
1	
	

A New Framework for X-ray Photon Correlation Spectroscopy  

Analysis from Polycrystalline Materials  

 

Ronald M. Lewis III,1 Grayson L. Jackson,2 Michael J. Maher,1 Kyungtae Kim,1  

Timothy P. Lodge,1,3 Mahesh K. Mahanthappa,1 Suresh Narayanan,4 and Frank S. Bates1,* 
1Department of Chemical Engineering and Materials Science, University of Minnesota, 

Minneapolis, MN 55455, USA 
2Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA 

3Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA 
4Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA 

*To whom correspondence should be addressed: bates001@umn.edu 

 
 

ABSTRACT 

 We report a new analytical framework for interpreting data from X-ray photon 

correlation spectroscopy (XPCS) measurements on polycrystalline materials characterized by 

strong scattering intensity variations at fixed wavevector magnitude (i.e., anisotropic scattering). 

Currently, no analytical method exists for the interpretation of the time-dependent anisotropic 

scattering from such materials. The framework is applied to interrogate the dynamics of a 

spherical micelle-forming diblock copolymer melt below the order-disorder transition, wherein 

finite size grains of micellar body-centered cubic structure produce anisotropic scattering. A 

wealth of analytical information is recovered from a simple measurement, including distributions 

of relaxation times and speeds associated with micelles within grains. The findings of this study 

demonstrate the efficacy of this new analytical method, which may be readily adapted for 

application to a variety of materials and systems.  
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I. INTRODUCTION 

 X-ray photon correlation spectroscopy (XPCS) in the small angle scattering geometry has 

become an established technique over the past two decades for studying the dynamics of liquid 

interfaces,1 as well as many soft materials including colloids,2,3 polymer thin films,4 and polymer 

melts.5–7 The original implementation of XPCS used a point detector,8 which enabled dynamic 

measurements at a specific scattering vector 𝑞 ( 𝑞 = 𝑞 =  !!
!
sin !

!
, where λ is the wavelength 

of the incident beam and 𝜃 is the scattering angle). However, advances in detector technology 

and data processing methods have enabled two-dimensional (2D) data acquisition over a wide 

range of 𝑞.9,10 Thus far, small angle XPCS studies with a 2D detector have been focused on 

samples which produce powder-like, isotropic scattering patterns (i.e., the scattered intensity is 

invariant as a function of the azimuthal angle 𝜑 at fixed 𝑞, see Figure 1). Other modes of XPCS 

involving flow or shearing of a material have also been explored; however, these studies have 

been restricted to amorphous materials.11,12 We are not aware of any analytical methods for 

XPCS data analysis for materials that produce anisotropic scattering patterns (i.e., 𝜑-dependent 

scattering). The lack of such tools limits the application of XPCS to studies involving the 

dynamics of various classes of nanostructured materials. 

 In a conventional XPCS measurement, the 2D scattered X-ray intensity from a disordered 

or amorphous material is measured as a function of time. As detailed in Section III (vide infra), 

an intensity-intensity autocorrelation function may be calculated from the scattering of each pixel 

on the detector. Assuming that the sample dynamics are independent of 𝜑, the time correlations 

from individual pixels are azimuthally averaged over a group of pixels with nominally the same 

magnitude of 𝑞, to yield a correlation function for that 𝑞. Fitting these correlation functions 

yields characteristic relaxation times (𝜏) as a function of 𝑞. Furthermore, an apparent diffusion 
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coefficient7 (or in some cases, an average velocity3) may then be extracted by regression 

analyses. Critically, this analysis relies on the isotropic nature of the scattering from the material 

under investigation and the assumption of 𝜑-independent sample dynamics. 

