pg f), then
substituted into the first equation to obtain

(w1 — (T + E1Ey 'To)d) = E1(d — Eq ' Py Eyvi + (E\Ey ' Py f + (Ti5) ™ Py, f).

The key point in showing bounded invertibility is to observe that the coefficient Ej(Id —
Ey ! PgE) of vy in the second component of w. may be expressed as a bounded, boundedly
invertible operator (Tf"z)_1 applied to

-1
(Pv,Ev, — Py, EgEy PgE,),

En En
EY, Ex
Ei1—Ep E2_21E 12> which is symmetric negative definite as a minor of the symmetric negative
definite operator

E“—Elez_zlEikz 0 _ 1d —E12E2_21 En Ep Id 0 @.4)
0 Exn 0 Id E}, En||-ER'EX 1] '

which, writing E = |: ] :V+ @V — VL @V in block form, may be recognized as
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Remark 4.1. We record for later use that the tangent subspace at (u, v) = (¢, 0) to the equilib-
rium manifold & = {(u, v) € V+ @ V: Q(u, v) = 0} is given in the new coordinates by

we=(¢1,0,¢), wh=0, (4.5)

as can also be seen directly by computing the subspace of equilibria of (4.2) with g =
(gC7 gh) = O

4.2. Taylor expansion

From the canonical form (4.2), the computation of the formal Taylor expansion for the center
manifold goes exactly as in the usual (nonsingular A) case. Taking f = B(u —u,u —1u) in (4.2),
we recover the original nonlinear system (1.1), with g comprising quadratic and higher order
terms in (wc, wy). Expressing wy = E(w,), substituting into (4.2)(ii), and applying (4.2)(i), we
obtain the defining relation

) E/(wc)(-]wc + 8c) = EoE(we) + &h. 4.6)

Here g. and g, are obtained by solving for u = (u1,#,v(,v) in terms of (wc,wy) in
(4.1) and plugging in f = B(u — u,u — u) in (4.3). Inverting Eg we obtain that E(w.) =
Ey ' (To& (we)(Jwe + go) — gn)- This gives E(we) — Ey ' To& (we)Jwe = Ey ' ge((we, 0))
modulo higher order terms in w¢, from which me may successively solve for the coeffi-
cients of the Taylor series of E. For example, in the simplest case J = 0, this becomes just
E(we) = Ey lgc((wc, 0)) plus higher order terms. We omit the (standard; see, e.g. [9]) details.

4.3. Center flow

The center flow, given by the reduced equation

w(/; = Jwe + ge(we, E(we)), 4.7)

may be approximated to any desired order k in powers of ||w.|| by Taylor expansion of Z to order
k — 1. In practice (as will be the case here), it is often sufficient to approximate the flow only to
order k = 2 in order to perform a normal-form analysis well-describing the flow, in which case it
is not necessary to compute E at all, being that the k = 1 order approximation of Z is just 0.

4.4. Relaxation structure

The discussion of approximation (and indeed all of our analysis) up to now has been com-
pletely general, applying equally to any system of form (4.2), not necessarily originating from a
system of form (1.1). We now make two substantial simplifications based on the special structure
of (1.1). The first is to note that, encoding the conservative structure of the system, coordinates
we,2 and w3 are constants of the flow, hence may be considered as parameters. This reduces the
center flow to an equation on an r-dimensional fiber indexed by w1, r = dimker Ay, a consid-
erable simplification. For related observations, see the treatment of existence of small amplitude
viscous and relaxation shock profiles in [20,21].



6792 A. Pogan, K. Zumbrun / J. Differential Equations 264 (2018) 6752—6808

The second, using (4.5), Remark 4.1, is that by shifting the base state of our expansion along
the equilibrium manifold, we are able to arrange without loss of generality w¢ 3 = 0, so that we
obtain, ultimately, a family of r-dimensional fibers

w(/;’] = é‘ +¢(wc,17 é‘)’
¢ (we1,¢) = ge1((we,1,¢,0), E(we,1,¢,0)) = O(lwe 1117, 12117 (4.8)

indexed by the r-dimensional parameter { := w, ». In the simplest nontrivial case r = 1 (treated
in Section 5.1), this amounts to a one-parameter family of scalar equations. Taylor expanding
(4.8), we have that g¢ 1 (wc,l ,0,0), 0) = wzlxw0’1 + O (||we1 I1?), for some x € R, which shows
that the normal form (in all cases) is given by

wi = ¢ +wlxwe,t + Olwe | + lwe IHIE 1+ 121%). (4.9)
5. Bifurcation and existence of small-amplitude shock profiles

Using the framework of Section 4, it is straightforward to describe bifurcation from equilib-
rium, or near-equilibrium steady flow, in the cases (GNL) and (LDG) discussed in the intro-
duction: in particular, existence of small-amplitude standing kinetic shock and boundary layer
solutions.