 Scattering from ordered, nanostructured materials presents additional challenges in the 

analysis of XPCS data. Variations in observed azimuthal intensity of a 2D SAXS pattern may be 

associated with multiple dynamic processes that cannot simply be averaged together. For 

example, SAXS analyses of a block polymer sample exhibiting coexisting ordered (crystalline) 

grains and partially disordered (“liquid-like”) regions reveal a superposition of Bragg peaks on 

top of weaker inter-micelle correlation length scattering at essentially the same principal 

wavevector magnitude 𝑞∗. While the XPCS signal from a single dynamic process may dominate, 

simple averaging of the data will convolve dynamic features from both crystalline grains and 

disordered liquid-like regions in the sample and lead to unreliable conclusions. However, it is 

computationally expensive and statistically unfavorable to consider the ~800,000 pixels (and 

associated correlation functions) per measurement individually. To this end, the purpose of this 

report is to address these challenges by establishing a reliable method for analysis of XPCS data 

from polycrystalline materials. A compositionally asymmetric diblock copolymer, which forms a 

micellar body-centered cubic (BCC) morphology below the order-disorder transition (ODT), is 

used as a model system for this purpose. A series of XPCS studies have been performed on 

diblock copolymers in the disordered7,13 and ordered5,6,14 states. However, the BCC morphology 

has yet to be investigated. Scattering from a finite number of relatively large BCC grains with 

distinct orientations within the illuminated sample volume offers an ideal platform for 

developing the XPCS analysis from polycrystalline samples. The methodology described here 
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yields dynamic information that could not have been otherwise extracted using traditional 

analytical approaches. 

 This paper is organized into the following sections: Section II describes the sample 

preparation and setup; Section III outlines the theory and equations utilized for data fitting; 

Section IV discusses the results of model experiments and the implementation of the 

polycrystalline analysis; and Section V furnishes the conclusions of this work and its 

implications. 

II. SAMPLE AND EXPERIMENTAL SETUP 

A compositionally asymmetric poly(styrene)-block-poly(1,4-butadiene) (PS-PB) diblock 

copolymer was synthesized using well-established anionic polymerization techniques15 with a 

number-average molecular weight Mn = 29 kDa, dispersity Ð = Mw/Mn = 1.06, and a PB volume 

fraction of ƒB = 0.20. These molecular characteristics were determined using a combination of 1H 

nuclear magnetic resonance spectroscopy and size exclusion chromatography. A small amount (< 

1 % wt) of butylated hydroxytoluene (BHT) was added to the sample to minimize its degradation 

over the course of the XPCS measurement. Previous reports have established that this quantity of 

BHT does not significantly impact the phase behavior.16 This PS-PB sample forms a BCC phase 

with a unit cell parameter a = 26 nm (q* = 0.34 nm−1) and TODT = 153 ± 1 ºC, as established by 

SAXS and dynamic mechanical thermal analysis (DMTA) experiments, respectively.  

All scattering measurements were performed at the 8-ID-I beamline of the Advanced 

Photon Source at Argonne National Laboratory. A schematic of the experimental setup is 

provided in Figure 1; detailed descriptions of the beamline configuration and its modes of 

operation are provided elsewhere.17 A monochromatic, coherent incident beam with λ = 1.14 Å 

was utilized in this study. The polymer sample was loaded into a cylindrical fluid cell holder 
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which was 3 mm in diameter, 3 mm thick, and had stainless steel walls and polyimide (Kapton®) 

windows on each end. Prior to sealing the fluid cell, the PS-PB sample was annealed in the 

disordered state at T = 170 ºC for 2 minutes to equilibrate the material and remove air bubbles, 

which could give rise to artifacts. The beam size was trimmed and collimated to 20 µm × 20 µm 

and therefore the total illuminated sample volume was roughly 1.2x106 µm3, which is 

sufficiently large to capture scattering from many distinct grains in the ordered state. The fluid 

cell was placed onto a copper block equipped with a Peltier cooler and a resistive heater for 

precise temperature control (± 0.1 ºC). A relatively small fraction of the incident beam intensity 

(< 0.02 %) was scattered by the sample and collected on a LAMBDA 750K 2D pixel array 

detector,18 with a sample-to-detector distance of 4 m. The total collection time was 1000 s with a 

detector capture rate of 1 frame/s. Sample stability was assessed throughout the course of the 

measurement by monitoring the primary peak position and total scattered intensity as a function 

of time. We did not observe any significant variations in these metrics, consistent with sample 

stability during the experiment. 
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Figure 1: Experimental setup for XPCS measurements. The incident beam passes through the 
sample, which is held on a copper block with resistive heating and Peltier cooling capability. 
Scattered photons were collected at a rate of 1 frame/s for a total of 1000 s to enable 
calculation of the intensity-intensity auto-correlation function 𝑔! 𝑞,𝑑𝑡 . 
 

 

III. THEORY AND FITTING MODELS 

 The normalized intensity-intensity autocorrelation function 𝑔! 𝑞,𝑑𝑡  is defined as, 

𝑔! 𝑞,𝑑𝑡 =  
𝐼 𝑞, 𝑡 𝐼 𝑞, 𝑡 + 𝑑𝑡 !

𝐼 𝑞, 𝑡 !
! ,                                                 (1) 

where 𝑡 is the time and 𝑑𝑡 is the time increment. Assuming that the scattered field is a Gaussian 

random variable, the intensity autocorrelation function is related to the intermediate scattering 

function 𝑔! 𝑞,𝑑𝑡  according to the Siegert relation for homodyne scattering, 

𝑔! 𝑞,𝑑𝑡 − 1 = 𝑐 𝑔! 𝑞,𝑑𝑡 !,                                                       (2) 

where 𝑐 is a sample-independent instrumental optical coherence parameter. Homodyne scattering 

corresponds to a single frequency among scattered photons, such that the scattered field is 

correlated with itself (‘self-beating’).19 In the case of conventional homodyne XPCS, the 
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intermediate scattering function is characterized by a stretched exponential through the 

Kohlraush – Williams – Watts (KWW) equation, 

𝑔! 𝑞,𝑑𝑡 = exp −
𝑑𝑡
𝜏

!

,                                                      (3) 

where 𝜏 is the relaxation time and 𝛽 is a stretching exponent. Ideally, the 𝛽 parameter accounts 

for a distribution of relaxations and its magnitude enables discrimination between diffusive or 

non-diffusive behavior.3,20 If the dynamics of the material are governed by a single relaxation 

process, then 𝛽 = 1 and the correlation function decays exponentially. Combining Equations 2 

and 3 yields the relationship, 

𝑔! 𝑞,𝑑𝑡 − 𝑏
𝑐 = exp −2

𝑑𝑡
𝜏

!

.                                                (4) 

wherein 𝑏 is a baseline value included for fitting purposes. 

 While the above analysis is typically appropriate for conventional XPCS analysis, we 

have observed a unique heterodyne scattering21,22 phenomenon with the block polymer BCC 

morphology, as described in Section IV. Heterodyne scattering is the consequence of mixing 

multiple scattered photons (due to the presence of multiple oscillators), each with a unique 

frequency.19 The effect of heterodyne scattering on the intermediate scattering function, which is 

described at length elsewhere,4,23 is briefly summarized as follows. If at least one component in 

the system within the coherently illuminated volume is in motion with velocity 𝑣, then 𝑔! 𝑞,𝑑𝑡  

is no longer described by Equation 3. Rather, for a material undergoing uniform motion with a 

single relaxation process the intermediate scattering function may be generally described by, 

𝑔! 𝑞,𝑑𝑡 = exp 𝑖 𝑞 ∙ 𝑣 𝑑𝑡 −
𝑑𝑡
𝜏

!

.                                        (5) 



8	
	

Note that insertion of this relationship into Equation 2 recovers the simple homodyne case 

(Equation 4) since all phase information is lost. However, if two separate scattering events occur, 

each with an independent relaxation time and velocity, the intensity-intensity autocorrelation 

function now becomes, 

 
𝑔! 𝑞,𝑑𝑡 − 1

𝑐 = 𝑋 𝑔!,! 𝑞,𝑑𝑡
! +  1− 𝑋 𝑔!,! 𝑞,𝑑𝑡 ! + 

 2𝑋 1− 𝑋 𝑅𝑒 𝑔!,! 𝑞,𝑑𝑡 ∙ 𝑔!,!∗ 𝑞,𝑑𝑡                             (6) 

                                                                                         

where A and B correspond to the two uniquely scattering populations and 𝑋 quantifies the 

scattering intensity contribution from process A relative to the total scattered intensity,  

𝑋 =
𝐼!