5.1. Bifurcation from a simple, genuinely nonlinear characteristic

We first treat the case (GNL), starting with normal form (4.9), by relating the constants ¢
and x to quantities occurring in the equilibrium problem (CE)), using the principle that, since
equilibria of (1.2), (CE»), and (CE) all agree, the normal forms for their respective equilibrium
problems must agree (up to constant multiple) as well. More elaborate versions of this argument
may be found, e.g., in [20,21].

Proof of Theorem 1.5, case (GNL). First, note that T|v; in the original coordinates of (2.12)
is exactly the first component ¢g; of ¢ in (CE;), or v = Tl_zlql. Substituting this into the second
component of (4.1), we find after a brief calculation that { = w¢ 2 = —%_lqn where

) = (T Py EQd = (Eg) ™' Py E)(T1) ™, (5.1)

. . _ E E
or, in the notation of (4.4), »x = —=T12(E11 — E12E221 E21)_1T1*2 > 0, where E = |: 11 12:|

Ex; En
V+ @V — V+ @ V. Using the block-matrix inversion formula

-1 _ _ _ _ _
[En E12:| _ [ (E1 — E12E221E21) ! —(E11 — E12E221E21) 1E12E22]}
Ey  Exn —(Exy — Ey Ej'Epn) "' En  Ef (Exy — Ey Ej'Epp) ™!

(5.2)

(verifiable by multiplication against E, or inversion of relation (4.4)), we find alternatively that
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T -1
n=—e; ApE ATzel,

e1 the first Euclidean basis element, or, using ¥ = ey, » = r’ D,r, with D, as in (CE»).
Using the first component of (4.1) to trade we,j for u; by an invertible coordinate change
preserving the order of error terms, we may thus rewrite (4.9) as

why = N—q1 +xxud) + O(ur P + lurllgi | + 1q11%), (5.3)

where x x is yet to be determined. On the other hand, performing Lyapunov—Schmidt reduction
for the equilibrium problem (CE/), we obtain the normal form 0 = (—q; + %Au%) +O0(u1]? +
lutllg1| + |g11?). Using the fact that equilibria for (1.2) and (CE) agree, we find that x y must
be equal to %A, yielding a final normal form consisting of the approximate Burgers flow (1.9). A
similar computation yields the same normal form for fibers of the center manifold of the formal
viscous problem (CE»); see also the more detailed computations of [20] yielding the same result.

For g1 A > 0, the scalar equation (1.9) evidently possesses equilibria ~ F+/2¢1 /A, connected
(since the equation is scalar) by a heteroclinic profile. Observing that sgnu| = —sgn A for u;
between the equilibria, so that ()L(u))/ ~ Au’1 has sign of —AZ% < 0, we see further that the
connection is in the direction of decreasing characteristic A(x), hence a Lax-type connection for
(CE)); for further discussion, see [20,21]. O

5.1.1. Comparison to Chapman—Enskog profiles

We perform the comparison of profiles of (1.2) and (CE») in three steps, comparing their
primary, 11, coordinates to a Burgers shock, then to each other, and finally comparing remaining
coordinates slaved to the fiber (1.9).

Lemma 5.1 ([17,25]). Let n € R! be a heteroclinic connection of an approximate Burgers equa-
tion

1
%n’=§A(—€2+n2)+S(8,n), S=0(nP +eP) e C*T'(R?), k>0, (5.4)

and 7] := —stanh(Aex/2x) a connection of the exact Burgers equation x7) = %A(—e2 + 72).
Then,
ne — | < C€?,
15 (77 = ) ()| ~ " e e >
X

}a)]c(((” —nx)—(— ﬁi))(X)’ < Cekt2p—delxl

0, §>0, (5.5)
20,
uniformly in ¢ > 0, where n+ := n(£00), n+ := 1(00) = Fe denote endstates of the connec-

tions.

Proof. (Following [17]) Rescaling n — n/e, x — Aex /B, we obtain the “blown-up” equations
1 ~ -
=20 =D+eSme) §eCI®Y

and 7’ = %(ﬁ2 — 1), for which estimates (5.4) translate to
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[N+ — n+| < Ce,
1087 — 1) ()| ~ Ceke X, x =0, 6>0, (5.6)
195 ((n — 1) — (1 — i10)) ()| < CeF el x>0,

The estimates (5.6) follow readily from the implicit function theorem and stable manifold theo-
rems together with smooth dependence on parameters of solutions of ODE, giving the result. O

Setting g1 = A82/2, and either n = uggr,1 or n = ucg,1, we obtain approximate Burg-
ers equation (5.4), and thereby estimates (5.5) relating n = urgr.1, Uck.1 to an exact Burgers
shock 7.

Corollary 5.2. Let u € ker Q be an equilibrium satisfying (H1)—(H2), in the noncharacteristic
case (GNL), and k and integer > 2. Then, local to U (i), each pair of points uy corresponding
to a standing Lax-type shock of (CE1) has a corresponding viscous shock solution ucg of (CE»)
and relaxation shock solution uggp = (UrgL, VREL) of (1.2), satisfying for all j <k — 2:

0 (urEL1 —uk g, DO ~Cele ™ x =0, 6>0,
‘ ’ _ (5.7)
10 (urgr.1 —uce.1)(x)| < Ce/tle ¥ x>0,

Proof. Immediate, by (5.6), Lemma 5.1 and the triangle inequality, together with the observa-
tion that, since equilibria of (CE), (CE,), and (1.2) agree exactly, endstates uf EL1= udcE E1

agree. O

Proof of Corollary 1.6. Noting that the imA; and the V components of uggy, are the C ! func-
tions W(uprer.1), Prer,1) of urer,1 along the fiber (1.9), we obtain (1.11)(iii) immediately
from (5.7)(i). Denote by W¢ g the map describing the dependence of imA1; component of ucg
on ucg,1 on the corresponding fiber of (CE;). Noting that ¥ — W and @ — v, both vanish at
the endstates u}% EL.1> We have by smoothness of ¥, Wcp, ®, v, that

W —WcEl, |V —vi| =O(urer,1 — u-;Q_EL’lL lurREL1 —UREL 1Ds
giving (1.11)(1)—(ii) by (5.7)()-(i). O
5.2. Bifurcation from a linearly degenerate characteristic

Proof of Theorem 1.5, case (LDG). In the case (LDG), by an entirely similar argument, com-
paring to the normal form for the equilibrium problem (CE)), yields normal form (1.10). Here,
the main point is to observe that, in the normal form for (CE,), all terms, including higher-order
error terms, include a factor g, since in the fiber g; = 0 all points are equilibria. Evidently, each
q1-fiber is either composed entirely of equilibria, or contains no equilibria, hence there exist no
nontrivial profiles connecting to equilibria either in forward or backward x. O

6. Application to Boltzmann’s equation

We now specialize to the case Example 1.1 of Boltzmann’s equation with hard sphere collision
kernel.
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6.1. Existence and sharp localization in velocity of center manifolds

Let A, Q be as defined in Example 1.1 and Y as defined in (1.12), with A;;, I as in the rest
of the paper. We have the following result of [23].

Lemma 6.1 ([23]). Assume Hypotheses (HI1) and (H2). For Boltzmann’s equation with hard
sphere kernel and any 1/2 < o < 1, the linear operator E = Q'(My)|y, where My is the
Maxwellian defined in (1.8), and its inverse can be extended to bounded linear operators on
Yo NV.

Lemma 6.2. Assume Hypotheses (H1) and (H2). For Boltzmann’s equation with hard sphere
kerneland 1/2 <o < 1, H. C Y°.

Proof. The subspace Hl is the direct sum of the subspace of equilibria V+, equal to the tan-
gent space to the manifold & of Maxwellians, and the space V. defined in (2.43). The tangent
subspace to & at U is given by polynomial multiples of Mj, hence V! evidently lies in Y©.
Recalling that A is a bounded multiplication operator in £, we have that A can be extended to
a bounded linear operator on Y?. It follows that Y is invariant under the orthogonal projectors
associated to the orthogonal decomposition H =ker A1 @ imA; & V| & V. Moreover, we have
that Vi =imT7}5 =im(A21)|ker a,;, C Y. Fix v = (v1,7) € V.. Since Y7 is invariant under P,
from (2.43) and Lemma 6.1 we infer that v = —Eal Py Evy € YO, proving the lemma. O

Lemma 6.3. Assume Hypotheses (HI) and (H2). The Fourier multiplier Jt) = y_lMRFO,EO ZF,

associated to the operator-valued function Rr, g, : R — ,@@7) defined by Rr, g,(®) =
QriwTy — E¢)~!, is bounded on H! ,(R,Y° NV) forany 1/2 <o < 1 and a € (0, v(Iy, Ep)).

Proof. Fix a € (0, v(I'g, Ep)). The result for o = 1/2 has already been established, giving

I %08l @) <cllgly @ forany geH!,®R V). 6.1)

We use a bootstrap argument like that of [23, p. 677, Proposition 3.1] to extend to 1/2 < o < 1.
Namely, we use the fact, observed in [23, Section 2], that Q’(w) = M, + K, where M, is the
operator of multiplication by a real valued function bounded above and below and

1) 2K yllye <cll() " 2yllye forany ye ()!/2Y7. (6.2)
From Lemma 2.8(i) we have that J#g is the unique mild solution of equation (2.14) for any g €

H!, (R, V). Tt follows that u = (T'y #og + E1 ¥ .%og, —A1;, A12#og, 0, %0g)" € HL (R, H) is
a solution of the system (2.12), which is equivalent to the system (2.4) for f = g. We infer that

Au' = Q'(Mu+g. (6.3)