𝐼! + 𝐼!
.                                                                    (7) 

Considering two separate processes, implementing the expression of 𝑔! 𝑞,𝑑𝑡  given by Equation 

5 into Equation 6 leads to the symmetric heterodyne relationship, 

𝑔! 𝑞,𝑑𝑡 − 𝑏
𝑐 = 𝑋 exp −2

𝑑𝑡
𝜏!

!!
+  1− 𝑋 exp −2

𝑑𝑡
𝜏!

!!
+ 

+2𝑋 1− 𝑋 exp −
𝑑𝑡
𝜏!

!!
−   

𝑑𝑡
𝜏!

!!
cos 𝑞 ∙ 𝑣! − 𝑞 ∙ 𝑣! 𝑑𝑡 .      (8) 

The dot product of the wavevector and the velocity may be reduced to, 

𝑞 ∙ 𝑣! = 𝑞 𝑣! cos 𝜑 = 𝑞𝑢! =
𝜔!
2𝜋 ,                                           (9) 

where 𝑢! is an apparent speed and 𝜔! is an apparent frequency of process i = A or B. Substitution 

of Equation 9 into Equation 8 yields, 

𝑔! 𝑑𝑡 − 𝑏
𝑐 = 𝑋 exp −2

𝑑𝑡
𝜏!

!!
+  1− 𝑋 exp −2

𝑑𝑡
𝜏!

!!
+ 
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2𝑋 1− 𝑋 exp −
𝑑𝑡
𝜏!

!!
−

𝑑𝑡
𝜏!

!!
cos

𝜔
2𝜋 𝑑𝑡 ,                (10) 

where 𝜔 = 𝜔! − 𝜔! is the difference in frequency between the dynamic processes; here again, 

the parameter 𝑏 has been included for fitting purposes. An important limiting case emerges from 

the heterodyne relationship described by Equation 10. If the relaxation times (𝜏!) for the dynamic 

processes tend to infinity, the relationship simplifies to, 

𝑔! 𝑑𝑡 − 𝑏
𝑐 = cos

𝜔
2𝜋 𝑑𝑡 − 𝑑𝑡! ,                                              (11) 

where 𝑑𝑡! is a fitting parameter that captures the arbitrary phase shift in the correlation function. 

These equations are utilized in the following section to classify the correlation functions 

measured with the PS-PB diblock copolymer in this study.  

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

Nucleation and growth of the micellar BCC phase in this PS-PB diblock polymer sample 

was characterized in detail using dynamic mechanical spectroscopy (DMS) following procedures 

outlined elsewhere.24,25 In order to target a polycrystalline or “grainy” sample for XPCS analysis, 

the sample was cooled rapidly over ~ 2 minutes from the disordered state at 170 ºC to 140 ºC and 

annealed for approximately 7.5 h; time-temperature transformation (TTT) analysis based on 

DMS experiments revealed 100 % conversion to the BCC phase in less than 3 h following this 

protocol. Subsequently, 2D SAXS patterns were recorded for 1000 s at a rate of 1 frame/s. 

Figure 2A shows the final time-averaged 2D SAXS pattern, which is characterized by a narrow 

ring of highly anisotropic scattering intensity as a function of azimuthal angle 𝜑 at 𝑞∗ (evident in 

the inset to Figure 2A). This non-uniform scattering intensity arises from the finite number of 

grains probed within the illuminated sample volume. Discrete higher-order diffraction spots, 

clearly evident at 2𝑞∗, reinforce the morphological assignment. The 2D SAXS pattern was 
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azimuthally averaged to generate the one-dimensional result shown in Figure 2B, with arrows 

corresponding to the Bragg reflections associated with a BCC morphology. For the purpose of 

demonstrating the new analytical method, only dynamic processes in the vicinity of 𝑞∗ were 

considered in this study. From the raw 2D data, each pixel at 𝑞∗ = 0.034 ± 0.001 Å−1 was linearly 

correlated through time to generate the intensity-intensity autocorrelation function 𝑔! 𝑞∗,𝑑𝑡 . 