Recall that A is the multiplication operator by the real valued function a : R?> — R defined by
a(€) = &1/(&). Observing that the diagonal operator (M9, — M)~ is bounded on Hla (R, Y9),
and since Q' (W) = M, + K, from (6.3) we obtain that
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u= (M3 — M)~ (g + Ku). (6.4)

From (6.2) and (6.4) we obtain that

”u”Hia(R,Yﬁ) = c”gHHia(R,Y“ﬂV) + C”Ku”Hia(R,Y“)

< clgly @ yorm + el ™l g ye- (6.5)

Noting that (£)"1/2M7° (&) < $M;°(&) for |§] > C and some C > 1, and M;7(§) <
M;l/z(é) for |€| < C, we may rearrange (6.5) to conclude that

”u”Hla(R,Y") = C”g”Hla(R,Y"ﬂ@) + C”“”Hla(R,Yl/z) = C”g”Hla(R,Y‘fﬂ'ﬂ’) + C”“”[{la(R,Yl/Z)
=< C||g||Hla(R,YUﬂY\N]) + C”%g”Hla(R,Y\N]) + C”qf/%g”[{la(Rﬁ)

< C”g”H,'a(R,Y"ﬂ\\N]) + C”g”Hla(]R,V)' (6.6)

Since Pyu = J#g, from (6.6) it follows that

”%g”Hla(R,Y”ﬂV) =< C“g”Hla(R,Y"ﬁ\N/') + C”g”Hla(Rﬁ) (6.7)

Define now #° ~ Y? to be the space determined by mixed norm |y|lzo = ||yllye +
n|lyllyi/2, where n >> 1. Summing n times (6.1) and (6.7), we obtain [|Z0g|| ;1 R.INT) =
cliglyt ® ooni for n sufficiently large, yielding the result, finally, by equivalence of Y and
%°. O

Proof of Proposition 1.8. Similarly as in the standard case H = Y'!/2, the Volterra integral de-
termining the part of our fixed-point mapping is readily seen to be bounded on H! (R, Y?),
whence we may repeat our previous argument in its entirety to obtain existence of a center man-
ifold valued in Y9, as claimed. O

Remark 6.4. It is easily seen that the result .#Z. C Y, 1/2 <o <1 is sharp, even in the non-
characteristic case. For, consider the difference v(§) = e P’ _ e 1§ ‘2, 0 <60 < 1, between a
base point Maxwellian e~ ¢ ” and a nearby equilibrium consisting of a different Maxwellian

e~ with slightly slower decay in |£|. Evidently, v(&) ~ e~%1 ® for large &, whence v € Y?
butv ¢ Y.

6.2. Physical behavior
Specialized to Boltzmann’s equation, the observations on center manifold structure in Theo-

rem 1.5 have a number of interesting physical applications, for example to Milne’s problem and
condensation/evaporation phenomena [28-30]. See [18] for further discussion.’

3 Our analysis shows that assumption f even in &, &3 of [18], restricting dimker A1; = 1 in case (LDG), may be
dropped.
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Appendix A. Smoothness of substitution operators

In this section we study the smoothness properties in the mixed-norm spaces %, g(H) topol-
ogy of substitution operators ./ : B o ®m(0,8) > H ! (R, H) defined by

(N (H)X)=N(f(x), xeR, feH (R H). (A.1)

Here N : H — H is a bounded, nonlinear C* function on H, whose derivatives are bounded.
Moreover, the weights « > 0, 8 > 0 and y > 0 satisfy the conditions of Lemma 3.3, namely
O<a<y<pfand0<2a<p—y.

Lemma A.1. Assume N : H — H is a C* function on H such that supj,cp INGD (h)| < oo for

any j > 0. Then, the substitution operator . defined in (A.1) is a C' function from Z, sMH)
to 25y 2p(H). Moreover, N "(f) can be extended to a bounded linear operator on Z,.pM) for

any f € EHla(R,H)(O"S)'
Proof. We fix fj € EHL,(R,]H[) (0, 8) and we define Ty : 25, g(H) — 2, 5(H) by
(Tox)(x) = N'(fo(x)z(x), x€R, ze€ Z, g(H). (A.2)

Claim 1. Ty is well-defined and bounded on 2, g(H). Since N’ is a bounded function on H
one can readily check that [|(Toz) (x)[| < [IN'(fo()| IzGo)[l < sup,egr [N (B [1z(x)]| for any
x e Rand z € Z, g(H), which implies that

Toz € LQ_Y(R, H) and ||TOZ||L2y <sup |[|[N'(h)|| ||z||Lzy for any z € Z,, g(H). (A.3)

- heH B

Next, we note that Tz € HILC(R, H) and (Tpz) (x) = N”(fo(x))(fé(x), Z(x)) + N'(fo(x)Z' (x)

for any x € R and z € 2, g(H). Since the functions N" and N” are bounded functions on H and
20 < B — y from (3.12) we obtain that

/ e 2B | (Tyz) ()Pl

R
<2sup [N"()|? / e 2P f Pz 1Pdx + 2 sup [N' (W11 »
heH heH -B
R
= (2sup IN" ()12 / e~ FM fi ) Pax + 2 sup IN'()12) 21, ,
heH heH ’
R
" 2 2 / 2 2
= (25up IN"MIP1fol% +2sup IN' Izl ,
heH o heH ’
< (267 sup IN" ()| + 2 5up | N ()1 21, , < o0 (Ad)

heH heH

for any z € 2, g(H), proving Claim 1.
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Claim 2. ./ is Frechet differentiable at f; in the (fé"y, s, 23, 24 (H)) topology and A ( fp) =
Ty. Since N is a C* function on H we have that

1
N(h1) = N(ha) — N'(ha)(hy — h2) = (/SNN(S]’H + _S)hZ)ds)(hl —ha, hy — hy) (A.5)
0

for any hy, hy € H. Since N” is a bounded function on H from (A.5) we conclude that

IN(h1) = N(ha) = N'(hp)(hy — ho)|| < sup |[N"(h)| [y — ha||* for any by, hy € H.  (A.6)
heH

Using Sobolev’s inequality, from (A.6) we obtain that

1A () = A (o) = To(f = o)l < sup IN" ()| / e F(x) — fo) [ *dx
R

<sup [IN"WIPIf = foll 72 1f = follzee < sup IN"WIPIF = foll 3o 1F = foll 2
heH - Y heH 4 Y

<sup [N"WIIf = foll 3> If = follg, <28sup IN"WIPIS = follyy,, (A7)
heH v heH ’

for any f € Eﬂi R.H) (0, 8). Since N is a C* function on H and Ty € #(Z, g(H)) we infer
that A (f) — A (fo) — To(f — fo) € H} (R, H) and

(A ()= A (fo) = To(f — fo)) (x)
=N'(F) £/ (x) = N'(fo(0)) fy(x) = N'(fo)) (f'(x) — fo(x))
— N"(fo ) (fox). f(x) = fo(x))
= (N'(f(X) = N'(fox) f'(x) = N"(fo(x) (f'x), f(x) — folx))
+ N"(fo) (f' @) = fo(x), £(x) = fo(x)) (A.8)

foranyx e Rand f € EH} &) (0, ). Using again that N is a C®® function on H we have that

N'(h1)h3 — N'(h2)h3 — N" (h2)(h3, h1 — h2)
1
= (/SNW(S/’H + (1 - s)hz)ds)(h3, hi—hy, hy — hy) (A9)
0

Since N is a bounded function on H from (A.9) it follows that

IN"(h1)h3 — N'(ha)hs — N" (ha)(h3, by — ho)||
< sup [N"(m)|l lIh3] I1h1 — ha||* for any hy, ha, hs € H. (A.10)
heH
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Since 2« < B — y from (3.12), (A.8) and (A.10) we obtain that

[H = H o = Tots = fo)) 2,

heH

<2sup [N (h)|I* / e PEF QORI f () — fox) 1 *dx
R

+2sup [|N ()| / e PN () — FLCOIPIF () — foo)lPdx

heH
R

= 2sup [N ()1 f e IR ) I = folly,,
heH ’

R
+2sup [N"WIPF = follz2 If = foll7e
heH B -B
<2sup [N" WP f g1 If = folly,
heH ’
+2sup [N"WIPIf = follsy, Nf = foll g2, 1f" = fol,2
heH ' —# —p

< (26 sup IN"IZ + 25up IN"WI2) £ = folly,, (A1)
heH heH '

for any f € EHl (R.H) (0, 8). From (A.7) and (A.11) we conclude that there exists ¢ > 0 such
that

1A )= A fo) = Tof = f)ll 25,5 I f = Sol 3, +elf = foll g, — (A12)

forany f € EH} (R, H) (0, ), proving Claim 2.

Claim 3. ./ is continuous in the (fy,lg(H), B(Zy p(H), L5y 28 (H))) topology. First, we fix
foe B H (R.H) (0, 8). Since N is a C* function on H and its derivatives are bounded on H we

have that

INY (1) = ND ()|l < sup INCTD ()| 1hy — hall  forany hy,haeH, j>1, (A.13)
heH
which implies that

1A (e = A (fo)2lfa = f e HIIN' (£ (0)2(0) = N (fo(r)z(0) [P
R

< sup IN"(h)|1? f e £ = foO) 1P l1z(o) |1 Pdx
€ R

<sup [N"WI*zl72 1f = follj
heH -V -
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<sup [N"WIPN1zli%, ILf = foll2 ILf = foll
heH ' 4 “

<28sup [N" WPzl I f = foll 2, (A.14)
heH '

for any f € EHl (R,H)(O’ 8) and z € Z,, g(H). Moreover, for any f EH,' (R.H) (0,6) and z €
%, g(H) one can readily check that A4"'(f)z — A" (fo)z € HILC(R, H) and