For simple systems exhibiting a single type of relaxation, a multi-tau26,27 method may be more 

suitable for determining 𝑔! 𝑞,𝑑𝑡 . However, here we employ a linear correlation method, which 

is justified based on the heterodyne phenomenon reported later in this study. Although the 

experiment was performed for 1000 s, only the first 800 s of the correlation functions were 

utilized for analysis due to poor long delay statistics from the linear correlation method. 
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Figure 2: Time-averaged scattering from the PS-PB diblock copolymer after annealing at 140 
ºC for 7.5 h. (A) The 2D SAXS pattern reveals pronounced polycrystallinity as evidenced by 
the highly anisotropic intensities at the Bragg conditions, which are highlighted in the inset. 
The XPCS beamline geometry at sector 8-ID-I restricted our accessible 𝜑-range to 180º. The 
2D pattern in (A) was azimuthally averaged to produce the SAXS intensity profile shown in 
(B). The Bragg conditions are indicated by arrows and correspond to BCC reflections ((𝑞/𝑞∗)2 
= 1, 2, 3, 4, …). 
 

It is evident that simply averaging all correlation functions near 𝑞∗ could lead to the 

convolution of many dynamic processes resulting in improper analysis (see Fig. S1). On the 
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other hand, with ~16,000 correlation functions (pixels near 𝑞∗) per measurement, it is impractical 

to consider each pixel individually. Therefore, a new 𝜑 mapping procedure was developed to 

balance resolution against statistics for scattering from the polydomain sample (Figure 3). First, 

the 𝑞∗ region was split into 150 rectangular bins of roughly 100 pixels each, such that each bin 

center was offset by approximately 1.2º and spanned ∆𝑞 = 0.001 Å−1 (rectangular bins were 

chosen for ease of analysis and resulted in the loss of ≤ 2 pixels per bin). While this number of 

bins provided the appropriate balance of statistics and resolution for this material, these 

parameters may be easily tailored for different experimental systems. As previously mentioned, 

the intensity of each pixel in the vicinity of 𝑞∗ was linearly correlated through time. Within each 

of the newly created bins, the ~100 correlation functions were averaged to generate one 

correlation function per bin. The map was then rotated by ∆𝜑 = 0.2º, and the correlation 

functions of each pixel were averaged again within the new bins. This process was repeated 5 

times, such that the sixth rotated mapping of bins was identical to the first. As shown in Figure 3, 

superposition of the 5 rotated maps of bins onto the 2D image in Figure 2A yielded 750 total 

correlation functions at 𝑞∗. This mapping procedure enables high resolution and meaningful 

statistics without significant computational effort. We emphasize again that this process may be 

generalized to accommodate any polycrystalline sample by simply altering ∆𝑞, ∆𝜑, and the 

number of bins (or the angle between bins). 



13	
	

 
 

Figure 3: Azimuthal mapping procedure that was developed for polycrystalline scattering 
offering a balance between resolution and statistics. In this study, 5 rotated maps of 150 bins 
each were superposed and each bin was individually analyzed. The superposed bins were 
applied to the 2D images in the 𝑞∗ region for analysis. This method can be generalized to 
accommodate any polycrystalline system by altering ∆𝑞, ∆𝜑, and the number of bins. 
 

After generating all 750 correlation functions, a rigorous and semi-automated procedure 

was developed to classify and, in some cases, fit each correlation. This procedure is outlined as a 

flow diagram in Figure 4A, while Figure 4B provides representative correlation functions for the 

final categories outlined in Figure 4A. Note that the fitting procedure described here is specific to 

the data from this experiment; nevertheless this fitting process may be adapted or generalized to 

analyze other systems. First, a single-sided fast Fourier transform (FFT) was performed on each 

correlation function to recast the correlation function into the frequency domain (𝑓!). In order to 

quickly categorize the bins, a linear regression (with fixed intercept at 0) of the FFTs integrated 
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with respect to 𝑓! was utilized to quantify the level of noise in the data via the fitted R2 value. 