(A (H)z— A (f0)2) (x) = N"(f ) (f'(x), 2(x)) = N" (fo) (f5(x), 2(x))
+ (N'(f () = N'(fo(0))Z' (x) = Fi(x) + F2(x) + F3(x)

(A.15)
for any x € R, where the functions F; : R — H, j =1, 2, 3, are defined by
Fi(x) = (N"(f () = N"(fo) (f' (), 2(0)),
Fy(x) = N"(fo) (f' @) = f(x), z(x)),
F3(0) = (N'(f (x) = N'(fo())z' (x). (A.16)
Next, we estimate the Lz_zy (R, H)-norm of F;, j =1,2,3, using (3.12) and (A.13).
IF1l2,, < sup IN" ()l / PRI F ) = o IPILF I 12 ) 1 Pdx
R
= sup [N ()11 / 2 2 ) f = foly, 0,
heH ' '
R
= sup [N () / I P ) 1L~ foll, N2,
R
< 8%sup [N = foll, , 1211%, ,: (A.17)

heH
IF2l17, < sup [N"(h)|)? / e PN (0) = fo Pz (o) 1P dx
- heH 2

< sup | ") 12 / 2P| £10) = f0IPdx ) 2l ,

heH e ’
< sup IN"W) P = fgllyz 120y, , < sup IN"()IPIS = folly, 21,

€ - €
(A.18)
IF317, < sup [N"(W)]? / e PN £ () = fooIPIlZ (o) l1Pdx
26 heH 4

<sup [N"WIPIf = foll 7 12132
heH -p -B
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<sup [N"MWIPIf = foll 2 I = foll gt Nzl ,
heH P P "

<28sup [N"WIPIf ~ foll 2,121, ,- (A.19)
heH '

Summarizing the estimates (A.17)—(A.19), from (A.15) we conclude that there exists ¢ > 0 such
that

[z = A G2) 2, <elf = folly,, +1f = follz, ) el 2, (A.20)

forany f € By &1 (0,8) and z € Z;, g(H). From (A.14) and (A.20) we obtain that

1A ) = A Sl (2, 520, 2y i) < (U = fol'Ye 41 f = foll ) (A2D)

forany f € B H (R.H) (0, 8), proving Claim 3 and the lemma. O
To prove higher order differentiability of the nonlinear map .4~ defined in (A.1), we need to
study the smoothness properties of operator-valued substitution operators. We recall that for any
three Hilbert space X, Y and Z we can identify the set %’(X, B(Y, Z)) with the set of bilinear
maps from X x Y to Z, denoted by %, (X x Y, Z).
Lemma A.2. Let H and H be two Hilbert spaces, L : f— PBMH) a C*, p > 0 such that
IL' )l < cllkl)? and |L" ()| < cllRI|? for anyh e H (A22)

and 0 <y < B. Denoting by Y=(p+2)B+y and E: (p + 4)B, the nonlinear map W :
%, p(H) — %’(fy,lg(H), f'f?’g(H)) defined by

(W(f)z)(x) = L(f(x))z(x), for f € fy,ﬁ(]ﬁl), e Z,p(M), x eR, (A.23)
is of class C' and

(7' (f)(z1,22))(x) = L' (f () (21 (x), 22(x)), for f,z1 € fy,ﬂ(]ﬁl), e 2, g, xeR.
(A.24)

Proof. We fix fy € Q"y,ﬂ(lﬁl) and define % : Q"y,ﬂ(ﬁ) x Z, p(H) — f}’%,g(H) by
(Zo(z1,22)) (%) = L' (fox)) (21 (x), 22(x)), forz1 € 25, g(H), 220 € %, p(H), x €R. (A.25)
Claim 1. The bilinear map % is well-defined and bounded. Indeed, from (A.22) it follows that

1(Zo(z1,22)) )| < ell oG IPlz1 () z2(x) | for any z1 € Z;, 5(H), 22 € 2, 5(H), x € R,
(A.26)

which implies that
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p
1Z0(zr. 2202 = C”fO”igOﬂ Izillze izl 2 = CIIfoIIHlﬁllm et 122l 2, 5

= C”f()”?f lzill 2, ||Z2||Sé” for any z1 € 2 g(H), z2 € 2, p(H).
v.B VB v.B
(A.27)

Since L is a C* function from H to P (H), we have that Zy(z1, z2) € H,. (R, H) and

loc

(Z0(z21,22)) (%) = L' (fo()) (2 (x), 22(x)) + L' (fo(x)) (21 (x), Z5(x))
+ L" (fo)) (fo(x), z1(x), z2(x))

forany 71 € 2, ﬁ(ﬁ), 22 € Z, g(H) and x € R, which implies that

[(Zo(z1,22)) ]|
< c||f0(x)||1’[||f6(x)|| 21 GOl lz2 G+ 123 O lz2 I+ llz1 ()l ||Z/2(X)||] (A.28)

for any 7] € %,ﬂ(lﬁl), 22 € Z, g(H) and x € R. From (A.22) and (A.28) we obtain that