The integrated FFT of a correlation function comprising random fluctuations about a mean value 

is a straight line with intercept at the origin. Therefore, bins with R2 ≥ 0.9 had a low signal-to-

noise ratio and were considered to contain only very weak intensity pixels that did not satisfy the 

Bragg condition, which we refer to as off-grain (Figure S2). A bin with 0.5 < R2 < 0.9 was 

classified as either the result of a weakly scattering grain or an artifact of averaging pixels which 

contained Bragg and non-Bragg scattering. Bins with R2 ≤ 0.5 had a high signal-to-noise ratio, 

and qualified for fitting (Figure S3). If the FFT exhibited a dominant peak that was not at the 

lowest frequency position (𝜔 > 2π/(800 s) = 0.00785 s−1), an apparent frequency was present and 

the correlation function was fit with Equation 10 using 𝜏!, 𝜏!, and 𝜔 as fitting parameters to 

extract a more accurate frequency and the associated relaxation times (𝜏! and 𝜏!). If this fit was 

successful based on the fit residuals and visual inspection, the correlation function was classified 

as a clean heterodyne and a frequency was extracted. Failure to fit to Equation 10 implied that 

the heterodyne scattering had a more complex origin, likely owing to the interference of more 

than two independent scatterers. For these complex heterodyne cases, speeds were estimated 

based on the dominant frequencies obtained from the FFT analysis.  
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Figure 4: Classification and fitting scheme for each XPCS data bin in this study. The flow 
diagram in (A) categorizes the bins based on the single-sided FFT and fits of the correlation 
functions. Solid arrows indicate steps that were automated, and dashed arrows indicated steps 
that required manual user input. Representative datasets for each of the final bins are provided 
in (B), with data fits overlaid where appropriate.  
 

 If the FFT of a correlation function did not contain a dominant peak, it was fit using both 

Equations 4 and 11 and assigned to either Equation 4 (single relaxation), Equation 11 (low 

frequency heterodyne), both, or neither based on the residuals to the fit. In this study, fits were 
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considered successful if the sum of squared residuals for the scaled fit was < 2; this fitting 

criterion was chosen based on visual examination of the fits. In the rare case when neither 

Equation 4 nor Equation 11 fit the correlation function well (< 1 % of bins), the bin was 

classified as a complex heterodyne and was visually inspected to confirm this classification. The 

semi-automated nature of this fitting algorithm provides accuracy while minimizing the time 

required for analysis. Where applicable, examples of the described fits are displayed along with 

the datasets in Figure 4B. The clean heterodyne data and fit have been enlarged in Figure 5 for 

clarity. Figure 6 contains a stacked histogram showing the classification of all 750 correlation 

functions present in this study. We note that correlations from adjacent bins often resemble one 

another due to the large overlap of averaged areas. Despite this overlap, the different 

classifications of bins in Figure 6 originate from a variety of azimuthal angles. 

 
Figure 5: Representative clean heterodyne data and fit according to Equation 10. Despite 
fluctuations in the oscillation amplitude, a frequency can be extracted and converted into an 
apparent speed via Equation 9. 
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Figure 6: Stacked histogram of the classifications for each of the 750 correlation functions in 
this study. 
 

 Relevant information from bins that were successfully fit according to the procedure 

outlined in Figure 4A was extracted for subsequent analysis. Figure 7 displays relaxation time 

and speed distributions from various oriented grains in this measurement. The relaxation time 

distribution in Figure 7A tends towards larger values of 𝜏, likely due to the long relaxation times 

associated with particles within grains. For almost all fits, 𝛽 > 1, indicating a compressed 

exponential form associated with ballistic or “hyperdiffusive” motion.3,14,20 Additionally, six 

heterodyne frequencies emerged to produce the speed distribution in Figure 7B, along with 

numerous additional heterodyne examples at different times and temperatures, which will be 

reported in a future publication. We postulate that the speeds observed in this experiment are due 

to the motion of individual grains. Indeed, the range of speeds recovered from this measurement 

(0.0093 Å/s ≤ 𝑢 ≤ 0.93 Å/s) agrees well with the growth velocities reported for diblock 

copolymer grains from time-resolved depolarized light scattering experiments.28,29 However, we 

cannot exclude the possibility that these speeds stem from other dynamic features, including 
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dislocation movement, grain rotation, or a combination of several processes. A more in-depth 

analysis and interpretation of both the relaxation times and the speeds will be the subject of a 

future study. 

 
Figure 7: Normalized histogram plots reveal the complex dynamics of the ordered PS-PB 
system after annealing at 140 ºC for approximately 7.5 h. The distribution of relaxation times 
in (A) was determined from Equations 4 and 10. Because the correlations were analyzed for dt 
< 800 s, we cannot definitively categorize τ > 104 s and thus placed these data in the longest 
time bin. The distribution of speeds in (B) was determined from fits to Equations 10 and 11, 
and the dominant frequencies from FFT analysis. Note that the fitted parameters from bins 
which were categorized as either a single relaxation or a low frequency heterodyne (purple 
bins in Figure 4) are not included in either of these histograms. 
 

Although this analytical method works well for the system studied here, there are some 

cases where it may not apply. For example, this analysis is unable to differentiate among 

multiple relaxation processes with nearly identical characteristic timescales. Additionally, there 

are limitations based on the grain size relative to the pixel size on the detector. Extremely large 

grains with strong Bragg peaks may saturate the detector and bleed into nearby pixels, 

complicating analysis. We expect these complications may arise as the bin size is reduced (or 

azimuthal resolution is increased) and/or detector saturation becomes prominent due to large 

ordered regions in the sample. Conversely, the presence of many overlapping small grains on a 

single pixel (or in this case, within a bin) may lead to analytical complexity through convolution 
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of multiple distinct timescales. Nevertheless, this high resolution mapping method and associated 

classification scheme represents a significant improvement over current averaging techniques 

and may prove useful for a variety of polycrystalline materials. 

V. CONCLUSIONS 

In this report a new analytical method is outlined for analysis of XPCS data from 

polycrystalline materials. This method was employed to investigate the dynamics of a BCC-

forming diblock copolymer. A rotational mapping scheme was developed to balance high 

resolution with meaningful statistics for fitting. For the specific PS-PB diblock copolymer 

sample studied here, relevant theoretical equations were briefly described and a scheme was 

developed to implement these equations to fit the correlation functions from an exemplary set of 

XPCS data. The fitting procedure yielded relaxation time and speed distributions from distinct 

grains of micellar BCC structure within the bulk diblock copolymer sample. The relevant 

information uncovered by this method validate its execution and use and demonstrate that one 

XPCS measurement may yield a plethora of dynamic data with the proper analytical tools.  

ACKOWLEDGEMENTS 

Support for this work was provided by the National Science Foundation under Grants 

DMR-1104368, CHE-1608115, and DMR-17017578. SAXS experiments in the supporting 

information were conducted at the Advanced Photon Source (APS). Use of the APS, an Office of 

Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by 

Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-

06CH11357. 

REFERENCES 

(1)  Gutt, C.; Ghaderi, T.; Chamard, V.; Madsen, A.; Seydel, T.; Tolan, M.; Sprung, M.; 
Grübel, G.; Sinha, S. K. Phys. Rev. Lett. 2003, 91, 076104. 



20	
	

(2)  Srivastava, S.; Archer, L. A.; Narayanan, S. Phys. Rev. Lett. 2013, 110, 1–5. 
(3)  Srivastava, S.; Agarwal, P.; Mangal, R.; Koch, D. L.; Narayanan, S.; Archer, L. A. ACS 

Macro Lett. 2015, 4, 1149–1153. 
(4)  Ulbrandt, J. G.; Rainville, M. G.; Wagenbach, C.; Narayanan, S.; Sandy, A. R.; Zhou, H.; 

Ludwig, K. F.; Headrick, R. L. Nat. Phys. 2016, 12, 794–799. 
(5)  Sanz, A.; Ezquerra, T. A.; Hernández, R.; Sprung, M.; Nogales, A. J. Chem. Phys. 2015, 

142, 064904. 
(6)  Patel, A. J.; Mochrie, S. G. J.; Narayanan, S.; Sandy, A.; Watanabe, H.; Balsara, N. P. 

Macromolecules 2010, 43, 1515–1523. 
(7)  Jang, W.-S.; Koo, P.; Sykorsky, M.; Narayanan, S.; Sandy, A.; Mochrie, S. G. J. 