1(Zo(z1, Zz))/lngg

<cll follfx [IlfoIILz lzill s, llz2 e, +||21||L2 22l + lzalles, l1zoll 2 ]

<ellfollf (1follz,s + Dlztlln Vo2l <ellfolly, (1ol 2, + Dlztll 122112,

(A.29)

for any z; € fy,ﬁ(ﬁ), 72 € %, p(H). From (A.27) and (A.29) we conclude that Zy(z1,z2) €
Q‘”y’g(H) and

)1/2

1901, 212, 5 < cll folly, (1ol , + 1) 2l 2, 12210 2, (A.30)

for any z; € Qﬁ,’ﬁ(ﬂtﬁ), 22 € Z, g(H), proving Claim 1.

Claim 2. # is Frechet differentiable at fo and 7' (fo) = 2. Since L is C* function from f to
Z(H) we have that

1
L()g = Lh)g = L'(h2) (1 — 2. ) = / SL/ (5T + (1= )T2)ds ) (i — B, Ty = T, )
0

(A31)

for any 711, 7{2 e H and g € H. From (A.22) we infer that
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1

ILG)g = Lifing — L' (i) (i =Tz )l = / slshi + (1 =)o) ds ) I = T2l
0

<c(Im NP + 1h2lI?) 17y — 2l lgl (A.32)

for any h1, i € H and g € H. From (A.23), (A.25) and (A.32) it follows that

|(# ()2 = (f0)z = Zo(f = fo, D)D) < c(If @I + 1 Lo IP)IF (x) = fo) P llz(x)]

(A.33)
forany f € Qﬁ,”g(fﬂ), z€ %, g(M) and x € R, which implies that
17 (f)z = (fo)z — Zo(f — fo. D2,
< el W, + 1ol )If = ol 121 2,
<e(lf Wy + 1ol DS = follf el
<c(lflly , +1follly DIF = folly, Izl 2, (A34)

forany f € 2, ,3(]1?1), z € Z, g(H). Next, we need to establish a couple of estimates satisfied by
the function L and its derivatives that are needed in the sequel. We note that

(L'(h) — L' (h2)) (h3, 8) — L" (h2) (h3, ki — ha, 8)

1
= (/SLW(SZI +0 - S)Ez)d8>(ﬁ3, hi —ho iy — T2, 8)
0

1
(L)~ L) ) = ([ L+ 1= h)as) a Ty = Tag) (A39)
0

for any 711, ﬁz, fz3 e and g € H, which implies that

(L' (hy) = L' (hy)) (3, 8) — L (o) (k3. )y — . 9)|
< c(Imll? + R l1P) iy — Ral* B3] g
(L' (h1) = L'(12)) (3. ) |
<c(Irll? + Il ) iy — Rl A3 g1
(A.36)

for any El, ﬁ2,713 el and g € H.
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Since L is C* function from T to Z(H) and 2o € %(Z;, p(H) x %, p(H), Z; 5(H)) from

(A.23), (A.25) we infer that for any f € %,ﬁ(ﬁ), z € Z, g(H) the function 7' (f)z —# (fo)z —
Do(f — fo.2) € HILC(R, H) and

W (Hz =W (fo)z— Do(f — fo. ) (x)
=L'(f () (f (), 2x)) + L(f (x)Z'(x)

— L' (fo) (f(x), 2(0)) = L(fox)z' (x) — L" (fo) (f(x), f(x) — fo(x), z(x))
— L' (foC)(f'(x) = fo(x), 2(x)) = L' (fo) (f(x) — fo(x), 2/ (x))
=(L'(f () = L' (fo)) (f'(x), 2(x)) = L" (fo) (fo ), f(x) = fox), z(x))

+ (L(f () = L(fo(x))z'(x) = L' (fo) (f (x) = fo(x),Z'(x))
=Gi(x) + G2(x) + G3(x) (A.37)
for any x € R, where the functions F; : R — H, j =1, 2, 3, are defined by

G1(x) = (L'(f(x)) = L'(fo)) (f'(x) = fox), z(x)),

Ga(x) = (L'(f(x)) = L' (fo)) (fo ), 2(0)) = L" (fo)) (fox), £(x) = fox), z(x)),

G3(x) = (L(f(x)) = L(fo(x)))Z'(x) = L' (fo () (f (x) = fo(x), 2 (x)). (A.38)

We use (A.32) and (A.36) to estimate the Lz_E(R, HH) of the functions G ;, j =1, 2, 3, defined in
(A.38). Indeed, we have that

G2 < cLf N, + Wfollgse)If = ol If" = fill 2, el
< ey +1follf S = fols I = fol 2, 2l