Macromolecules 2013, 46, 8628–8637. 
(8)  Sutton, M.; Mochrie, S. G. J.; Greytak, T.; Nagler, S. E.; Berman, L. E.; Held, G. A.; 

Stephenson, G. B. Nature 1991, 352, 608–610. 
(9)  Lumma, D.; Lurio, L. B.; Mochrie, S. G. J.; Sutton, M. Rev. Sci. Instrum. 2000, 71, 3274–

3289. 
(10)  Falus, P.; Borthwick, M. A.; Mochrie, S. G. J. Rev. Sci. Instrum. 2004, 75, 4383–4400. 
(11)  Leheny, R. L.; Rogers, M. C.; Chen, K.; Narayanan, S.; Harden, J. L. Curr. Opin. Colloid 

Interface Sci. 2015, 20, 261–271. 
(12)  Chung, B.; Ramakrishnan, S.; Bandyopadhyay, R.; Liang, D.; Zukoski, C. F.; Harden, J. 

L.; Leheny, R. L. Phys. Rev. Lett. 2006, 96, 3–6. 
(13)  Patel, A. J.; Narayanan, S.; Sandy, A.; Mochrie, S. G. J.; Garetz, B. A.; Watanabe, H.; 

Balsara, N. P. Phys. Rev. Lett. 2006, 96, 1–4. 
(14)  Oparaji, O.; Narayanan, S.; Sandy, A.; Ramakrishnan, S.; Hallinan, D. Macromolecules 

2018, 51, 2591–2603. 
(15)  Hillmyer, M. A.; Bates, F. S. Macromolecules 1996, 29, 6994–7002. 
(16)  Khandpur, A. K.; Förster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W.; Almdal, 

K.; Mortensen, K. Macromolecules 1995, 28, 8796–8806. 
(17)  Sinha, S. K.; Jiang, Z.; Lurio, L. B. Adv. Mater. 2014, 26, 7764–7785. 
(18)  Pennicard, D.; Lange, S.; Smoljanin, S.; Hirsemann, H.; Graafsma, H.; Epple, M.; Zuvic, 

M.; Lampert, M. O.; Fritzsch, T.; Rothermund, M. J. Phys. Conf. Ser. 2013, 425. 
(19)  Berne, B. J.; Pecora, R. Dynamic Light Scattering with Applications to Chemistry, 

Biology, and Physics; John Wiley & Sons, Inc.: New York, 1976. 
(20)  Cipelletti, L.; Ramos, L.; Manley, S.; Pitard, E.; Weitz, D. A.; Pashkovski, E. E.; 

Johansson, M. Faraday Discuss. 2003, 123, 237–251. 
(21)  Livet, F.; Bley, F.; Ehrburger-Dolle, F.; Morfin, I.; Geissler, E.; Sutton, M. J. Synchrotron 

Radiat. 2006, 13, 453–458. 
(22)  Livet, F.; Bley, F.; Ehrburger-Dolle, F.; Morfin, I.; Geissler, E.; Sutton, M. J. Appl. 

Crystallogr. 2007, 40, 38–42. 
(23)  Lhermitte, J. R. M.; Rogers, M. C.; Manet, S.; Sutton, M. Rev. Sci. Instrum. 2017, 88. 
(24)  Lee, S.; Leighton, C.; Bates, F. S. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 17723–17731. 
(25)  Gillard, T. M.; Lee, S.; Bates, F. S. Proc. Natl. Acad. Sci. 2016, 113, 5167–5172. 
(26)  Schatzel, K. Quantum Opt. J. Eur. Opt. Soc. Part B 1990, 2, 287–305. 
(27)  Cipelletti, L.; Weitz, D. A. Rev. Sci. Instrum. 1999, 70, 3214–3221. 
(28)  Balsara, N. P.; Garetz, B. A.; Chang, M. Y.; Dai, H. J.; Newstein, M. C.; Goveas, J. L.; 

Krishnamoorti, R.; Rai, S. Macromolecules 1998, 31, 5309–5315. 
(29)  Dai, H. J.; Balsara, N. P.; Garetz, B. A.; Newstein, M. C. Phys. Rev. Lett. 1996, 77, 3677–



21	
	

3680. 
 