<c(f1ly, , + 1 foll% IIf = folls, N2l 2,

(A.39)
G < poo poo ! - 2:>o S
162012 = el fllz, + Nfollz )N felz2 1 f = follpes Nzlles,
Sc(nfni,lﬁ+||fo||’;,1ﬁ)||fo||yy.ﬂ||f—foui,lﬂnznmﬂ
<clfl, , +1Lfol% I follz,,llf = foll, izl 2, ,: (A.40)
1G3ll 2 < cUlf 1o 4+ follac I = follFoo 12112
—B —p -p —p -B
<cUfIP, +1RIZONF = foll% llzllz
= H!, H!, Hl, v.B
14 p 2
<clfl, , +1fol% JIf = fol, Izl 2, ,- (A41)

From (A.34), (A.37), (A.39), (A.40) and (A.41) we infer that
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|7 (fz—# (fo)z — Do(f — fo.2)| P
<cllfy , +1folly, Y follz,, + DI~ folly, 12l 2, (A42)

forany f € Q”y,ﬁ(]ﬁl), z € Z, (1), proving Claim 2.

Claim 3. # is continuous from Q’},ﬂ(]ﬁl) to %» (fz’f’},)ﬂ(ﬁ) x Z, p(H), %,E(H))‘ Indeed, from
(A.25) and (A.36) we infer that

17 =7 o) @z 2 < QU I + 10N DI = follzos, Nz loss, ezl 2
< + 1ol MIF = fols Nzl 22112,

r p
<c(lf%, , + 1ol JIf = foll 2, llz1l 2, ||zz||&e,2,Z .,

for any f,z1 € ny,,g(]l?]l) and zp € 2 g(H). Using again that L is a C* function from H

to A(H) we obtain that for any f,z; € 2, g(H) and z; € 2, g(H) the function (#'(f) —
V' (f0))(z1.22) € H (R, H) and

(7 =7 @1, 2)) @)
= L(F ) (0, 110, 220) = L o) (50,21 (), 22)
(L) = Lo (£ @, 220) + (E'(F0) = L' o) (a1 (1), )
= Hi(x0) + Ha(x) + Hy(x) + Hi (o) (A44)

for any x € R, where the functions H; : R — H, j =1, 2, 3, 4, are defined by

Hy(x) = (L"(f () = L"(fo(x)) ('), 21(x), 22(x)),

Hy(x) = L"(fo()) (f' () = fo(x), 21(x), 22(x)),

Hs(x) = (L'(f (x)) = L' (fo())) (2} (), 22(x)),

Hy(x) = (L'(f (x)) = L' (fo(x)) (z1(x), 25 (x)). (A.45)

Since L is a C*° function from I to % (H) we have that
1
(L (hy) = L" (h2)) (h3, ha, §) = ( / L (shy + (1 — s)ﬁz)ds)@s, ha by —Ta,g)  (A.46)
0

for any ﬁl, ﬁz, ﬁ3, E4 e and g € H. From (A.22) it follows that

I(L" () — L" (1)) (h3, hia, ©)|| < e (1117 + IR2lIP) 1By — Ball A3l Rall gl (A4T)
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for any ﬁ1 , Ez, ﬁg, 54 e T and g € H. Below we estimate the L2_ E(R’ H)-norm of the functions
H;, j=1,2,3,4, using the estimates (A.36) and (A.47).
1Hill,2 < Lo, + 1ol = Follo, 122 Nalles, N2,

<l + 1ol IS = follg 112,121l Iz2ll,
p p _ .
=cllf 1y, , + 1ol JIS N2, 41 = follzy lizill 2, 12201 25,55 (A48)
H|;2 <c 4 "— 2zl lz2ll o
IHallp2 < el follz 1" = follz2 Izt s 22 s,
=cllfolli I1f = follz, glzill g Nzall
H B v.B —B —B
=cllfolly, If = foll 2, slzill 2, izl 2, (A49)
IH3ll 2 < el f 7o, + I foll ) f = folls, 1212 llz2]l o
L L
-B =B =B B -B B
<l ANl IS = folly Izl szl

=c(If1%, , + 1ol DIf = foll 7121025 s l122ll 25,5 (ASO)
p p /
||H4I|L3§ =< C(”f”LtiOﬁ + ||f0||L3oﬁ)||f = Jollz,llztllzes, ||Zz||L£ﬂ

<cUfIZ, +1hl2 I — follgr lzillgr lz2ll2
H 8 H P -8 ! v.B

<c(Ifly, , + 1 folly, DIF = foll 2, 511211l 2, 5 12211 2 - (AS1)

From (A.43), (A.44), (A.48), (A.49), (A.50) and (A.51) we conclude that

17" ()= 7" (f)(z1.22) P

p p
=clflly , +Ifollly YA+1FI2)If = foll 2 ,llzill 2,12l 2, (AS52)

forany f,z1 € Z,, ﬂ(ﬁl) and z> € Z, g(H), proving Claim 3 and the lemma. O
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